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AN APPROACH FOR CONSTRUCTING FAMILIES OF HOMOGENIZED
EQUATIONS FOR PERIODIC MEDIA. I: AN INTEGRAL

REPRESENTATION AND ITS CONSEQUENCES*

R. C. MORGANt AND I. BABUKA"

Abstract. The paper, which is the first in a series of two, presents an approach by which it is possible
to derive a family of homogenization approaches and assess the accuracy of any homogenization in the
relation of given input data.
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1. Introduction. The study of periodic media is one application of partial differen-
tial equations that have highly oscillatory, periodic coefficients. Essentially, the problem
is to solve the elliptic differential equation

(1)
p,q:l OXp

apq
OXq

(X) + ao u (x)=f(x)

on 12 c " with prescribed boundary conditions or 12 ", in which apq and ao are
real-valued 27r-periodic functions and h is a positive number that is small in comparison
to the diameter of the domain 12.

The problem is to get the solution of (1) for relatively (to what?) small h. There
is a large available mathematical literature that addresses the behavior of the solution
of (1) as h->0. We mention here, for example, [3], [9], [10], and the survey [21].

One of the main applications for differential equations of type (1) is in the field
of composite materials. Here the aim is to replace the composite by homogeneous
materials with the bulk material properties. For various aspects we refer to [1], [2],
[12], [13], [19]. A brief history is given in [2]. The accuracy of such replacement
depends, of course, on the goals of the analysis. Hencemany approaches are used in
applications. The most obvious approach, namely, to use asymptotic analysis for h --> 0,
is not always applicable because h is given and cannot be changed and because of
particular aims of the analysis. When numerically solving problem (1) directly, we
face essential difficulties of how to represent the microstructure of the composite
materials. This difficulty falls into the class of solution of elliptic equations with rough
coefficients. For various aspects of this problem, we refer to [6]-[8].

As was said above, various approaches can be and are used for solving (1). These
approaches often give very different results (see, e.g., [10]). In addition, some of them
are formulated in an abstract or in more or less analytic form. These approaches give
theoretical insight, but are not well suited to a numerical treatment of the problem.

This paper presents and thoroughly analyzes an approach directed to overcoming
the various major difficulties mentioned above"

(a) It allows the design of an entire class of "homogenization" formulations and
judges the accuracy and reliability of any homogenization approach. It also allows the
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specification ofthe class of problems (e.g., loads) for which a homogenization approach
is applicable. In addition, it leads to a hierarchal construction of the homogenization
formulations.

(b) The implementation is completely numerical, and allows adaptive modeling
(selection of the equations).

We will address here only the problem with tl =R’, although very important
features of the solution occur near the boundary when fl is a bounded domain. These
problems have a special character and will not be addressed here. Some brief comments
will be made in 5.

We will assume that
(i) f R’,
(ii) ao(X) >- To> O,
(iii) f

and that the problem is elliptic and self-adjoint.
The restriction of our analysis to a single differential equation is of a technical

character only, as the ideas are also applicable to a system of equations, which would
arise in elasticity problems, for example. The main idea of the approach, under the
assumptions stated above, is based on the result that the solution u of (1) can be
written in the form

(2) uh(x)=(27r),/ .f(t)dP h, e i’’x at,

in which f is the Fourier transform off and b(y, h, t) is a function that is 27r-periodic
in y and analytic in h and t, and that solves the differential equation

(3) a( a
eiht.y))--eiht’Y p,q=l apo(y)-yp (dp(y) + h:ao(y)dp(y)= h

on {y e R’:lypl < 7r}. There are some other representations of 1t
h that are related to

(2), but are developed in a different context. For example, in [9] ( 3.1 and 3.2 of
Chapter 4) and [17], a spectral decomposition of the operator (3) defined on the cell
(respectively, shifted cell) is used and uh(x) is expressed through Bloch expansion.

By taking various approximations of (I), we can express approximately the solution
u h in terms of solutions of auxiliary partial differential equations with constant
coefficients, or even pseudodifferential equations. We can also use (I) for the construction
of the basis functions of the finite-element method. Considering the error analysis
associated with the approximations of b, we can design an adaptive method of selecting
a "model" that would yield an approximate solution, whose accuracy meets a prescribed
tolerance. These ideas are more fully discussed in [5], where we have introduced a
method to systematically derive numerical, computer-oriented methods for an approxi-
mation of u h. In 5 we will elaborate on these ideas.

In this paper, we concentrate our attention on representation (2), whereas in 16],
we make a thorough analysis of (h(Y, h, t). Consequently, the properties of b that are
used in this paper will be stated without proof. The integral in (2) is defined as a
Bochner integral of an H(R’)-valued function (HI(R") is defined in the next
section). As a simple application of (2), in 5 we will give an alternate proof of the
classical homogenization result (the limit of u h as h--> 0).

This paper and [16] are based on the first author’s Ph.D. thesis [15], in which
additional details and references can be found.



HOMOGENIZATION 3

2. Notation and statement of the problem. For j 0,1, and for any v , define
the weighted Sobolev space H,( to be the completion of C( (the complex-
valued C-functions that have compact support on ’), with respect to II,ll,, where

Ilttjjj2,v f Z }Dan(x)[2 exp (2vlxl) dx.
dn

(Forx, Ixl Ix[+,," +lxl,) We wm use n() and II’lb to denote the standard
Sobolev space and norm on (i.e., when v =0). Next, we introduce the Sobolev
spaces of periodic functions for which

S{y(y,... ,y,): lyl< for k=l,...,n}

is the fundamental period. For j 0, 1, we denote the standard Sobolev norm on S by
I1" Ib,, and we define ner(S to be the completion, with respect to the norm [[. Ib,s, of
the complex-valued C-functions on " that are 2-periodic in each coordinate
variable.

Let ap, (p, q 1, , n) and ao be real-valued, 2-periodic, L-functions defined
on ". Fuhermore, assume aqp apq and assume that there exist positive constants

T0 and T such that

aox)yo for all p C,
(4)

apq(X)qp Yl Ipl 2

p,q p

almost everywhere on . For each h > 0, define

(h)[ u, v] apq
p, OXq Oxv

(x)+a dx.

An immediate consequence of the conditions imposed on the coefficients ao and %q
is that there exists a constant C, independent of h > O, such that

(5)
I*(h)[u, vll Cllullllvlll,
I(h)[v, vii min {to,

for all u and v in Hl(n). Then, according to the Lax-Milgram theorem, for each
h > 0 and eachf L2, there exists a unique function u h HI(n) that satisfies

(6) (h)[u h, v] dnf"f(x)v(x) dx for all v HI("),

because

(7) w-IR.f(x)v(x dx

is a bounded linear functional on HI(").
Next, for each h C and C", define the sesquilinear form (h, t)" Her(S) x

Her(S) C by

*(h, t)[, vl v,q= avq(y) ((y) e

Oyv
(v(y) e + h2ao(y)4(y)v(y) dy.
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LEMMA 1. A neighborhood c C"+ of ,+1 can be found such that for each
(h, t) G, there exists a unique function dp(., h, t) Hper(S) that satisfies

(h, t)[th(’, h, t), v]= h2 v(y) dy for all v Hper(S).

Furthermore, the mapping (h, t) G-d(., h, t) Hper(S) is holomorphic, by which we
mean that about each point in G, the function (h, t)--ch(’, h, t) can be expanded in a
power series, convergent in Hper(S) and in which each coefficient is an element in Hper(S).

For the most part, the proofs of statements concerning b(., h, t) are omitted in
this paper since we give a fairly comprehensive analysis of 4(’, h, t) in [16].

In 4, we show that u a admits the representation

(8) uh(x)=(2r),/----’ f(t)dp h, e it’x dt,

in which (t)=(1/(2.rr) "/2) jR.f(x)e-i"’dx and in which the integral is a Bochner
integral of H[(")-valued functions. Our proof of (8) has as its first step the claim
that for each h > 0 and

solves (6) when f(x)= e"’. However, (9) is not an element of H(R"), and for this
choice of f, (7) is not a bounded linear functional on H(R"). Consequently, we
consider xlr(h) as a sesquilinear form on H(")xH(n) for (sufficiently small)
positive numbers v.

The main tool for analyzing qr(h) is Theorem 2 below.
THEOREM 2. Let H1 and H2 be two complex Hilbert spaces with respective norms

I1" and associated inner products (.,.) for k 1, 2. Let B[ ., be a sesquilinearform
defined on H1 x Ha for which there exist positive constants M and y such that

(a) [B[u, v]l<=Mllull,llvll2for all uH, and oGH2,

(b) inf sup [B[u,v]l->y>0,
uEH vEH

Ilulll=l Ilu112<----1

(c) sup [B[u, vii > 0 for each v Ha, v # O.
uH

Iff H*2 the space of bounded conjugate-linear functionals on Ha, then there exists a
unique Uo H such that

(d) B[uo, v]=f(v) for all v H:,
1

(e) }luolll--<-IIflIH*.
y

A proof of Theorem 2 in the case of real Hilbert spaces can be found in [4] (as
Theorem 5.2.1). The method of proof in the complex case is essentially unchanged
and thus will be omitted.

We now prove the following lemma.
LEMMA 3. There exist positive constants Vo, C, and y such that for all v (0, Vo)

and all h > O,
(i) [(h)[u, vii---< Cllull,,-llvllm,,
(ii) infllull,._=l suPllvll,.= 11qr(h)[u, v]l>_- y>0,
(iii) supuH_’.R-)Ixlr(h)[u, vii > 0 for all v HI(") and v O.

The constants Vo, C, and y are independent of h > 0; however, y depends on o.
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Proof Statement (i) follows because (h) has L-coefficients. To prove statement
(ii), define (Tu)(x)= u(x)e-2lxl for u HI,(R"). Then for v > 0,

,,,= (x)-2v sgn (x)u(x)
j=l OXj

<2(1 +4nvZ)llul] 2

Now,

xIt(h)[u, Tu]-" a.q (X)
p,q=l OXq

+]u(x)[:z) e -:z’lxl dx

OXp
(x)+ao - u(x)T(u) dx

apq (x) (x)+ao
p,q=l OXq OXp

u(x)u(x) exp (-2vlx[) dx

(11)
-2 p,q= apq

OXq
(x) sgn (xp)u(x) exp (-2lxl) dx

A simple consequence of (4) is *l(h)[u]>min{o, tllull we also have
u]l < c u for some constant c, independent of h. Combining these two inequalities
with (10) and (11) yields

I*(h)[u, ru]l > (min {o, t-2c)llull
min {%, } 2c

2(1+4n)
Consequently, there exist positive constants Po and % which are independent of h > 0,
for which *(h)[u, Tu] 111,-1 rll, for all e (0, o). This proves (ii).

Statement (iii) is proven in a similar manner.
Throughout the remainder of this paper, we implicitly assume p e (0, po). Let

fe L(N); then

f(x)v(x)
dx II/llolvl, for all ve H(R).

Lemma 3, in conjunction with Theorem 2, now yields the next theorem.
ToM 4. For each h>0 and f L(N) there exists a unique function

H(N) for which

( .(h[u, v] f(xv(x x for a ve H(.

Furthermore, uhl,_N (1/
There is no ambiguity in denoting the unique solutions of (6) and (12) by u h

because H(N)c H()c H(N) implies they are the same function. However,
(12) can be solved when f belongs to a broader class of functions than the class of
L-functions, namely, when f belongs to the dual space of H(N). One such function
is defined by f(x) e"’.

THEOREM 5. ere exists a constant Co independent of t, such that

for all H(S) and for all ten, where I111 +., ,+



6 R. C. MORGAN AND I. BABUKA

For each h > 0 and each to 7/", define

S(h, to)=- {x 6R"" (toj- 1)rrh <xj < (to + 1)rrh, j 1, , n}.

Note that S(1, (0,. , 0))= S is the fundamental domain for the periodic spaces.
LEMMA 6. For each h > 0 and v > O, there exists a constant Cl(h, v) that remains

0bounded as h - O, such that for all and for any X Hper(S),

0--

and for any X e Her(S),

--<_(1 + h-1)Cl(h,

X exp (it" x)

77n (h,2to) p=l OXp
)( exp (it. x) + X exp (-2uxl) dx,

where 2w(2Wl,..., 2w,). Making the substitution (x/h)-y+2w in the integral
over S(h, 2w) and using the periodicity of X yields a constant Y, independent of h,
such that

X exp (it. x)

toaT/n p=l
(X(Y) exp (iht. y)) exp (i27rhto. t) +lx(y)l2

exp (-2uhly+27rtol)h" dy}
=< t(1 + h-2)(,oz" exp (-4zruh]tol))h"llX exp (iht. y)l121,S.

It is not difficult to prove that there is a constant c that is independent of h such that

hn Yoz" exp (-4rruhltol)<=ch"(l + IR" exp (-rcruhlx]) dx).
Upon setting Cl(h, v)=-/&(h" +(2rrv)-"), (ii) follows.

A similar argument, in which the contribution from the first-order derivatives is
ignored, produces (i). [-1

LEMMA 7. For all h > 0 and , we have

114,(’, h, t)llo,s
(27r) n/2

’)/0

limb(., h, t) exp (iht. y)ll,,s C2(h)

for some positive number C(h ).
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Proof It follows from (4) and Lemma 1 that

")/1 p=l yp (b(y, h, t) exp (iht. y)) dy-t- ’),oh2llt( h, t)ll 2
O,S

_-<(h, t)[b(., h, t), qb(., h, t)]

The lemma now follows with

C2(h)
(27r.) n/2

min { Yo, 3’1h-2}"
4. The representation of uh. We begin with Theorem 8 below.
THEOREM 8. For each h > 0 and ",
(i) x--->dp((x/h), h, t) e "’x is in Hlv(");
(ii) (h)[4)((x/h), h, t) e "’x, v] =,-exp (it.x)v(x) dx for all v Hlv().

Furthermore,

(iii) b
x

h, e "’’ -<
1,-- /12

2

Proof Statement (i) follows from Lemmas 6 and 7, which imply Ilch((x/h),
h, t) e"ll,,_ _-< (1 + h-1)Cl(h, u)C2(h). Assuming that (ii) is true, (iii) is a consequence
of Theorem 2, Lemma 3, and the fact IR-e"Xv(x) The proof of
(ii) is based upon determining the relationship between (h) and (h, t), and then
using Lemma 1.

For each h > 0, there exists a locally finite, C-partition of unity {o-0,( , h): to 7/"}
subordinated to {S(h, to)" to 7/"} such that ,o" o’,o(’, h)v converges to v in HI(
whenever v e HI(R"). The basic requirement of the partition of unity is that Ir,,(x,
and ](Oo’,o/OXp)(x,h)] for p=l,...,n are uniformly bounded for xeR" and
Then v,,(., h)=-o’oo(’, h)v has compact support in S(h, to), and for any X e Hper(S),

(13) <= 2 apq X exp(it, x) Oxp(X,h)7/n (h,oo) p,q=l OXq

because (h) is a continuous sesquilinear form on H[(N")x H(N"), according to
Lemma 3 (i). In an effort to transform the region of integration S(h, to) into S
S(1, (0,... ,0)) in each integral, make the substitution x/h=y+zro for xeS(h, to),
in which a3 is the n-tuple of even integers, that is, derived from to according to

I top, top even,
Op

top- 1, top odd.

Using the periodicity of ao, {apq "p, q 1,. ., n}, and X, each integral in (13) becomes

h- apq(y)-yq(X(y)exp(iht. (y+cro3))) Oxp(h(y+Tr),h)(1,to--) p,q=l
(14) }+ ao(y)x(Y) exp (iht. (y+ 7r))vo,(h(y+ r), h) h" dy.

Next, for each to e 7/", define

(15) v,,(y, h, t)=-- voo(h(y+ ro), h) exp (-iht. (y+ r))
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for yeS(l, to-) and extend v,o(.,h, t) to all of R" by 27r-periodicity. Since the
support of y->v,o(h(y+ 7rt), h) is contained in S(1, w-), it follows that v(., h, t)e
Hp(S). Using (15) to substitute for v(h(y+ ), h) in (14) yields

fs(,w-) { h-2p,q= apq(Y) O 0 o(X(Y) exp (iht. y)) (v(y, h, t)exp (-iht. y))

v(y, }h" dy.+ ao(Y)X(y) h, t)

Now, the domain of integration S(1, -) can be replaced with S(1, (0,..., 0))= S,
and consequently

(16) (h,rx() exp (it x), v] h-2(h, t)[x v( h, t,]
L knl

for all v e HI,(’).
Noting Lemma 1, it is now a simple matter to prove (ii)"

(h)[(, h, t) exp(it.x),v]= h-2(h,t)[(.,h,t),v(.,h,t)]
/

E h fv(y,h,t) dy
3s

fu, exp (it. xv(x) dx)

for all v H(), since v
LEMMA 9. For each h>0, t((x/h),h,t)exp(it x)H(") is a con-

tinuous mapping.
Proo The continuity of te"H() follows in a straightforward manner.
Upon setting 0 and X (’, h, t) (., h, r) in Lemma 6,

(1 + h-’)Cl(h, v) lim 1[(., h, t)- (., h,  )111, 

=0

follows from Lemma 1.
For each f L2(’), the Fourier transform of f is defined by

f(t) (2)/ f(x) exp (-it. x) dx.

The following notation will be used with the function f only (as it appears in (12)).
For any fe L(N) and N> 0, define f e L(N) as the inverse Fourier transform of
flt’lltllN), i.e.,

f(x)=(2)"/2 _ltllN 0, lit[l> N.

Parseval’s inequality implies

lim IIf-f IIo Iio 0.
N
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Next, for each N>0, define Uh( ;,N) H_(R") by

uh(x; N) (2r)n/2 f(t)4 ,h, exp(it.x) dt

-(2r)n/2 nf()4 , h, exp(i, x) de

in which the integral is to be interpreted as a Bochner integral of H(N)-valued
Nnction (cK [18]). In order to show that the integral has such a meaning, we need to
show that the integrand is strongly measurable and that llf()(x/h, h, )e"Xll,_
is Lebesgue integrable over {’11 11 N!. This integrability condition is satisfied as a
result of Theorem 8 (iii) and because f is an L-function on I: I111 st. By strong
measurability of the integrand, we mean that there exists a sequence of simple functions
tw(., t)e H(N) such that

(17) lim

It is easy to construct such a sequence (and we do so in the proof of Theorem 10
below) using Lemma 9 and the measurability of f. Furthermore, if the sequence of
simple functions satisfies

(18) /-,oolim Iltll<=N -o

then

f(t)c h, e ’t’x dt lim Wk(’, t) dt in H(R"),
itll=<n k II------ N

in which the integral of a simple function is defined in the standard manner.
THEOREM 10. For each N > O,

b(h)[uh(.; N), v] JRfnfrv(x)v(x) dx for all v HI(R").

Proof. The essence of this proof is that a sequence of simple functions satisfying
(17) and (18) can be chosen so that each value of each simple function is of the form
cch((x/h),h, )e’’ for some {t:lltll<-_N and for some complex number c. With
this being the case, Theorem 8 (ii) can be used to evaluate (h)[u, v] whenever u is
the integral of one of these simple functions.

To begin, note that Hl(")c LI("). Consequently, 3 is continuous (cf. [15])
when v H(Rn), and it follows from Theorem 8 that

is well defined for each r R".
Set -= {t " :11 tll N}. Now select a sequence of simple functions Sk :f C

and a sequence of collections {fk, :j =0,"" ", Mk} of measurable subsets of f for
k 1, 2,.. and for which the following is true. For each k:

(a) 1) U__0 fk,, l)k, lIk, b for j # l;
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(b) for j 1,. ", Mk, if and r are in 12k,j, then

and I(t)- (-)1 < 2-k;
(C) Sk is constant on 12k, for j=0,..., Mk, with Sk(t)=O for t12k,O, Sk-fN

pointwise almost everywhere on 12, and Isk(t)l <--IfN(t)l almost everywhere on 12.
Next, for each k, pick a zk’J 12k, for each j 1,..., Mk, and define

Wk(X, t)=
( 0,
Oh(X h, h, zk’j) exp izk’j. x),

r(t) f0’ 12k,0,
(’), tfl,.

A consequence of the preceding construction and of Theorem 8 (iii) is

fs(t)qb h, e it’X--Sk(t)Wk(X t)]] lfN(t)-sg(t)l 1

3./= + fN( t)[2-
(1 )<= A-2-kyu,/2 IfN(t)[.

It follows from the first inequality that

k-oo -, h, exp (it. X)--Sk(t)Wk(" t) --0 a.e.

Furthermore, the Lebesgue dominated convergence theorem and the second inequality
imply

limfa f<t)(- h,t)exp<it.x)-s,<t)w<.,t)ll dt:O.
k 1,--

Consequently,

uh( N)= lim (2)-/ l Sk(t)Wk(’, t) dt in H(E).
k ItllN

Finally, the continuity of u(h)[u, v] (Lemma 3); the definitions of Sk, Wk, and
rk; and Parseval’s equality imply

N) v]= lim (2)-/:[f Sk(t)Wk(’, t)dt, v](h)[uh(’;

lim II Sk(t)rk(t) dt

f(t)(t)dt
Iltll_<--N

=Ia, fs(x)v(x)dx
for all v HI,,(Nn), because fN(t)= 0 for Iltll > N.
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It is now a simple matter to prove the main result of this paper.
THEOREM 11. Suppose h>0 andf L2(En). Let uh H[() be the solution of

(12). Then

(19) uh(x)=lim
itll__<N

f(t)b(’h’t) exp(it’x) dt inHl(R)’

where, for each N, the integral is defined as a Bochner integral of Hl_(R")-valued
functions.

Proof. A consequence of Theorem 10 is that

(20) W(h)[uh- uh(’; N), v] IR" (f(x)-fn(x))v(x) dx

for all v HI(), from which the inequality

1
(21) Ilu uh(’; N)II1,- --<- Ilf-fNIIOy

is easily derived (cf. Theorem 2 and Lemma 3). Then (19) follows.
Actually, (19) converges in HI(") even though each integral is defined only as

a function in H[(n). The reasoning that allows us to identify the unique solutions
of (6) and (12) also yields uh(’; N)H() and the fact that (20) is valid for all
v H(n). Now, the Lax-Milgram theorem and (5) imply

1
Ilu u( N)II1--< Ilf-f IIo.min { Yo, 3’ }

5. Homogenization. In this section we derive first the classical result of homogeniz-
ation, which states that u h converges, as h tends to zero, to a function that is the
solution of a constant coefficient partial differential equation. This is an example of
analyzing Uh through (19) and an analysis of th(’, h, t).

According to Lemma 1, it is possible to expand b(., h, t) in powers of h, for each
E. Consequently, we can write

(22) th(’, h, t) tho( ", t) + 1(’, t)h +....

The functions {b(., t):j=0, 1,...} can be determined by expanding (3) in powers
of h and substituting (22). Here we are interested in only the constant term, and solving
for it yields

1
dpo( ", t) go(t)

Z apqtqtp + aop,q

where Ao and {Apq: p, q 1,..., n} are derived from the periodic coefficients ao and
{apq: p, q 1,..., n} and certain auxiliary functions. Complete details are given in
[16], where proofs of the properties of b(., h, t) that are stated in the following lemma
can also be found.

LEMMA 12. There exist positive constants 0 and Go, and continuous functions
go:"- (0, c)and G,:{(h,t)"+’:O<-Oh(l+lltll)<l}(O, ) such that

(i) go(i!<-_ Go/l + lltll,
(ii) 116 h, t)-go(t)lll,s<-Gl(h, t)h for each h>=O and t" that satisfy 0h(l+

[Itll)< 1.
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A consequence of (i) is that we can define functions Uo and Uo(’; N), for N> 0,
in H2(R") by

(23)
Uo(X) (27r) -"/2 In" f(t)g(t) exp (it. x) dt,

Uo(X; N)= (2rr) -’/2 f(t)go(t) exp (it. x) dt

whenever fe L2(R") (cf. [18]). Note that Uo(’; N) Uo with f=fN. We have uo=fgo
and (Uo(" N))=fNgo, and then Parseval’s equality implies

(24) Uo- Uo(.; N)Iio Gol[f-f Iio.
The integrals that define Uo and Uo(’; N) are to be interpreted as Lebesgue integrals
of numerical-valued functions. However, we want to interpret Uo(’; N) as an integral
of H(")-valued functions. In the Appendix we show that the integral in (23) can
be interpreted in both ways, in an unambiguous and consistent manner. Furthermore,
note that Uo is the solution of the constant coefficient differential equation

02U0(25)
p,q

Apq
OXpOXq

(x) + Aouo(x) =f(x).

We can now prove the classical result in homogenization.
THEOREM 13. Let f L2(R"). Let uhn( be the solution of (12)for h>0,

and let Uo HI() c H() be the solution of (25). Then limh+o Iluh--uoIlo.---O.
Proof. For each N > 0, we have

(26)
u" uollo,- Ilu u(’; N) IIo,-

+ [luh(’; N)- Uo(’; N)llo,_+ Iluo(’; N)- uollo,-.

Let e > 0 be given. It follows from (21) and (24) that we can choose an N> 0 that
makes each of the first and third terms on the right-hand side of (26) smaller than e,
uniformly in h. Next, a consequence of Lemmas 6 and 12 is that there exists hoe
(0, 1 / 0(1 + N)) such that for all h (0, ho),

I[uh(" N)- Uo(’; N)llo,-

<--_ (2rr)-"/2C,(h, v)h I(t)lGl(h,t)dt

dt

<e. O

We have shown that an expansion of the function (., h, t) leads directly to the
classical homogenization. A truncated series (22) is a special approximation of .
Comparing it with , we get precise information whether the results are for given h
and f in the range of admissible accuracy.

We, of course, have many other possibilities to employ function for a derivation
of homogenized equation and numerical treatment of the (original) problem, so that
the admissible accuracy is achieved. We mention some of them here.
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(a) For given h (which in engineering applications cannot be made "sufficiently"
small), we can approximate the function (., h, t) in the form

(27) @(., h, t) Pk(" )@k(t),
k=l

where bk(t are rational functions. The approximation (27) is such that the error

e=(’, h, t)- Pk(’)@k(t)
k=l

is small for to<= t<= tl, O<-x/h<=27r, where f(t) is not negligible. We can also (by a

smoothing technique) decompose f,

s:
so that f is small outside of tj < < tj+l, and solve m homogenization problems
separately. By this approach any prescribed accuracy can be achieved. Every ’k(t)=
Pk(t)/pk(t) is the symbol of the homogenized problem

L1 u h L2f
Here L, respectively, L2, are operators associated to I]/k, respectively, Pk.

(b) We can approximate the function separately for every fixed value x and
derive homogenized equations associated with this point. This is important in applica-
tion because usually we are interested in the solutions in some specific (dangerous)
places only.

(c) Often we are interested not in the solution but in the fluxes (stresses), stress
intensity factors, etc., in some specific points. Writing expressions analogous to (2) for
these points we can construct other adequate homogenizations.

(d) Given a concrete homogenization we can compare its symbol with and get
the information about the admissible range of f and accuracy of such an approach.
For example, we can judge whether h is "sufficiently" small. By this we can characterize
the approximation of various approaches in much more effective ways than have been
used in 11].

The function (., h, t) is the solution of the elliptic problem (3) with parameters
h and t. The function (., h, t) can be found numerically without any difficulties by
the finite-element method (in the range of a priori given tolerance). The computation
for various values and h can be done in parallel. The approximation we mentioned
above is then simply post-processing of the computed data.

(e) The function @ can be directly employed for the construction of a special
element for solving the original problem analogously as has been discussed in [8].
Here we will use the finite-element basis function of the form

(28) pi,= p(x)dp(, h, ti), i= 1,..., s,

where ti are properly chosen points and p is the classical "hat" function associated
to the nodal point x in the finite element method. Here, of course, denoting by H the
meshsize of the elements, we have H >> h.

There are many other opportunities to employ the function for computational
purposes and to create a hierarchical family of homogenizations. The selection of the
adequate homogenized equation then could be made adaptively. Nevertheless, it is
out of the scope of this paper to elaborate more and we refer to [5] for additional
aspects and numerical examples.
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So far we assumed that ". If has a bounded boundary (e.g., crack problem)
the solution is much more complicated. Here always a boundary layer or singular
behavior is present. A practical way to deal with this problem is to use refined meshes
and basis functions of the form (24) with sufficiently large s (which also could be
determined in an adaptive way).

6. Appendix. Define w(x, t)=(wr)"/z(t)go(t)e ’t’x, where f L2(") and go is
defined as in Lemma 13. According to (22), Uo(’; N) H2(") is defined by

Uo(X; N)= | w(x, t) dt
ltllN

as an integral of numerical-valued functions. Since

t--w(., t) is strongly measurable in H("),

IIw(’, t)ll,-dt<-(2cr)"/2Gov-"/: If(t)l dt<o,
Iltll-=N Itll-<-N

it follows that

W= I w(’,t) dt
Itll-<N

can be defined as an integral of H(")-valued functions. We want to prove the
following lemma.

LEMMA 14. UO(’; N) W as a function in HI(").
Proof It suffices to show that XUo(X; N) exp (-vlxl) and x- W(x) exp (-vlx [)

generate the same generalized function. It follows from (27) that a sequence
t-Wk( ", t) H(") of simple functions can be chosen so that

lim IIw (,, t)--w(’, t)ll,_--O a.e.,

I]Wk(’, t)-- W(’, t)lll.- dt --0,

3
IIw(, t)lll,----llw(, t)]ll,_ a.e.

Then by definition, W limk_ lltll<=N Wk(" t) dt in H(R").
Let C(R"). Then Fubini’s theorem, the Lebesgue dominated convergence

theorem, and the definitions of Wk and W imply

| Uo(X; N)exp (-v[xl)O(x) dx | | w(x, t)exp dx dt
dn dlltll =<N d

--limIk->cx]tll<_ N fu wk(x’t)exp(-v[xl)d/(x)dx.

I" W(x) exp (-lxl)O(x) dx.
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AN APPROACH FOR CONSTRUCTING FAMILIES OF HOMOGENIZED
EQUATIONS FOR PERIODIC MEDIA.
II: PROPERTIES OF THE KERNEL*

R. C. MORGAN," AND I. BABUKA’

Abstract. This paper is the second in the series devoted to the study of constructions of families of
homogenizations. The first paper [SIAM J. Math. Anal., 22 (1991), pp. 1-15] used the properties of the
kernel (., h, t). In this paper these properties are established.

Key words, homogenization, composite materials

AMS(MOS) subject classifications. 35J05, 35JPP, 73K20

1. Introduction. In [8] we developed an integral representation of the solution to
a differential equation that models the equations that arise in the study of periodic
media (e.g., composite materials). The elliptic differential equation studied in [8] is

0___((_)oUh(x))+ao(_)uh(x)=f(x)
p,q= 10Xp

apq
OXq

on n, in which apq and ao are real-valued 27r-periodic functions and h is a given
positive number. An alternate proof of the classical homogenization result (the limit
of u h as h --> 0) is given in [8], based on the integral formula for u h that was developed
there.

The integral representation of u h depends on the 27r-periodic function b(., h, t)
that satisfies

-e-iht’y apq(y) (49(Y, h, t) e + h2ao(y)dp(y, h, t)= h
p,q

on {y n: lYpI < 7r}, in which . The main emphasis of[8] is placed on the function
u h; the properties of b that are needed there are stated without proof. This paper
presents an analysis of b in order to prove these claims, namely, Lemmas 1 and 12
in [8]. Theorem 1 in this paper is equivalent to Lemma 1 in [8], whereas the content
of Lemma 12 and the discussion preceding it in [8] are contained in Theorems 9 and
11 here.

In 2, the notation used here and the equation that th(’, h, t) satisfies are given
along with the statement of Theorem 1. The proof of Theorem 1 is presented in 3.
The expansion of b(., h, t) in powers of h and properties of this expansion are
developed in 4. Section 5 is devoted to developing several analyticity results associated
with families of sesquilinear forms. The results of 5 are used extensively in 3.
Additional details and references can be found in [7].

A method for systematically developing classes of differential equations, or even
pseudodifferential operators, that describe the behavior of composite materials with a
periodic structure has been introduced in [3] and is based on the results of [8] and
this paper.

* Received by the editors May 23, 1989; accepted for publication (in revised form) February 6, 1990.
This research was partially supported by Office of Naval Research contract N00014-85-K-0169.

" Institute for Physical Science and Technology and Mathematics Department, University of Maryland,
College Park, Maryland 20742.
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2. Notation and statement of the problem. Let S -= {y - (Yl, Y,)
for k= 1,..., n}, and for j =0, 1, denote the standard Sobolev norm on S by [].
In addition, define[. [1 by

(Is l [vl[=--
Ov

(y) dy
p=l

The Sobolev spaces of periodic functions for which S is the fundamental period, is
denoted by Hper(S), and is defined to be the completion with respect to II" ]l, of the
complex-valued, C-functions on " that are 2-periodic in each coordinate variable.

Let apq, for p, q 1, , n, and ao be real valued, 2-periodic, with L-functions
defined on N". Fuhermore, assume aqp apq and that there exist positive constants

Yo and ya such that

do(X) o,

() .,v(X)Cq5 e l Ic.l: for a Cv C.
p,q= p=

almost everywhere on ’. For each h e C and C’, define the sesquilinear form
(h, t)" Her(S) x Hpr(S) C by

(h,t)[,v]

(2) p,q= aq(y)(4(y)eh")(v(y) e-h"’)+hao(y)(y)v(y) dy.

In 3 we will prove Theorem 1 below.
TOM 1. ere exists a neighborhood of N+ (contained in C+I), such that

a unique function (., h, t)e Hper(S) exists for each (h, t) d and satisfies

(3) (h, t)[(., h, t), v]= h [ v(y) dy for all ve He(S).
s

Furthermore, the mapping

(4) (h, t) (-, h, t) nper(S)

is holomorphic on (see Definition 12 in 5).
In the proof of Theorem 1, the following eigenvalue problem will be considered"

Seek A(h, t)C and a nonzero function 0(’, h, t)6 Hlpr(S) such that

(5) (I)(h, t)[0(’, h, t), v] A (h, t) f d/(y, h, t)v(y) dy for all v 6 Hr(S).
ds

Before proceeding to the proof of Theorem 1, we give two lemmas that we will use
repeatedly.

LEMMA 2. A constant Co exists such that

Co(1+ Iltl[)
i"Y II1 <- Co(1 + tll)llvll

for all v H’(S), the standard Sobolev space, andfor all ", where Iltll 2-- t12+ + t2,,.
Proof The proof of the right-hand inequality is straightforward. The inequality

on the left is proved by applying the right-hand inequality to the function w v eitY:

II, w e -it’y Ill C0(1 + tll)II w ,.
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LEMMA 3. Let H be a complex Hilbert space with norm {1" IIn and inner product
(’,’)n, and let ’H H->C be a sesquilinear form (i.e., p[d?, v] is linear in ch and
conjugate-linear in v). If there exist constants M and y such that

for all and v in H, thenfor eachf H*, the space ofbounded conjugate-linearfunctionals
on H, there is a unique H such that, v f(v) for all v H.

Moreover, n 1/ y f n*

Lemma 3 is known as the Lax-Milgram theorem (see [2]). The essence of the
proof of Lemma 3 is the existence of a bounded operator A that maps H isomorphically
onto H such that [, v] (A, V)H for all @ and v in H. This fact will be used in
the proof of Theorem 15 in 5.

3. Proof of Theorem 1. The ideas and results of 5 will be used extensively in
this section. Note that Hr(S) and Hr(S) satisfy the conditions imposed on H and

respectively, in 5, i.e., Hr(S) is a continuously, densely, and compactly embedded
subspace of Hr(S). (A discussion of spaces of periodic functions is contained in
[1].) Clearly, (h, t)C"+1 (h, t)[, v]C is an analytic function for each @ and v
in Hr(S).

We sta here by determining an open set G C"+ such that n+l G and such
that (h, t) satisfies inequalities similar to (34) and (35) for each (h, t) G. Then we
will show that, in the sense of (5), zero is not an eigenvalue of (h, t) when h 0 and
(h, t) +1, but that zero is a simple eigenvalue of(0, t). The conclusions ofTheorems
19 and 20 in 5 get us pa of the way through the proof of Theorem 1; we must
investigate fuher the eigenvalue problem associated to (0, t).

LEMMA 4. ere exist an open set G C+1 and real-valued functions M, % and
such that is continuous on G and for each (h, t) G, M(h, t) O, y(h, t) 0

(i) (h, t)[@, vii < M(h, t ll ll ll ll for all and v in nper(S),l
(ii) 7(h, t)llvll Re((h,l=/)Iv, v])+(h, t)llvllfor all v Her(S).

Moreover, G can be chosen so that + G and so that (h ) G whenever (h, t) G.
ProoZ For each z C and and v in H(S), define the sesquilinear form

0 i. 0
B(z)[, v] apq(y) = ((y) e = v(y) e-iZY) dy’,

p,q=l Oyq Oyq

thus, (h, t)[@, v] B(ht)[, v]+ h Is ao(y)(y)v(y) dy. Whenever it is convenient
in this proof, we will use ht =p + i, where p and are real n-vectors. Defining

F(p, )[, v]= B(p+ i)[@, v]-B(o)[@, v]

p,q
apq(y) p ((y) ezP’Y)(y) e -ip’y

-q(y) e’"
Oyq

(v(y) e qp(y)v(y)_ dy

it follows, since each apq is an L-function, that there exists a constant K such that

(6) IF(o, )[, v]lKllll(l+llll)lle"ll,llve"lll.
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In addition, there is a constant K’ such that

Using Lemma 2 and the fact that ao is bounded, it follows that there exists a positive
number M(h, t) for each (h, t) C "+1 such that (i) is true.

Next, a consequence of (1) is that

B(p)[v, v]>=

and therefore

(7) Re (B(p+ itr)[v, v])+ lllvllo B(p)[v, v]+ Re (F(p, it)Iv, v])+

We now define G by

(h, t)eC "+1" Klllm (ht),,(1 + ,,Im (ht),,)<--G=

and set

y(h, t)--26o2(1 + IlRe (ht)ll)2

in which Co is defined in Lemma 2. Finally, setting K"= Ilao[It.(s) and using (7) and
Lemma 2, we conclude that

Re (P(h, t)[v, v])+ yl,,v,,= Re (B(ht)[v, v])+Re (h2 fs ao(Y)lv(Y),2 dy)
--< r(h, t)llvll,- g"lhl211vllo

for (h, t) e G, which yields (ii) with
For each (h, t)e G, we can associate to cP(h, t) a closed operator T(h, t) as in

Theorem 15"

(h, t)[, v]=(T(h, t), V)/-/per(S) forall /)e nper(S

and for all in the domain of T(h, t), which is a dense subspace of Hper(1 S). Reference
is made to T(h, t) in the next few paragraphs in order to draw upon the results of 5.

For each (h, t)e ,+1, a direct consequence of (1) and Lemma 2 is

min { yoh2, Yl} 2(8) P(h, t)[v]_-> yllve’h"Yl/ ,oh=llvll>= -o(ii(i Ilvll,

for all v e Hper(S). If (h, t)e R"/1 and h # 0, then the hypotheses of Lemma 3 are
satisfied; hence P(h, t)[, v] s w(y)v(y) dy for all v e Hper(S), is uniquely solvable
for each we Her(S). Consequently, zero is in the resolvent set of T(h, t), and by
Theorem 20, {(h, t)e"/1" h #0} is contained in an open set in C"/1 on which (4) is
holomorphic.

Now let h 0. For any r e " (or C’), we have from the first inequality in (8) that

(0, )[v, v]> ,lvl2.
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If zero is an eigenvalue of (0, r) with qo Her(S) being an associated eigenfunction,
then

o= ,(o, -)[Oo, Oo]->_ ’,,,lOol,,

and, consequently, o is a constant function, which depends on z. Therefore, zero is
an eigenvalue of (the associated closed operator) T(0, z), and qo is the only eigenfunc-
tion associated to zero. There are no generalized eigenfunctions when z R" because
the identity (0, r)[v, 4]=(0, z)[q, v] implies, by Corollary 18, that T(0, z) is
self-adjoint.

The following conclusions can now be drawn from Theorem 20. For each
there exists a neighborhood G c G of (0, z), and there exists a complex-valued function
h, analytic on G, such that h(0, t)=0 for (0, t) G and such that h(h, t) is a simple
eigenvalue of (h, t) when (h, t) G. Furthermore, there exist two holomorphic func-
tions (h, t) G P(h, t) and (h, t) G - R2(0, h, t), with values in the space of
bounded linear operators that map oHper(S into --per(S), such that P(h, t) projects

oHper(S onto the one-dimensional eigenspace spanned by the eigenvector associated
to h (h, t), and such that

(9) d(., h, t)-
h2

h(h, t)
P(h, t)l / h2R_(O, h, t)l

for each (h, t) 6 G for which h (h, t) 0. Here 1 is the constant function that takes on
the value 1 on S. Note that h (h, t) is not identically zero on G since zero is not an
eigenvalue of (h, ) when h is a nonzero real number; therefore, this representation
of 4(’, h, t) is meaningful.

Clearly, the holomorphy of (h, t)-> 4(’, h, t) on G is completely determined
by that of h2/h (h, t). We will show that h2/h (h, t) has an analytic continuation to
h 0, and that there is a suitable restriction G; of G, on which h (h, t) 0 if and only
if h 0. This will be done by determining part of the Taylor expansion of h (h, t) in
powers of h about h 0, where it will be seen that the coefficient of h k is zero for
k=O, 1.

For the moment, we assume the existence of a function w, analytic on G,, such that

(10) h(h,t)=h2to(h,t) for(h,t)G.

Letting 0(’, h, t) Her(S) be the eigenfunction associated to A(h, t) as in (5), the first
inequality in (8) yields

,ohll( h, t)llg_<-(h, t)[q,(., h, t), q(., h, t)]-- A(h, t)llq,(’, h,

for (h, t)e G, f’lN"+l. Consequently, to(h, t)>= yo for (h, t)e G,f-IN"+1, and by con-
tinuity, there is an open set G;c G, such that (G, f3N"+l)c G’, and Re (w(h, t))>0
for (h, t)e G;. Thus (h, t)--> h2/A(h, t)= 1/w(h, t) is analytic on G’,, from which it
follows that (9) is holomorphic on G; as well. Assuming that (10) is valid, Theorem
1 is proven.

In the process of determining the Taylor expansion of A (h, t) in powers of h about
h --0, we develop a similar expansion of the eigenfunction q(., h, t). In 5 (see (45)),
we show that q(., h, t) can be chosen so that it depends holomorphically on (h, t)
The Taylor expansion of A(h, t) and 0(’, h, t) in powers of h will be obtained next,
by expanding the eigenvalue equation (5) in powers of h and equating the coefficients
of like powers.
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Upon setting

IsI)o[b, v]-- apq(y) .. (y) _. (y) dy,
p,q= Oyp

(11) O,(t)[4, v]=--i apo(y) d>(y).. (y)tq-.. (y)v(y)tp dy,
p,q

p,

for all and v in Hper(S) and for all e C it follows from the definition of (h, t) that

(12) (h,

Substituting the expansions (h, t)= 2=o (t)h, (’, h, t) 2=o (’, t)h, and (12)
into (5), equating like powers of h, and noting that to(t)= I(0, t)=0, we derive the
following system of equations:

"0, k =0,

(13) o[(’,
At(t) 1- *_,(y, t)v(y) dy

/=1

/=1

for all v H(S). Successively solving the equations in (13) will yield formulas for
the Ak(t) and k(’, t).

The method of solving (13) will be based on Lemma 6 below. First note that

(14) o[6, 1] o[1, 0] O(t)[1, 1]=0

for all Hper(S) and for each C
DEFINIWION 5.

Each function H(S) can be represented uniquely as the sum of a constant function
and a function in

LEMMA 6. I" is a norm on W, and there exists a constant K such that

for all and v in
Each equation in (13) is of the form

o[ffk, V]=Fk(V) forall vnper(S),

in which Fk is a conjugate-linear form on Hper(S) which depends on t; A(t), , Ak(t);
and o(’, t),. , 0k-l(’, t). Fuahermore, Fk is bounded on nper(S). It is also bounded
on as a result of the closed graph theorem (see (31)). A consequence of (14) is
that we must ensure that Fk(1) 0, which will determine Ak(t) uniquely. Then Lemmas
3 and 6 imply that ffk(’, t) is determined uniquely as an element in W, that is, up to
an additive constant. However, the arbitrary constants in k(’, t) will remain essentially
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arbitrary because, being an eigenfunction, ,(., h, t) is uniquely determined up to a
multiplicative constant only.

THEOREM 7. For k >- 1, define functions k( ", t) W according to

(15) O[k(’, t), V]

for all v W, where

(16) Al(t)= (2)" (,(t)[)l(’, t), 1]+2(t)[1, 1]),

1

(27r)n
(:I,(t)[)/_,( ", t), 13+2(t)[,/-2(’, t), 13),

Next, define d/l(’, t) nper(S for l>--O by

[fo(t), t=0,

in which each fl is a holomorphic function (in a neighborhood of ’) and fo( t) # 0 for
all t. Then (16) and (17) solve (13).

Proof. Upon solving (13) with k=0, we have that q’o(’, t) must be a constant
function, which we denote by fo(t) and which we assume is nonzero for each because
fo(t) 6o(’, t) 6(’, 0, t) is an eigenfunction.

In order to simplify notation, we will drop the dependence on in the remainder
of the proof.

For k 1, (13) becomes

q%[q, v]= fo v(y) dy-fol[1, v] for all ve Hper(S).
s

Setting v= 1 and using (14) yields 0= Alfo(2cr) n, which implies AI=0 because fo# 0.
Now (13) with k 1 can be reduced to

(I)o[/1, /.)I----foal[I, v] forall v W,

the solution of which is given by (17) with 1.
Substituting (16) and (17) into (13) with k=2 yields

o[’2, v]= A2fo f v(y) ay-(foCb,[2,, 1]+f,,[1, v])-fo2[1, v]

for all /)GHper(S). Again, set v=l and use (14) to obtain 0=A2fo(277")n-
fo(1121, 1]+1[1, 1]). Since fo 0, the solution to this equation is given by (16). Now
(13) with k 2 can be reduced to

tI9o[2, V]----fo(tl[)l, V]f-tI)l[1, V])--fl,[1, V] forall v W,

and the solution to this equation is given in (17).
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An induction argument, similar to the one we will use in the proof of Theorem
8, establishes the remaining formulas in (16) and (17).

As we noted earlier, the arbitrary nature of the constants (t) can be traced to
the fact that the eigenfunction @(., h, t) is determined uniquely, up to a multiplicative
constant, only. To see this, let c(h, t) k=O Ck(t)h k be analytic in h and t, with Co(t) 0,
and define

k

fk(t) p-Scl(t)fk_s(t), k - O,
1=0

Then Ek=O ltk( t) hk is the power series expansion of c(h, t)b(., h, t); clearly the
form of Ok* is the same as that of @k.

We have shown that (10) is correct, and consequently, the proof of Theorem 1 is
complete.

4. Expansion in powers of h. The expansion of b(., h, t) in powers of h can be
determined formally by expanding (3) in powers of h and equating like powers. This
formal process is valid because h - b(., h, t)E Hper(S) is holomorphic at h-0 for
each EC" such that (0, t) (see Theorem 1), and because ,(h, t)[b, v] is a
polynomial in h and for fixed b and v in Her(S). By substituting

(18) oh( ", h, t)- )k( ", t) hk
k=0

and (12) into (3), we obtain the following system of equations for the coefficients
qSk( ", t).

(19) O, k--O,
l(t)[o(’, t), v], k- 1,

(I)o[bk(" t), V] f v(y) dy-(I),(t)Etk_,(’, t), V]--2(t)[dpk-2(’, t), V], k=2,
s

--(I)l(t)[Kbk-l(’, t), v]-2(t)[b,_(’, t), v], k>_-3,

for all v E HpCr(S). The radius of convergence of (18) depends on t, and each coefficient
,b( t) isin Hper(S and depends holomorphically on t.

The method of determining each 4k is similar to that used in the proof of Theorem
7 to determine the Taylor expansions of h (h, t) and h @(., h, t). Recall that W
is the subspace of H(S) of functions that have an average value of zero. A con-
sequence of (14) is that the right-hand side of (19) must be equal to zero when v 1.
On the other hand, restricting v to be in W, Lemmas 3 and 6, applied to (19), uniquely
determine 4k( ", t) as an element in W (i.e., up to an additive constant), in terms of
(Dk-l(’, t) and (k-2(’, t). Then flk(’, t) becomes uniquely defined as an element in
Hpr(S) by requiring the right-hand side of the equation for bk+2(’, t) in (19) to be
zero when v- 1.

THEOREM 8. For each k - 1 define Xk( ", t) W to be the solution of
-@l(t)[ 1, v], k 1,

(20) o[Xk(’, t), V]-- --@l(t)[Xl(’, t), v]-@2(t)[1, v], k--2,
--O(t)[Xk_(’, t), V]--O2(t)[Xk-2(’, t), V], k >-3
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for all v W, and for each k >- 0 define gk t) C by

(21)

gk(t)

Then the coefficient of h k in (18) is given by

(22) (., t)= -1

(27r)"
l(t)[Xl(’, t), 1]+2(t)[1, 11’

go(t)
gj(t)(dPl(t)[Xk+_j(. t), 1]+2(t)[Xk-j(’, t), 1]),

Z gj(t)Xk-(’, t) + gk(t), k >= 1.
j=O

Proof Throughout this proof we will suppress all dependence upon t. First, each
Xk is well defined in W by (20) because of Lemmas 3 and 6 and because each right-hand
side in (20) is a bounded conjugate-linear form on W (see (30) and (31)).

It follows immediately from (19) with k 0 that bo is a constant function, which
we denote by go. For k 1 in (19), we now have

(I)0[l v]=-gobl[1, v] forall v Her(S).

Since [1, 1]=0 (see (14)), the solution bl has the form of (22); X1 is defined by
(20), but go and g are arbitrary constants.

We next consider k 2 in (19), and substituting (22), we obtain

(23) o[b2, v]= I-o v(y) dy-(gol[X, v]+glbl[1, v])-go2[1, v]

for all v 6 Her(S)-
Setting v- 1 and using (14) yields

0= o[2, 1] (2r)"-go(l[Xa, 1]+b2[1, 1]).
Solving for go yields (21) with k =0. On the other hand, requiring v to be in W, and
using (20), gives

(I)o[t2 D]----go((I)l[,1, /9]+2[1, /)]) glt[1,

goo[X2, v]+ gl(I)0[Xl,

which can be solved easily for b2 as a function in W. Thus, bo is completely determined
as in (22), whereas bl and b2 have the form of (22); we have yet to show that g and
g2 have been correctly defined.

Now let k >-3, and assume that tho,"" ", 4k-3 are given by (22), and that bk-
and bk- have the form of (22). That is, we are certain that go,’’’, gk-3 are correctly
defined in (21), but are not sure about gk- and gk-. We wish to show that gk-2 is
correctly defined in (21) and that bk has the form of (22). By our assumptions, (19)
becomes

k-3

o[6, v]=- Y g(,[x,,-,-, v]+[x__, v])
j=0

--gk-Z(l[X,, V]+[1, V]) gk-,l[1, V].

Setting v 1 yields
k-3 (27r)"

0=O[k, 1]=-- gj(l[X(k-2)+l-j, V]W2[X(k-2)-j, 1])- gk-,
j=o go
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which can be solved for gk-2, and thus obtaining (21). Finally, upon requiring v to
be in W, it follows from (20) that tk has the form given in (22). [3

Next, we sufficiently investigate the properties of the expansion of b(., h, t) in
powers of h to be able to prove Lemma 12 in [8]. The results are stated here in
Theorems 9 and 11.

We begin by determining the dependence on ofXl(’, t). Expanding the right-hand
side of (20) with k- 1, according to (11) yields

apq(y)
av

p= yq (y) dy tq

for all v W. Now define X1;q W, for each q 1,..., n, to be the unique solution
(cf. Lemmas 3 and 6) of

(24)

Consequently,

o[X1;q, v] Is apq(y)
Ov

p=
(y) dy for all v 6 W.

(25) -x,(’, t)= x,;,t,.
q=l

Note that X;q is a real-valued function because the same is true for each apq. Further-
more, it follows from (24) and the definition of @o that

(26) o[X;q + Yq, v] 0 for all v W.

The following formula for go(t) can be easily obtained by substituting (11) and
(25) into (21):

1
(27) go(t)

Zp,q= Apqtqtp +Ao
where

(28)
Ao- (2rr)"

ao(y) dy,

Apq
(2rr)"

apq(y) +
r=,

ap,.(y) (y) dy.

THEOREM 9. Aoe, Apq 1, Aqp Apq, and 0< go(t) <- 1/(yllltl]2+ Yo) for 1’.
Proof. Ao and {Apq: p, q 1,..., n’} are real numbers because each integrand in

(28) is a real-valued function. It follows from the definition ofo and from the formula
for Apq that

1
Aq

(2rr)"
o[X,;q + Yq, Yp];

and upon using (26) with v X;p we obtain

(29) Apo
(2rr)"

(I)o[,’l ;q "[" Yq, X1;p q- Yp for all p, q 1,. ., n.

The symmetry of Apq follows from (29) (and (11)), since symmetry conditions are
imposed on the coefficients apq, and since each function involved in (29) is real valued.
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An immediate consequence of (1) and (28) is Ao_-> Yo. Next, define :(y, t)=
q=l tqyq. Then (25), (26), Lemma 6, and the fact that Xl(’, t) is a periodic function
imply

p,q--1Apqtqtp- (27r)n
o[-iXl( ", t)+ ( ", t),-ixl( ", t)+ ( ", t)]

(2r)
i-ix( t)+( t)[ 2

(27r)" .Is p:l
(y’ t) + tp dy

1+2 6 Im (y,t) d+(2)
(2)"

Ix,(" t)l
p= kayp

Next we prove Lemma 10 below.
LEMMA 10. ere are positiee constants and g, which are independent of

such that

I1(’, t)lll<= go(t)ok(l /lltll) foreachk>-O.

Proof After stating a few preliminary results, the proof is presented in three steps.
First, an upper bound for IXk(’, t)ll is derived from (20). This result is then used with
(21) in order to obtain an upper bound on Ig(t)]. Finally these two bounds and (22)
will give an upper bound on bk(’, t)I1,.

It follows from (11) that there is a constant cl such that

(30) Ik(t)[b, v]l<-c,(l+lltll)llll,llvll, for k= 1,2,

because the coefficients ao and apq are Lo-functions. The closed graph theorem implies
that there is a constant c2, which we take to be larger than (27r) "/2, such that

(31) [IVl]l<=C2lVll forallvIv.

We now have from (20) that

k=l,

k_->3.

Lemmas 3 and 6 imply

ce( l + tll),
IXk(’, t)11 C(Ix,(’, t)l, +(1 + lltll))(1 + Iltll),

3([Xk-l( ", t)]l -[- (1 + tll)lx-2(’, t)ll)(1 + tll),

k=l,
k=2,
k_->3,

in which C CLC22/71" An induction argument proves

(32) IXk(’,t)ll----<(Ca+l)k(l+lltll) k fork=l,2,....
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Next, using (30)-(32) in (21) yields

go(t) k-1

E [gs(t)lcc2(1 +lltll)" (IXk+-s(’, t)l+(1 + Iltll)lx-s(’, t)]l)Igk(t)l<=
(2r). =o

<C1C22(C3_3t_2) go(t)(1 + Iltll)= E Ig(t)l(c3+ 1)k-(1 +iltll)’-
(2rr)" S=o

for k => 1. A consequence of Theorem 9 is that this last inequality can be rewritten as

k-1

Igt(t)l<C4 E Igj(t)[(c3+l)k-J(l+lltll) k-j fork>=l,
j=O

where

2c, c2(c3 + 2)
4----" (27r)" min {To,

Another induction argument then proves

(33) Ig(t)l<-_go(t)(c3+l)(c4+l)(l+lltll)

Finally, substitute (32) and (33) into (22) to obtain

k-1

for k>_-O.

Ilqk( ", t)[I,--< E go(t)c2(c3
j=O

--< c2go( t)( c3 + 1 )k( C4.31_ 2)k(1 + t[I) ’,
which finishes the proof.

By computing a majorizing series for (18), the next theorem is a consequence of
Lemma 10.

THEOREM 11. Let 1 and 0 be given as in Lemma 17, and suppose h > 0 and
satisfy 0 (1 + tll) h < 1. Then

lgo( t)
114(" h, t)]ll =l_O(l+llt]l) h’

]lb(.,h,t)_ .,,>11 _<_
Tok+lgo(t) )k+l k+l

j=0 1 0(1 + I[tl[)h
(1 + Iltll h

for k->O.

5. Appendix. In this section we develop some of the theory that was used in 3
when making some of our analyticity claims. The main goals here are Theorems 19
and 20. Throughout this section we make the following assumptions. Let V and H be
separable, complex Hilbert spaces in which V is a compactly and continuously
embedded dense subspace of H. We denote the associated inner products by (.,.)v
and (.,.)/, and the associated norms by I1" v and I1" H. Let G be an open set in C ",
and consider a family of sesquilinear forms (z): V VC, defined for each z G.
Suppose that there are real-valued functions M, y, and /x defined on G such that
M(z) > 0 and y(z) > 0 for z G,/x is continuous on G, and for each z G

(34) IO()[, v]l =< M(z)ll4ll,,llvllv for all b and v in V,

(35) y(z)l]vllZvRe(CD(z)[v, v3)/(z)llvll% forall v V.

Furthermore, suppose that z (z)[b, v] is analytic on G, for each b and v in V.
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For a given w H, we want to determine the dependence on z, in particular
situations, of b(z) V, which satisfies

(z)[4(z), v] (w, v)n for all v e V.

In so doing, we will consider the eigenvalue problem: Seek A (z) C and q(z) V such
that

(z)[q(z), v]:A(z)(q,(z), v)H forall v V.

Let a G. If zero is not an eigenvalue of (a), then we will show that (z) exists for,
and depends analytically on, z in a neighborhood of a. If zero is a "simple" eigenvalue
of (a), then we will show that h, with h (a)= 0, is analytic in a neighborhood of a,
and we will derive an expression for b(z), exhibiting its dependence on h(z).

When z is one complex variable, many of the results of this section can be found
in [5]. An important difference is that we have imposed alternate conditions ((34) and
(35)) on (z). This allows us to conclude that b is analytic with values in V, rather
than in H, which is the conclusion in [5].

At this point we want to give a definition of analyticity, or holomorphy, for Banach
space-valued functions of several complex variables. Several definitions are possible.
In a setting more general than Banach spaces, three definitions are stated and proven
to be equivalent, in Chapter III of [4]. First an open polydisc A(a, p) in C" with center
a and multiradius p -= (Pl, ",p,), where 0 < pj < c, is defined by

A(a, p)-----{z C": [zj-al<p. forj= 1,""", n}.

DEFNrIOY 12. Let W be a Banach space, and recall that G is an open set in
C". A function w" G W is analytic, or holomorphic, if for each a e G there is a
polydisc A(a, p)c G and a set of coefficients {w(a): a is a multi-index}c W such
that 0=<lcl w (a)(z a) converges in W to w(z) for each z A(a, p).

We will have several occasions in which the next two lemmas will be used. When
n 1, proofs can be found in [5], and for the general case they are proved in [7]. Let
H1 and H2 be two separable, complex Hilbert spaces and denote the inner product
on H2 by (.,-)2. Denote the space of bounded linear operators mapping H into H2
by B(H1, H2).

LEMMA 13. Let T(z) B(H, H2) for each z G. The following statements are
equivalent:

(i) T Go B(H, Hz) is holomorphic;
(ii) T( )qb G H is holomorphic for each ck H
(iii) T(. )b, v)2: G- C is holomorphic for each dp H1 and v H2.
LEMMA 14. Suppose T: Go B(H1, H2) is holomorphic, and let a G. If T(a)-l

B(H, HI), then there exists a neighborhood Ga G of a such that T(z)- exists for
z G and T(. )-1: Ga - B(H, H1) is holomorphic.

We are now ready to state and prove the results on which the main theorems of
this section are based. We begin by showing that there exists a closed operator
T(z):D(T(z))= VoH such that (z)[ck, v]=(T(z)ck, v)H for all ckD(T(z)) and
v V. The next theorem gives one way of constructing such an operator, which will
be convenient for us in what follows. Other forms of this representation theorem can
be found in [5] and [6]. (See also [1] and [9].)

Throughout this section, we will denote the domain and range of an operator T
by D(T) and R(T). Also, in the next theorem only, the dependence on z, as we have
stated so far, is inconsequential, and so we drop it.
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THEOREM 15. Let dp V V- C be a sesquilinear form for which there exist real
constants M > O, 2, > O, and tz such that

(34’) IO[ , v]l MIl ll lvll foralld?andvin V,

(35’) llvv-R([v, v])/llvll, for all v V.

Then there is a unique closed operator T: V- H such that
(i) D( T) is dense in V;
(ii) O[b, v] (Tth, V)nfOr all chaD(T) and v V;
(iii) given ch V and w H, if dp[ oh, v] (w, v)n for all v in a dense subspace of V,

then & D(T) and Tqb w.

Proof Uniqueness follows from (iii); let there be another closed operator S such
that d[qb, v] (Sch, V)H for all th D(S) and v V. Then b D(T) and Tb Sb.

Since the embedding of V in H is continuous, it follows from the Riesz representa-
tion theorem that there is a linear operator F B(H, V) such that

(W,V)H=(Fw, v)v forallwHandvV.

Furthermore, F is a 1-1 map, and R(F) is dense in V.
Next, it follows from (34’) and (35’) that [.,. ]+/z(.,. )H, as a sesquilinear form

on V x V, satisfies the hypotheses of Lemma 3. From the discussion that follows Lemma
3, it follows that there exists an operator A, B(V, V) such that AI B(V, V) and
tlg[q, V]+/z((I), V)H--(Aqb, V)v for all b and v in V. Now define

D(T) {4 V: Ab R(F)}

and set

T F-1A tXI) D( T)

in which I is the identity operator on H.
Clearly the choice of/x in (35’) is not unique. That the definitions of D(T) and

T are independent of can be seen, as follows. Let/x’ #/x be a real number for which
(35’) remains valid when/z is replaced by/z’. (The value of 3/> 0 makes no difference.)
The definitions of A, and A,, imply

(A,,d, V)v-lx’(F&, V)v=(A,qb, V)v-lx(Fqb, V)v

for all b and v in V. Thus

(A,, /x ’F) tk (A, -/xF)b for all b V,

from which it follows that A,,ch R(F) if and only if A.b R(F), and that

T= (F-1A tzI) ID(T) (F-’A,- tz’I) ID(T"

Since A, is an isomorphism on V and R(F) is dense in V, it follows that D(T)
is dense in V, which proves (i).

Statement (ii) follows from the definitions of A, and T.
To prove (iii), let 4 V and w H such that [b, v] (w, v)/ for all v in a dense

subset of V. Then

(A,d-tzFqb, V)v O[tk, v] (W, V)H=(Fw, V)v
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for all v in a dense subset of V, which implies A,b -/xFb Fw so that h D(T) and

Finally, T" D(T)c VH is a closed operator because AF
Noting (34) and (35), Theorem 15 implies the existence of a unique closed operator

T(z)" V H for each z G, such that D(T(z)) is dense in v; (z)[, v]=(T(z), V)H
for all D(T(z)) and v V; and for any w H,

T(z)=w ifandonlyif(z)[,v]=(w,v)H
(36)

for all v in a dense subset of E

Since T(z)’D(T(z)) VH is closed, the resolvent operator R(L z)(T(z)-)-belongs to B(H, V) for each p(T(z)), the resolvent set of T(z). A consequence of
(34)-(36) and Lemma 3 is that p(T(z)) contains {ffC"-Re ff(z)}. A standard
result in the spectral theory of operators is that p(T(z)) is an open set in C. In Theorem
17 below, we will prove that

(37) {(L z) C"+" p(T(z)) and z G}

is an open set also, and that R" B(H, V) is holomorphic.
First we prove a preliminary result.
LEMMA 16. For each a G, if p(T(a)) then there exists a neighborhood Gac G,

of a such that
(i) p( T(z)) and R(, z) B(H, V) for all z Gac
(ii) z R(L z) B(H, V) is holomorphic on Gc.
Proof The continuity of allows us to choose a neighborhood G G of a, and

a number (z) for z G that is,

for all v V and z G. We will first prove the lemma for ff =-, and then use the
identity

(38) (T(z) )r(-, z) IH ( +)R(-, z) for z

to prove the lemma for arbitrary ff p(T(a)).
As in the proof of Theorem 15, associate an operator A(z) B(V, V) to (z)

such that

(39) (z)[, V]+o(, V)H (Aa(z)6, V)v

for all and v in It was shown there that while A(z) depends on the choice of, A(z)-,F does not depend on a, where F B(H, V) is defined by (Fw, V)v
(w, V)H for all w H and v E Furthermore, D(T(z)) { V: A,(z) R(F)} and
T(z) (F-A(z) a)[o(() for z G. Consequently, T(z) + F-Aa(z)
is a one-to-one map of D(T(z)) onto H, and it follows that - p(T(z)) whenever
z G. According to Lemma 13 and the hypothesis that z (z)[, v] is analytic, it
follows from (39) that A "G B(V, V) is holomorphic. Since A(z)- B( V) for
each z in G, Lemma 14 implies that A(. )-" G B( V, V) is holomorphic. Therefore
z R(-, z) A(z)-IF B(H, V) is holomorphic on G.

Now, ff p(T(a)). When z a, the left-hand side of (38) is a one-to-one map of
H onto H; hence its inverse exists and belongs to B(H, H). As a function of z with
values in B(H, H), R(-, z) is holomorphic on G, because it is holomorphic as a
function with values in B(H, V) and’because the embedding of V into H is bounded.
Thus the right-hand side of (38), as a function of z with values in B(H, H), is
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holomorphic on Ga, and its inverse belongs to B(H, H) when z a. According to
Lemma 21, there is a neighborhood Ga c G of a on which

z (I- (st+ ht,,)R(-/.t., z))-’ 6 B(H, H)

is holomorphic. Therefore, " p(T(z)) for z Gas, and the holomorphy of

z G, - R(r, z)=R(-I.,,,z)(I-(+,)R(-t_c,,,z))-’6B(H, V)

follows.
THEOREM 17. The set ca, defined by (37), is open in C "+1, and (, z)- R(, z)

B(H, V) is holomorphic on ca.
Proof Let (rt, a) ca. This proof is essentially a careful repetition of the second

part of Lemma 16, with r/ replacing -/x. Lemma 16 implies that a neighborhood
Gn c G of a can be found such that 7 P(T(z)) for z Ga,, and z R(, z) B(H, V)
is holomorphic on G,. Analogous to (38), we have

(40) (T(z)-)R(rl, z)=I-(-q)R(rl, z) for z G,.
Now the right-hand side of (40), as a function of (’, z), with values in B(H, H),

is holomorphic on C x G, and takes on the value I when (’, z) (7, a). A consequence
of Lemma 14 is that there is a neighborhood cg, C x Ga, of (h a) on which
(,z)->(I-(-rI)R(rl, z))-IB(H,H) is holomorphic. Hence, p(T(z)) for
(, z) cg, which implies that ca is open. It follows that

(st, z) - R(,z)=R(l,Z)(I-(-q)R(’q,z))-leB(H, V)

is holomorphic on
The next corollary states a condition on the family {(z)" z G} which guarantees

that the operator T(z) is self-adjoint if z
COROLLARY 18. Suppose that (z, , z-,) G whenever z G. If (z)[v, b]

()[$, v] for all 4 and v in V and for z G, then T(z)* T(z) for all z G, in which
T(z)* is the adjoint of T(z) as an operator on H.

Note that R(’, z) is compact as an operator on H, when ’ p(T(z)), because
R(, z) B(H, V) and V is compactly embedded in H by hypothesis. Consequently,
the spectrum of T(a) consists entirely of eigenvalues that have finite multiplicity and
no finite accumulation point.

Recall that given w H, we want to determine the existence and the dependence
upon z of the solution b(z) V of

(z)[&(z), v]=(w, V)H forall ve V.

It follows from (36) that this is equivalent to solving T(z)4(z)= w. When zero is not
an eigenvalue &(z)= R(0, z)w. Lemma 16 yields the following theorem.

THEOREM 19. 4):{z G: O6p(T(z))}--> Vis holomorphic.
When zero is a simple eigenvalue, we have the following result.
THEOREM 20. Let a G and suppose zero is a simple eigenvalue of T(a ). Then there

exists a neighborhood Ga G of a and two functions A and z P(z) B(H, V), which
are holomorphic on G, such that A(a)=0, A(z) is a simple eigenvalue of T(z), and
P(z) projects H onto the one-dimensional eigenspace that corresponds to 3, (z). Further-
more, there exists another holomorphic function z G -> R2(O, z) B(H, V) such that

1
(41) b(z) P(z)w + R2(0, z)w

(z)

for all z G,, for which A (z) # O.
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The remainder of this section will be devoted to the proof of Theorem 20. The
theory concerning the eigenvalue problem associated to T(z) is well developed (cf.
[5]). In fact, the form of b(z) in (41) is a direct consequence of that theory. Here we
repeat many of these ideas in the process of proving the conclusions about analyticity.

Since the spectrum of T(a) is a discrete set of eigenvalues having no finite
accumulation point, a Jordan curve can be drawn in p(T(a)) so as to enclose an
open set in C containing zero in its interior and the other eigenvalues in the exterior
of its closure. Then COx {a}c , where d is the open set defined by (37). Hence for
each ,c there is a disc D(sr, r(’))C (r(r)>0, is the radius), and a polydisc
A(a, p(’)) c C" such that

(sr, a) D(sr, r(’)) x A(a, p(sr)) 3.

However, r is compact, so a finite set (sr r.j= 1,..., k) can be chosen such
that (D(, r())’j- 1,. ., k) covers . Consequently, p(T(z)) for z G’ =-

Next the operator P(z) is defined for z G’ as a Riemann integral of B(H, V)-
valued functions by

(42) p() _=
1 f R(’, z) d’.

2ri

It is shown in Theorems III-6.17 and VII-1.7 of [5] that P(z) is a projection operator
and that P(a) maps H onto M(a), the one-dimensional eigenspace associated with
the eigenvalue 0 of T(a). Moreover, H can be decomposed as H Ml(Z) / M2(z) for
zG’ inwhich

(43) M(z) P(z)H and M2(z)= (I- P(z))H.

It is also true that P" G’a B(H, V) is holomorphic because, by Theorem 17, the same
is true of R" ud_ B(H, V). Since dim (M(a)) 1, and since P" G B(H, H) is con-
tinuous (recall that V is continuously embedded in H), it follows from [5, I- 4.6,
IV- 3.4] that

(44) dim (M(z))= 1 for z

Now let q M(a) and nonzero, and define G to be an open connected subset
of G’ such that a G and (P(z)qa, d/,) 0 for z G,. Next, define

(45) d/(z) P(z)d/, for z G;

it follows that q’G- V is holomorphic with q(a)= q.
It follows from [5, III- 5.6, III- 6.1] of [5] that for z G,

P(z)v D(T(z)) for all v D(T(z)),

T(z)v M,(z) for v Mk(Z) 71D(T(z)) and k 1.

Thus Tk (z)" Mk(z) Mk(Z) for k 1, 2, and for z G can be defined by Tk (z)
T(z) [I,,(z)D(T()). The eigenvalue problem has now been decomposed into two eigen-
value problems, one for each T,(z) in M,(z). Ofparticular interest here is the eigenvalue
problem for T(z), because 0 and q form an eigenvalue-eigenfunction pair for T(a).

According to (44), T(z) is a one-dimensional operator. Therefore, h(z)=
trace (Tl(Z)) is the eigenvalue of T(z), i.e., for each z G,

(46) T(z)q= Tl(Z)d..tz= A(z) forall d/z M(z)fqD(T(z)).
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In (46), setting qz P(z)$,, and taking inner products in H with Ia yields

T(z)P(z)qa, qa)n
(47) A(z)= for z G.(P(z)a, ta)n

Since T(z) is a closed operator, it follows from (42) and the identity T(z)R(, z)=
I + ’R(r, z) that T(z)P(z) -(1/27ri) ’R(’, z) d’. Consequently, z T(z)P(z)
B(H, V) is holomorphic on Ga ( G’). Therefore, the analyticity of A on G follows
from (47) because G was chosen so that (P(z)a, a)50 when z G. Since
p(T(z)) for all z Ga, A(z) lies in the interior of the open set enclosed by , whereas
the remainder of the spectrum of T(z) must lie in the open set that is exterior to .

Let ZGa such that A(z)0. Then R(O,z) exists and commutes with P(z).
Consequently, we can define Rk(0, Z) B(H, V) for k= 1, 2, by

RI(0, z)=- R(O, z)P(z)= P(z)R(O, z),

R2(0, z) R(O, z)(I- P(z)) (I- P(z))g(o, z).
By passing R(0, z) under the integral sign in (42), then using the resolvent equation
to obtain R(0, z)-R(, z)=-’R(0, z)R(, z) when zero and " are in p(T(z)), and
noting that zero lies inside the open set enclosed by ,
(48) R(0, z)P(z)= R(0, z)---l f g(sr, z) dsr

27ri ./ sr

is obtained for each z G, such that A(z) 0. However, p(T(z)) for all z Ga,
so that the second term on the right-hand side of (48) is holomorphic as a function
of z on G, with values in B(H, V). Consequently, z R2(0, z) B(H, V) can be
continued analytically to all of G,.

Finally, it is clear from (43) and the definition of R(O,z) that R(O,z)w
M(z) 71 D(T(z)) for all w H and for each z G such that A (z) 0. Then (46) implies

A(z)R,(O, z)w T(z)R,(O, z)w T(z)R(O, z)P(z)w P(z)w,
from which R(O,z)w=(1/A(z))P(z)w is obtained from all wH and for each z G
such that A(z) #0. This finishes the proof of Theorem 20 because &(z)= R(O,z)w=
R(O, z)w + R(O, z)w when , (z) # 0.
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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF THE POROUS MEDIUM EQUATION WITH CHANGING SIGN*

SHOSHANA KAMIN? AND JUAN LUIS VAZQUEZ:

Abstract. It is proved that solutions of the porous medium equation ut m([ulm-lt/), m > 1, defined in
Q =RN x (0, ) with initial data u(x, 0) integrable, compactly supported, and with changing sign, become
nonnegative in finite time if Uo(X) dx > 0. Precise asymptotic convergence rates then follow. The positivity
result is related to finite propagation and is false for the heat equation, m 1. Nevertheless, we obtain
asymptotic convergence rates for => m > (N-2)+/N as .

The same analysis works for the equation ut--div(lVulp-lVu) with p> 1. The case of zero mass,
Uo(X)dx =0, is also studied for the porous medium equation (in N 1) and the solution is shown to

converge to an antisymmetric profile in that case.

Key words, nonlinear parabolic equations, flows in porous media, asymptotic behavior

AMS(MOS) subject classifications. 35K65, 35B40

1. Introduction. In this paper we study the large-time behaviour of the solutions
of the porous medium equation

(1.1) u,-A(lul-u) forx, t>0,

with m > 0, N => 1, and initial data

(1.2) u(x, O) Uo(X) for x .
We begin the paper with the assumption that rn > 1. We make the assumptions

(1.3) Uo Ll(U),
(1.4) Uo has compact support,

but we make no assumption on the sign of Uo. Our main result is the following theorem.
THEOREM 1. Let u be the solution of (1.1)-(1.4) with

(1.5) M =- f Uo(X) dx > O.

Then u becomes nonnegative in a finite time T T( uo). Similarly u becomes nonpositive
ifM<O.

The result is false for m 1, i.e., the classical heat equation ut Au, as the following
simple example shows. Let

Uo(X) -6(x) + M6(x + ael),

where stands for Dirac’s mass, a > 0 and M > 1 are constants, x (xl, x2, , xN)
E, and el (1, 0,..., 0). Then the solution is given by

(1.6) u(x, t)=-E(x, t)+ME(x+ael, t),
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where E is the fundamental solution

(1.7) E (x, t) (47rt)-u/2 exp
4t/

This expression is negative precisely in the region

2t a
(1.8) x > lg M --.

a 2

An example with Uo LI(N) is obtained by displacing the origin of time to ’>0.
Observe that some solutions initially having changing sign eventually become positive.
Take for instance

Uo(X) -(x) + Mi(x + ael) + M8(x ae)

with M > 1/2.
The main property of the porous medium (m > 1) which is not shared by the heat

equation (nor by the fast diffusion equation ut A(lul"-lu), 0 < m < 1) is finitepropaga-
tion, which in particular means that a solution u such that uo has compact support
has the same property for all fixed times > 0; cf. [OKC] or the survey papers [P],
[Ar]. The equivalent of the fundamental solution E of the heat equation is the
self-similar solution (Barenblatt’s solution [B], [ZK])

(1.9) W(X, t) t_k( c (m l)k
2mg 1 12/

where k=(m-1 + (2/N)) -1, =xt-k/u, (s)/ means max (s, 0) and C is an arbitrary
constant which can be determined by fixing the mass

M f w(x, t) dx,

so that C=a(m,N)M with l=2(m-1)k/N. (We will often write WM instead of w
to stress dependence on M.) Observe that WM takes the initial data M6(x) and that w
vanishes in the region

(1.10) Ixl >= PM( t) =- b( m, N)(M’-’ t)/ N.
Solutions for Uo(X)=-M(3(x) are obtained by just changing the signs.

We can now see an intuitive explanation for the different behaviour regarding
Theorem 1 in the cases where m > 1 and m 1. While a fundamental solution ME(x +
ae, t) will never dominate -E(x, t) over the whole space N even if is large, this
will happen with WM(X + ae, t) and w_(x, t)=-w(x, t). Of course, since (1.1) with
m > 1 is nonlinear, this is no proof of our result.

The asymptotic behaviour of nonnegative solutions to problem (1.1), (1.2) has
been investigated by various authors for different assumptions on Uo; cf. [AR], [K],
[FK], [Ve],.... In particular, when UoL(N), convergence to the self-similar
solution w with the same mass M as Uo has been established by Kamin [K] in 1973
for N- 1, and by Friedman and Kamin [FK] in 1980 for any space dimensions. The
theorem follows.

THEOREM 2 [FK]. Let u be the solution to (1.1)-(1.4) with u >= O, m > 1. Then as
oo

(1.11) tlu(x, t) WM(X, t)[--> 0

uniformly inxN, with M= Uo(X) dx and k=(m-l +(2/N))-1.



36 SHOSHANA KAMIN AND JUAN LUIS VAZQUEZ

When Uo has compact support and one space dimension, N 1, very detailed
information on the convergence of solutions and interfaces to the self-similar profile
is known (cf. [V1], [AV], [An]). Less is known in several space variables. In particular,
the evolution of the support is studied by Caffarelli, Vazquez, and Wolanski [CVW]
who prove that it expands at the same rate as w4. More precisely, if supp (Uo) c BRo(0),
M= Uo(X) dx (Uo_->0), and we define

we have

r(t) min {Ix[: u(x, t) > 0}, R(t) max {Ixl: u(x, t) > o},

R(t)>-pt(t),

(1.12) R(t)-r(t)<-2Ro,

R( t) <- Ap4( t) + Ro
In fact, we can do better for large times.

THEOREM 3. As t- c

r(t) R(t)
(1.13) lim lim

t-pM(t) ’-pM(t)

for some A A (rn) > 0.

The proof of the theorem is just a variant of the method used to prove Theorem
2 in [FK]. Since by Theorem 1 our solutions become nonnegative, Theorems 2 and 3
apply to all solutions with positive mass, even if Uo has changing sign.

Solutions with no sign restriction have been less studied. Existence and uniqueness
of weak solutions are discussed in [BC], [BCP]. Continuity with a uniform modulus
is established in [dB] and [S], while H61der continuity is obtained in [dBF]. An
application to model the evolution of the interface separating fresh and salt water has
been proposed by de Josse|in de Jong and van Duijn [JvD]. (See also [BH].)

Theorem 1 will be proved in 2, where we also show how to obtain Theorem 3
and establish a convergence rate when M--0.

We devote 3 to the case 1 _-> rn > (N-2)+/N, where we have infinite speed of
propagation. In that range of exponents, Theorem 2 is also valid for nonnegative
solutions with finite mass. Although we do not have u _-> 0 in finite time, we have
convergence to a positive Barenblatt solution as t- o if Uo(X) dx M > 0 with the
rate (1.11) for all Uo LI(N).

We recall that in the range 0 < m < (N 2)/N (N > 2) we have extinction in finite
time for initial data in LP(E1) CI L([s with p N(1 m)/2. This settles the large-time
behaviour.

In 4 we extend Theorems 1 and 2 to the p-Laplacian equation

(1.14) ut div ([TulP-2Tu)
with p > 2 under assumptions (1.2)-(1.5) on the initial data. This will be a key ingredient
in our study of the case M 0 for (1.1), which we will perform in 5 restricted to one
space dimension. If the moment XUo(X)dx O, we find convergence to an antisym-
metric profile obtained as the derivative of the Barenblatt profile for (1.14). Explicit
computations for m 1 show that similar phenomena should occur for N > 1.

2. Case m > 1. According to [BC] and [BCP], for every Uo(X) LI(N) there is
a unique function, u C([0, ): L(N)), which solves (1.1) in the sense ofdistributions
and takes on the initial data Uo. This solution is bounded for t-> > 0. In fact, since
the Maximum Principle holds, a bound for u is derived from the well-known estimates
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/for nonnegative solutions. Thus, if u is the solution with initial data u01 Uo and u2
has u20 u max (-Uo, 0)), then

(2.1) -u2(x, t) <- u(x, t) _-< Ul(X, t).

Using the well-known estimate ("smoothing effect"; cf. [Ve], [V2]) we get
li,42 N/ k (x, t)< li/2 N/ k,(2.2) -c(,,, 20 /t) --< u c(,v, 10 /t)

where Mo Uo+ dx, M2o . U-o dx, M Mlo- M2o, and c is the exact constant appear-
ing in the estimate for the self-similar solutions w. Throughout 2-4, k will keep the
value rn 1 + (2/N))-.

The solutions have some further regularity: by [BCP, Prop. 1.6], V([ulm-u)
Hoc(O), Q x (0, 0o). We may now apply the results of [dB], [dBF], and IS] and
conclude that u is H61der continuous in Q with constants and modulus depending
only on Mo and M2o. This gives equicontinuity needed later in passing to the limit
as --> o.

We also have bounds for the support derived from what is known for Ul and u2.
Thus, by (1.12) we know that ’/1 and u2, hence also u, vanish for

(2.3) Ix] > Ctk/N, C c(m, N)(max (Mlo, M2o)) (m-1)k/N

if is large. This estimate can be strengthened replacing max (Mlo, M2o) by M after
we prove Theorem 1, but we do not need it for the moment.

Let us now define

(2.4) M,( t)= I u/(x, t) dx, M2(t) I u-(x, t) dx.

It is clear that MI(0)= Mo, M2(0)= M20, and M Ml(t)-M2(t) since there is
conservation of mass. We also have Lemma 1 below.

LEMMA 1. Ml(t) and M2(t) are nonincreasing in t.

Proof. Consider the solution v to (1.1) with initial data at time % v(x, ’)=
u/(x, -). By the Maximum Principle u(x, t)<= v(x, t) for -> r, xN. Conservation
of mass proves that

M1(7’):/ v(x, ’) dx= I v(x, t) dx>= f u+(x, t) dx

whenever >- ’, and hence Ml(’r)>Ml(t). The proof is similar for M2.
!-]

More generally it is known that for every convex function th"+ ->+ with b(0) 0,
the integral dp(u) dx is nonincreasing in time. Our lemma comes from the particular
case b(s)= s+ applied to u and -u. (We thank the referee for this observation.)

As a consequence of the monotonicity we may define the asymptotic masses

(2.5) M1 lim Ml(t), M2 lim M2(t).

Clearly M1, M: _-> 0 and M1 M2 M > 0.
We now recall the rescaling operation, which is very useful for formulating and

proving asymptotic results. Given A > 0, we associate to any solution u the function
Tau =- ua given by

(2.6) (Tau)(x, t)= aku(ak/Nx, At)

with k=(m-1 +(2/N))- as above. It is easy to check that Txu is again a solution
of (1.1) with initial data Tuo(x)= Uo(k/Ux), which has exactly the same mass as

uo. Moreover, w is invariant under Ta, i.e., Tw =-w.
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In terms of T the convergence result of [FK] simply says that

(2.7) lim Tu(x, 1) wt(x, 1)

uniformly in x. This holds for u >= 0. In the case of changing sign we have the next lemma.
LEMMA 2. As A - c(2.8) (Tu+)(x, 1) w(x, 1),

(2.9) Tu-)(x, 1) wa4(x, 1)

uniformly in .
Proof Consider again the solution v, with initial data u+(x, -) for ’>0 (and

large). By (2.7) we have

Tv(x, 1) - WM)(X, 1

as A - 0o. Therefore for " and A large enough we obtain

IT,xv.(x, 1)- wt,(x, 1)l < e

since Ml(r)-* M1. We now recall that u-< v, for t-> -, so that

(2.10) (Tu+)(x, 1)_-< WM,(X, 1)+ e

if A is large enough. On the other hand, we know by (2.2) that the family Tu+(x, 1)
is uniformly bounded and that by (2.3) its supports are also contained in a fixed ball.
Moreover, the family { Tu} is uniformly equicontinuous on compact subsets of Q as
explained above. Since T(u+) (Tu)+ the family T(u+) is also equicontinuous. All
this implies that along a sequence A, c, T(u+)(x, 1) converges to a function f such
that

0 <f(x)<= WM1(x, 1),

I f(x) dx=lim I T.u+(x, 1) dx=lim Ml(A,,)= M.

Together these two facts imply that f= wMl(’, 1). The uniqueness of the limit implies
that Tu/ converges to f along any sequence, thus establishing (2.8). The proof of
(2.9) is similar.

COROLLARY 3. M2 O.
Proof The above convergences imply that

(2.11) tku+(O, t)-- ca(m)M2k/N,

(2.12) tku-(O, t) c(m)MkIN.

Since necessarily M > 0, (2.12) can only hold ifM O.
End ofproof of Theorem 1. Take e << M and to such that

u-(x, t) dx e

for >_-- to. According to (1.12), the support of the solution v with initial data v(x, O)
u-(x, to) grows as t- c like

O(ett3), a=(m-1)k/N, =k/N.
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By the Maximum Principle, the same happens for u-(x, t). In terms of the rescaled
solution, this means that

Tu(x, 1)=>0 for Ixl_-> c
for A _-> Al(e). Now for Ixl -< ce << bM’-)k/zv we already know that Txu(x, 1) > 0 if
A is large enough, A =>A2(e), because of the uniform convergence (2.8). Therefore
Txu(x, 1)>-O for A>=max(A(e),A2(e))=A3 which means that u(x,t)>=O for every
xN if t>=A3 [-]

Though we cannot obtain the same conclusion when the mass M 0, as we will
see in 5, the above applies as far as Corollary 3, thus showing that M M: 0. Thus
we obtain the following result.

THEOREM 4. Let u be a solution of (1.1)-(1.4) with Uo(X) dx O. Then

lim u(x, t) 0 uniformly in .
Let us end this section by mentioning the modification needed in the paper [FK]

to obtain the asymptotic behaviour of the support, Theorem 3. The method of finding
a family of Barenblatt solutions w, with growing masses that lie below the solution
for -> - and letting ’--> , should be changed into a family from above with decreasing
masses that tend to M as ’- c. That this can be done is already observed in Remarks
1 and 2 at the end of that paper for the case of exponents 1 >_- m > (N- 2)/N.

3. Case m _-< 1. The considerations of the previous section apply to the solutions
of problem (1.1)-(1.5) when 1 >= m > (N 2)+/N to establish the following result.

THEOREM 5. If U is a solution with mass M , then

(3.1) lim tklu(x, t)-WM(X, t)[--0 uniformly in N.

Here wM(x, t) is given by the same formula (1.9) if m < 1 and by the limit as
m- 1, which is precisely ME(x, t) if m 1. Observe that these solutions are positive
everywhere in Q v x /.

The result is known for nonnegative solutions and proved in the same paper [FK,
Remark 2, p. 562]. For m 1 we may of course prove (3.1) directly using the representa-
tion formula.

To prove (3.1) for m < 1 and general Uo we repeat the plan of 2. We recall that
existence and uniqueness of solutions can be found in [HP], while a uniform modulus
of continuity is found at the end of [dB] and in IS]. We have estimates (2.1) and (2.2)
(which make sense since k > 0 precisely for m > (N-2)/N) and the same rescaling
operators. Lemma 1 is true without modifications.

In order to prove Lemma 2 we face the problem of infinite propagation, i.e., the
suppos are just N. We replace control of suppos with control over decay as Ixl ,
In fact we have the following lemma.

LEMMA 4. e family {Tu(x, 1)}> decays uniformly as Ix[ like O([x[-V),
T=2/(1-m).

Proo We use the following estimate from [HP]:

(3.2) lu(x, t)l C - lUol + t/ R)/-
4(x)

We choose 4R + Ro Ix[, assuming that Uo is supposed in the ball Bin(0) (as will be
Tuo for r > 1), so that the integral in the second member vanishes. Put 1 and Txu
instead of u to obtain the decay.
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Since 3’ > N precisely for m > (N-2)/N we have uniform integrability as
Therefore the family converges in LI(EN) weakly. In this way we may continue through
the proofs of Lemma 2 and Corollary 3 and obtain (3.1).

We remark that in the case M > 0, Theorem 5 implies that u will be positive for
large in at least a core of the form

(3.3) [xl<=C(t)tk/N

with C(t) as - . But, as shown in (1.6), u may very well continue to be negative
for some x, i.e., solutions may need an infinite time to become positive everywhere,
so to speak. (In the example (1.6)-(1.8) for m= 1 the positive region extends to a
distance of order of t, so C(t) 1-k/N= tl/2.)

4. The p-Lalflacian equation. The ingredients in our treatment of (1.1) can be
summarized in the following list:

(i) An existence and uniqueness theory for the Cauchy problem with integrable
data having compact support;

(ii) The maximum principle;
(iii) Conservation of mass;
(iv) Boundedness for positive solutions;
(v) Equicontinuity;
(vi) Invariance of the equation under mass-preserving rescaling;
(vii) Convergence of nonnegative solutions to a selfsimilar solution, invariant

under rescaling;
(viii) Finite propagation (essential for Theorem 1).
All of these properties are true in the case of the equation

(4.1) ut =div ([7ulP-27u) Av(u

when p > 2. For existence and uniqueness under general initial conditions we refer to
[dBH], (ii) and (iii) are well known, and (v) is proved by [dBF]. The equation is
invariant under the rescaling

(4.2) Tu)(x, t) h ku(A k/Nx, At),

which formally equals (2.6), but now the value of k is (p-2+(p/N))-1, a value which
will be kept throughout this section and also in 5 for p m + 1. The fundamental
solutions are now of the form

(4.3) M(x, t)= t-g(c qllP/(V-l) ("-1)/(p-2+ = xt-g/,

where C is again related to the mass M= (x, t)dx; C =c(p, N)M with a

p(p-2)k/N(p-1), and q=((p-2)lp)(klN) 1/(v-). The support of w is given by

(4.4) [xl--< t34(t)=/(p, N)(Mp-2t)g/.

A smoothing effect of the form

(4.5) u(x, t) <= (0, t)-- (p, N)(M(V/u/ t) g

is proved in IV3] (cf. also [Ve]). Finite propagation holds exactly for p > 2 (cf. [DH],
[HV]). Finally, the convergence of u to , as in (1.11), has been proved for N 1
in lEVI and is extended to N > 1 in our paper [KV].

In this way the proofs of 2 hold and Theorems 1-4 hold for problem (4.1), (1.2),
(1.3) (with our present values of o and k).
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Remarks. The explicit solutions M appear in [B] for N 1, 2, 3, and have been
used by several authors. We have taken some care in writing them down with the
different coefficients and exponents attached to them because they are sometimes
misprinted in the literature. Observe also that many authors write p+ 1 instead of p
(so that Ap(u)-=div(IDulp-lDu) and then the range is p> 1).

5. The porous medium equation with zero mass (N 1). Now we consider the
problem

(5.1) u,=(lul"-’U)xx for (x, t)Q=x(0, o),

(5.2) u(x, O)= Uo(X) for x e ,
where m > 1 and the initial data Uo are integrable and have compact support and zero
mass

(5.3) f Uo(X) dx=O.

We also assume that the first moment is nonzero:

(5.4) f XUo(X) dx # O.

To be specific we take P - XUo(X) dx > 0. By (formally for the moment) integrating
in x from - we obtain for the variable

(5.5) v(x, t)= Ix u(y, t) dy

the problem

(5.6)

(5.7)

v,-(IVxlm-lvx)x in Q,

v(x, O)= Vo(X) in ,
where Vo(X)=_ uo(y)dy is bounded, and has compact support (because of (5.3))
and mass P; if supp (Uo)C [a, b] we have

Vo(X) dx dx uo(y) dy b uo(y) dy- yuo(y) dy P.

Since the solution v is continuous with v, continuous [dBF] and satisfies (5.6) in a
strong sense (cf. lEVI), it is easy to show that v is a weak solution of (5.1), (5.2). By
uniqueness u vx.

By the version of Theorem 1 for the p-Laplacian equation (with p m + 1 > 2),
the solution of problem (5.6), (5.7) becomes nonnegative in finite time. We can now
apply the results of lEVI to conclude that v converges to , as t--> c at a certain
rate. Therefore in some sense v converges to too. We show next that the convergence
is uniform. In fact, in our case N 1, p m + 1 we have

(5.8) ff t-(C qll("+l)/’) "/(’-1)+

with k 1/2m, xt-, and C C(m, P). Therefore,

(5.9) z(x, t) x(X, t) -dt-1/ml/m(C qlsl ("+1)/") l/(m-1)
+
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where d q(m + 1)/(m 1). It is antisymmetric in x, positive for -(t) < x < 0, and
negative for 0<x <(t), with (t)=f(P’-lt) k. It decays like -1/" and expands like
1/2m, both rates different from the positive case (t-I/(m-1) and /("+, respectively).

We have for a general solution Theorem 6 below.
THEOREM 6. As t- o

(5.10) tl/m[tl(X, t) z(x, t)[- 0

uniformly in x . Moreover, u vanishes outside a region

s(t)<x<s_(t),(5.11)

where

(5.12)

(5.13)

s2(t)=p(t)+o(1),

s(t)=-p(t)+o(1),

Proof The result is a consequence of the asymptotic formulas obtained in [EV,
5]. In fact sl and s2 are the left- and right-hand interfaces of v, and for large t,

v(x, t)>0 precisely if Sl(t)<x < s2(t). Established are not only (5.12) and (5.13), but
also estimates for the derivatives

(5.14)

(5.15)

s(t) :/,(t) + o(1/t),

s(t) -o(t)+ o(1/t).

To go further we need to introduce the so-called "pressure variable"

m (m-l)/m(5.16) tr(x, t)= v
m-1

for which [EV] proves the fundamental estimate

1
(5.17) ([O’xlm--lO’x) --2mt’
which is exact for the (pressure of the) solutions k. Moreover, we have the interface
equation

(5.18) t):--S’i(t).

Combining (5.12)-(5.18) we obtain the estimate

o

in s(t) < x < s(t). Integration gives

(5.20) --=o(t-1/2m),
where 8 is the pressure corresponding to p. Now we observe that VxV-1/. Hence

(5.21) u c(m)l/-)
to obtain uniform convergence of u to z with an error that decays faster than
-/m (we mention the exponent 1/m because it is the decay rate for z and u).

As the consequence of (5.10), u will be positive in the region -(t)(1-e)<x
e(t) and negative in e(t) < x < (1 e (t) if 0 < e < 1 and t. On the other hand,

it is easy to prove that v is nondecreasing in x for x a and nonincreasing for x b
where [a, b] = supp (Uo). Therefore the only region where u changes sign for large
is axb.
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Similar results hold for P> 0, i.e., XUo(X) dx > 0 (just change x in -x). On the
contrary, we cannot handle the case where M 0, P 0.

Let us mention that solution (5.9) was published by Barenblatt and Zeldovich
[BZ] in 1957, with the observation that it takes a dipole as initial data, Uo(X)= 6’(x).
Application of (5.6) to study the propagation of (5.1) with M 0 appears, e.g., in [HV].

Finally, in order to have some insight about the situation in several dimensions,
we discuss briefly the linear heat equation

(5.22) u, Au, (x, t) Q

with u(x, 0)= Uo(X)e L(NN), I Uo(X) dx=O, and moments

(5,23) Pi J- XiUo(X dx

not all zero. Let /3=(P1,..., PN). Then the asymptotic development of u(x, t) has
as first term

OE P’
(5.24) u(x, t)= Y. P. E(x, t),

i=1 Oxi 4t

which is positive on the half-space P.x > 0 and negative on P. x < 0. Therefore there
is a unique pattern (as in N 1) which has as parameters the amplitude and orientation
of the moment vector P. It is very likely that this situation holds for rn

Appendix.
A.1. At the suggestion of one ofthe referees we prove the necessity ofthe condition

of compact support for the initial data Uo (condition (1.4)) in Theorem 1. We do this
by constructing an example of a solution that does not become nonnegative in finite
time even though its initial data satisfy conditions (1.3) and (1.5).

We consider the solution u(x, t) to (1.1) with m > 1 and with an initial function
Uo(X) C(N) that is positive in the ball {x:lxl < 1}, negative for Ix[> 1, and satisfies
(1.3) and (1.5). Let v(x, t) be the solution with v(x, 0) equal to the positive part of
Uo(X). Then v => 0 and v -> u in N" x (0, oe). Moreover, by Theorem 3 there is an increasing
function of t, R(t) (which behaves like k as t-.eo according to (1.13)), such that
v(., t) vanishes outside a ball of radius R(t). This means that u(x, t)<-_O for every
t>0 and [xl> R(t).

We now claim that in fact u(x, t)< 0 whenever Ix[ > R(t). To prove this, we fix a
time T> 0 and consider the solution u(x, t) in a cylinder of the form Q B x (0, T),
where B Bo(a) is the ball of center a, radius p > 0 in Nu, and a and p satisfy

(A.1) R(T)+p <=lal.
Then we compare our solution u restricted to the cylinder Q with the solution

w(x, t) of the mixed problem

w, A(Iwl"-lw) in Q,

(A.2) w(x, t) 0 for Ix a] p, 0 < < T,

w(x, O) Wo(X) for Ix- a[ < p

for some suitable Wo with 0-> Wo(X) >- Uo(X) in B. Now it is known [AP] that this
problem admits solutions of the separated-variables form

w(x, t)=f(x)/(t+z) with a=l/(m-1),

where z > 0 is arbitrary and f is a smooth function that is negative in B. By taking z

large enough we may get w(x, O) >- u(x, 0) in B, and since also w-> u on the lateral
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boundary of Q, by the Maximum Principle we conclude that w(x, t)>_ u(x, t). Hence
u(x, t)< 0 in Q, which proves our claim. On the other hand, different variations of
this example are easy to construct using the same basic idea.

A.2. Since we are commenting on the necessity of the hypotheses of Theorem 1,
let us mention that the integrability assumption on Uo, condition (1.3) together with
(1.4), can be weakened into the assumptions

(A.3)

(A.4) u- has compact support,

i.e., only the negative part of the initial data, u(x) max (0, Uo(X)), needs to be
integrable and have compact support. Of course, if this happens and u- LI(R) then
M o. The proof of this version of Theorem 1 follows from the standard case thanks
to the Maximum Principle (consider the solutions tTn with initial data min (u(x), n),
which satisfy Theorem 1 for large n and are smaller than u).

Acknowledgments. Several improvements in the text are due to a referee’s observa-
tions, for which the authors are very grateful.
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UNIFORM ENERGY DECAY RATES FOR EULER-BERNOULLI
EQUATIONS WITH FEEDBACK OPERATORS IN THE
DIRICHLET/NEUMANN BOUNDARY CONDITIONS*

J. BARTOLOMEO AND R. TRIGGIANI:

Abstract. The uniform stabilization problem is studied for the Euler-Bernoulli equation (though the
methods apply also to the corresponding nonconstant coefficient case) defined in a smooth, bounded domain

of R n, with suitable dissipative boundary feedback operators. These either are active in both the Dirichlet
and Neumann boundary conditions, or are active in only the Dirichlet and inactive in the Neumann boundary
condition. The uniform stabilization results presented are fully consistent with recently established exact
controllability and optimal regularity theories for the solutions, which in fact motivate the choices of
functional spaces in the first place. In particular, these uniform stabilization results require no geometrical
conditions on 1 in the case of active Dirichlet/Neumann feedback operators, and require some geometrical
conditions on f in the case of an active feedback operator only in the Dirichlet boundary condition, as is
the case of recent exact controllability theories [I. Lasiecka and R. Triggiani, SIAM J. Control Optim., 27
(1989), pp. 330-373]. Moreover, the forms of the dissipative feedback controls are natural consequences of
(i) the type of boundary conditions selected; (ii) the choice that the control in the lowest boundary condition
be L2 in time and space.

Key words. Euler-Bernoulli equations, uniform stabilization

AMS(MOS) subject classifications. 35Q20, 35B37, 35B40

1. Introduction, preliminaries, and statement of main results.
1.1. Introduction and literature. Let fl be an open bounded domain in R n, n

typically _->2, with sufficiently smooth boundary F. In 12 we consider the Euler-Bernoulli
mixed problem in w(t, x) on an arbitrary time interval (0, T] with Dirichlet and
Neumann boundary conditions:

1.1 a) wtt + A2w 0 in (0, T] II,

(1.1b) w(0, x) Wo(X), wt(O, x) wl(x) in [l,

(1.1c) w(t, r) gl(t, or) in (0, T] F,

Ow
(1.1d) (t,o)=g2(t,o) in(0, T]xF

0u

with nonhomogeneous forcing terms (control functions) gl and g in the Dirichlet and
Neumann boundary conditions. There has recently been a keen resurgence of interest
(e.g., [34], [10], [16], and references cited therein) in plate equation theory, of which
the Euler-Bernoulli equation (1.1a) is a canonical model, presumably stimulated by
two main sources: (i) renewed studies in the dynamics, feasibility, and implementation
of so-called large-scale flexible structures envisioned to be employed in space; (ii)
recent mathematical advances in regularity theory of second-order mixed hyperbolic
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problems (canonically, the wave equation) of both Dirichlet type 12], [21], [22], [35])
and Neumann type [21]-[24], [36] with L2-boundary data. In either case, a prime
thrust of motivation has come from dynamical control studies, at either the engineering
or the theoretical level.

With reference to the specific problem (1.1), we cite 15], 18], 19], [31 for optimal
regularity theory and exact controllability theory with respect to classes of interest for
the initial data {Wo, Wl} and of boundary data {gl, g2}, which markedly improved upon
regularity of prior literature 17].

In the present paper, we focus on the problem of boundary feedback uniform
stabilization for the dynamics (1.1) by explicit feedback operators, to be more properly
defined below. Our results are fully consistent with the corresponding exact control-
lability results [18], [19] with respect not only to the function spaces for {gl, g2} and
{w, w,} as mentioned above, but also to the lack of geometrical conditions on f when
both gl and g2 are active, or to the presence of similar geometrical conditions on 12into
be expectedmwhen only g is active while g2 is taken g2 0. We note, in passing, that
uniform stabilization of (1.1) by means of a feedback operator acting on {w,
(defined in terms of the algebraic Riccati operator that arises in the study of the optimal
quadratic cost problem on an infinite horizon 0 =< =< T ) has already been achieved
in the abstract treatment of[5] (see in particular Appendix 2 of [5]) as a consequence--
among others--of the optimal regularity and exact controllability results mentioned
before. (Indeed, because of these results, the abstract treatment of the wave equation
in [28, 5] also covers, mutatis mutandis, the plate problem (1.1), as noted in [5]. See
also [30].)

Mathematically, the present work is guided by, and partially rests upon, techniques
developed in two main sources: (i) the studies of exact controllability [18], [19] for
problem (1.1); (ii) the study ofuniform stabilization ofthe wave equation with boundary
feedback in the Dirichlet boundary conditions [20] and in the Neumann boundary
conditions (B.C.) [39]. Of course, these studies must be seen, in turn, in the context
of recent investigations including (a) uniform stabilization of the wave equation with
feedback in the Neumann boundary conditions [2], [8], [9], [20, 4]; (b) regularity
theory for hyperbolic equations in [12], [21], [22], [35] as well as corresponding exact
controllability theory [13], [14], [25], [7], [38]; (c) exact controllability results for
Euler-Bernoulli equations with different boundary conditions [13], [14], [26], [27];
and (d) corresponding optimal quadratic cost problems [4], [28], and [5]. We stress
the following point of view: we choose g, say, in "open loop" form to be in
L2(0, T; L2(F)), T<c. This determines the corresponding solution of (1.1) with

Wo w g=0 to be: {w, wt} C([0, T]; Z), where Z is the space identified in (1.6)
below. This is an optimal regularity result [15], 19]. Next, we choose g2 (respectively,
{Wo, w}) such that the corresponding solution of (1.1) with gl Wo w =0 (respec-
tively, g g2---0) also produces {w, wt} C([0, T]; Z), again as an optimal regularity
result. This leads to {Wo, wl}Z and g2 G L(0, T; H-(F)) [15], [19]. In other words,
only one choice is made, that g L2(0, T; L(F)); then, we work with other data and
resulting solutions in corresponding optimal spaces. Our solution of the uniform
stabilization problem below is fully consistent with these "open-loop" considerations"
uniform stabilization will be achieved in the space Z with controls in feedback form
ga L(0, ; L2(F)) and g2 L2(0, X3; H-I(F)); see Theorem 1.2 below. For other uni-
form stabilization results for plates, we refer to the monograph 10], as well as to 11 ],
where, however, higher-order boundary conditions are treated. It should be emphasized
that all these problems are very sensitive to the particular choice ofboundary conditions,
which in turn determine the appropriate spaces of solutions. The lower boundary
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conditions considered in the present paper, which yield low-regularity spaces for the
solutions, make it necessary--unlike the case of higher-order boundary conditions--to
transform the original problem (1.1) in w to a new problem ((3.16) in p below), through
a suitable change of variable ((3.12) below from w to p), before applying the correct
multipliers (which are different from the multiplers used for higher-order boundary
conditions). The case of feedback in L2(0, ct3; Lz(F)) only in the Neumann B.C. requires
a different state space of optimal regularity, L2(12) x H-2(-), and different multipliers,
and will be reported elsewhere [33]. Sharp results on the lack of uniform stabilization
are in [40].

1.2. Formulation of the uniform stabilization problem and main statements.
Throughout the paper, we let A: L2(I)) (A)--> L2(-) be the positive self-adjoint
operator defined by

(1.2) af= AZf (a) H4(f) fq Ho2(f).
We have [6], [19, App. C]

(1.3) (A1/4)-- H(’])’ ’(A3/4)-- V’ V-- {f H3(’])" flr= OJ] r --0}
with equivalent norms. Thus, for f (A/4) H(-),

equivalent to

in turn equivalent to

by Poincar6 inequality. Similarly, forf (A3/4) V,

(1.5) 11f[[(A3/4) [[A3/4fI[L2( equivalent to

Our optimal space will be

(1.6) Z H-(f) x V’=[(a/4)]’x[(a3/4)]
where denotes duality with respect to the LZ(l))-topology.

Next, let gl g2 0 in (1.1). Then, the corresponding evolution of (1.1) is governed
by the operator

0
Mo -A

which generates a strongly continuous unitary group on the space (A/2) L2(-)
with domain b(o)=b(A)x(A1/2) and hence on the space Z of our interest with
domain @(do) (a/4) x [@(A1/4)]’= H(f) x H-(f), denoted by et. Thus the
free solutions of (1.1) with gl g2--0 are norm preserving on Z:

[[[w(t), w,(t)]ll z -= I[eo’Ewo, w,]llz -= IlEWo, Wl]llz, R.

With this well-known result at hand, we can state the aim of the paper. Motivated by,
and consistent with, the function spaces in the optimal regularity and exact control-
lability theories [15], [18], [19] of (1.1), we will study the question of existence
and construction of explicit boundary feedback operators 0%1 and 0%2 based on the
velocity wt

(1.7) wt [(A3/4)]’-- g’---> 0%1(w,) c L2(0, 00; L2(F)),
(1.8) wt[(a3/4)]’-- V’ 0%:z(w,) 6 L:z(O, ; H-I(F)),
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such that the boundary feedback functions

(1.9) gl ff(w), g= e(w,)

inserted in (1.1c, d) produce a strongly continuous (s.c.) (feedback) semigroup on Z that
is exponentially stable in the uniform operator norm (Z) of the space Z in (1.6). (The
feedback B*P[w, w,] based on the Riccati operator P, referred to in 1.1, acts instead
on the full pair {w, w,} [5].)

Choice of operators ’1 and 2. It is justified in 2 (see (2.2)), that the following
choices of o%1 and

(1.10) gl l(W,)= -k(x)G* A-1/w, -k2(x)G* AA-3/ew, -k(x)

(1.11)

g2 2(w,)=-k2(x)A2k2(x)[G*A-1/2w,]
-k2(x)A2k2(x)[ G*2AA-3/2w,]
k2(x)A2k2(x)[A(A-3/2 wt ]

OA(A-3/2wt

provide reasonable candidates for the uniform stabilization problem of (1.1), in the
sense that the closed-loop feedback dynamics with (1.10) and (1.11) inserted in (1.1c, d),
respectively, is well posed in the semigroup sense in Z, and all of its solutions originating
in Z decrease as -* +oe in the Z-norm. (This, however, does not say that such Z-norms
decrease to zero as t--> +oe, let alone in the uniform norm of (Z). To show this
conclusion will be our major task.) In (1.10), (1.11) we have that"
(a) (1.12) ki(x) smooth functions on F, ki(x) >= ko >- 0;
(b) (1.13) A: isomorphism HS(F) onto HS-l(F), self-adjoint on L2(F) so that for

s 1, if V denotes the tangential gradient on F,

(1.14) Ilmgll2r Ilgll.,r IVgl2+g2 dr

(c) The operators G* are the adjoints, in the sense that

(1.15) (Gig, O)L2()- (g, G/O)LZ(F), g L2(I-’), V L2()
of the operators Gi defined by Gig1 v, respectively, G2g2--y, where

(1.16a) A2v=0 in 12, A2y=0 in 12,

(1.16b) Vlr gl on F, ylr=O on F,

OV
(1.16c)

oy
=0 onF,

r O,
g2 on F.

F

Elliptic theory [17], [32] gives for any s R

(1.17) al" continuous H(F)- HS+l/2(12),
(1.18) G2" continuous H(F)-* HS+3/2(12).
Moreover, it is proved by Green’s theorem that [19, Lemma 2.0 and Lemma 4.0,
respectively]

(1.19) G* Af
0(Af)

f@(A),

(1.20) G*2Af=-(Af)lr, f (A).
Identities (1.19), (1.20) are used in the last steps of (1.10) and (1.11), respectively.
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Thus the resulting candidate feedback system, whose stability properties in Z we will
investigate, is

(1.21a) w,+A2w=O in (0, ) f Q,

(1.21b) w(0, x) Wo(X): wt(0, x) Wl(X) in f,

oA(A-3/’Wt
(1.21c)

(1.21d)

Using the techniques of [21], [37], problem (1.21) can be rewritten more conveniently
in abstract form as

d w w
on Z,(1.22)

dt w,
0 I
-a -A[GkGA-/2 + GkzAkzGA-/]

(.23) () {y z: y z}.
A more explicit description of () will be given below. Our main results are as follows.

THEOREM 1.1. (i) (Well-posedness on Z). e operator in (1.23) is dissipative
on Z (A/4)] x (A3/4)] ’, see (1.6), and satisfies here: range (I ) Zfor > O.
us, by the Lumer-Phillips theorem, generates a strongly continuous contraction
semigroup e on Z e resolvent operator R(X, ) is given by

(I-
(1.24) R(a, )= _V_(A) AV_(A)A_
(1.25) V(X)=(I+GkGA-/2+G2k2A2k2GA-/2+X2A-)
and is compact on Zfor Re A >0. Moreover, O p(), the resolvent set of.

(ii) (L2-boundedness in time of feedback operators.) For {Wo, w} Z, we have for
problem (1.21

(1.26) -wlx=kGA-/2w,=kOA(A-3/2w’)EL2(O,; L2(F)),

Ow
(1.27) kzAkGa-/w, kzAZkz[&(a-3/w,)]xe L2(0, ; H-(F)).

More precisely

(1.28) Ilwll 2
2 at IIka-/=w,II = at II{wo, w}ll,

(1.29) ou 2>
=> =ll{wo, w)ll.

(iii) Now let k: O, i.e., (0 w/0) 0 on Z in (1.21 d). en the resolvent R (A, )
is well defined and compact on Z also on the imaginary axis, and hence for all Re A 0,
provided that the following elliptic uniqueness property holds true: with A > O, if solves

(1.30)
in

(.3) 61=- -(86) =0

(elliptic problem witk tkree homogeneous boundary conditions) tken O.
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THEOREM 1.2. (Uniform stabilization on Z with both feedback operators in the
absence of geometrical conditions on 12.) The following property holds for the feedback
problem (1.21), or (1.22), (1.23): there are constants M, 6 > 0 such that, ifko > 0 in (1.12),

e <=Me- t>=O.
wt(t) z Wl z Wl z

THEOREM 1.3. (Uniform stabilization on Z with only the first feedback operator
gl and g2 0, in the presence of geometrical conditions on 12.) Consider the feedback
problem (1.1) with gl given by (1.10) with kl(X)>-_ko>O while g2=-O, i.e., (1.21) with
(0w/0 ,) 0 on ,. Then there are constants M, 6 > 0 such that the uniform decay (1.32)
holds true, provided that 12 satisfies the following geometrical conditions: there exists a
smooth vector field h(x) C2(l))] such that

(i) (1.33) h. v >= 3, > 0 on F, v unit outward normal, y constant;
(ii) There exists a positive constant p > 0 such that

(1.34) f H(x)v(x)" v(x)df>-p f ]v(x)l df v(x) G [L2(")] n,

(1.35) H(x)

Oha Ohl
OX OXn

oh,, oh"

(A checkable condition for (ii) to hold true is that the symmetric matrix H(x)+ H*(x)
be uniformly positive definite on ).

Both conditions (i), (ii) are satisfied automatically with h(x)= X-Xo if

(1.36) (X-Xo)" ’>-_ y>O on F.

Remark 1.1. In the proof of Theorem 1.2, it will suffice to take a radial vector
field h(x)= X-Xo. Then, in this case, the "const" in (3.2) below can be explicitly
estimated (as in Theorem 1.3A below). As a consequence, the proof in [41, Thm. 4.1]
provides an explicit estimate of the constant 6 of decay rate in (1.32). The same
conclusion that 6 in (1.32) can be explicitly estimated also holds true for Theorem 1.3
in the case where the vector field h(x) postulated there is radial (or linear), in which
case Theorem 1.3B is not needed as K2--0 in (1.37). The loss of explicit control of
the "const" in (3.2) occurs in the proof of Theorem 1.3B, which is needed for a general
vector field h(x) (nonlinear) to absorb a "lower-order term." These considerations on
the explicit estimate, or lack thereof, of the constant 6 in (1.32) are irrespective of
whether we use criterion (3.2) or the equivalent (.) in Remark 3.2: a radial vector
field yields an explicit 6, while a more general vector field requires "absorption" of
"lower-order terms," and this step loses control of the constant (in the case of criterion
(.) in Remark 3.2, by virtue of the proof by contradiction in the compactness/unique
argument in, say 19].

(By a local variation of the proof at the level of (3.54), (3.55) below, we may take

3’ 0; see [14], [19, footnote 2].) The proof of Theorem 1.3 will be broken up in 3
into two main results, Theorem 1.3A, B below.

THEOREM 1.3A. Consider the feedback problem (1.21) with Ow/Ou=O on E in

(1.21d), i.e., with k2=O. Then, under assumptions (i)/(1.33) and (ii)/(1.34) in Theorem
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1.3, we have for > 0

(1.37)

where E(t)llm-/4w(t)ll =L=m + Ilm-3/4w,(t)ll =L2m), and where the constants
K1, Ke, K3--which can be explicitly estimatedfrom the proofbelowmare independent of, 0 < <= o< o. Also, in particular, Ke 0 if the assumed vector field h(x) is radial
(or linear) (K2 is proportional to max IV(div h)l over ().

THZOREM 1.3B. Consider the feedback problem (1.21) with Ow/Ou=O on , in
(1.21 d). Then, under uniqueness property assumption (iii) of Theorem 1.3, we have: for
every e > 0 there exists C such that for every 0 <

(1.38)

2. Preliminaries and proof of Theorem 1.1 (sketch).
Step 1. (Abstract model for the closed-loop problem.) We follow the conceptual

approach of [21], [37], [39] for the wave equation, and of [19], [26], and [27] for the
Euler-Bernoulli problem. The abstract differential version of (1.1)--which corresponds
to the integral version of [19, eq. (2.3)] defining the explicit input {gl, g2} - solution
{w, wt} map--is given in additive form by

(2.1a) w, -Aw + AGlgl + AG2g
where the operators Gi are defined by (1.16), and where the operator A on the right
of (2.1a) is the extension, with the same symbol L(I2) [@(A)]’ ofthe original operator
in (1.2). The corresponding first-order equation is

d w 0 I w 0
(2.1b)

dt w, -A 0 wt AGlga + AG2g2
Since ]_0a 1 is skew-adjoint on Z (see (1.6)), then (2.1b) and (1.6) plainly suggest that
we take gl =-kG*A-1/2w, and g2=-k2A2k2G*2A-1/2w, (as explicitly noted in (1.10),
(1.11)) as natural candidates for feedback stabilization, as this choice then makes the
corresponding feedback operator s defined by (1.23) dissipative on Z. Indeed, for
Y [Yl, Y:]

Re y, Y)z =-(AGlk21G*1A-1/ZYe, y2)A3/4I, (AGzkzAkzG*2 A-1/y2 YZ)A3/4)i’
(2.2) =-(A-1/2GlkZG*IA-1/Ye, Yz):m-(A-1/ZGzkAkG*zA-1/2y2,

--II kl 0"1a-1/y2llL(r)- IIAk2G*A-I/Zy2II2L(r 0<
by (1.12), (1.13). Thus the resulting closed-loop problem, where (1.10) and (1.11) are
inserted in (1.1c, d), respectively, takes the form

(2.3) w, -Aw A[Gk21G*I A-1/2w, + GekzA2k2G*2 A-1/2 w,]

on, say, [@(A)]’, i.e., takes the explicit p.d.e, form (1.21). Henceforth, unless otherwise
noted, we will take kl(x)= k(x)= 1 for simplicity of notation when dealing with two
feedbacks; and kl(x)=- 1, k2 0 when dealing only with the feedback gl, while ge 0.
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Step 2. (Well-posedness.) Generation by M of an s.c. semigroup on Z follows via
the Lumer-Phillips theorem, since 1 is actually maximal dissipative; and indeed direct
computations show the explicit expression (1.24), (1.25) of the resolvent operator. To
solve (hi- M)y z Z with h > 0 fixed, i.e., by (1.23)

(2.4) by1-y2 zl 6 [(A1/4)] ’,

(2.5) a[y,+GaG*lA-/2ye+GaG*a-/Zyz]+Ayz=zz[(a3/4)]’
for y @(s), we apply AA-1 to the second equation, subtract off the first, and
obtain V(A)y= AA-z2-za [(Aa/4)] via (1.25). But V(A) is boundedly invertible
on [(A/4)] ’, since equivalently A-I/4V(A)A1/4--I+AA-1/4G1G*A-a/4+
AA-a/4GAG*A-a/4+AZA-a is boundedly invertible on L2(-) for A>0. This way
(1.24) is obtained. Finally, from (1.24), compactness of R(A, sO) on Z is readily seen
to be a consequence of compactness on L2() of the following operators:

A-1/4V-I(A)A1/4A-1/2 A-3/4V-I()t,)A1/4A-1/2
(2.6)

A-II- V-I(A))A1/4, A-1/2A-1/4V-I(A)A1/4.

But the first and the fourth are compact here since, as shown above, (A-1/4 V(A )A1/4) -1

(LZ(l)) and of course A-a is compact. The same is then seen to hold true for the
third operator in (2.6), by

I- V-I(A)-- AV-I(A)GG* A-1/Z+ AV-I(A)GzAZG*A-1/2 + A2V-I(A)A-1

which is obtained from (1.25) by applying V-I(A) and using the preceding results.
Finally, dy=0 yields y=0 by (1.23) and 0 p(M).

Step 3. The L-boundedness in time (1.28), (1.29) follows at once from (2.2) with
y [w(t), wt(t)], since then the left of (2.2) is 1/2(d/dt)l]exp (Mt)[Wo, wl]l]" integrating
in and using contraction yields the conclusion.

Step 4. By contradiction, let A =ir, r real0, and let V(ir)x=0. Taking the
[@(A/4)]’-inner product, we obtain from the definition of V(. in (1.25) (with k--0
and kl 1)

(2.7) G. A_I/2x G. AA_3/2x O_A A_3/2Xlr 0

(2.9) A1/f -Af; @(Aa/2) fe H2(a)’- r

Problems (1.30), (1.31) can be rewritten taking X r2, with r > 0

(2.10) a r2d plus b[r 0.

Then plainly

using (1.19). Moreover, we obtain using (2.7) in V(A) that Ax= r2x. Thus, either x =0
as desired, or else x is an eigenvector of A, say x--en, with eigenvalue r2. Thus,
e,[r (Oe,/Ou)lr=O. Moreover, A-3/e, =(1/r)3/2e, and (2.7) implies (OAe,/OV)lr=O.
Then the uniqueness property to be proved in Steo 5 implies x e, =0. Thus, the
(point) spectrum of sd is in Re < 0.

Step 5. We prove the uniqueness property for problems (1.30), (1.31). Define the
nonnegative self-adjoint operator

(2.8) Af A2f; (A)= {fe H4(i): Of _o(Af) 0}.0/2 I" 0/2 F
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Thus either b 0 and we are done, or else th is an eigenvector of A with eigenvalue
r2. Applying A-1/2 to (2.10) yields A1/2ch rch plus thlr=0; i.e., by (2.9)

-A= r,
(2.11)

lr=0 v

and (2.11) plainly implies 0 in (with sufficiently smooth F), as desired.

3. Proof of Theorems 1.2 and 1.3.
3.1. Preliminaries and a change of variable. For the feedback problem (1.21) in

the case of Theorem 1.2 (respectively, (1.21a-c)) and (0w/0v)v.=0 in the case of
Theorem 1.3) we define (the "energy functional") E(t)= E(w, t) by the squared norm
of the semigroup in Theorem 1.1(i) on Z [(A1/4)]’ [(A3/4)] ’’

(3.1)
E(t)=]]e WO w(t)

wt(t)

ilA-/aw(t)ll 2
L2(O) + Ila-3/nwt(t)ll =, E(0)

by the contraction property of Theorem 1.1(i). Our main goal will be, as usual [8], [39],
to show that

(3.2) E(t) dt_-<const E(0) V[Wo, W1] (,)

where the constant is independent of the initial data [Wo, wl] whereby (3.2) can be
extended by continuity to all {Wo, w}Z. After this, Datko’s theorem [3] will yield
the desired uniform bound (1.32). Thus, unless otherwise stated, we assume henceforth
that [Wo, w] (s).

Remark 3.1. Instead of (3.2), we may of course use the other well-known and
equivalent criterion for uniform decay of a semigroup: that there is some 0 < T < oo

such that

(*) E( T) < rE(O), r< 1 or [[ellez< 1.

Generally speaking, each of the two criteria, while requiring very closely related
approaches and computations, offers some advantages and some disadvantages over
the other. In the case of constant coefficients (canonically, with A2) and with a radial
vector field h(x)= X-Xo, as in the proof of our Theorem 1.2, the use of (.) offers
some streamlining in the computations over use of (3.2): we may take /3 =0 below
and integrate in time over a finite interval, without needing to show that terms arising
from integration by parts in time go to zero as t-az. On the other hand, in the
non-constant coefficient case (in space variable) and in working with a general vector
field h(x) as in the proof of Theorem 1.3 below, the need arises to absorb "lower-order
terms." In using (.), we resort to some arguments of compactness type already used
in the corresponding exact controllability results. These, however, ultimately rely on
a Holmgren-type uniqueness property, and hence require smooth (analytic) coefficients.
In contrast, in using criterion (3.2), absorption of lower-order terms requires a new
result, such as our Theorem 1.3B in the case of the present paper. Such a result needs
only minimal smoothness of the coefficients (in space); besides, it is of interest in itself.
See, for instance, [8, 5] for a more general wave equation with Neumann feedback,
where the counterpart of (3.2) is used. As noted in Remark 1.1, achievement of an
explicit estimate of the constant 6 in (1.32) is irrespective of whether we use criterion
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(3.2) or the equivalent condition (,) above. Indeed, it depends on whether h(x) is
radial (linear) or not.

Returning to (1.23), we see a more explicit description of Y=[Yl,

(i) (3.3) y:zG[(A/4)]’; i.e., A-I/4y2G L2(D.), i.e., y6 H-(f),

(ii) (3.4) A[y,+GG*A-/yz+GAZG*A-I/Zyz][@(A3/4)]’,
y + Ga G*l a-1/:Zy. + G:zA:ZG* a-/:Zy:z (a1/4) H(f),

which implies afortiori

(3.5) y16 H(12).
Conclusion (3.5) is a consequence of A-/2y6 H(f) by (3.3) and (1.3a), and of the
following maps"

(3.6) GIG*I" continuous (A1/4) H() --) H2(-),

(3.7) GzA2G*2 continuous (A1/4) H())- H2([).
Indeed, returning to (1.17) and (1.18), we see that these imply, respectively,

(3.8) G*" continuous H(f) H3/(F)
by duality on (1.17) with s =-, and

(3.9) G2*" continuous H(12) - Hs/Z(F)
by duality on (1.18) with s =-. Then (3.8), followed by (1.17) with s , yields (3.6).
Also, (3.9) and the definition (1.13) of A gives first

(3.10) AZG*" continuous Hol(f) H/(F);
this followed by (1.18) with s 1/2 yields (3.7). Finally, (3.6), (3.7) used in (3.4) yield
(3.5) via (3.3) as desired. Next, by Theorem 1.1(i),

(3.11a) If {Wo, w} (s) then {w(t), w,(t)} C([0, T]; @(s))

and thus by (3.3) and (3.5)

(3.11b) a-’/4wt C([0, T]; L(O)), w C([0, T]; H’(O)), {Wo, w,} @(s).

Motivated by the multiplier techniques of [18] and [19], and by [20], we introduce a
new variable p by setting A3/4p A-3/4w, i.e.,

C([0, T]; (A3/4)) if{wo, wl} e Z,
(3.12a, b) P=A-3/Zw’G

C([0, T]; (A5/4)) if{wo, w}e@(s);

see (1.6), Theorem 1.1(i) and (3.11b) respectively. Thus, by (2.3),

p A-3/Zwt -A-1/Z[w + G1G* A-1/Zw, nt- G:zA:ZG* A-/w,]
(3.13a, b) [L(0, T; (A/4)) if {Wo, w} Z,

G
C([0, T]; (a3/4) if{wo, w,}e @()

where the regularity follows from Theorem 1.1(i), (1.28), (1.29), or (3.11a), (3.4),
respectively; hence

(3.14a) p, -A-1/:[w, + G1G*I A-I/w, + G.A2G* A-1/2

(3.14b) p,,=-Ap+ F + F:z,

(3 15) F1 -A-1/2GIG* A-/Zwtt F2 A-/ZG2AZG*2 A-IWtt
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In terms of the scalar function p(t, x), xf, corresponding to the vector-valued
function p(t)=p(t,. ), the abstract equation (3.14b) can be rewritten explicitly as the
following Euler-Bernoulli homogeneous problem with initial condition (I.C.) well
defined at to>0 by (3.13b) and (2.3) for w,(to)

(3.16a) p, + A2p F1 + F in (to, oo) f Q,

(3.16b) p(to, x) po A-3/wt(to); Pt(to, x) p A-a/2w,( to) in ,
(3.16c) p]=0 in (to,

0p
0 in E(3.16d)

0v x

where the homogeneous boundary conditions are a consequence of p (A3/4) from
(3.12), and of (1.3). In our argument in the sequel, we will have to consider pointwise
values p,(t). Note from (3.13b) that these make sense for initial data {Wo, Wl}
as assumed, while from (3.13a) the pointwise meaning of p, in H() (A/) is lost
for general initial data in Z. In the analysis below of the p-system (3.16), we will use
the crucial results, from (1.3)-(1.5) via (3.12) and (3.13), that

(3.17) ][A-3/4wtllL2(s)--Ilea/4pll( equivalent to IV(zXp)l dO

(3 18) IIA3/ap(t)ll 2 <2n) E(O) t-->0,

(3.19)

the L2(F)-terms being the feedback in (1.28), (1.29), since G1 and GA are bounded
on L2(F) and

(3.20) [[A1/4p, IIL(n equivalent to IVptl dO

In (3.19) the symbol O means, as usual, bounded above by a constant. The norms on
the right of (3.17) and (3.20) will arise in the multiplier approach used below (following
[18], [19]); this justifies the need to introduce the variable p. Before applying the
multiplier approach, we need to note what follows. Since A =0 p(), the resolvent
set of , by Theorem 1.1(i), we have for {Wo, W1} (,-)

e e <- M t=>0(3.21)
wt( t) () Wl ) Wl z Wl z

by the contraction property. A fortiori, (3.21) implies via (3.11b) for {Wo, wl} ()

(3.22) 11w(/)[12 A-l 2 <ll wo =
/t >= to.HI(,)+[[ wt(t)[lLa)=

Wl Z

By (3.12), AS/4p(t)= A-1/4wt(t), and by (3.13)

A1/4pt (t) -A-1/4W(t) A-1/4G1G*IA-1/4A-l/4Wt(t)
(3.23)

-A-1/4G2A2G*2A-1/4A-/4wt(t),
so that from (3.22) we obtain

(3.24) ,,AS/4p(t)[, 2 A 2 <coast (E(to)+ Wo
t>=to+ /4P’(t)II15"3--

L W1
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since A-1/4w(t) C([0, T]; L2(O)) for all {Wo, Wl}Z and G1G*A-1/4 are bounded
on L2(f) (see (3.6) and (3.7)).

3.2. An identity for the p-system.
PROPOSITION 3.1. The following identity holds true for problem (3.16), where

{Wo, Wl}6 @(); hence {po,pl} J(AS/4)(A3/4) by (3.12b), (3.13b), where >0 is
an arbitrary constant, and Q (to, ) x, (to, ) x F, and h(x) is a smooth vector

field"

e_2fl 0(Ap)
h. V(Ap)d- e IV(Ap)12h d

=I e-’HV(AP) V(Ap) dQ+ I e-’HVp" Vp’dQ
Q Q

+ e-2pVpt. V(div h) dQ
Q

(3.25)
1

+- e IVp, = IV(p)l) div h dQ

+ f e-2t(F + F2)h" V(Ap) dQ
Q

2fl e-2’ph V(Ap) dQ + e-2flto(p, h. V (Apo)),.
Q

Proo Most of the proof is carried out in Appendix A and Leads to identities
(A.8) and (A.10). It only remains to show that for the assumed initial data

(3.26) lim e-E(p(T), h. V(Ap(T))) 0.
Tx

Indeed, we have by using (3.17), (3.18) with T>_-to, and (3.24)

(3.27)
<=cnst {E(t’+ li seww, }" [3

It will be shown below that all the terms in (3.25) are well defined. But before doing
so, we will rewrite the fourth integral over Q on the right of (3.25) in a more convenient
form.

PROPOSITION 3.2. The following identity holds true for problem (3.16), where
{Wo, wl} (s) and fl > 0

fo e-2’{IVp,12-[V(Ap)l2} div h dQ

=-Ixe-2"O(AP)ApdivhdE+Ioe-2’(Fl+F)Apdivhdoo
(3.28)

+JO e-3’ApV(AP) V(div h) dQ-2fl Jo e-tPtAP div h dQ

f e-ptVpt (div h) dQ+ e-to(pl, Apo div h).
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Proof Most of the proof is carried out in Appendix B and leads to identity (B.4).
We must show only that

(3.29) lime-2r [- Vp(T). V(p,(T) div h) df=0
Tcx

for the assumed initial data. Indeed, as in (3.27) we have by (3.20) and (3.24) for T-> to,

Vp(T) V(p,(T) div h) df <= Ch{lla’/ap(T)[[2L2,) + Ila l/apt (T) 2i2n}

(3.30)

=<const{E(to)+ Wo II}"W1

By combining Proposition 3.1 with Proposition 3.2 we readily obtain the following
final identity.

PROPOSITION 3.3. The following identity holds true for problem (3.16), where
{Wo, w}e(), fl>0 is an arbitrary constant, and Q=(to,)xf; E=(to,)xF;
and h x is a smooth vector field

fe-2’O(AP) h. V(Ap) dy-l f. 2h
ou

e-’lV(Ap) raY_,

1 f -2t, a(Ap)+ j
e Ap div h dE

fo e-2ttHV Ap V(Ap)dO+ Io e-2tHVpt Vpt dO

fo ifo(3.31) + e-t(F, + F)h V(Ap) dQ+- e-2t(F, + F.)Ap div h dQ

+- e-t3tp,Vpt V(div h) dQ+- e-t3tApV(Ap) V(div h) dQ
2

-2fl fo e-2tpth. V(Ap) dQ- fo e-2ttptAp div hdQ

+e-ZtO(pl h. V(Apo))+1 e_2to(p Ap div h)sa.
2

The analysis below will show afortiori that the terms in identity (3.31) are well defined
by establishing appropriate estimates thereof.

3.3. Analysis of the terms involving F and the initial data. Crucial terms are those
involving F, F multiplied by h. V(Ap).

PROPOSITION 3.4. For {Wo, w}e @(M), we have the following identity with fl >0:
(a)

F2)h" V(Ap) dQ+ V(Apo))sae-2C3to( pl+ h.

-e-t3to(A-/W(to), h. V(Apo)),

(3.32) e-213t(A-1/ZGG*l A-1/2wt + A-/2G2A2G*2 A-/2wt, h V(Apt))a dt
to

+2/ e-(A-/GG* A-/w,
o

+ A-1/2G2A2G*2A-1/2wt, h. V(Ap))a dt.
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(b) For {Wo, wl} 6 @(zd) andfor any e > O, thefollowing estimate holdsfor thefirst
term of (3.32):

e-13t(A-I/GG*l A-1/2wt + A-1/2GAG*A-/2wt, h. V(Apt)) dt

(3.33) 10 e-’[lla*l A-/2w,[I L(F) + IIAGA-1/2wtIIw) dt

+ 6 e-2tE (t) dt
to

where O denotes upper bound with a multiplicative constant independent of fl, and to
and the right-hand side of (3.33) are finite by Theorem 1.1(ii), (1.28), (1.29), and the
contraction propey (3.1) of E(t).

(c)

F2)h" V(Ap) dQ+ V(Apo))a+ e-2flto( pl h.

1 e_2 1/2 2 1/(3.4) =O{E(o)}+-O [llA- w,I+IIAYA- 2w,{r)]dt
8 to

+ e e- () dt

Proo (a) Recalling F from (3.15) and integrating by pas in we obtain

e-2e-tFh V(Ap) d (A-/GGA-/wtt, h. V(Ap))n dt
to

=-e-2t(A-/2GGA-/2wt(to) h" V(Apo))n

(3.35)
+2 e-’(A-/GGA-/,, h. V(p))a de

e-’(A-/GGA-/w,, h. V(p,))a dt
o

since for {wo, Wl} e N() as assumed we have

(3.36) lim e-(a-/a,aa-/,(r, h. (p(r))a= 0.

Since A-/GG is a bounded operator on L(a), we arrive at (3.36) readily by
applying the Schwarz inequality to the inner product in a, using IIn-/,(r)ll
Ilap(rl by (3.12) and IIIV(p(r))llllAa/4p(T)ll by (3.17), and recalling (3.24).
Similarly, recalling F from (3.15) we obtain, integrating by pas in t,

e-’Fh V(p) dQ (A-/aGAaGA/w,, e-’h V(p))a dt
o

(3.37) =-e-’o(a-/GG-/(to), h. (po))

+2 e-’(A-/GAGA-/w,, h. V(p))a dt

(3.a e- e-(A-/aGAGA-/aw,, h. V(p,))a dt
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since for (Wo, wl} () as assumed we have

(3.39) lim e-2tT(A-I/2GAZG*zA-/2
Tc

w,(T), h. V(Ap( T)))a 0.

An argument similar to the one below (3.36) establishes (3.39), this time with
A-/2G2A2G*2A-1/4 a bounded operator on L2(f) by (3.7), and with IIA-/nw,(T)II-
[IA/4p(T)II by (3.12), so that we can once again invoke (3.24). Finally, to obtain (3.32),
we sum up (3.35) with (3.37) and use (3.13) in combining the two (,)a-terms for to.
Part (a) is proved.

(b) We treat each term on the left of (3.33) separately. We will use the following
lemma.

LEMMA 3.5. For h=[hl(X)," ", h,,(x)][C2(fi)] n, we have

(3.40) I[a-/2(h V(Ap,))[I.)--< Chllml/aptllL2C).

Proof of Lemma 3.5. We have that (A1/2) --n(-) (see [19, App. C]) so that
[(A1/2)]’= H-2(f) (with equivalent norms). Then, since p, lr= 0 so that (3.20) applies,

(3.41) [IA-/2(h. V(Ap,))II.)= IIh" V(Apt)[I[(A’/2)]’<= cllh"
(3.42) -< c I11V(Ap,)l II--.)-<- C lip, II.’.) c 11A1/4pt L2(f).

In going from (3.41) to (3.42) we have used (see also [17, p. 31]) the fact that if z is
a scalar function in H-:(I2), and hi C:(1)), then we have hiz H-2(12) continuously,
as it follows directly by duality. If y H(I2) and hi C2(1)), then hiy H(12), since
(hiy)lr=O and O(hiy)/Ovlv=O by using the same properties for y.

Then (3.33) follows at once from (3.40) (after moving the self-adjoint A-/ across
the (,)a-inner product) and from (3.19) and (3.1).

(c) We use (1.28), (1.29) and (3.17), (3.18) to obtain readily

2[3 e-t(A-/2G1G*I A-/2w, + A-I/2G2A2G*2 A-1/2w, h V(Ap))a dt
to(3.43)
_-<[(to + e-’e( a] ( +o((o

o

by the contraction property of E(t). Then (3.33) and (3.43) used in (3.32) readily yield
(3.34).

The integral terms in (3.31) involving the lower-order terms FAp div h are a fortiori
handled by the analysis in Proposition 3.4 that deals with the integral terms involving
the higher-order terms Fh. V(Ap). Thus, we have the following easy counterpart of
(3.34) of Proposition 3.4c.

PROPOSITION 3.6. For {Wo, Wl}e () we have the following estimate with/3 > 0:

e-’t(F + div h e-2’t(p, div h)aF)Ap dQ+ Apo

(3.44) 10 e-a’[lla*l A-1/w, 2 1/L(r)+IIAG2*A- w,l[L=(r)] at
E to

(I+e e-2O’E(t) dt + O{E(to)}.
to
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3.4. Completion of the proof of Theorem 1.2: two feedback controls gl and g2, in
the absence of geometrical conditions on 1.

Right-hand side of (3.31). We will specialize the vector field h(x) to a radial field
h(x) x Xo R’. Thus, H(x) Identity, div h dim II n, and the two integral terms
in identity (3.31) involving V (div h) vanish. As to the integral terms in (3.31) premulti-
plied by/3, we readily see by (3.17), (3.19), (3.1), and (1.28), (1.29) that

(3.45) 2/3 J’o e-’tpth" V(Ap)dQ- J’o e-23tp’Ap div hdQ=(fl + l)O(E(to))

Hence, using (3.34), (3.44), and (3.45) on the right-hand side (R.H.S.) of identity (3.31),
we obtain

R.H.S. of (3.31)= e-[lV(Ap)l+lVp,l dO+ e e-’E() dt

(3.46) +-0 e
E to

+o((o.

Thus, recalling again (3.17), (3.19), (3.20), and (3.1), we finally obtain from (3.46) with

c positive constants:

(3.47) R.H.S. of (3.31) Cl e-tE(t) dt-ceE(to),
to

which is the desired estimate.
Left-hand side of (3.31). We collect the three pieces of information that are needed.

First, by (1.10), (1.19), (3.12), and (1.28), we obtain

(3.48) -w[= GA-1/2wt GAA_a/2w _O(ApG L2(0 ; LE(F))

continuously in E(0). Next, in a similar way, by (1.20) and (1.29) we find

(3.49) AGA-a/2wt AGAA-a/2wt -A(Ap) L(0, ; L2(F))
continuously in E(0), i.e., via the definition of A in (1.13):

(3.50) IIA(aP)ll:(r) dt= (Ap):+ IV(Ap)[: dr dtE(to).
to to

We now return to the left-hand side (L.H.S.) of identity (3.31) and see that by
(3.48)-(3.50), along with IV(p)l==lo(p)/ol=+lv(p)l, (1.28), (1.29), and (3.17)
we obtain for any e > 0

L.H.S. of (3.31) _-< Ch, e-2t
(3.51)

<-_Ch,E(to),

+ IX7(Ap)I + (Ap)] d
which is the desired estimate. Finally, we combine (3.47) and (3.51) and we conclude
that if {Wo, Wl} (Q) and/3 > 0 then

(3.52) e-2tE(t) dr-<_ const E(to)
to

with const independent of o, 0< fl-< o, and of {Wo, Wl}. Letting , 0 in (3.52) we
easily obtain (3.2). The proof of Theorem 1.2 is complete. []
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3.5. Completion of the proof of Theorem 1.3A: feedback control for gl while g2 0,
under geometrical conditions for l. Now let h(x) be a general smooth vector field as
assumed in (1.33), (1.34) of Theorem 1.3. Then we estimate the two integral terms
involving V (div h) by

e-Z’p,Vp, V(div h)dQ+ Io V(div h) dQe-2ttApV Ap

1 (Ioe-’ )+--0 [p, +(Ap)2] dQ

Thus, the new contribution in the R.H.S. of (3.31) is given by the above terms when
h(x) is not linear, where IlzXpll= Ilal/Zpll IIa-lw, in the LZ(f)-norm by (3.12);
moreover, liP, is estimated by (3.13) (with k2=0 as we are taking g2-=0 now), subject
to the feedback bound (1.28). Thus the counterpart of (3.51) is

R.H.S. of (3.31)_-> Cle e-2t3tE(t) dt-C2E(to)
to

(3.53)

--C3h e-"[llA-1/wll
to

after we use (1.34) on the matrix H(x), with positive constants independent of/3 and
to, where C3h=0 if h(x) is linear in x (C3h, is proportional to max IV(div h)l over
f). In the absence of a feedback control on g=, i.e., with g= 0, we estimate the L.H.S.
of (3.31) differently. We use the assumption (1.33) on h and obtain, since IIApll=)_-<
CIIApll.,(m < CIIPll.3(.-< clla3/apll.m> because pit (Op/Op)lr=O,

L’H’S’f(3"31) Chfr. e-:t(O(AP):z-<_-- d+ e- e-’lXT(Ap)l dQ
e \ 0, /

(3.54)
-e I e-’lla3/4pllL2(a) dt

to

(3.55) <-O(E(to))-e e-=mE(t) at
to

after selecting e < 3’/2, dropping the IV(Ap)l=-term, and recalling (3.48) and (3.17).
Combining (3.53) with (3.55) yields (1.37) in Theorem 1.3A. (A local variation of the
argument in (3.54), (3.55) also allows us to take y 0; see 14], 19, footnote 2].)

3.6. Proof of Theorem 1.3B.
Step 1.1 From IlA-/wll2= (A-1/4w, m-3/4w) and IIA-lw, ll= (A-3/4wt, A-5/4wt)

we obtain for any e > 0

(3.56)

2 e-=tllA-/2w(t)ll= dt <- e-2tllA-1/aw(t)ll2 dt

1 fo A_3/4+- e-2t’ll w(t)ll 2 dt,

All norms and inner products in this subsection are in L2(), unless otherwise noted explicitly. Note
that the absorption within e of Theorem 1.3B is in the space variable, not in the time variable as in [8], [39].
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:2 e-2O’llA-w,(t)ll dt<= e e-3tl]A-3/4wt(t)[12 dt

(3.57)
1 e_2/3t 2+-- Ila-5/4wt(t)l[ dt.

Thus, in view of (3.56), (3.57), to prove (1.38) in Theorem 1.3B, all we need is the
following result.

PROPOSITION 3.7. With reference to the closed-loop problem (1.21) with k2=-O, i.e.,
Ow/Ov 0 on , for every e there is a C> 0 such that for every fl > 0

(a)

(3.58) e-"llA-3/4w(t)ll 2 dte IIA-3/nwt(t)ll dt+ClE(O),

(b)

(3.59) fo e-2t A-5/4 2e-=tllA-5/w,(t)ll dt<=el w.(t)ll dt+C,E(O)

where by (2.3)

(3.60) 4w, --<ellA +const wtll=<r a.e. in t,IIA-/ -1/4w G*I A-1/

so that (3.59) implies by (3.60) and by the feedback bound (1.28)

(3.61) e-’llA-/4w,(t)ll dt<-_2el e-2tllA-1/4w(t)[I 2 dt+C’,E(O).

Step 3. Using (3.58) and (3.61) in (3.56) and (3.57), respectively, with el< e we
obtain (1.35) in Theorem 1.3B.

Step 4. ProofofProposition 3.7. Patterened after the proofin [39, 3.2] ofTheorem
2 in [8] for the case of wave equation problem considered there. We introduce a new
variable

(3.62)
u( t, x) qb( t)w( t, x), C(R), b(O)= ’(0)= b"(O)=0,

b(t) 1, for t>= 1.

Then, in the new variable u, (1.21) with Ow/Ov=-0 on X becomes

(3.63a) Utt + A2u b in (0, ) x f,

(3.63b) ul,=o 0; Ut}t:0 0 in II,

(3.63c) ulx -G*I A1/2u + G*l A-1/2dp’w in (0, ) F,

On
(3.63d)

Vv
=0 in (0, ) xF,

(3.64) b dp"w + 2dp’wt,

whose explicit solution, according to the operator model in e.g., [18], [19] is

(3.65)
u(t) A S(t-’)Gt[-G*l A-1/2ut(7")+ G* A-1/dp’(r)w(r)] dr

+ S( ’)b(’) d"
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where S(t) =’o C(r) dr, C(’) being the cosine operator on L2(f) generated by the
negative self-adjoint operator -A. Taking the Laplace transform of (3.65) with a,(A)
A(A) by (3.63b) and S= R(A2,-A), A =+ia, we obtain

(3.66)
[I + AAR(A 2, -A)G1

AR(A, -A)GG*A-1/2[](A )+ R(A :, -A)/(A ).

But, if we recall the definition of V(A) in (1.25) (with k -= 1, k2 0), we see that

(3.67)
I + AAR(A 2, -A)G, G* A-1/2 R(A 2, -A)A[I + AG1G* A-1/2 + A 2A-l]

=AR(A 2, -A) V(A)

inserted in (3.66) yields

AR(A 2, -a) V(A )a(A AR(X 2, -A)G1G* A-1/2[’](A)
(3.68)

+AR(A2, -A)A-1/(A),

valid at least for all X fl + ia, ->0, with a2= fl2-oz2+2iafl # {-/zn, n 1, 2...},
/x, > 0, the eigenvalues of A; i.e., except .8 0 and a2 =/x,, or a a, + ix/,, where
R(A, -A) is not defined. Then (3.68) yields after a crucial cancellation

(3.69) a(A) V-I(A)[G,G*A-1/2(’)-I-A-’)](A).

Moreover, since b’w and b both vanish at =0 by (3.64) and (3.62), we have

(3.70)
A/(A) [b](a)= ,7" + 3", +2;](a)

and thus by (3.69), (3.70)

(3.71) [t,](A) Aa(A) V-(A)[GG*IA-/2[(’),]+A-t](A).

Then, by Theorem 1.1(iii), the resolvent R(A, ag) is well defined also on the imaginary
axis. Hence, we have that V-I(A) (L2(f)) in the closed right half plane Re A =>0,
including the imaginary axis/3 0, and is holomorphic in Re A > 0. Moreover, for any
A in the closed rectangle o" 0--<Re A _--< 1, IIm al-< ao, with ao>0 arbitrary, we have

(3.72) V-’(A)II e(L=(m) Co, A o.
Proofofpart (a), (3.58). With h =/3 + ia, # fixed, O</3 =< 1, we obtain from (3.69)

and (3.72) by use of Parseval equality and obvious majorizations on bounded operators
since b’= b"-= 0 for _-> 1

Ilm-3/aa(A)ll = d

ce[
[A-’/44"wl()[I 2 dc + 1__<o [I[A-3/4/](A)II =
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(3.73) <=C e-2’llA-/4ch’wll at+ e-2’llA-3/4(ch"w+24’w,)ll dt

(by (3.64b))

<=CC IlA-/awll2/l[A-3/4w, l[2 dt _-<C6CoE(0

by the contraction property of E(t). Next, for I1>o>0, where 1/IAl=_-<
(=/g)(1/I;l=) _-< 1/, the Parseval equality gives

la-3/4a(A,llda= 1 A-3/4A
>o >o IAI 2 a(A)ll d

1 IIA-3/aat(A)ll = d(3.74) a 1>o

2 fo -2,t 2a e I[a-3/4u,II at.

Choosing 1/a= e, we obtain from (3.73), (3.74) and the Parseval equality

(3.75) 2

which is an inequality of the type desired, but for u, not w. We return from u to w"

since u= w for >= 1 by (3.62), and ut b’w+ chw,, so that

(3.76) IIA-3/4u, 2 o( IIA-1/4w 2 + IIA-3/4w, 112),

-2"llA-3/nw(t)ll dt= e-"llA-3/aw(t)l[ 2 dt+ e-"llA-3/au(t)ll 2 dt

--_< CE(0) + el e-2ttllA-3/aut(t)l]2 dt

(3.77)
+e e-2’llA-3/4w,(t)ll 2 dt+C,E(O)

CelE(O)--[- E e-2t’llA-3/4wt(t)[12 dt

-2’llA-3/4wt( t)ll dt

(by (3.76) in 0 _-< -5 1)

and part (a), (3.58) is proved.
Proof ofpart (b), (3.59). The proof is conceptually similar. We start from (3.71).

We have that the resolvent R(A, 4) is well defined in all of Re h _-> 0 and hence (see
the proof of Theorem 1.1 following (2.5))

(3.78) IIA-’/4V-I(h)A’/4[[e(L2(D)) <= Co, o"
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Then, from (3.71), writing A-5/4V-l(A)A1/4A-5/4) and using (3.78) and (3.70), since

b’= b" b’" 0 for _-> 1 we obtain

IIa-5/4at(h)[I 2 da

NC e-’GA-’/("w+

IlA-’/4[b"t](A)ll =

(3.79) + e-2’llA-5/4("’w+3rb"w,+2’w,))ll 2 dt (by (3.70))

<= C6Co [llA-’/4w[[ - + G* A-l/2

+ [[[A-1/aw[[2+[[A-3/4w, ll2+[[A-S/awtt[I 2] dt

<-_ CoE (o),

since from (2.3) A-5/4w,, =-A-I/4w-A-/40OA-/2w,, and then (3.1), the contrac-
tion of E (t), and (1.28) apply. The rest of the proof proceeds as before. We obtain as
in (3.74)

2 e_2{3.80) IIA-’/4a,(a }11 a, g IIA-’/4u,,ll at
>0

and have as in (3.75) with e 1/

;o io e-llA-S/4u.()ll d+ C,(O),(3.81) 2 e-’llA-s/gu()d

from which the passage from u satisfying (3.81) to w satisfying (3.59) takes place as
before. The proof of Theorem 1.3B is complete.

Appendix A. Proof of Proposition 3.1. Adapting the multiplier technique of 18],
[19] to present circumstances, where to =< t=<o, we multiply (3.16a) by e-2"th V(Ap),
where/3 :> 0 is an arbitrary constant and h(x) C2() is a vector field on 1). For future
reference to uniform stabilization problems for (1.1a) with boundary conditions of
possibly different type from (1.1c, d), we will first derive a general identity for p which
solves only (3.16a) with no use of boundary conditions (3.16c, d) (see (A.8) below).
Only subsequently will we specialize such identity (A.8) to p which also satisfies the
boundary conditions (3.16c, d).

Identity for p which satisfies (3.16a). With Q (to, ) x, (to, ) F, we
multiply (3.16a) by e-23th. V(Ap) and integrate by parts. We will use the identity,
obtained via the divergence theorem

(A.1)
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with f, 4’ two Hl()-functions. In addition we will use the identity

Io e-2’zdph. Vd dl= I. e-2’ Od/)
h. Vdt) d.,-l I. e-2’ 12Ov

IV h vd

(A.2)

_foe-2,HV VO dO+ Io e-’JVO div h dQ
2

already proved in, e.g., [39, eq. (A.3), App. A] (with similar multiplier e-’h VO),
where H(x) is the matrix defined in (1.33) (transpose of the Jacobian of h(x)).

Term p,, e-2th. V(p). Integrating by pas in

V(p) dO T), V(p(T)))alim e-2T(pt( h.

(A.3) e-gt(p,, h. V(po))

+2fl o e-g’p,h. V(Ap) dQ- fo e-g’pth. V(ap,) dQ

(using (A.1) in the last integral above with f=p, and = kp,)

lim e-2r(p,(T), h. V(kp(T))a- e-2’(p, h. V(Ap0))a
T+m

(A.4) +2fl fo e-2’p’h" V(Ap) dQ- e-2tptpth, p dE

Invoking (A.2) with p for the last integral in (A.5) we obtain

V(p) dQ T), V(p)( T)))a- V(po))alim -2T(pt( h. -2o(1 h.

--Ix e-2tptApth vd+ f e-2t op hVpt

e-’Hvp,. Vp, dO+ e-:’lVp, div h dQ

Now, using Green’s first theorem on the last integral at the right of (A.5) along with
the identity

Vp,. V(p, div h) =p,V(div h). p, + Ip,I div h

we finally obtain from (A.5)

fo r I e-2’ptp’h vde-2tptth. V(p) dO Q [e-2t(pt, h. V(P))a]to-

-! e-2’lvp’12h vd+ z e-g’ op h Vp’
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(A.6)
pt div h dQ Io e-2tHVp" Vp, dQ

e-2tlVpd2 div h dQ
2

fo e-2mP’V(div h) Vp, dQ

+2/3 fo e-2’pth" V(Ap) dQ.

Term e-2O’A2ph V(Ap). Using identity (A.2), this time with b Ap, we obtain

e -:t3,A2ph V(Ap) dQ

(A.7)
f.e-2’O(AP) h.V(Ap) dE-1IvOv - e-2’lV(Ap)12h v dE

1 IO e-2’ 12e-’-’gV(ap) V(ap) dQ+- IV(ap) div h dQ.

Summing up (A.6) and (A.7) and recalling (3.16a) we obtain

e-2t OP--2t h Vp, dE + Ix e-2t Op.__t
Pt div h dE- Iv. e-2t3tptApth v dE

e-2’lVptl2h v dE + e
2

--2fit 19(Ap
h. V(Ap) d

Ov

-2’lV(ap)12h v dX

(A.8) e-2t’[HV(Ap) V(kp)+ HVpt" Vp,] dQ

+- e-Zt{lVptlZ-lV(Ap)l2} div h dQ+ e-2t3’ptVp, V(div h) dQ
2

-2,8 Io e-23’p’h V(Ap) dQ+ Iq e-2O’(F’ + F2)h V(Ap) dQ

T-lim [e-Zt’(p,, h. V(Ap))a],
T-+oo

which is the desired identity for p which satisfies (3.16a).
Specialization of the left-hand side of (A.8) to p which satisfies also the boundary

conditions (3.16c, d). Recalling (3.16c, d) we have

(A.9a) p,l= -= 0, Vp_l_F and IVpl -=0 one (by(3.16d))

Op,
(A.9b)

0v
=--0, Vpt d_F and
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Thus, using (3.16c, d) and (A.9a, b) on the L.H.S. of (A.8), we find that this simplifies
to

(A.IO) L.H.S. of (A.8) f: e -2t‘ 0(AP)0v h. V(Ap) dX- e-2OtlV(Ap)12h v dE.

Appendix B. Proof of Proposition 3.2. Again, we will first obtain an identity, (B.3)
below, forp which solves only (3.16a) and for an arbitrary smooth vector field h C2().
Next, we shall specialize this identity (B.3) to the case where p also satisfies the
boundary conditions (3.16c, d). We multiply (3.16a) by e-2tAp div h and integrate
over Q by parts in and by Green’s first theorem:

e-2tp,Ap div h dO lrirn e-2t pp, div h dO + 2B e-2’p,p div h dQ
to

fo e-2’PtP’ div h dQ

(B.1) lim e
r

App div h d
to

+2oe-p,pdivhdQ e-’OPp div h d
O

+oe-’Vp,divhdQ+oe-p,Vp’V(divh) dO.

Also, again by Green’s first theorem

(B.2)

fo e-tA2pAp div h dQ Iv. e Ap div h dE

fo e-2Ct[V Ap )[2 div h dQ

fo e-2ttApV(Ap). V(div h dQ.

Summing up (B.1) and (B.2) and recalling (3.16a) we find the identity

fo e-2t{IVP,12-1V(Ap)l} div h dQ

e_2# Opt fxPt div h dE- e_2 O(Ap)
Ap div h dE

Ov Ov

(B.3) J, e-2mApV(Ap). V(div h dQ+

lim e-t App div h d + e-t(F + F2)Ap div h dQ
T to
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for p satisfying (3.16a). If p now satisfies also the boundary conditions (3.16c, d), then
(B.3) specializes to

Io e-:Z {lVp,12-lV(Ap)lZ} div h dQ

----rE e-2/3t tg(AP)0 Ap div hd,/ fo e-2’ApV(Ap)" V(div h)dQ

-2fl lo e-:Z3tptAp div h dQ- fo e-2tp,Vpt V(div h) dO
(B.4)

+ JQ e-2t(Fl + F)Ap div h dQ

+ lim e-2T f Vp(T). V(pt(T) div h)
T-

-e-2 fa Vp0" V(pl div h) dO.
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GLOBAL EXISTENCE AND ASYMPTOTIC STABILITY
FOR A NONLINEAR INTEGRODIFFERENTIAL EQUATION

MODELING HEAT FLOW*

DEBORAH BRANDON?

Abstract. This paper studies initial value problems that arise from models for one-dimensional heat
flow (with finite wave speeds) in materials with memory. Under assumptions that ensure compatibility of
the constitutive relations with the second law of thermodynamics, the resulting integrodifferential equation
is hyperbolic near equilibrium. The existence of unique, globally (in time) defined, classical solutions to
the problems under consideration is established, provided the data are smooth and sufficiently close to
equilibrium. Both Dirichlet and Neumann boundary conditions are treated, as well as the problem on the
entire real line.

Local existence is proved using a contraction-mapping argument which involves estimates for linear
hyperbolic partial differential equations with variable coefficients. Global existence is obtained by deriving
a priori energy estimates. These estimates are based on inequalities for strongly positive Volterra kernels
(including a new inequality that is needed due to the form of the constitutive relations). Furthermore,
compatibility with the second law plays an essential role in the proof in order to obtain an existence result
under less restrictive assumptions on the data.

Key words, integrodifferential equation, second sound, heat flow, hyperbolic equation

AMS(MOS) subject classifications. 45K05, 35L60, 80A20

Introduction. In this paper we establish global existence and asymptotic stability
of solutions to initial value problems arising from integral models for heat flow that
were introduced in [2]. These models are based on Gurtin and Pipkin’s theory of heat
conduction [6]. The situations we are concerned with are such that the heat flux
depends on the temporal history of the temperature gradient (and possibly on the
present value and the history of the temperature), but is independent of the present
value of the temperature gradient.

As in [2], we restrict our attention to one-dimensional rigid heat conductors in
which the only nonzero component of the heat flux is its x-component, q. Here q and
the absolute temperature 0 > 0 are functions of x and time t. Moreover, we assume
that the material under consideration is homogeneous and has unit density. The first
two laws of thermodynamics then take the form

(0.1) et+qx=r,

(0.2) n,>_- +-
0

where e e(x, t) is the (specific) internal energy, r r(x, t) is the external heat supply,
and r/= r/(x, t) is the (specific) entropy. Subscripts and x indicate partial derivatives.
If we define the (specific) free energy (x, t) through

(0.3) := e- 0n,
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then the law ofbalance of energy (0.1) and the entropy inequality (0.2) can be combined
to give the Clausius-Duhem inequality

qOx
(0.4) q, + ,qO, +_-< O.

0

Gurtin and Pipkin consider materials characterized by constitutive equations that
express q(x, t), rt(x, t), and q(x, t) as functionals of (O(x, t), ff’(x, .), fft(x,. )). Here
fit and ff denote the summed histories up to time of the temperature and the
temperature gradient. The summed history up to time of 0 is defined by

(0.5) O’(x, s):= O(x, z) dz, x B, s >- O,

where B c R denotes the interval occupied by the body. Gurtin and Pipkin require
that their constitutive relations be compatible with thermodynamics in the sense that
the Clausius-Duhem inequality (0.4) is satisfied for all smooth processes consistent
with the constitutive relations. They derive conditions that are both necessary and
sufficient for compatibility with thermodynamics. These conditions can be summarized
roughly as follows:

(i) The entropy is minus the derivative of the free energy with respect to the
present value of the temperature;

(ii) The heat flux is determined from the free energy through a differential
equation called the heat flux relation;

(iii) A functional differential inequality called the dissipation inequality, holds
for all smooth processes.
We note that by virtue of (0.3), condition (ii) implies a relation between q and e and
hence, e will generally depend on

MacCamy considered a model motivated by Gurtin and Pipkin’s linearized constitu-
tive equations [10]. He replaced the linear equation for the heat flux with

Io(0.6) q(x, t)=- a(s)f(Ox(x, t-s)) ds,

but retained the linear equation for the internal energy

e(x, t)=b+cO(x, t)- fl’(s)’(x,s) ds

(0.7)

b + cO(x, t) + fl(s)O(x, s) ds.

Here b and c are constants, a and/3 are smooth kernels that decay sufficiently rapidly
at infinity, andfis a smooth function. MacCamy proved global existence and asymptotic
stability for a corresponding initial boundary value problem. Similar existence theorems
for MacCamy’s model were established by Dafermos and Nohel [5] and Staitans [13].

MacCamy does not address the issue of compatibility with thermodynamics.
However, we can show that there are smooth processes consistent with (0.6), (0.7) but
for which an inequality implied by (0.4) is violated; within the context of [5], [10],
and [13] this probably is not a serious difficulty since the solutions discussed there
remain close to equilibrium (i.e., close to a state where 0 is a constant and 0x 0),
and under reasonable assumptions on a, /3, and f, the aforementioned inequality is
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satisfied by a suitable class of processes that are close to equilibrium. (See [2, 1] for
further details.)

Here we consider the constitutive relations

(o.s)

q,(x, t)= (O(x, t))+ (s, O(x, t), ’(x, s), ’(x, s)) as,

r/(X, t)=-’(O(x, t))- ,2(s, O(x, t), t(X, s), O-t,,(X, S)) ds,

q(x, t)=-O(x, t) t,4(S O(X, t), t(X, S), tx(X S)) ds,

and hence by (0.3) we have

(0.9) e(x, t)= .(O(x, t))+ .(s, O(x, t), ff’(x, s), ff(x, s)) as

with

(,) := $(,)- ,g;’(,), (, ,, ,, r):= q,(, ,, ,, r)- ,,,(, ,, , ),
(o.o)

s,>O, aO,

Here is normalized so that

(0.11) (s, v, vs, O)=O Vs, v>O

and satisfies hypotheses which ensure that the integrals in (0.8) will be well behaved
for a reasonable class of functions O.

We assume that satisfies

and thus by the main result obtained in [2] the constitutive relations (0.8) are compatible
with thermodynamics and

(0.13) d(s, v, vs, O) O, j 1, 2, 3, 4 Vs, v > O.

Substitution of (0.8)3 and (0.9) into the law of balance of energy (0.1) yields

,( O(x, t), ’(x,. ), (x,. ))O,(x, t)

+-- Q(s, O(x, t) fit(x, s), ff(x, s)) as
OX

(o.4 + ,(s, O(x, , ’(x, sl, (x, s[O(x, -O(x, -sl] s

+ ,4(s, O(x, , ’(x, s, 2(x, s[O(x, -Ox(x, -s] s= r(x, ,
xB, tNO.

Here is given by

(0.15) Q(s, s,t,>O, a=>O, 3’[,

We use F,j to denote the partial derivative of a function F with respect to its jth argument.



GLOBAL EXISTENCE OF HEAT FLOW 75

and

(0.16)

cS( O(s, t), t(x, ), O(x, ))

:= ’(0(x, t)) + ff,.2(s, O(x, t) ’(x, s), -’O(x, s)) ds

is the instantaneous heat capacity at (O(x, t), ff’(x, .), ff(x,. )); the equilibrium heat
capacity (v) at the temperature v is given by

(0.17) (u) := g,’(v).

It is generally assumed in practice that the heat capacities are positive.
We seek a smooth solution to (0.14) subject to the initial conditions

O(x, t) qg(x, t), x B, < O,
(0.18)

O(x,O)=Oo(x), xeB,

and appropriate boundary conditions if B . Here o > 0 and 0o> 0 are prescribed
smooth functions. Observe that (0.18) permits a temporal jump discontinuity in 0 at

0. Even if such a discontinuity is present in the data, we can obtain a solution that
is smooth for _-> 0 provided that 0o and r(-, 0) satisfy certain compatibility conditions
at the endpoints of B.

It follows from the arguments of Gurtin and Pipkin [6] that compatibility with
thermodynamics, strict positivity of the equilibrium heat capacity, and some assump-
tions of nondegeneracy imply that (0.14) is of hyperbolic type near equilibrium. (See
[12, Chap. II] for determination of type for equations with memory terms.) The
characteristic speeds for (0.14) are not constant, and it is therefore possible that weak
waves will be amplified and shocks will develop. On the other hand, (0.14) includes
a natural damping mechanism induced by memory. It is not clear which effect is
dominant. A great deal of insight into this question is given by Chen [3], who assumed
the existence of solutions containing singularities called temperature rate waves and
obtained a formula for the amplitude of these waves. He found that an amplitude of
small initial value decays as t--> o, and if the initial amplitude is large then blowup
may occur in finite time. This suggests that when the data are close to equilibrium,
(0.14) has a global solution, whereas if the data are sufficiently far away from equili-
brium the solution may develop singularities in finite time.

To keep the analysis relatively clean, while retaining the important features (from
the point of view of the analysis) of (0.14) we treat the following special case in detail"

1

t-(x, t)=(O(x, t))-O(x, a’(s)F(Otx(X,S)) ds,

1

t)--’----- fo(0.19) r/(x, t)=-tp’(O(x, t))-.O(x a’(s)F((x, s)) as,

q(x, t)= a’(s)F’((x, s)) as.

Here " (0, ) , a "[0, )-, and F’ are smooth functions with a W3’1(0, )
and F(0) 0. Observe that unlike (0.8), in (0.19) there is no dependence on the summed
history of the temperature; moreover, here the kernel (a’) factors out. We assume that

(0.20) a is convex, F => 0;
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the arguments used in [2] can be applied in the present setting to show that (0.20)
implies that the constitutive equations (0.19) are compatible with thermodynamics.
We note that by (0.20) we have

(0.2) a’ <_- 0, a >-_ 0, F’(0) 0, F"(0) >- 0.

The corresponding equation for e is

(0.22) e(x, t) (O(x, t))
2 Io O(x, s)) as,

O(x,t)
a’(s)F(-’

where g, is as in (0.10)1. Thus (0.1) yields

.’(O(x, t)) +
O(x, t)

a’(s)F(Ox(x, s)) ds Or(x, t)

+ a’(s)F"( s)) s) ds’x(X, ’xx(X,

(0.23) 2 Io -t

O(x, t)
a’(s)F’( Ox(x, s))[ Ox(X, t) Ox(x, t- s)] ds r(x, t),

xB, t>=O.

We establish global existence and asymptotic stability of smooth solutions to the initial
value problem (0.23), (0.18) for smooth data (r, q, 0o) that are close to equilibrium.
We treat Dirichlet and Neumann boundary conditions as well as the problem with
B . We also make some remarks concerning the extension of our work to the initial
value problem (0.14), (0.18).

To indicate the nature of our results let us consider the case where B [0, 1],
q 0o 0", with Dirichlet boundary conditions

(0.24) 0(0, t) 0(1, t) 0", _--> O,

where 0"> 0 is a given constant.
In order to prove global existence of solutions to (0.23), (0.24), (0.18) we need

to make additional assumptions on the constitutive relations and on the data. Concern-
ing the constitutive equations we require that

(0.25) a0,

and we strengthen the inequality (0.21)4 to the strict inequality

(0.26) F"(0) > 0.

These two conditions imply that the linearized relation for the heat flux is nontrivial.
We also assume that the equilibrium heat capacity is strictly positive, i.e.,2

(0.27) ’>0.

Assumptions (0.25)-(0.27) imply that (0.23) is hyperbolic near equilibrium. Since we
have dependence on the summed history of the temperature gradient (for which we
do not obtain a pointwise bound), we need to make a growth restriction on F that is
related to the decay rate of a. In addition, we assume that the heat supply r is smooth,
decays with time, and is small in a sense that will be stated more precisely later.

For our purposes it suffices to assume that ’(0")> 0; however, assumption (0.27) is in accord with
experience and leads to certain simplifications in the proofs of Theorems 1.2 and 1.3.
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Moreover, to ensure the existence of smooth classical solutions the heat supply r must
satisfy the condition

(0.28) r(0, 0)= r(1, 0)= r,(0, 0)= r,(1, 0)= 0,

which guarantees compatibility of the data with the boundary conditions at 0. We
note that our assumptions imply that a is a strongly positive-definite kernel in the
sense of 11 ]. Inequalities for such kernels play an essential role in the proof of global
existence.

Observe that if r 0, then 0-= 0* is a solution. We look for classical solutions to
(0.23), (0.24), (0.18) near the prescribed equilibrium temperature 0* for >_- 0. We show
that (0.23), (0.24), (0.18) has a unique solution 0> 0 with 0, 0x, 0,, 0x, 0,, 0,, 0x,
0,, 0,, O,tC([O,o);L2(O, 1)) and 0, 0, Or, Oxx, 0,, 0,L2((0, o); L2(0,1))
L((0, o); L2(0, 1)). Moreover, as o, 0(., t)- 0* and Ox(’, t), 0,(., t) 0 uniformly
on [0, 1]. An analogous result can be obtained for Neumann boundary conditions as
well as for the problem with B R.

The arguments used to prove global existence in [5], [10], and [13] for MacCamy’s
model are similar in spirit to the arguments used here. The primary differences between
our existence proof and those for MacCamy’s model arise from the dependence of e
On the summed history of 0,. This dependence complicates the analysis and necessitates
the use of a new inequality for strongly positive-definite kernels. Global existence is
obtained by deriving a priori estimates; in these derivations we exploit the compatibility
of our constitutive relations with thermodynamics, i.e., we make use of the entropy
inequality (0.2). It is interesting to note that we can obtain an existence result for
(0.23), (0.24), (0.18) without utilizing the thermodynamical restrictions, provided the
linearized equation has the appropriate features. However, the compatibility conditions
imposed on our constitutive relations by the thermodynamical restrictions allow us to
establish a global existence result under less restrictive assumptions on the data.

The paper is organized as follows. Precise statements of global existence results
are given in 1. Section 2 is concerned with appropriate local existence results and
with properties of strongly positive-definite kernels relevant to our needs. Section 3 is
devoted to the proof of the theorems stated in 1; the proof for the problem with
Dirichlet boundary conditions is discussed in detail and remarks are made concerning
other boundary conditions.

1. Statement of results. We first consider the problem

.’(O(x, t))+ a’(s)F((x, s)) as Or(x, t)
O(x,t)2

(1.1)

+ a’(s)F"((x, s)) Ox(X, s) ds

2
’( ,-2(x,

O(x, t)
a s)F’( s))[O(x, t)- Ox(x, t-s)] ds r(x, t),

x[O, 1], t_>--O,

(1.2) O(x,t)=O*, x6[O, 1], t<O,

(1.3) O(x, O) Oo(x), x [0, 1 ],

(1.4) O(O,t)=O(1, t)=O*, t>--O.

Here, 0"> 0 is a given constant and 0o: [0, 1 ]- (0, c) is a prescribed smooth function.
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Concerning e, F, and a we require that

(1.5) E C4(0, oo),

(1.6) g,’> 0;

(1.7) F E C5(),
(1.8) F(0) 0, F"(0) > 0, F(T) ->_ 0

and there are constants K > 0, k > 1 such that

(1.9)

(1.10)

and

IF()-F(O)I<-_K(II+I#I), j=0, 1,2,3,4,5,

a w3’l(0, (30), a is strongly positive definite, a"=>0,

(1.20)
io io ; )Ro:=sup (rZ+rZ)(x,t)dx+ rZ(x,O) dx+ sup Ir(x,t)l

t=>O x[0,1]
\ t_-->O

+ (r + r, + r,)(x, t) x t.

and

(1.11) la’(z)lz+ rig, ]a"(z)lglC+l dg, la’"(z)[zdz<oo.

We note that there is some redundancy in (1.11) due to assumption (1.10); however,
we feel that the present form (which is not as compact as possible) is clearer from an
expository point of view. The definition of a strongly positive-definite kernel is given
in the next section. For now, it suffices to know that

(i) (1.10)1,2 implies a(0) > 0;
(ii) If a W3’1(0, oo), a 0, and a"=>0, then a is strongly positive definite.

The data are assumed to have the following regularity:

(1.12) 0oE H3(0, 1),

r, rx, r,, r,t, r, C([0, 0); L2(0, 1)) fq L2((0, c); L2(0, 1))
(1.13)

f) L((0, c); L2(0, 1)),

(1.14) r(., 0) H2(0, 1), rtttL2((O, cx);L2(O, 1)).

We also assume that the following compatibility conditions hold on the boundary:

(1.15) 0o(0) 0o(1) 0",

(1.16) r(0, 0) r(1, 0) 0,

(1.17) rt(0, 0)= a(0)F"(0) -0(0)+-0-- 0(0)2

(1.18) rt(1, 0)= a(0)F"(0) -0(1)+-0- 0;(1)2

The interpretation .of (1.15) is clear; conditions (1.16)-(1.18) ensure that 0t(’, 0) and
0,(., 0) vanish on the boundary. To state our results, it is convenient to define

(1.19) 19o := ([ Oo(x) 0*]2 + O’o(X)2 + O’S(x)2) dx
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We establish the following result.
THEOREM 1.1. Assume that (1.5)-(1.11) hold. Then there is a constant 6 > 0 such

that for all Oo and r satisfying (1.12)-(1.18) and

(1.21) 19o+ Ro =< 62,

the initial value problem (1.1)-(1.4) has a unique solution 0 > 0 with

(1.22)

and

(1.23)

Moreover, as - oo

(1.24)

and

O, Ox, Ot, Oxx Oxt Ott Oxxx, Oxxt, Oxtt, Ott E C([0, oo); t2(0, 1))

O-- 0:, Ox, Ot, Oxx Oxt Ott L((O, oo); L:z(O, 1)) f"l L2((O, ee); L:(O, 1)).

O(.,t)O*

(1.25) Ox(’, t), 0,(’, t)-O uniformly on [0, 1].

Remark 1.1. The constant 6 in Theorem 1.1 depends on 0* and on properties of
the functions appearing in the constitutive relations.

Remark 1.2. By the Sobolev embedding theorem, (1.22) implies that
C2([0, 1][0, c)).

A result analogous to Theorem 1.1 can be established if we replace the Dirichlet
boundary conditions (1.4) with Neumann boundary conditions

(1.26) 0x(0, t) 0x(1, t) 0, _-> 0.

Remark 1.3. Under the assumptions of Theorem 1.2 below (1.26) holds if and
only if

(1.27) q(0, t)= q(1, t)=0, t>_-0.

(Recall that the heat flux q is given by (0.19)3.) It is obvious that (1.26) implies (1.27).
In order to show that (1.27) implies (1.26) we first differentiate the relation for the
heat flux (0.19)3 with respect to on the boundary, making use of (1.2). We then add
and subtract terms to obtain the identity

a(O)Ox(, t)+ a’(t-s)Ox(, s) ds

Ox(se, s) a’(y)
F"(O) ot

(1.28)

=0, , t_->O.

We can now solve (1.28) for Ox and make use of Lemma 2.3 below to show that (1.26)
is the only continuous solution of (1.28) that vanishes at O.

We now require that r satisfy (1.13), (1.14), and

(.9 re ((0, oo; (0, ;
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in addition, we assume that the following compatibility conditions hold:

(1.30) 0(0) 0)(1) 0,

(1.31) r(0, 0) r(1, 0) 0,

(1.32) rt(0, 0) -a(O)F"(O)O’(O),

(1.33) rt(1, 0)=-a(O)F"(O)O’(1).

THEOREM 1.2. Assume that (1.5)-(1.11) hold. Then there is a constant 6 > 0 such
that for every Oo and r that satisfy (1.12)-(1.14), (1.29)-(1.33) and

(1.34) Oo+ Ro+ r(x, t)2 dx dt <= t32

the initial value problem (1.1)-(1.3), (1.26) has a unique solution 0 > 0 with

O, 0,,, 0,, Oxx, Ox,, 0,,, Oxxx, Oxx,, 0,,,,, 0,,, C([0, oo); L2(0, 1)),

Ox, 0,, O,x, Ox,, O,t L((O, oo); LZ(O, 1)) fl L2((O, oo); L2(O, 1)),

(1.35)

(1.36)

and

(1.37) 0 L((O, oo); L2(O, 1)).

Furthermore, as t- oo, 0(., t) converges to a constant 0"*> 0 uniformly on [0, 1] and

(1.38) Ox(’, t), 0,(’, t)-O uniformly on [0, 1].

Remark 1.4. The value of 0"* can be determined from (1.1) as follows. If the
assumptions of Theorem 1.2 hold and 0 satisfies (1.1)-(1.3), (1.26) then integrating
(1.1) over [0, 1] x [0, t], > 0, and passing to the limit as t- oo yields

(1.39) g’(0**) a(Oo(x)) dx + r(x, t) dx dt.

By (1.6) is strictly monotone and hence there is a unique solution 0"* of (1.39).
Let us now consider the problem stated below in which the heat conductor occupies

the entire real line"

’(O(x, t))+ a’(s)F(Ox(X, s)) as O,(x, t)
O(x,t)

+ a’(s)F"(O-(x, s))-’Oxx(X, s) ds

(1.40) 2
a’(s)F’(O-(x, s))[ O(x, t) O(x, t- s)] as r(x, t)

O(x,t)

xN, tgO,

(1.41) O(x,t)=O*, x6N, t<0,

(1.42) O(x, o) Oo(x), x .
We assume that

(1.43) 0o-0" G g3(),

r, r,, rx,, r,, C([0, m); t(u)) ((0, m); (u))
(1.44)

((o, m); (u)),
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(1.45) r C([O, 00); L())f-I L’((O, 00); L2())f’)L((O, 00); L2()),
(1.46) r(., 0) 6 H2(R), rtt L2((0, ); L2(lt)).
Note that (1.45) implies r L2((0, o); L2(R)). We define

(1.47) O1 := I ([ Oo(X) 0*]2 + 0(x)2 + 0(x)2) dx
3-

and

(1.48)

R1 := sup (re + rt2)(x, t) dx + rx
t=>O x

tO

+ (r2+r,+r,)(x, t) dxdt

THEOREM 1.3. If (1.5)-(1.11) hold, then there is a constant 6 > 0 such that when
Oo and r satisfy (1.43)-(1.46) and

(1.49) O1+R1 =< t2

the initial value problem (1.40)-(1.42) has a unique solution 0 > 0 with

(1.50) 0-0", Ox, Ot, Oxx Oxt Ott Oxxx, Oxxt, Oxt,, Ottt C([0, 00); L2(R)),
(1.51) Ox, Ot, Oxx, Ox,, Ott L((O, ); L([))fq L:((0, o); L-()),
and

(1.52) 0- 0* L((0, o); L()).
In addition, as t- ,
(1.53) 0(’, t)- O* uniformly on

and

(1.54) 0,,(’, t), 0,(’, t)0 uniformly on and in Lz(R).
Remark 1.5. A detailed proof of Theorem 1.1 is given in 3. With some minor

modifications the argument used to establish Theorem 1.1 can be applied to prove
Theorems 1.2 and 1.3; these modifications are discussed in 3.

Remark 1.6. Assumption (1.11) is not the weakest possible to obtain the global
estimates of 3. However, in order to establish Lemma 2.2 below, the replacement of
(1.11) with a weaker assumption would necessitate a more complicated argument than
the one used in this paper.

The results established here can be modified and extended, as is illustrated below.
(i) Solutions with less regularity. Using a density argument we can show that under

weaker assumptions on the data, our initial value problems have a unique, globally
defined solution with less regularity than the solutions discussed above. More precisely,
for instance in Theorem 1.1, if we replace (1.12)-(1.18) with

(1.55) 0o 6 H2(0, 1),

(1.56)
r, rt C([0, c); L2(0, 1))fq L2((0, c); L2(0, 1))

VI L((O, oo); L2(O, 1)),
(1.57) rL((0,1)(0,)), r(.,0)Hl(0,1), rttL2((O,o);L2(O, 1)),
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and

(1.58) 00(0) 0o(1) 0", r(0, 0) r(1, 0) 0,

then the result of Theorem 1.1 is true with (1.22) replaced with

(1.59) O, Ox, Or, Oxx Ox, 0,, C([0, (30); t2(0, 1)).

(ii) Nonequilibrium history. Results analogous to Theorems 1.1-1.3 can be
obtained if a more general history is prescribed. For example, a result similar to
Theorem 1.1 can be established if (1.2) is replaced by

(1.60) O(x,t)=q(x,t), x6 [0, 1], t<0,

where q [0, 1 (-c, 0] (0, o) satisfies

(1.61)
q, qx, qt, q,, qx,,, o,, 6 C((-o, 0]; L2(0, 1))

0 L2((-oo, 0); L2(O, 1)) f) L((-oo, 0); L2(O, 1)),

(1.152) a’(s)F’((( s)) ds 83(0, 1)

and the compatibility conditions (1.16)-(1.18) are modified accordingly. In addition,
the quantity

;o’cb:= sup (rC2x+r2xx+q2xt)(x, t) dx
t(-,0)

(.3 + (+x+ex,(x, x

+ a’(s) Ox--5 {F’(q(x, s))} ds dx

must be sufficiently small, i.e., condition (1.21) is to be replaced with

(1.64) Oo + + Ro =< 6 2.

In 3 we discuss modifications needed in order to adapt the proof of Theorem 1.1 to
this case. We note that for the analogue of Theorem 1.2, if we assume that

(1.65) qgx(0, t)= 0x(1, t)=0, t=<0

then, following the procedure discussed in Remark 1.3, we can show that (1.26) is
equivalent to (1.27).

(iii) General integral models. These results can be extended to the case where the
constitutive equations (0.8) are considered. In these equations the dependence on the
summed history of 0 is nontrivial; hence a term involving O(x, t) appears in the analogue
of (1.1). In the corresponding linearized equation the coefficient of O(x, t) is

(1.66) E*:= /.3(s, 0", O’s, O) ds;

we can show that compatibility with thermodynamics implies that E* is nonnegative
and hence the methods we use here can be adopted to produce analogous results to
those stated in Theorems 1.1-1.3. The precise statement of the technical assumptions
required would be very complicated and not very illuminating, e.g., the mapping

(1.67) s - Q,4(s, 0", 0* s, 0)
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would have to be such that our assumptions on

(1.68) s- a’(s)F"(O)

would hold. We will not discuss this case in further detail.

2. Preliminaries. We begin by stating a local existence result for (1.1)-(1.4). We
first note that (1.1) is hyperbolic near equilibrium, but may lose its evolutionary
character at states sufficiently far from equilibrium. To ensure that (1.1)-(1.4) is well
posed we assume that 0o is close to equilibrium in the sense described below. We
choose e (0, 0") sufficiently small so that there are constants e*, q*> 0 with the
following property:

(2.1)

and

w(x, t)2
a’(s)F((x, s)) ds >= e*

Vx [0, 1],

(2.2) a’(s)F"(#t(x, s)) ds >- q* Vx [0, 1], [0, T],

t[0, T],

for every T>0 and every we L((-, T); Hi(0, 1)) satisfying

(2.3) Iw(x, t)- 0"[, Iw(x, t)l e Vx [0, 1], (-, T].

Such a choice is possible by virtue of our assumptions on a and F. (Indeed, the
left-hand sides of (2.1) and (2.2) are strictly positive when w(x, t)= 0". A simple
perturbation about w 0* guarantees the existence of a suitable e. In fact, we may
take e* =1/2g,’(0*) and q* =1/2a(0)F"(0).) We assume that 0o satisfies

(2.4) IOo(x)- o*1, Io6(x)l Vx [o, a],

for some rt (0, e).
We can now state the following lemma.
LEMMA 2.1. Assume that (1.5)-(1.18) and (2.4) are satisfied. Then the initial value

problem (1.1)-(1.4) has a unique solution 0>0, defined on a maximal time interval
[0, To), To > O, with

(2.5)

and

(2.6)

Moreover, if
(2.7)

and

O, Ox, Ot, Oxx Oxt Ott Oxxx, Oxxt, Oxtt, Ott C(,[0, To); t2(0, 1))

IO(x, t)- O’l, IOx(x, t)l < e Vx [0, 1], [0, To).

sup IO(x, t)- 0"1, sup IOx,(x, t)l < e
x[0,1] x[0,1]
t[0, To) t[0, To)

(2.8) sup 02 + 02x + 02 + 02 + 02x, + 02 + 02xx,, + OZxx, + 02,,, + O,2,,)(x, t) dx < 00,tt
t[0, To)

then To .
A result analogous to Lemma 2.1 can be established if we replace (1.4) by (1.26)

(i.e., if instead of Dirichlet boundary conditions we consider Neumann boundary
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conditions) and (1.15)-(1.18) with (1.29)-(1.33). Similarly to (1.1)-(1.4), the initial
value problem (1.1)-(1.3), (1.26) has a unique solution 0 defined on a maximal time
interval [0, To), To> 0 satisfying (2.5) and (2.6). We can also obtain a corresponding
result for the case when the heat conductor occupies the entire real line; the assumptions
required in this case would be the analogues on of the assumptions stated above.

The proof of Lemma 2.1 is given in Chapter III of 1 ]3; this proof is very technical
but standard. Proofs similar in spirit have been used by several authors to obtain local
existence results (cf., e.g., 12, Chap. III]) and hence we omit the proof of the lemma.
It is interesting to note that although compatibility of the constitutive relations (0.19),
(0.22) with thermodynamics determines the form of (1.1) it plays no further role in
the proof of Lemma 2.1. However, a bootstrapping argument, in which the thermo-
dynamical restrictions play an essential part, can be applied to strengthen the result
described in Lemma 2.1. More precisely, we can show that under the assumptions of
Lemma 2.1, if 0 satisfies (1.1)-(1.4) on a maximal time interval [0, To), To>0 (and
hence 0 satisfies the entropy inequality (0.2)), then a bound on the L([0, To); L2(0, 1))
norms of 0 and its derivatives through order 2 implies that there is a bound on the
aforementioned norms of third-order derivatives of 0. Hence, we can establish the
following lemma.

LEMMA 2.2. Suppose that the assumptions ofLemma 2.1 hold and that 0 is a solution

of (1.1)-(1.4) on a maximal time interval [0, To), To> 0. If 0 satisfies (2.7) and

(2.9) sup 02 -]- 02 + 02t -Jr- 02xx + 02xt -]- 0 t2t)(x, t) dx <,
te[O, To)

then To o.
Remark 2.1. If 0 is a solution of (1.1)-(1.4), then 0 satisfies the entropy inequality

(0.2), where the entropy and the heat flux are given by (0.19)2 and (0.19)3, i.e.,

(2.10)

Recall that

0

O(x, t)
a’(s)F’(t(x, s)) as

ox

=0- -’(O(x, t))-O(x, t)
a’(s)F((x,s)) as

O(x, t)

(2.11)

hence (1.5) implies

v>O,

(2.12) q" C(0, o).

Before proving Lemma 2.2 we introduce the following definition. For T> 0 and
0< h < T, we define the forward difference operator Ah (with respect to the time

Assumption (1.15)2 of Chapter III of[l] does not suffice to ensure that 0t(’, 0+) H2(0, 1). We need
to make the additional assumption that

o’
a’(s)F’(:,( s)) as H3(0, 1),

where q" [0, 1] x [-c, 0]- (0, ) is a prescribed general history, i.e.,

O(x,t)=q(x,t), x6 [0, 1], t<0.

However, the arguments used to prove Theorem 1.1 of [1, Chap. III] remain valid.
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variable) by

(2.13) (hW)(X t):= W(X, + h)- w(x, t), x [0, 1], [0, T- hi
for every w C([0, T]; L2(0, 1)).

ProofofLemma 2.2. Let 0 be a solution of (1.1)-(1.4) on a maximal time interval
[0, To), To> 0, such that (2.7) holds. Our aim is to show that if To < oo, then

(2.14) sup 02 + 0 + 0+ 02x + 02x, + 0,2)(x, t) dx o.
ta[O, To)

For this purpose it is convenient to introduce the quantities

(2.16)

(2.17)

and

y(t) := sup 0 + O + O+ 02, + 0, + 0 ,])(x, s) dx, [0, To),
S[0, t]

Io’73(t) := sup 02 + 02,, + 02 + 02,,x + 02,, + 0 t2t + 02xx + 02xt
sa[O,t]

+ 0L + 0..(. x.
o := (Oo(x) + 0;(x) + O(x) + Og(x)) ax,

[0, To),

2 2 2R := sup (r2 + rx + r, + r,, + r2,t)(x, t) dx + r,,(x, O) dx
(0,eo)

(2.18)
+ (r2+rx+rt+rxt+rtt+rnt)(x, t) dxdt.

In the following calculations we make use of the inequalities

t(2.19) Ai <= N Y A2i Al, ", AN e ,
i=1 i=1

A2

(2.20) IABI <-_+ AB2, A, B It, A > 0,
4A

and

(2.21) IIA * Bll O.T);=o.,) [IA[[ ,.’o.oo11B LP((O,T);L2(O,1))

for every T>0, AeLI(O, oo), and BLP((O, T); L2(0, 1)), where l_<-p_-<oo and A B
denotes the convolution of A with B. We use F to denote a (possible large) positive
generic constant which is independent of 0o, r, and To.

We first differentiate (1.1) twice with respect to and then apply the forward
difference operator Ah to the resulting expression. We multiply the new equation by
mhOtt and integrate over [0, 1] x [0, t], (0, To). After several integrations by parts,
we divide both sides by h2 and let h $ 0 to obtain the identity

(2.22)- ’( O(x, t))+
2

,( O2,,(x
O(x, t)2

a s)F((x, s)) ds t) dx

Ox,,(x, t) dx
2

a’(s)F"( s))ds
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Oixi) ’()F’(O(x,)) a o,%,(x,)dxd

O.,(x, O) dx +- a(0)F"(0) O].(x, O) dx+2 ’(Oo(x)) 2

2

ioio, O{ o }+- ’(o(x,s))+ a’(z)F(o(x,z)) dz o,,(x,s) dxds
2 O(x, )

a’.(z) O(x, z)) dz O..(x, s) dx ds
2 Os

IOIO03 IO+ r(x,s)- a’(z)F’(O(x,z))O(x,s-z)dz O.(x,s) dxds
Os O(x,s)

oo o3O,(x, s s ’(O(x, s+O(x,s

o Ox(x, z)) dz O.,(x, s) dx ds

3 --os O.(x, sl ’(O(x, s +
O(x,s

a’(z)F(O(x,z)) dz O,.(x,s)

+ a’(z)F"(O(x,z))O(x,s-z) dz O,,(x,s) dxds
Os2

oo,O{o+ a’(z)F’"(O(x,z))O(x,z)O(x,s-z) dz O,,(x,s) dxds
Os2

ioio 0{;o }O(x, s) a’(z)F’"(O(x, z))O(x, z) dz O,,(x, s) dx ds
Os2

2 O,(x, s)
0

a’(z)F’"(O(x, z))O.(x, z) z 0,,,(x, s) dx ds
Os

ioio 03 # }+ O.(x,s)
Os O(x, s)

a’(z)F’(O(x, z)) dz O,,,(x, s) dx ds

+ 3 0,(m s) x,Os O s)
a’(z)F’(O(x, z)) dz O,,(x, s) dxds

a’(z)F"(O(x, z)) dz O(x, s)O,,(x, s) dx ds
Os2

2 a’(z) O(x, z)) dz O,(x, s)O,,(x, s) dx ds, [0, To).
Os

Here 0,,(., 0) and 0,(., 0) are determined from (1.1). Only a paial description
of the estimates involved in obtaining (2.23), (2.25), and (2.29) (from (2.22)) will be
given since the calculations are similar in spirit to those described in 3 below. Making
use of (2.1), (2.2), (2.10) (to estimate the first term on the right-hand side of (2.22)),
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(2.19)-(2.21), and the Sobolev embedding theorem we can show that

(O + o.)(x, t) dxxtt

(2.23) <-_F{(R)+R+y(t)+y32(t)+[l+R/2+(l+t)(y/2(t)+y(z’+)/(t))
2 2 2 20 + 0xx, + 0x,, + 0 ,tt)(x, s) dx ds V e [0, To).

We differentiate (1.1) twice with respect to t, square the resulting expression, and then
integrate over [0, 1] to obtain the inequality

t(s)F, -t 2a O(x, s)) ds O,(x, t) dx

5 (O(x, -O(x, a’(s(O(x,s s x

+ 5 Oxx(X, a’( (as ax

+ 5 a’(s)F"(O-(x, s))Ox(X, t-s) as ax

o-2(x, Oxx(X, s+ 5 (s s ax

Using (2.2) to get a lower bound on the left-hand side of (2.24), and estimating the
right-hand side of (2.24) we can show that

(.5 +

(0,+0m)(X, t) & V e [0, To).

We now differentiate (1.1) once with respect to and then once with respect to x. We
square the result and integrate over [0, 1] to get

a’(s)F"( O-(x, s)) ds o(x, t) x

5 (O(x, -O(x, ’(e(O(x, es ex

+ 5 Ox(X, t) a’(s) ff;(x, )) as ax
(2.26)

+5 a’(s)F"(Ox(x,s))Ox(x, t-s) ds dx

Io ( {Io O+ 5 a’() { ff(x, s))} (x, s) a ax

(x, t) e [o, To).+ 5 r dx V
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To obtain bounds on the third and fourth terms on the right-hand side of (2.26) we
make use of the following observation. We have

(2.27) g(x, t) g(x, O) + gt(x, s) ds, x e [0, 1 ], [0, T]

and hence

if01 f0 f0ff01(2.28) g2(x,t) dx<-2 g2(x,O) dx+2t g(x,s) dxds Vte[0, T]

for every T> 0 and every smooth function g’[O, 1 x [0, T]- N. Thus we arrive at the
inequality

Oxx(X, t) dx<-_F R + y2(t)+ yk+3(t)

(2.29) + (1 + 3/2(t) + y( t)) 02xxt-JI- 02xtt)(X, t) dx

+ ( + ,(+ ,/()) Ox(X, s) dxds

As remarked earlier, we will not give further details of the calculations involved to
obtain the above estimates.

Combining (2.23), (2.25), and (2.29) it is easy to show that there is a constant
N= N(k)> 2 such that

Ox + Oxx + Ox. + o.)(x, t) dx
0

=< ’{0 +O+ R +R+ ,( To)+ y2N(To)

(2.30)
+[1 + R’/2+ R +(1 + ro)(y/2(ro)+ y2N(ro))]

2 2 2 2Oxx + Oxx, + Ox, + 0 tt,)(x, s) dx ds V e [0, To),

where F is a fixed positive constant independent of r, 0o, and To. Thus Gronwall’s
inequality implies

Y3(To) --< P[O + O2 + R + R2 + y2(To) + y( To)]
(2.31)

exp {To[ 1 + R/+ R + (1 + To)( yl/(To) + y2N( To))]}.

According to Lemma 2.1, if To < o then ya(To)--oO and hence (2.31) leads to the
desired conclusion.

In the analysis of (1.1)-(1.4) we make essential use of several properties of strongly
positive-definite kernels. A function b Lo[0, o) is said to be positive definite if

(2.32) w(s) b(s-z)w(z) dzds>=O Vt>_--0,

for every w C[0, c). The kernel b is said to be strongly positive definite if there is a
constant c > 0 such that the mapping - b(t) c e- is positive definite.
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This definition is generally not easy to check directly. We can show that if
b LI(0, ), then b is strongly positive definite if and only if there is a constant c > 0
such that

C
(2.33) Re

to+l

where [. denotes the Laplace transform. It is useful to know that if b C2[0, ) and

(2.34) (-1)bJ)(t)_->O ’t_->O, j=O, 1,2, b’O,

then b is strongly positive definite. With sufficient regularity, we can obtain information
concerning the pointwise behaviour near zero of strongly positive-definite functions.
In particular, (1.1 O) 1,2 imply that

(2.35) a(0) > 0, a’(0) < 0.

This follows easily by expressing a(0) and a’(0) in terms of the Laplace transform of
a (cf., e.g., [7, 2]). Condition (2.35) plays an important role in the analysis. See, for
example, 11 for more information on strongly positive-definite kernels.

To obtain certain estimates, we need to solve (1.1) for O,x. For this purpose we
recall that for each y Loc[0, c), the equation

(2.36) a(O)w(t)+ a t-s)w(s) ds=y(t), t>-O,

has a unique solution w Loo[0, o); this solution is given by

(2.37) w( t) =- y( t) + m( t- s)y(s) ds >-_ O,

where m, the resolvent kernel of a’, is defined to be the unique solution of the resolvent
equation

(2.38) a(0)m(t) + m(t-s)a’(s) ds=-a’(t), t>-O.

Using a Paley-Wiener type argument, (1.10)1,, and properties of strongly positive
kernels, we establish the following lemma.

LEMMA 2.3. Assume tha (1.10)1, is satisfied. Then the solution m to (2.38) satisfies
m’ e Ll(O, o).

Remark 2.2. Under assumptions (1.10)1,2 and (1.11)1 we can also show that

a(0)
(2.39) m(t)=+M(t), t>-O,

[a](0)

where M LI(0, ).
ProofofLemma 2.3. Define H := {: C: Re : >- 0}. Formally taking Laplace trans-

forms in (2.38) we find that

-[a’](:)
(2.40) [m](sc) scII.a(0) + [a’](:)

Recall that (1.10)1.2 imply (2.35). Thus, by (2.38) we have

a’(0) [a’](s
(2.41) [m’](sc)

,]a(0) a(0)+[a (:)’



90 DEBORAH BRANDON

After a simple computation we obtain

a(0)
(2.42) W[m’]() a’(0) + -, H.a(0) [a]()

By (2.33) and the maximum principle for analytic functions [a] does not vanish on
H. Hence, by (2.35)1 and (2.33), [m’] is locally analytic on H in the sense of Definition
2.1 of [9]. Observe that for near infinity we have

(2.43)
[m’]()

a (0)([a’]() a’(0)) + a’(0)[a’]()
a(0)(a(0) + W[a’]())

-a(0)[a"](:) + a’(0)[a’](()
a(0)(a(0) +[a’]())

Thus [m’] is locally analytic at infinity and [m’]()= 0. Therefore, by Proposition
2.3 of [9] m’ LI(0, ), and the proof is complete. [3

Before describing our next result we introduce the following notation (which is
also used in the next section). For b Loc[0, ) we define

(2.44) Q(w, t, b):= w(x,s) b(s-z)w(x,z) dzdxds, t[0, T],

for every T> 0 and every w C([0, T]; L2(0, 1)). The result below was motivated by
Lemma 2 of [8].

LEMMA 2.4. Assume that (1.10)1.2 hold. Then there exists a constant L> 0 such that

(2.45)

wZ(x, t) dx <-_ L w-(x, O) dx + L w(x, s) dx ds
o

+ L lim inf1 Q(AhW, t, a)
h0 /

Vt [0, T],

for every T>0 and every we C([0, T]; L2(0, 1)) and consequently, by Lemma 2.5 of
[7], there is a constant L*> 0 such that

w2(x,t) dx+ w2(x,s) dxds<-_L* w2(x,O) dx+L*Q(w,t,a)

(2.46) 1
+ L* lirn.inf75 Q(AhW, t, a) Vt [0, T],

h$O /1-

for every T> 0 and every w C([0, T]; L2(0, 1)).
For the proof of Lemma 2.4 it is convenient to introduce the following notation:

(2.47) e(t) := e-’, 6 [0, ).

In addition, for T> 0 and 0 < h < T, we define the quantity

(2.48) (DhW)(X, t):= AhW(X S) ds, [0, T- h],

for every w C([0, T]; L2(0, 1)). We note that

(2.49) (DhW)(X t) W(X, S) ds- w(x, s) ds, e [0, T- h].
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ProofofLemma 2.4. We first observe that by (1.10)1.2 there exists a constant c >0
such that

(2.50) O<= Q(v, t, e) <= cQ(v, t, a) Vt[0, T],

for every T>0 and every vC([O,T];L2(O, 1)). Let T>0, h(O,T), and we
C([0, T]; L2(0, 1)) be given. Integration by parts (twice) leads to the following identity:

Q(AhW, t, e)= (DhW)(X, dx+ (Dhw)(x, s)2 dx as

(2.51) (Dhw)(X, t) e-(-S(Dhw)(x, s) ds dx

io io (OhW)(X, S) e-(S-Z)(DhW)(X, z) d2 dx ds.

Dividing both sides of (2.51) by h and letting h0 we can show that

limh+o (1/h2)Q(Ahw, ; e) exists and is given by

lim
1 lfo’ fofoo
O(a.w, t, e) = [w(x, t)- w(x, 0)]: dx + [w(x, s)- w(x, 0)]: dx ds

(.5) [(x, t)- (x, o)] e-(’-’[(x, s)- (x, 0)] s x
o

ii Io[w(x, s)- w(x, 0)] e--Z[w(x, z)- w(x, 0)] dz dx as.

After some simple computations we obtain the following expression for the last two
terms on the right-hand side of (2.52):

[(x, )-(x,O)] e-’-[(x, s)-(x,O)] sx

(x, ) e-(’-’(x, s) s &
(.53

+ (x, O) e-(’-’(x, s) ds &

w(x, 0)[ 1 e & + w(x, ) w(x, 0)[ 1 e-’] &,

;o’ Io’ fo[w(x, s)- w(x, 0)] e--)[w(x, z) w(x, 0)] dz dx ds

fo’Io’ ;o=-Q(w, t, e)- w(x, O) dxds+ w2(x, 0)[1- e dx

(2.54)

+ 2 w(x, s)w(x, O) dx ds w(x, s)w(x, O) e dx ds

w(x, s)w(x, O) e-’-s) dx ds.
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Hence, (2.52) implies

w (x, t) dx lim
1

2 o h*h---AhW’t’e-+---w’t’e--- w2(x, s) dx ds

 Io’ Io’Io’-- w:(x, o) elx + w(x, t) e-(’-*)w(x, s) as dx
(2.55)

+ w(x,t)w(x,O)e- &
+ (x, s)(x, O) e & ds.

To complete the proof we use the inequality (2.20); for h > 0

w(x, t) e-(’-S)w(x, s) ds dx

(2.56)

(2.57)

Io’ Io w(x, s)w(x, O) dx dse-S

Io’Io’ Io’(2.58) <- w2(x, s) dx ds +- e-2 ds w2(x, O) dx
4

Io fo<- w2(x, s) dx ds +- w2(x, O) dx.
8

Hence, if A > 0 is chosen to be sufficiently small the desired conclusion follows from
(2.50).

3. Proof of Theorem 1.1. We choose e (0, 0") as in the first paragraph of 2. If
(1.21) holds with < r//2, for some r/ (0, e), then the Sobolev embedding theorem
implies

(3.1) IOo(x)-O*l, lO’o(X)l<- 24o< n Vx[0, 1].

Therefore, by Lemmas 2.1 and 2.2, the initial value problem (1.1)-(1.4) has a unique
solution 0 > 0 that satisfies

(3.2) O, Ox, Or, Oxx, Oxt, 0,, Oxx,,, Oxxt, Ox,, Or, C([0, To); L2(0, 1))

and

(3.3) [O(x, t)- 0"1, ]O,,(x, t)l < e /x [0, 1], e [0, To)

and similarly



GLOBAL EXISTENCE OF HEAT FLOW 93

on a maximal time interval [0, To), To>0. Our aim is to show that if (1.21) holds for
8 > 0 sufficiently small, then

sup ([ O(x, t) 0*]2 + O(x, t) + 02t(x, t) + Ox(x, t)
(3.4) ,[O, ro)

+02 2xt(X, t)+ Ott(X, t)) dx < o

and

(3.5) sup IO(x, t)- 0*l, sup IOn(x, t)l < e
x[0,1] x[0,1]
tE0,To) t[0,To)

and hence To c (by Lemma 2.2). For this purpose it is convenient to introduce the
quantities

g’(t) := sup ([ O(x, s) 0*]2 + 02(x, s) + O(x, s) + 02(x, s)
s[O,t]

-[- 02xt(X, S)+ 02lt(X, S)) dx
(3.6)

+ ([ O(x, ) o*] + O(x, s) + o,(x, s) + Ox(X, s)

2 2+Ot(x,s)+O,(x,s)) dxds, te[0, To)

and

(3.7)

(3.8)

v(t) := sup ([ O(x, s) 0*]2 + O(x, s) + 02t(x, S)) 1/2

x[0,1]
s[O,t]

(ffo()2 /1/2+ sup IO(x, s) ds
xe[0,1]

Equation (1.1) can be rewritten as follows"

;og(O*)O,(x, t)-F"(O) a(t-s)Oxx(X,S) ds

=--["(O(x, t))--.’(O*)]Ot(x, t)-- Oxx(X, s)

a’(z)[F"((x,z))-F"(O)] dzds

[0, To).

O(x, t)2
Or(x, t) a’(s)F(t(x, s)) as

2 IoO(x, t)
Ox(X, t) a’(s)F’((x, s)) ds

2 fo -t

O(x, t)
a’(s)F’(Ox(x,s))Ox(X, t-s) ds+r(x, t),

x[O, 1], tel0, To).



94 DEBORAH BRANDON

In the derivation of this equation from (1.1) we make use of (1.2) and (1.8). The second
terms on both sides of (3.8) are obtained through the following computation:

(3.9)

a’(s)F"(O-’x(X, s)) Oxx-t (x, s) as a’(s)F"(t(x, s))Oxx(X, z) dz as
t--s

’(x,Ox(x, z) a’(s)F"(O s)) ds dz.

The aim of the computations that follow is to establish the inequality (3.40) below;
to do so we employ energy methods. We use two main types of estimates in this
argument:

(i) Estimates derived directly from energy integrals;
(ii) Additional estimates obtained from equation (3.8) through the use of inverse

Volterra operators.
In our energy integrals, the left-hand side of (3.8) will lead to positive-definite

contributions and the right-hand side will lead to terms that are small provided the
solution is near equilibrium. We make essential use of Lemma 2.4 in the estimates of
type (i); in addition, in order to estimate the energy integral of highest order we must
exploit compatibility of our constitutive relations (0.19), (0.22) with thermodynamics;
i.e., we make use of the fact that a solution of (1.1)-(1.4) satisfies the entropy inequality
(0.2). (See Remark 2.1 for further details.) Lemma 2.3 plays an important role in the
estimates of type (ii). A reader who is unfamiliar with energy methods and seeks further
motivation for our computations may wish to look at the argument following (3.40)
before reading the derivation of (3.40).

In the numerous estimations that follow we make frequent use of the inequalities
(2.19)-(2.21). We use F to denote a (possibly large) positive generic constant which
is independent of 0o, r, and To.

To obtain our first energy integral we multiply equation (3.8) by (0-0") and
integrate over [0, 1] [0, t], [0, To). After integration by parts we find that

1
g"(O*) Io’- [O(x, t)- 0"]2 dx+F"(O)Q(Ox, t, a)

Io’=- ’( o*) Oo(x) 0"]: dx + O(x, s) 0"]

(-[g(0(x, s))-g(o*)]O,(x, s)

(3.10) 0xx(X, y) a’(z)[F"(Ox(X, z))- F"(0)] dz dy
--y

O(x, s)
Or(x, s) a’(z)F(O(x, z)) dz

2 ,o 2
+ Ox(X, s) Jo a’(z)f’(O(x, z)) dz-
O(x,s) O(x,s)

a’(z)F’(O(x, z))Ox(X, s z) dz + r(x, s) dx ds, e [0, To).
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We next differentiate (3.8) with respect to t:

t( O*)Ott(X t) F"(O)a(O)Oxx(X, t) F"(O) a’( s)Oxx(X, s) ds

=O{-[’(0(x’0t t))-’(O*)]Ot(x, t)

Oxx(X, s) a’(z)[F"( O-tx(X, z))- F"(0)] dz ds

2 Io .-(x,(3.11)
O(x, t)

20,(x, t) a’(s)F( s)) as

+ Ox(X, t) a’(s)F’(2(x, s)) ds
O(x,t)

(x,
O(x, t)

a’(s) s))Ox(x, t-s) as + (x, t)

xe[O, 1], t[O, To).

Multiplying this equation by Ot and integrating over [0, 1 x [0, t], e [0, To) we
obtain the following expression:

1
8’(0") o O(x, t) dx + F"(O)O(Oxt, t, a)

F"(0) a(s)Og(x)O,(x,s) dxds+-O’(O*)2 O(x,O) dx+ O,(x,s)
Os

{-[’(O(x,s)l-’(o*)]O,(x,s)
(3.12)

Oxx(X,y) a’(z)[F"(O(x,z))-F"(O)]dzdy
-y

-O(x, s)
O,(x, s) a’(z)F( O(x, z)) dz

o+ Ox(X, s) a’(z)F’(O(x, z)) dz
o(x,s)

O(x,s)
a’(z)F’(O(x,z))O(x,s-z) dz+r(x,s) dxds, t[0, To).

We note that according to (3.8) we have

1(3.13) O(x, O)
’(Oo(x))

r(x, 0), x [0, 1].

Differentiation of (3.11) with respect to yields (after integrating several terms
by pas)

(3.14)

’( O*)Ottt(x, t) F"(O)a(O)Oxxt(X, t) F"(O) a’( s)Oxxt(X, s) ds

=F"(O)a’(t)O(x)



96 DEBORAH BRANDON

I+Ot -[’(0(x, t))-.’(O*)]Ot(x, t)-o(x, t-1--
a’(s)F’(2(x, s))Ox(x, t- s) ds + r(x, t)

+- Oxx(X, sa’(sl[F"( 2(x, s F"(0)] s

+ Ox(X,S) a’(z)F’"(O-2(a z))O(x, t-z) dzds

Ox(X, Ox(X, S a’(’"((x, s

Ox

-(x, )
O(x, )

a’(s)F(2(x,s)) ds

-O.(x,
O(x, t

a’(s(O(x, s s

O,,(x, s)O(x, ) a’(s)F((x, s)) ds

+ O(x, t) a’(s)F’(O-(x, s)) ds
ot O(x, t)
0 4 a’(s)F’((x, s)) ds

2
’(+Ou(x,t)

O(x,t)
a s) (O(x,s))ds, xe[0,1],

In analogy with the previous calculation, we multiply (3.14) by 0, and integrate
over [0, 1] x [0, t], e [0, To). The resulting relation is

(3.5

o,(x,’(o*) ) x+ F"(o(o., , a)

F"(O) a’(s)O(x)O.(x, s) dx ds F"(O) a(t)O(x, O)O(x, t) dx

fo’ Io /o+ F"(O)a(O) ,(x, O) dx + F"(O) a’(s),(x, O),(x, s) dx ds

+ ’(*) o,(x, o) ax + O.(x, s)

{-[’(O(x, s))- ’(*)] O,(x, s)

O(x, s)
a’(z)F’(O(x, z))O(x, s- z) dz + r(x, s) dx ds
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+ O,(x, s) -s Oxx(X, s z)a’(z)[F"( O(x, z)) F"(0)] dz

+ Ox.(x.y)

Is a’(z)F’"(O(x,z))Ox(x,s-z) dzdy dxds
--y

io’ o O{fo o,,(x, s)o(x, s) a’(z)[ O(x, z))- v"(o)] d dx ds

0
Oxx(X, y) a’(z)F’"(ff(x, z)) dz + dx asOtt(X S)Ox(X S) OS _y

2+- Ox.(X. t) a (s)["(o-2(x. s))-"(o)] as &
2- Ot(x, s)

Os
a’(z)[F"(O(x, z)) F"(0)] dz dx ds

O.(x, s)O,(x, s)
Os2 O(x, s)2

a’(z)F(O(x, z)) dz dx ds

;f o { 40,x.s,; )o,(x, ) a’(z)(O;(x,z))dz dxds

1
,(

O(x. ) O.(x. t) a s)(ff2(x, s)) as &

folio { fo+ O.(x, s) os O(x, s)
a’(z)F(O:(x, z)) dz dx ds

+ O,(x, s)O(x, s) a’(z)F’(O(x, z)) dz dx ds
os

oo { 4 o }+ O.(a s)Ox,(X, s) os O(x. s)
a’(z)F’(O;(x, z)) & & ds

fo’fo’ foo,](x, )
Ox O(x, s)

a’(z)F’(O(x, z)) dz dx ds, e [0, To).

We note that (3.13) implies

g’(Oo(x))
(3.16) o,(x,O)=-,(Oo(x) O’o(x)O,(x,O)+.,(Oo(x)) rx(x,O), xe[O, 1]

and from (3.11) we have

(3.17)

F"(0)a(0)
O,,(x, O)

a,(Oo(x))
g’(Oo(x))

o,(x)- Uo<;ii ’(x’ o)

2F"(0)a (0) 1
0(X)2 q rt(x, 0),

Oo(x) g( Oo(x) ’( Oo(x)
x [0, 1].
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We add (3.10), (3.12), and (3.15) and make use of Lemma 2.4 to obtain a lower bound
on the left-hand side of the resulting identity. We then make some routine estimations
to derive the inequality

"
([0(x, t)-0"]+ O(x, t) + o,(x, t) + (x, t) + o,(x, t)) dx02xt

0

+ (O(x, s)+ O,(x, s)) dx ds

(3.8) _-<r{Oo+ RoI+r{,o+4oI,/$(t)

+Fvo $( t) + F{( t) + g+( t)} $( t) Vte[0, To).
To indicate how (3.18) was derived we show detailed estimations of ceain typical

terms of (3.10), (3.12), and (3.15), as follows. Many of the terms can be estimated in
a simple way, for instance,

sup I’"(o(x, sO,(x, sl IO,(x, sO,(x, sl ax
xe[O,]
se[O,]

(3.19) N sup I’"(0) sup IO(x, s) IO,(x, s)O,(x, s) dxds

s[0,t]

r( (o,(x, s+ O(x, s xas

or

F"(O) a’(s)O’(x)O.(x, s) dx ds

(ffOt fO )l/2(fotfol )1/2<-_ F"(O) a’(s)2Og(x)2 dx ds O,2(x, s) dx ds

(3.20)
_F"(

1/2 1/2

<- o) a’(s) as o’d(x) ,ix

-<_r4o,/(t) vt[0, To).

Some of the terms must be rewritten carefully before they are estimated: e.g., the term
estimated in (3.25) below arises from

Io’/o’ fo(.2) O,(x,S) os O(x,s)
a’(z) (O(x,z))O(x,s-z) dz dxds,

which appears on the right-hand side of (3.15). We first differentiate the integral
appearing in the integrand of (3.21) once with respect to s and then make the following
change of variable:

a’(z)F’(O;(x, z))O,(x, s-) dz

(3.
a’(s ’(O(x, s Ox,(X, .
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We next differentiate the right-hand side of (3.22) with respect to s and then repeat
the same change of variable to obtain the integral estimated in (3.25). We note that a
similar procedure is used when differentiating terms of the form

(3.23) a’(z)F’"( Ox(X, z)) dz

with respect to s; the change of variable in this case takes the form

(3.24) a’(z)F’"( O(x, z)) dz a’(s )F’"( O(x, s )) d.
-y

We now continue to show some typical calculations. The computations below are more
involved than those used in (3.19) and (3.20)" we obtain a bound on a term appearing
on the right-hand side of (3.15)"

(3.25)

io’io o ,,-O.(x, s)
O(x, s)

a’(z) O(x, z))O(x, s z)O,(x, s z) dz dx ds

IoIo Iov sup iOn(x, s)] [O.(x, s)] ]a’(z)l(F"(O)
x[O,1]
s[O,t]

+lF"(O(x, z))-F"(O))[O,(x, s-z)[ dzdxds

r() Io,,(x,s)l

Ioo fo
( [ (Is"(o+ O(x,x

+( O(x, IOx,(X, s 1 &xs

Nr(t O,(x, s)

[a )[ +()

+ ((]lOx,(X,S-Zl axs

_-< rv(t)/(i) 02xt(X,S) dxds
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la’(.z)l dz + u(t) la’(.z)lJ dz

+ ,( la’(l(

_-<F{u(t)+ u2(t)+ u+(t)}(t)F{u(t)+ uk+(t)}(t) Vte[0, To)

and from (3.10) wc estimate the following term:

(3.26)

for f01 fO fs[O(x,s)-O*] O(x,y) a’(z)[F"(O(x,z))-F"(O)] ddydxds
--y

Io’ fo
[a’(z)l(+ ()k) & dy& ds

--y

(Io Io (o Is-y
+ ()k) dz dy & as

g(u(t)+ u(t))(t) la’(z)l(+ ()) dzds

F{u(t)+ue(t)}(t) Vt[0, To).

The rest of the terms on the right-hand side of (3.10), (3.12), and (3.15), except for
the last term in (3.15), are handled in a similar fashion to (3.19), (3.20), (3.25), and
(3.26). (Recall that (1.8) implies F(0) F’(0) 0.) The last term on the right-hand side
of (3.15) is first estimated from above, making use of compatibility with thermody-
namics, i.e., we utilize the entropy inequality (0.2) in the estimation below: by (2.10)
we have

IoIo { Ioo,(x, )
ox o(x, s)

a’(z)F’(O(x, z)) az ax as

io, lo ({o,(x, s) -’(o(x, s))-
o(x, s)

O(x, z)) dz & dsa’(z)( -s

ox,)

where q" C(0, oo) (see Remark 2.1). Thus, it can be shown that

Ioo’ { o }(3.8)
’’(x’ ) 2_ ’(z)F’ -s

Ox O(x, s)
a (Ox(X, z)) dz dxas

-<F{v(t)+ uk+l(t)}(t)+Fx/o ;(t) ’q’t6[0, To).

V [0, To),
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Additional estimates are derived directly from equation (3.8) in the following
manner. In order to obtain a temporal-L2 estimate for 0t we first multiply (3.8) by
and integrate the resulting identity over [0, 1] x [0, t], [0, To). We arrive at the relation

’(o*) fo’- 02x(X, t) dx + F"(O)Q(Oxx, t, a)

1
.’(0")=- O;(x)2 dx

+ Oxx(X,S) [’(O(x,s))-g(o*)]O,(x,s)

Io(3.29)
+ Ox(X, y) a’(z)[F"(0(x, z)) F"(0)] dz dy

2
O,(x, s) a’(z)F(O(x, z)) dz+

O(x, s)

O(x, s a’(z)F’(i(x, zO(x,s

+ a’(z)F’(O(x,z))O(x,s-z) dz-r(x,s) &ds,
O(x,s

This relation leads to the inequality

(3.30) Q(O,,, t, a)<-rOo+r,o4;(t)+r{v(t)+ vk(t)}c(t) t [0, To).

We now square (3.8) and integrate over [0, 1] [0, t], [0, To). The squares of the
terms on the right-hand side of (3.8) are under control, and the square ofthe convolution
term on the left-hand side of (3.8) can be estimated using (1.10), Lemma 4.2 of [13],
and (3.30). Hence, we arrive at the estimate

Io" fo’ oZt(x’ s) dx ds <=r{O+ R}+F’ v/g’( t)

(3.31)
+F{v(t)+ v2k( t)} $( t) Vt[0, To).

Equation (3.11) can be written as

io".’( O*)O.(x, t) F"(O)a(O)Ox,(x, t) F"(O) a’( s)O,x(x, s) ds Gt(x, t),

(3.32)
xe[O, 1], te[0, To),

where G(x, t) denotes the right-hand side of (3.8).
Solving for 0 in terms of 0,, and G, (see (2.36) and (2.37)) we get

-F"(O)a(O)O,x(X, t)= Gt(x, t)- .’( O*)O.(x, t)

(3.33) + m(t-s)[G,(x,s)-.’(O*)O,(x,s)] ds

x[0,1], t[0, To)
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where m is the resolvent of a’ (see (2.38)). We note that by (3.8) G(x,O)-
.’(O*)Ot(x, 0)--0 for all x[0, 1], and by (2.38) m(O)--a’(O)/a(O). Thus, after
integrating the last term on the right-hand side of (3.33) by parts we arrive at the
expression

-F"(O)a(O)O(x,t)

(3.34)
Gt(x, t) .’( O*)O.(x, t) a’(O)-

a(O)
G(x, t) .’(O*)Ot(x, t)]

+ m’(t-s)[G(x,s)-.’(O*)O(x,s)] ds, xe[0, 1], re[0, To).

We now square (3.34) and integrate over [0, 1]. By (3.18) and Lemma 2.3 we have

02xx(X, t) dx <- r{Oo + RoI + F{v/-oo +,/oIx/$( t)
o

(3.35) +Fx/-o $( t) + F{ v( t) + vk+2( t)} $( t) Vte[O, To).

To obtain a temporal-L2 bound on 0, we multiply (3.34) by 0, and integrate over
[0, 1] [0, t], t [0, To). We note that

Io’Io Io’IoOtt(x, s)Oxx(X, s) dx ds Ox(X, s)Ox,(X, s) dx ds

(3.36) O(x, )O,(x, t) dx + O(x)O,(x, O) dx

+ 02,(x, s) dx ds, e [0, To).

Thus we have

(3.37) +Fx/-o $(t)+F{v(t)+ uk+2(t)};(t) ’q’t[0, To).

(Here, we make crucial use of (2.20).) We now square (3.34) and integrate over
[0,1][0, t], t[0, To) using (3.18), (3.31), (3.37), and Lemma 2.3 to obtain the
following estimate:

Io’ Io O:xX, xs ro+o+ro+o,
(3.38) +Fv/-o $( t) + r{ v( t) + v2k+2(t)};(t) ’t[0, To).

Observe that by Poincar6’s inequality there is a constant c > 0 such that

folio Io fo(3.39) [O(x, s)-O*]- dxds<= O(x, s) dxds Vt[0, To).

It follows from (3.18), (3.31), (3.35), and (3.37)-(3.39) that

$(t) _--< F(Oo+ Ro} + F(Vo+ x/-o}x/g(t) + r4-o $(t)
(3.40)

+r{v(t)+ 2k+2(t)}(t) Vte[0, To).

Using (2.20), (3.40) yields

(3.41) g(t)-<_{Oo+Ro}+xo $(t)+’{v(t)+ vk+(t)}g(t) Vte[0, To),
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where F denotes a fixed positive constant which is independent of 00, r, and To. We
choose g, 6 > 0 such that

(3.42) g? < e2/2,

and

for some r/ (0, e).
Suppose now that (1.21) holds for the above choice of 8. By the Sobolev embedding

theorem

(3.44) u( t) <-_ x/2( t) Vt[0, To).

Thus, it follows from (3.41) that for any [0, To) with g(t)-< g, we actually have
g’(t)-<1/2gT. Hence by continuity, if g(0) =<1/2g? then

’ Vt[O, To).(3.45) g(t)-<

It is possible to choose a smaller > 0 (ifnecessary) so that (1.21) implies (0) -<

Consequently, for > 0 small enough, (3.45) holds; moreover, by the Sobolev embed-
ding theorem

(3.46) sup ]O(x, t)-0*[, sup ]0x(X, t)l-<_v/gT<e.
x[0,1] x[0,1]
t[0, To) t[0, T0)

Therefore, by Lemma 2.2 we have To c. In addition, (1.23) is an immediate con-
sequence of (3.45). Moreover, (1.24) and (1.25) follow from (1.23) by standard embed-
ding inequalities, e.g., from (1.23) we have

(3.47) 0 0* L((0, c); L2(0, 1))

and

(3.48) Ox, Ox, L((O, oo); L2(0, 1)).

We note that (3.48) implies

(3.49) 0x(., t)

Observe that

[O(x, t)-0"]2=2 [0(sc, t)-O*]Ox(, t) d

(3.50) -<2 10(, t)-0"1 [ox(#, t)l d:
o

2 [0(:, t)--O*]2 d Vx [0, 1], tO.

Hence, by (3.47) and (3.49)

(3.51) 0(., t)- 0* uniformly on [0, 1]

This completes the proof of Theorem 1.1. l-]

as t->.

(3.43) 8<1/2r/
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The proofs of Theorems 1.2 and 1.3 are very similar to the proof above. In both
cases, however, since we cannot use Poincar6’s inequality, we do not obtain a temporal-
L estimate for 0-0", and hence before we proceed with the calculations we divide
equations (1.1) and (1.40) by ,’(0(x, t)). For the same reason, in Theorem 1.2, for
example, we require that (1.29) hold in order to obtain the following estimate:

.’( O(x, s))
O(x, s) O*]r(x, s) dx as

Io’ (Io’ t l’ (Io t<-- r O(x, s) 0*]2 dx rZ(x, s) dx ds

(3.52)

(IO ) 1/2 IOt (IO[ )1/2--< F sup O(x, s) O*]: dx r:(x, s) dx ds
s[O,t]

r((t) r2(x, t) & dt Vte[O, To);

the other terms with which we must be careful can be handled by integration by pas,
e.g.,

fo’fo fo’( O(x, s))
O(x, s) 0"] a’(z)[F"( O(x, z)) F"(O)]O(x, z) dz dx as

’(O(x, s))
O(x, s) o*] ox

(3.53) a(z)[F"(O(x, z))- F"(O)]Ox(x, s z) dz dx as

’(O(x,
O(x, 0"1 ,(0(, )

Ox(X,

a(z)[F"(O(x, z)) F"(O)]O(x, s z) dz dx ds

The argument to show that 0(., ) 0"* uniformly on [0, 1] as for Theorem 1.2
is essentially the same as the argument used to establish an analogous result in 3 of
[4]" We first observe that standard embedding inequalities yield (1.38) as well as
boundedness of 0 on [0, 1 x [0, ). Hence, every sequence of times tending to infinity
has a subsequence on which 0 converges uniformly to a constant, namely, 0"*.

Theorems 1.2 and 1.3 can be proved using an argument in the same spirit as in
[13], i.e., instead of taking temporal derivatives of the equation and multiplying by
corresponding time derivatives of 0, we can take spatial derivatives of the equation
and multiply by appropriate x derivatives of 0. This cannot be done for Theorem 1.1
since we have a term involving O(x, t) on the right-hand side of (1.1) which would
lead to uncontrollable boundary terms.

In the case of nonequilibrium history the argument is essentially the same. The
main modification needed arises when we want to make use of an inequality of the
form (2.21); we then extend a to N by zero. To give an indication of where such a
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modification is needed we consider the analogue of the term treated in (3.26):

[O(x,s)-O*l O(x,y) a’(z)[F"(O’x(X,Z))-F"(O)] clzclydxcls

Io’Io<--_ [O(x,s)-O*] Oxx(X,y)

(3.54) a’(z)[F"(OS(x,z))-F"(O)] dzdydxds
s--y

;o+ [O(x,s)-o*] Ox(X,y)

a’(z)[F"(O(x,z))-F"(O)] dzdydxds

The second term on the right-hand side of (3.54) can clearly be handled in the same
manner as in (3.26) and once a is extended by zero, the first term on the right-hand
side of (3.54) can also be treated in the same way.

Remark 3.1. We note that in order to obtain a priori bounds in the above proof
it suffices to assume that the data satisfy (1.55)-(1.58). It is in the proof of local
existence that we need the original assumptions on the data (1.12)-(1.18).

Remark 3.2. If, for example, in the case of Theorem 1.1 assumption (1.21) is
replaced with

IO IO 2 219o+ O’(x)2 dx+Ro+sup (rx+rxt+rt)(x, t) dx
to

(3.55)
2 2 2 2+ rx(x,O) dx+ (r+r,+r,)(x, t) dxN,

o

then we can establish the existence of a unique solution 0 > 0 satisfying (1.22)-(1.25);
moreover,

(3.5 Ox, Oxx,, Ox., o., ((o,; (o, ((o,; (o, ,
and

(3.57) Ox(’, t), 0(., t), 0,(., t) 0 uniformly on [0, 1]

as . The arguments used to establish such a result are similar in spirit to the
arguments used to prove Theorem 1.1 except that here there is no need to make use
of the entropy inequality (0.2) or any other consequence of the thermodynamical
restrictions.

elegems. I thank my thesis advisor W. J. Hrusa for numerous valuable
discussions. Many of the results described in this paper are due to his suggestions.
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RAPIDLY STRETCHING PLASTIC JETS:
THE LINEARIZED PROBLEM*

FERNANDO REITICH$

Abstract. A linearized version of the Levy-von Mises equations modeling the evolution of rapidly
stretching plastic jets is studied. Under the assumptions of axial symmetry and stress-free surface, existence
and uniqueness of a solution is shown for the resulting (nonstandard) linear initial-boundary value problem.
Some growth and periodicity properties of the solution are also established.

Key words, jets, Levy-von Mises equations, linearization

AMS(MOS) subject classifications. 35Q20, 76D25

Introduction. A typical example of a rapidly stretching jet is furnished by the jet
produced by a shaped-charge 1 ], [2], [9], 12]. A shaped-charge consists of an explosive
with a conical cavity lined with a thin metal sheet; the explosion will cause the metal
to collapse toward the axis where an extremely high velocity jet will instantly be
formed. The velocity of the particles in these jets increases linearly with the distance
from the rear end, so that the jet experiences a very significant stretching.

In a recent paper, Romero [14] analyzes the stability of these jets using the
Levy-von Mises equations for an incompressible perfectly plastic material (see 1
below). He finds that a rapidily stretching plastic jet can be initially stable due to
inertial effects, a result that had been anticipated by Frankel and Weihs [4] based on
their study of the stability of a capillary jet of an ideal fluid (see also, e.g., Rayleigh
[13], Weber [15], Levich [11], Goldin et al. [8], Bogy [3]).

Assuming that the jet is axially symmetric and that its surface is stress-free, Romero
finds a particular solution ("the undisturbed flow"), for which the axial velocity is
linearly increasing. He then linearizes the equations about it, introducing scaled space
variables (r, z) (0 < r < 1, -c < z <) and a scaled time variable (0 <= =< T), to reduce
this linear system to a system of three equations, essentially of the form

(0.1) Ocb 10 ( r OCb] 02c Op
Ot ; -r Or/ Oz Oz

(0.2) a a4, ap
ot az2 Or’

(0.3) div (b, q)=0,

where b, q, p correspond to scaled versions of the perturbations in the axial velocity,
radial velocity, and pressure, respectively.

Here r represents the radial variable scaled according to the radius of the free
boundary (i.e., the moving boundary of the jet) and z is an appropriately scaled axial
variable. The stress-free and compatibility conditions on the surface of the jet yield
nonstandard boundary conditions for (0.1)-(0.3) of the form

(0.4) p-- BI(t, t, [-) at r= 1,

Received by the editors May 22, 1989" accepted for publication (in revised form) February 8, 1990.
$ School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
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(0.5) 0q_ B(O, f) at r 1,
Or

(0.6)
0f

at r 1,
Ot

where B and B2 are certain first-order differential operators and f(t, z) denotes
the perturbation in the radius of the jet scaled according to the actual radius.

To complete the setting of the problem we need to impose initial conditions,
namely,

(0.7) ch(O, r, z)= o(r, z),

(0.8) (0, 0) o.
The system (0.1)-(0.8) is a nonstandard linear problem, due both to the "mixed type"
differential equations and the boundary conditions.

While the main purpose of [14] is to study the stability of (0.1)-(0.8), the main
result of the present paper is an existence and uniqueness theorem for this system.
Romero’s analysis of the stability of short wavelength solutions

(t, r, z)= *(t, r, Ix) e ’Ez, t(t, r, z)= d/*(t, r, tx) e ’Ez

(0.9)
p( t, r, z) p*( t, r, tx e’, ( t, z) f*( t, Ix e iz,

with I1 >> 1

leads him to the conclusion that such disturbances do not undergo significant growth.
However, his argument is based on the assumption that, in (0.9),

t*(t, r,/z) t(r,/z) e y’t, t*(t, r,/x) t(r,/x) eyt
(0.10)

p*(t, r,/x) :/(r,/x) e y3t, *(t, ]2,)--fi(t,I, e y4t,

which translates into quite restrictive conditions for bo. In this paper we consider
general initial conditions bo(r, z). Since the jet is expected to eventually become
unstable (cf. [14]), the system may develop ill-posedness (as in the backward heat
equation)" for this reason we assume that bo is entire analytic in the variable z. More
precisely, we show that if bo(X, y, z) bo((x+y2)l/2, Z) is C+ in (x, y) (for some
a (0, 1)) and if 4o(X, y, extends to an entire function in z of order 1 and sufficiently
small type, then there exists a unique solution of (0.1)-(0.8).

In 1 we briefly describe the linearization procedure which leads to (0.1)-(0.6).
In 2 we reduce the system into another system which is much more convenient to
work with; in particular, and 1 do not appear in the new system. In 3 we state
the main existence and uniqueness results (Theorem 3.1) and in 4 we prove a
preliminary lemma (Lemma 4.1), which immediately implies Theorem 3.1 in the special
case of initial conditions of the form bo(X, y, z) Uo(X, y)z"(n _-> 0). Section 5 is devoted
to the proof of Theorem 3.1 and, finally, in 6 we establish periodicity and growth
properties of the solution.

1. The linearized system. We shall assume that the flow obeys the laws for an
incompressible perfectly plastic material satisfying the Levy-von Mises equations and
that the surface of the jet is stress-free. The Levy-von Mises equations are

(1.1) p +a. Va =-Vp+div ’,

(1.2) V.
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where t9 is the constant material density, p is the pressure, and is the deviatoric
stress. In Cartesian coordinates is given by

(1.3) T

where ij is the rate of strain tensor

l(Oui Ou(1.4) ij " k-Xj "]"
Xi/

/x is the effective viscosity

(1.5) /x Y(2Tklkl)-1/2,

and Y is the yield stress of the material.
Assuming axial symmetry, let (z, r) be the cylindrical coordinates and let (u, v)

be their corresponding velocities. Then, a special solution, satisfying stress-free boun-
dary conditions and the compatibility relation of the time rate of change of the free
surface to the velocity field at the boundary, is given by (see [14])

(1.6) Uo(t, r, z)_(O)z
q(t)

-(O)r
(1.7) Vo(t, r, z) qi

3 Y
(1.8) po(t, r, z): pfl(t)2(r2-Ro(t)2)-31/

(1.9) Ro(t, z)
ao(0)
q(t) 1/2’

where ao(0) is the initial radius of the jet,/3(0) is the initial strain rate,/3(t) (O)/q(t),
and q(t)=(O)t+ 1.

Linearizing about this solution and introducing scaled variables

(1.10) t= In (q(t)),

r
(1.11) - Ro(t)’

z
(1.12) - L(t)’

where L(t) q(t)L(O) and the parameter L(0) is the initial length scale, the linearized
system takes the form (after dropping the ^’s)

(1.13)
O -r Or/ Oz2] qb o --O z

O320(.4) --*-2 ’r- op
Ot OZ2 Or’

1 0
(1.15) 04+- (r) 0

Oz r Or
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for (t, r, z) [0, T] x (0, 1]xR (T>O), and

(0 104) 3 _-r(1.16) Fp=2 +-ar 4 Bl(t’t’a) atr= 1,

0b 3ce2012(1.17) --a Bz(q, 12) at r= 1,
Or Oz Oz

(1.18)
012 q at r 1,
ot

(1.19) q is finite as r approaches zero,

where 4, 0, p, and 12 are scaled versions of the perturbations in the axial velocity,
radial velocity, pressure, and jet radius, respectively. Also, the functions a and F
depend only on and are given by

ce(t)2 a(0)2 e -3t, F(t)2 F(0)2 e -3t,

where

a(0)2= (ao(O)/L(O))2, F(O)2 31/pao(0)(0)2/Y.

We supplement the system by adding the initial conditions

(1.20) b(0, r, z)= tho(r, z),

(1.21) 12(0,0)=12o.

2. An equivalent linear system. The purpose of this section is to reduce the
nonstandard system (1.13)-(1.21) into a form which will be more recognizable and
easier to work with. The new system will not involve 12 and q and it will be amenable
to the theory of elliptic and parabolic differential equations.

The first step is to note that if (4, ,P, 12) is a solution of (1.13)-(1.20) with
12(0, 0) 12o, then

(6, q,, p +(Oo- ao), a + o-ao)

is a solution of (1.13)-(1.20) satisfying (0, 0)= Wo. Thus, we may assume that

(2.1) a(0, 0) - r (r, 0) dr.

LEMMA 2.1. Assume that

(2.2)
,b0
_______

1, z) 0, z e R.
Or

Then, (49, d/, p, 12) is a solution of (1.13)-(1.20) satisfying (2.1) if and only if
(i) (oh, p) satisfy

(2.3a) -- 4 -a
Ot

(2.3b)

OP+r-( O (r04)]-O4)Oz -r Or / Oz2 ]’

1 0 (O--rP)rOr
r -0 (O-z) -2---aO40z 2F-2 034Oz
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for t, r, z) [0, T] (0, 1 ff, with initial-boundary conditions given by

(2.4)

(2.5)

OdP(s,p,z) dpds-o (p,z) dp-_3 p
Oz2 P

Oz

O2dP
t, p, z) dp atr=l,2

P OZ2

P -- P
Oz

(s, p, z) dp ds-
Oz

Io’+2r- p--z t, p, z) dp

1 I aCkO(p,z dp
4 Jo

P Oz

atr= 1,

(2.6) b(0, r, z)= bo(r, z);

and

(ii) 0 and are given by

(2.7) qt(t, r, z)
1 I"=--r Jo P--z t’P’z) dP’

fo’fo’ 0._ lfo’ Odp___O(p,z) dp.(2.8) f(t, z)= P az (s, p, z) dp ds- P az

Proof Suppose that (, , p, ) is a solution of (1.13)-(1.20) satisfying (2.1). We
want to show that (2.3)-(2.8) hold.

First note that (2.3a), (2.6) are exactly (1.13), (1.20). To prove (2.3b) multiply
(1.14) by r and differentiate with respect to r to obtain (using (1.15))

-r-- +2r r
Op

-cr
z3Ot Oz Or Or/ 0

where c (t)F(t)-2 ao(0)Z(L(0)F(0)) -2 0. Dividing by r, we get

+2 r -c
Ot Oz r Or Oz

which gives (2.3b).
In order to prove (2.4), (2.5) we must first establish (2.7), (2.8). Multiplying (1.15)

by r and integrating with respect to r we get

( t, 1, z) r( t, r, z) p t, p, z) dp.

Using (1.19) we conclude that

(,,=-

so that

04,
p--z(t,p,z) dp,
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and (2.7) follows. Now we can use (1.18) and (2.7) to obtain

12(t, z) q(s, 1, z) ds + 12(0, z)

(2.9)

o--z (s, p, ) do as + a(0, z).

On the other hand, specializing (1.17) at 0 and using (2.7) once again

(I0l- 02(0
(/9, Z)dp)= 3a(0)2 O (0, z),

Or

which, due to assumption (2.2), is

lf0t 02(0
(2.10) 0__ (0, z) (p, z) dp.

OZ " P OZ2

But (2.1) and (2.10) imply

1 Io pOCko (p, z) do,(2.11) 12(0, z) =- Oz

which, together with (2.9), gives (2.8).
Thus, we may now use (2.7), (2.8) to rewrite the boundary condition (1.17) as

04, Ioa p(
Or Oz2 fo fo (s, p, z) dp ds

02 dp
t, p, z) dp -3ce p

Oz

02(0
’(p,z) dp atr=l-a p

Oz2

atr= 1,

which is (2.4).
Finally, using (1.15) we can rewrite (1.16) as

+- Fp +- 12F 02 -qt-Oz 2 4

or

ob 3-F2p+ 12F 0 atr=l(2.12) -2qt-
Oz -and (2.5) follows from (2.7), (2.8), and (2.12).

From the above computations it is clear how to proceed in proving the converse
statement, that is, if b, p satisfy (2.3)-(2.6) and 0, 12 are given by (2.7) and (2.8), then
(b, 0, P, 12) is a solution of (1.13)-(1.20) satisfying (2.1).

This completes the proof of Lemma 2.1.
It will be convenient to rewrite the system (2.3)-(2.6) in Cartesian coordinates.

Taking r to be the radial variable, r--(xZ+y2) 1/2, and setting A-’o2/OX2+O2/Oy2,
B1 unit disc in 2, G [0, T] x B1 x , Fo [0, T] x OB1 , we can write

02( Op
(2.13a) 0b F(t)-ZAb +c+b -c(t)2- in G,

Ot OZ2 OZ

(2.13b) Ap= -2---Coz Oz
inG,
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00_ 3c(t)2Io! f 02Ch(s,x,y,z) dxdyds
Ov 2 "17" Bt OZ2

a(t)2 f 02qb
(2.13c) + j (t,x,y,z)&dy

2 , oz2

( t)2 -- (x, y, z) dx dy on to,
2 Oz2

3 fo f O(s,x,y,z) dxdyds F(t)-0P 8 Oz Oz

1 fn O(x,y,z(2.13d)
8 Oz

dx dy

r( t)- o6+
j (t,x,y,z) dxdy onro,
B

(2.13e) (0, x, y, z) o(X, y, z),

where v exterior unit normal to OB and c a(t)ZF(t)-2 (ao(O)/L(0)F(0)) (c 0).

3. Statement of the existence and uniqueness results. Before stating our main result,
which will be proved in 5, we need to define the class of "admissible" initial data.

Let C2+ (ff) denote the classical space of functions defined on B--- whose second
derivatives are H61der continuous with exponent a (a (0, 1)), and let Ca, C2+ denote
the parabolic H61der spaces on [0, T] B1 (see, e.g., Friedman [6, pp. 61-63]). For
f C+"(), g , h + we introduce the notation

fI1+ f I2+.E,

h 112+ h 112+,to,a,
Finally, if k is a function satisfying k ,, k(t, C2+ (B) (t [0, T]), we shall write

IIIkll =[[kll=,to,+ sup Ilk(t,"
t[O,T]

DEFINITION. A function f" B1- is said to belong to the class A (0< a <
1, 0 < r/) if f satisfies the following conditions"

(i) For each (x, y) BI, f(x, y,. extends to an entire function in C.
(ii) For each " C, f(., ’) C2+"(-).
(iii) For each e > 0, there exists a constant c >_-0 such that

(3.1) Ilf(’. ’)112+... =< c e("+)lcl Vsr C.

(iv) O,,f(x, y, ’) 0 for (x, y) e OB, e C.
(Note that condition (iv) coincides with (2.2).) Examples of functions in A can

be constructed as follows"
(1) Let h C2+(ff) with 0h =0 on 0B, and let g(’) be an entire function of

order 1 and type r/. Then f(x, y,
(2) Let q" B - satisfy:

(a) O.q O, (x, y) OB
(b) Ilq(’,/z)]]+,_-<M for [/x[_-< r//(2zr), for some constant M->O.
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(c) q(x, y, IX)=0 for I 1> n/(2).
Then, the function

f(x, y, ) o(x, y, )^()= fa q(x, y, Ix) e -2="c

belongs to An
THEOREM 3.1. Let T>0, 0<a<l. Then, there exists a number r/o<1 such that,

for every Ckoe Ao, there exists a unique solution (c, p) of (2.13) satisfying"
(i) th-= 4)0 at t=O.
(ii) For each (x, y) B1, [0, T], ok(t, x, y, ), and p( t, x, y, extend to entire

functions in C.
(iii)

oh(’, ’) C2+,([0, T] x B ), ’ e C,

p(’, ’)G C([0, T] B1) srC,

p(t,., sr) C2+(ffll), srC, t[O, T].

(iv) For every e > O, there exists c > 0 such that

(3.2) 116(.,C)ll++lllp(.,)lll<=ce’o+ vec.
Remark. It will be evident from the proof of Theorem 3.1 that, for each a fixed,

o-0 as T-.
Note that 4o(X, y’) is not necessarily a tempered distribution for bo A. This

prevents us from using the Paley-Wiener theorem (see 6) in the proof of Theorem
3.1. The underlying approach for proving this theorem is by superposition: we expand
the initial data into a power series in z, bo(X, y, z) Yn__o an(x, y)z n, solve the problem
with initial data 4(x, y, z) an(x, y)z", and then sum over n. In order to solve for
we take the Fourier transform in the z variable, solve the resulting problem (using a
fixed-point argument) and then take the inverse transform. Finally, using the growth
condition for bo, we shall show that the resulting series actually converges to a solution
of (2.13).

By Fourier transforming (2.13) in z and setting b(t, x, y, )^(Ix) u(t, x, y, Ix),
p( t, x, y, )^(Ix) v( t, x, y, Ix), Cho(X, y, )^(Ix) Uo(X, y, Ix), we are led to the following
system:

(3.3a) O--U-F-2Au + c(27riix)2u + u -a227rila,V in G,
Ot

OU
(3.3b) Av=27riix---[-2(27riIx)u-c(2rriIx)3u in G,

(3.3c)

0U 3a 2

Ov 27r
(2"rriIx)2 u s, x, y, Ix) dx dy ds

B

+ (27riix)2 u t, x y, Ix dx dy
27r

2

271"
(27riIx)2 fn Uo(X, y, Ix) dx dy on Fo,
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(3.3d)

3

87r

(3.3e)

Replacing -iv by v we may rewrite (3.3) as

(2"n’iix) u(s, x, y, ix) dx dy ds-F-2(27riix)u
B

In Uo(x, y, ix dxdy
87r

+(2-triix) u( t, x, y, ix dx dy onFo,

u(O, x, y, Ix) Uo(X, y, Ix).

(3.4a) Ou-F-2Au+(1-47r2cIx2)u ce227’rIxv in G,
Ot

OU
(3.4b) Av=2"n’Ix---i-+(87r3cIx3--47rIx)u in G,

(3.4c) O---u 6 7r’ce 2IX 2 U--2"lrCe2Ix 2
U d" 2 7r’O: 2IX 2

U0 onFo,
0/2 B B B

3 IoI Ixy Uo+2F_2ixl u onFo,(3.4d) v
4 Ix u F-)-27rIxu

n,B B

(3.4e) u(0, x, y, Ix) Uo(X, y, Ix).

Note that, for fixed Ix, (3.4) is an "elliptic-parabolic" system. In the next section we
prove existence and uniqueness of a solution for the special case where Uo is independent
of Ix (which constitutes the main step towards proving Theorem 3.1).

4. Proof of Theorem 3.1 in a special case.
LEMMA 4.1. Let uo" B1 R satisfy

(4.1) Uo c

(4.2) OUo_ o on OBI

Then, there exists a unique solution of (3.4) satisfying:u(t, x, y,. ), v(t, x, y,. ) C(R),
V(’, IX)e (-,([0, T] B1)olu( ", Ix) 2+,([0, T]x B,), O,

and O,Ov(t, .,) C+(B) C() (lO).
Furthermore, for each O, we have

O 2+a

IllO
O) ClCI ilUolIS+

for some constants c c> O.
Assume for a moment that the conclusions of the lemma hold, and let (u, v) be

the solution of (3.4) for Uo independent of . Then, if we set

d(t, x, y, z)= ((-2i)-"06, u(t, x, y, ) e2=z)

(2i) =o
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and

p( t, x, y, z)= ((-2rri)-"0,6, iv(t, x, y, x) e2i"z)

(2rri)" *k=0

where 6 is the Dirac delta acting on the variable/x, it is easy to check that (b, p) is a
solution of (2.13) satisfying (i)-(iv) of Theorem 3.1 with tbo(X, y, z) Uo(X, y)z.

Proof of Lemma 4.1. We shall use c to denote a generic constant (not always
the same), depending only on/x. We divide the proof into five steps.

Step I (Transformation of the system). First we transform (3.4) into a more
convenient form. Using (3.4a), we may replace (3.4b) by

AV 4,r/’2/z2a2/) 2rr/zF-2Au + 2,B-/z (8 7r2/z2- 3)u

and setting w v 2 rr/x F-2u, we are led to

OU
(4.5a)

Ot
-F-2Au+(1-87r2Cl2)u=a227riw in G,

(4.5b) Aw-47r2a2tz2w---(247r3c3-67rl.)u in G,

with initial-boundary conditions given by

Iotl /,/--27Tt2/./,2 f R +222 f(4.5C)ov=6a220u Uo on[O, T]xoB
B B B

(4.5d) w - u F-24u- Uo+ 2F-2 u on [0, T] x

(4.5e) u(0, x, y, )= Uo(X, y) on B1.

Finally, we want to write the right-hand side of (4.5c) in terms of Uo and w.
Integrating (4.5a) over B1 we get

(4.6) f’(t) + (1 8 rrZc/x 2)f(t) r-2rrou= g(t),
Ov

where

f(t)= f udxdy, g(t)=2rra2tz f wdxdy,
B BI

and using (4.5c) we can replace Ou in (4.6), to get

(4.7) f’(t)+(1-4-2ci2)f(t) 12-2cx2 f(s) ds-4rcl uo g(t).
B1

Since f(0) Is, uo(x, y) dx dy, we may solve (4.7) for f in terms of uo and w. Replacing
in (4.5c), we see that, on OB1,

OU
E2(uo, w),

Ov

where E2(uo, w) is an expression in (Uo, w) (which can be explicitly written) depending
only on and with the property that, if w e t([0, T] x B1) and Uoe C2+"(-71), we
have OtE2(uo, w) Ca ([0, T] x B1 ).
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Thus, if we set

E(uo, u)=-/x u-F-Z47rtxu-- Uo+ 2F--/z u,

then we need to study system (4.5a), (4.5b) subject to the initial-boundary conditions

Ou
(4.8a) E(uo, w) on OB,

Ov

(4.8b) w E(uo, u) on OB,

(4.8c) u (0, x, y, ) Uo(X, y) on B.
Step II (Local existence). We now show that there exists a solution of (4.5a),

(4.5b), (4.8) if T is small enough.
Fix . Given F C2+ such that F(0, x, y) Uo(X, y), let F L be the unique

solution of

(4.9a) L-4222L (243c3-6)F on [0, T] x B,
(4.9b) L= E(uo, F) on [0, T] x OBj.

It is then clear that L F satisfies:

L(t,.) C2+(), O,L Ce+(B), and L.
Fuahermore, if F, F C2+,, F(0, x, y) F(0, x, y)= Uo(X, y), and L F (i=

1, 2), then, for some constant c, we have

(4.10) L L2 c F F= ,
where

ii +11o 11Ilhll=llhll,o+
,o , 0x=

OY2
,D ,D ,D

and D [0, T] x B.
Indeed, this is a straightforward consequence of the maximum principle and the

following result.
LZMA 4.2. Let U, W C2+(), V C+() satisfy

U U V on B B = ),
U= W onOB.

en

2where h 2t= Iloh/ox’ O
(See, e.g., Gilbarg and Trudinger [7, p. 48]).
Now, given L 6 C, let L F be the unique solution of

(4.11a) O-F-zF+(1-SacZ)F=aaZL on[0, T]xB,
Ot

(4.11b) OF_ Ez(uo, L) on[0, T]xOBa,
Ou

(4.11c) F(0, x, y) Uo(X, y) on B.
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Note that, from the hypotheses on Uo ((4.1) and (4.2)), the compatibility condition

(4.12) OUo_ E2(Uo, L) on0B at =0
0,

is satisfied. Thus, F= 5L C2+ and the parabolic Schauder estimates (see, e.g.,
Ladyenskaja, Solonnikov, and Ural’ceva [10, pp. 320-321]) imply that:

If L1, L2 Ca, Fi 5Li (i 1, 2), then

(4.13) F, F2112+ --< c. IlL1- L21[=.
Let 5eye; then, combining the above results, we obtain

(4.14) II (F,)- (F2) ll2+= c T=/2IIF F2llz+
for every F, F2 C2+, such that F(O,x,y)=uo(x,y) (i=1,2). (Note that (F
F2)(O, x, y) O.)

Let X {F 2+ IF(0, x, y) Uo(X, y)} = +. Then, choosing T To To()
small enough, we may apply the Contraction Mapping Theorem to conclude that there
exists a unique F1 X such that (F1) F1. Hence, if we set L1 Fa, then (F1, L1)
satisfy:

(4.15a) OF---A-F-2AF+(1-82cIx2)F1=c22rIxL on[0, To]XB,
at

(4.15b)
and

AL1-4"n’2a2tX2Ll (247r3 ClZ3-6"n’Iz)F on[0, Yo]B1

(4.15c) OF E2(uo, L) on [0, To] OB1,
0

(4.15d) L, El(Uo, F,) on [0, To] x OB1,

(4.15e) FI(0, x, y) Uo(X, y) on B1,

with F1 /, L, , L(t,. ) C/(1), and O,L,(t,. ) C/(B,) C(-ff).
We now want to show that

(4.16) F, 112+= --< Uoll
(4.17) sup

t[0, T0]

and

Using the elliptic Schauder estimates and the maximum principle (in (4.9)), (4.17) and
(4.18) easily follow from (4.16). Finally, (4.16) (for To(/) small enough) follows from
(4.15), Lemma 4.2, and the parabolic Schauder estimates.

Step III (Global existence and uniqueness). In order to prove global existence
of a solution on [0, T] x B we just need to write

Ul(X y) Uo(X, y) + 3 FI(S x, y) ds

and repeat the above argument for the system

OF
(4.19a) ---F-2AF+(1-87r2ctx2)F=a-27rtzL on[To,2To]XB,,

Ot

(4.19b) AL-47rotz2L--(247r3ctz3-67rtz)F on[To,2To]X B1
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with initial boundary conditions

(4.19c)=0F 67rce2/d,2 F 27rO2/.2 F q- 277"O2/ U for (x, y) OB,
O TO

3 ft IB f Ul+2F_2. f F for(x,y)OB1,(4.19d)L= - F-F-24F-To B

(4.19e) F(To, x, y) F(To, x, y) on B.
(Here we use the fact that the size of the time interval for local existence depends only
on , not on the initial data.)

Thus, we have proved that there exists a solution (u, v) of (3.4) satisfying:

u(., )e C>([0, T]x

v(t,., ) z c+(E), 0,v(t,., ) z c+(B1) C(E).
Also,

(4.20) Ilu(’, )ll> +lily( ", )111 c uoll+.
The uniqueness of the solution (u, v) easily follows from (4.5), (4.8) and the uniqueness
statement in the Contraction Mapping Theorem.

Step IV (Regularity of the solution). We want to show:
(a) u(t, x, y,. ), v(t, x, y,. z c(a).

u(., ) +([o, T1 x K), 0’
v(t," e C2+ C() for each > 0.C2+a (), OtO

Fix o e and let, for h

Uo(x, y, t) u( t, x, y, o), u (x, y, t) u( t, x, y, o+ h),

Vo(X, y, t) v(t, x, y, o), V(x, y, t)= v(t, x, y, o+ h).

Then, using (3.4) we can write a system of equations for

and, proceeding as before, we can prove, with the aid of (4.20), that

h + h

for small h. Thus we may conclude that u(t, x, y, and v(t, x, y, are differentiable
at o and that 0,u(., o), 0, v(., o) satisfy (b) for 1.

Fuhermore, we have

00u F_ 0+(1_4c
(4.21a)

=+(acu+av) on[0, r]xBx,

00u Ou0 2 +(8
O Ot

(4.21b)
+ (24c-4)u+2 on[0, T]xBxN,
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(4.21c)

(4.21d)

0 Ou
6rt2/./, 2 2

+ 12"n’ce/x u 47ra/x u + 4"n’a/x uo
B1 B

0/ 4/x F-22r/ + 2F-2/

+ - , uo- , u-27rF--u+2F- u

on[0, T]XOBlXR,

on[O, T] x OB x [,

OU
(0, x, y, ) 0.(4.21e)

By repeating this procedure we may conclude that (a) and (b) hold.
Step V (Bounds on the -derivatives at 0). Consider the system (4.5) and let

(for >- 0)

1 olu
Fl( t, x, y) 011 t, x, y, 0),

1 olw (t,x,y,O),Ll( t, x, y)
01"

and FI Ll 0 if < O. It is then clear that, for => O,

(4.22a)

(4.22b)

(4.22c)

(4.22d)

(4.22e)

where

Uo(X, y)
(4.23) FY(x, y)

0

First we note that (4.22) implies that

F2k/ L2k =- 0

On the other hand, for l_-> 0,

(4.24a)

(4.24b)

ifl=0,
ifl#0.

(k->_ 0).

IlF, II2+ I(IIL/-,II + IIF-2112+ + IIFII 2+ + IIFL211+),
]IIL,+I[II -< ’=(]llL/-llll / IIF/-=[l+ / IlF/ll=+ / IIFYll +)

for some constants ’)tl, "/2"
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But then, from (4.24) we may conclude that

so that

for some constant
Let a,= IIF, II2+ +lllt,+lll; then, from (4.24a) and (4.25) we get

for some constant y.
In particular, for k >_- 2

so that

(4.26)

But,

a2k <= )ta2(k_)

a2k <= ,yk- a2"

a2 -< y(ao+ IIFoll7+)
(v FoI1+ + FoI1+)

Hence, there exists a constant Yo such that

(4.27) al < 3//o11Uo[[
Finally, since v= w+F-27r/xu, we conclude from (4.27) that (4.3) and (4.4) hold.

Thus, the proof of Lemma 4.1 is complete.

5. Proof of Theorem 3.1.
5.1. Existence. Write 4o(x,y, ’)=no an(x, y)n. Then, using the fact that bo

Ao and Cauchy’s formula, we get that an C2/(B1 and, for every e > 0

(r/o+ e) e
(5.1) Ila.ll+_-< c for n>- 1.

Now let (An(t, x, y, tx), B,(t, x, y,/z)) be the solution of (3.4) given by Lemma 4.1 when
Uo is replaced by an.

Finally, set

1 , -kA
(5.2a) 4)(t, x, y, ’)= no= (2i)" k=O 0"_k (t, X, y, 0),

,= (2i)"i k=O (2iff) k

0,_k (t, X, y, 0).(5.2b) p(t, x, y, )= 2o
We claim:

If r/o is small enough, then (b, p) defined by (5.2) is a solution of (2.13) satisfying
(i)-(iv) of Theorem 3.1.

Proof We have

II II1 (2r[.[)k 0/x,.k (., 0II(,, ,2o= (2)" =o 2+
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But from (4.3) we know that

obn_k (’, O)
2+o

< C1C2 n- 11’118+

so that

(5.3)

Thus, using (5.1),

I1 k
.-k (rlo+ e)" e

I1(, ff)ll=/ < c,c 2 n!
k=l --. c2

(?o+e)e )-+- n!c2 + 1
n=l Jr/

and changing the order of summation,

(5.4)

+ (c2(r/o+S))" en+l
n=l H

By using the estimate

(5.5)
n! e" /2

C3/’/

we get

/ [(o+
116(-, c)ll/ --< cc3 ! y

k=l k! nk

)+ Y (c2(r/o+ e))"n’/2+ 1
n=l

that is,

(5.6)
2 (C2(T/0"4- E))n( F/ -- k)n>O

)q- (C2(TIOA- t))nnl/2-}" 1 (5=ccc).

Therefore, if 7o < 1/C2 and 0< e < 1/c2- /o, then (5.6) implies

(5.7a) 114(’, ’)112+ <- c(1 + I’1) e(’+)lcl,
for some constant c.

In a similar way, but using (4.4) instead of (4.3), we can prove that

(5.7b) ]lip(’, if)Ill --< c(1 /11) e("+)lcl

Since (5.7) clearly implies (3.2) we see that (b,p) satisfies (ii)-(iv) of Theorem 3.1,
and it only remains to show that (b, p) is a solution of (2.13).
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First we check (2.13e); we have

(0, x, y, z)= .=o (2rri)" =o
(2rriz) k

on-kan._ (x, y)

.=oE (2rri)"
(27riz)"a.(x, y)= &o(X, y, z).

Now set

An,k--Ot kAn(’, O,
Then from (3.4) we have

(5.8a) Ot

(5.8b)

B.,=O"u-B.(.,O).

F-2AA.,k +An,k 47r2c(n k)(n k- 1)A,,+z

+27ra(n k)Bn,k+a on [0, T] x B1,

AB..k 2r(n k) OA..,k+.,+ 87r3 c(n k)(n k- 1)(n k 2)An.k+3
Ot

and, on [0, T] x OB,

(5.8c)

(5.8d)

Using (5.8a),

Ot

-4rr(n- k)A..k+l on [0, T] B1

6rra2(n k)(n k 1) A..k+2
B

-2ra2(n-k)(n-k-1) f An,k+2-1-2o2(n-k)(n-k-1)tk,n_2 fn an,

Bn,k - (n k) A..k+l--- 6k..-a a.

-F-Z2rr(n k)An.k+l + 2F-Z(n k) I A..k+..
B1

o F-AA"’ + An’k

-l(;)(2rriz)k[4rr2c(n-k)(n-k-1)A,,k+2+2rroe2(n-k)B,,,k+,]o (2 rri)" k=0

-c (2i)+(n k)(n k 1)A. +z
.--o (2ri)" =o

(2rri)k+aceZ(n k)B..k+lzk

=o (2rri)" =o

.=o (2i)’j=2 j-2
(2ri)J(n-j+2)(n-j+l)An’JZJ-

-c o (2gi)-_ j-
(2ri)(n-J + ),z
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so that

Oth F_2Ab + th -c (2ri)j(.j 1)zS-EAn,
Ot =o (2"rri)" j=2

-a =o(2i)=1 j

02( 2 Op
C
022 -Z

and therefore (2.13a) is satisfied.
Similarly, using (5.8d) we see that, on Fo,

P ?o= (2gi)" k=O
(27riz)kB’k

() [3 fo’f 1

?o (2;i), (27riz) k
B

"I an-r-2("-k)An’k+lW2-2("-k)f An’k+l]
B B

Hence,

3 Io f ( 1 nl () (27ri)k+lzk( n k)a, k+lP 8r nl =o (27ri)" k=0

1 I. ( 1 (:)(2i)+lzk6k._la)8 ,=o(2i)" k=0

,=o (2i)" k=O
(2i)k+lz n- k)A,,k+l

+ (2i)k+lzk(n k)A, k+l
n =o(2i)" k=0

8 OZ 8 OZ OZ OZ’

SO that (2.13d) also holds.
In a similar way we can show that (2.13b) and (2.13c) are satisfied, thus completing

the existence proof for Theorem 3.1.
5.2. Uniqueness. Let (, p) be a solution of (2.13) satisfying (i)-(iv) of Theorem

3.1 for o 0. We wish to show that p 0. Write

ck(t,x,y,z)= ., ck"(t,x,y)z"/n!,
n=0

p(t,x,y,z)= E p"(t,x,y)z"/n!.

Then, for each n _-> 0,

(5.9a) Ock"-F-ZAqb"+qb"=-a2p"+l-c&"+2 on[O, T]xB,,
Ot

(5.9b) Ap 24 n+l__ Clan+3 on [0, T] x B1,
ot
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n+2q_ (n+2 on [0, T] x
O v 2 zr 1 27r nl

{])n+l 1-,--2n+1+ in+l on [0, T] x OB1,(5.9d) P 8 7r

th"(0, x, y) 0.(5.9e)

Using (5.9a), (5.9c), (5.9e) together with the parabolic Schauder estimates we get

(5.10) " 112+ --< kl(lllp"+’lll /

for some constant
Also, using (5.9b), (5.9d) and the maximum principle

and using (5.10)

(5.11)

for some constant k3.
For n ->_ 0 set

III p -’III k2(II ," II=+ + "+2112+oz

IIIp"-’lll k3(lllP"+’[[I +

where, by definition, p-l=0. Then, (5.10) and (5.11) give

(5.12) %, <- koTn+2, n 0

for some constant ko.
On the other hand, using Cauchy’s formula and pa (iv) of Theorem 3.1 we see

that, for m 2,

ymc[m’ (B+ e) e
+(m- 1)’

(+e)m-’ era-l]
and from (5.5)

(5.13) "ym<=.e(rloq-e)mm 1/2 for e>0, m>_-2.

Fix n_>-0; then from (5.12)

(5.14) yn<=koYn+zt VI-->0

so that from (5.13), (5.14) we obtain

(5.15) y,,<-kto(no+e)"+2t(n+21) I/:z > 1

Thus, for every l-> 1

(5.16) % -< te (/o q- e)n[((r/o q- e)Zko)l(rl q- 21)’/2].
Hence, letting 1- oo we get

y, =0 Vn =>0,

provided r/o < (1/ ko) 1/2 and 0 < e < (1/ ko) 1/2
r/o and, consequently,

6-=p--0.

This completes the proof of Theorem 3.1 provided we choose r/o < min (1/c2, (1/ko)1/2).
(Recall that c2 is the constant in (4.3), (4.4).)
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6. Properties of the solution.
THEOREM 6.1. Let qbo A,o where 0< a < 1 and qo is as in Theorem 3.1. Let (b, p)

be the solution of (2.13) given in Theorem 3.1. Then:
(a) If qbo is periodic in z (i.e., qbo(’, z + Z) bo( ", z) for some Z and all z )

then also ch and p are periodic in z, with the same period Z.
(b) Let m >-2 and assume that

(6.1) o(, z)l[=% Co

for some constant Co > 0 (z ). Then

(6.2) 116(,, z)llz+ +lllp(,, z)lll= o((l +lzl) as z c.

THEOREM 6.2. Let tho, th andp be as in Theorem 6.1. Ifwe assume that tho(X, y, z)
qbo(X, y, -z) and

(6.3) dz <o,
Og 2+a

then

(6.4) qb( t, x, y, z) qb( t, x, y, -z), p(t,x,y,z)=-p(t,x,y,-z)

and

(6.5) as z o.

In order to prove Theorems 6.1 and 6.2 we shall use the following theorem.
THEOREM (Paley-Wiener). Let K be a compact, convex, and balanced subset of
and let I (r/)= sup,/ ](r/,/x)[ (where (q,/x)= r/./x =i=1 rh/xi).
Let T ’ (i.e., T is a tempered distribution). Then the following are equivalent:
(i) supp T K.
(ii) T has an entire holomorphic extension to C so that, for some m >-_ O,

f(ff)[ c(1 + Ig’l) exp I (Im (st)).

(Actually m can be taken to be the order of T.)
(For a proof see, e.g., [5, pp. 145-146].)
Proof of Theorem 6.1. Note that (a) follows immediately from the uniqueness of

solutions: in fact, if we set b(t, x, y, z) b(t, x, y, z + Z),/(t, x, y, z) p(t, x, y, z + Z)
it is clear that (b,/) is a solution of (2.13) satisfying (i)-(iv) of Theorem 3.1, so that,
by uniqueness, we must have b b,/ p.

We now turn to the proof of (b). Clearly, Uo(X, y,/x) bo(X, y,. )^(/x) satisfies

(6.6a) UO(" ]./,) C2+a(B1),

(6.6b) Uo(X, y, C"-2().

Also, an application of the Paley-Wiener theorem shows that Uo(X, y, is compactly
supported and that, for each (x, y) B1

(6.6c) supp Uo(X, y," )c Io II l
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We may then consider the Fourier transformed system (3.3) with initial data Uo(X, y,/x).
Following the proof of Lemma 4.1 we see that there exists a solution (u, v) of (3.3)
satisfying:

(0=< 1=< m-2),

_.a’v (,. )
Otx

(0-< 1=< m-2),

0 ___Otv (t, /x) C2+ (B,) f’l C(-i
at ojdb

Furthermore, for each (x, y) e B1, e [0, T]

(0=< 1--< m-2).

(6.7) suppu(t,x,y,.)clo and suppv(t,x,y,.)CIo.

Then, if we set

qb(t,x,y,z)=u(t,x,y,.)V(z) and (t,x,y,z)=v(t,x,y,.)V(z)

we see that (,/) is a solution of (2.13) satisfying (6.2). But yet another application
ofthe Paley-Wiener theorem (using (6.7)) implies that (b,/) satisfy (i)-(iv) ofTheorem
3.1. Thus, by uniqueness, (b,/) (4, P), and this completes the proof of (b).

Proof of Theorem 6.2. If bo(X, y, z)= bo(X, y, -z), set (t, x, y, z) b(t, x, y, -z)
and/(t, x, y, z)=-p(t, x, y,-z). It is easily checked then that (4, i6) is a solution of
(2.13) satisfying (i)-(iv) of Theorem 3.1 and hence, by uniqueness, we obtain
and/ p. This proves (6.4).

Finally, (6.5) may be proved using an argument similar to that used for proving
(6.2).
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NONLINEAR AGE-DEPENDENT POPULATION DYNAMICS
WITH CONSTANT SIZE*

TANYA KOSTOVAt AND FABIO MILNER$

Abstract. The existence of populations of constant size is studied for the Gurtin-MacCamy model.
Necessary and sufficient conditions are given and some examples of their implications are considered.

Key words, population dynamics, age-structured, constant size population

AMS(MOS) subject classification. 92A15

1. Introduction. In their classic paper Gurtin and MacCamy [2] considered the
following equations describing nonlinear age-dependent population dynamics with an
age distribution u u (a, t) satisfying

u+ut=-d(a,P(t))u, a, t>O,

(1.1) u(O, )= b(a, P(t))u(a, t) da,

u(a, O)= d(a), a >-O,

where a is the age, is the time, d is the deathrate, b is the birthrate, and P(t)=
o u(a, t) da is the total population size.

In [2] a necessary and sufficient condition for the existence of an equilibrium age
distribution u(a) of (1.1) with a prescribed population size Po=Io u(a)da was
derived. More precisely, given a constant Po>O and assuming that
b(’, Po) exp (- d(s, Po) ds)e LI(+), a necessary and sufficient condition for the
equations

u, -d(a, Po)u, a>0,

u(O) b(a, Po)u(a) da,

to have a solution is that

Po u(a) da

(1.2) b( a, Po) exp d(-, Po) d- da 1.

In this case u(a) is determined explicitly as

(1.3) Po exp (- d (z, Po) d’)
u(a) 7 exp (- d(’, Po) aT-) da
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Equilibrium solutions are of major importance, as they may be asymptotically
stable provided some conditions on the birthrate b(a, P), death rate d(a, P), and the
initial age distribution b(a) are fulfilled; thus they may determine the asymptotic
behavior of the solutions of (1.1) having suitable initial age distributions. That is why
much attention has been paid to the investigation of the properties of the steady state
(we refer to [1]-[5], just to mention some of this work). Still, in real situations the
available data on population dynamics is more often given in terms of the total
population size than in terms of the age distribution. There are contemporary examples
of human populations whose size does not change in time, though they may have a
time-dependent age distribution. An interesting question for which we find the answer
here is what the relation between the birth and death rates is in such occasions.

This paper is organized as follows. In 2 we derive some necessary and sufficient
conditions for the existence of a population of constant size in terms of its initial
distribution and its fertility and mortality. In 3 we give some examples ofconsequences
of these results and discuss their implications.

2. Populations of constant size. Let Po be a prescribed number. We shall assume
that b, d, and b in (1.1) are piecewise continuous functions, d 0, and b is integrable.
We shall say u(a, t) is a distribution ofconstant size Po if P(t)= Po. Consider equations
(1.1) and also assume the following compatibility conditions on initial and boundary
data:

(2.1) rb(a) da Po, 4)(0) b(a, Po)4)(a) da.

Suppose that (1.1) has a solution u(a, t) such that o u(a, t)da= Po for all t.

Integrating the first equation of (1.1) in the age variable, we obtain the following
equation for P(

P’(t) [b(a, Po)-d(a, Po)]u(a, t) da, t>0,

and, therefore, in our case, P(t)-- Po is equivalent to the condition:

(2.2) b(a, Po)u(a, t) da d(a, Po)u(a, t) da, >-0.

This last equality is a necessary and sufficient condition for u(a, t) to be of constant
size but it still does not determine an explicit relation between b(a, Po) and d(a, Po).
It obviously leads to the conclusion that u(a, t) is the solution of the system

u,, + u, -d(a, Po)u, a, t>0,

(2.3) u(0, t)= d(a, Po)u(a, t) da, t>-O,

u(a, O)= dp(a), a >-O.

Remark 2.1. The condition b(a, P0) d (a, Po) in (1.1) is sufficient for the validity
of (2.2) and, therefore, any solution of (2.3) is of constant size. This system is one
which also admits equilibrium age distributions in the case where o d(a, Po) da
since then, o d(a, Po)exp (- d(s, Po)ds)da= 1 (see (1.2)). Equilibrium distribu-
tions exist only when b(a) is given by (1.3). Hence, for any other function b, the
solution of (2.3) is of constant size but not an equilibrium one.
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Several questions arise, which we shall answer here.
(a) When is there a nonequilibrium solution u(a, t) of (1.1) with P(t)=- Po ?
(b) Given an initial age distribution th(a) with o oh(a) da- Po, does a solution

with constant size exist?
(c) If the answer to (b) is yes, what condition must b(a, Po) and d(a, Po) satisfy?
It is well known (see [2]) that the solution of (1.1) can be represented in the

following implicit way:

(2.4)

where

(2.5)

B(t a, Po) exp d (r, Po) dr

u(a,t)=
b(a-t) exp (-Io d(a-t+r, Po)dr),

B(s, Po)= b(a, Po)u(a, s) da

t< a,

is the birth function.
Combining (2.4) and (2.5) we obtain the following formula:

(2.6)
B(t, Po) b(a, Po)B(t-a, Po) exp d(r, Po) dr da

+ b(a, Po)qb(a t) exp d(a + r, Po) dr da.

Recall now that we have assumed that P(t)= Po and, therefore, (2.2) is valid. This
means that B(t, Po)= o d(a, Po)u(a, t) da, and thus we shall also have

(2.7)

B(t, P0) d(a, Po)B(t-a, Po) exp d(r, Po) dr da

+ d(a, Po)dp(a t) exp d(a + r, Po) dr da.

Conversely, if (2.7) is valid, then (2.2) will hold (because (2.6) holds) and u(a, t) will
be of constant size. Equation (2.7) is another necessary and sufficient condition for
the existence of a population of constant size Po; but it is still implicit, as we do not
know B(t, Po). We can use Laplace transforms to obtain an equation involving only
b, d, and &. For this purpose, assume that d(a, Po) and b(a, Po) are bounded.
As u(’, t)Ll(+) for each (since o u(a, t) da=-Po), then B(t, Po)
o b(a, Po)u(a, t)da<-[IbllLPo, that is, B(t, Po) is a bounded function of t. On the
other hand, 7 b(a, Po)qb(a t) exp (-’o d(a t+ r, Po) dr) da <= I]b]lL o 4(s) ds

IlbllPo and, similarly, j d(a, Po)b(a t) exp (-to d(a + r, Po) dr) da is bounded.
Therefore, for s _-> 0, we can take the Laplace transform of both sides of (2.6) and
(2.7) and, making use of the special convolution form of the first integrals in the
right-hand sides, we arrive at

(2.8) (B)(s) (B)(s)(rl)(s) + (Bo)(S),

(2.9) (B)(s)=(B)(s)(O)(s)+(Do)(S),
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where

(f)(s) e-Stf(t) at,

II(t) b(t, Po) exp d(-, Po) dr

(2.10) 0() d(, Po) exp d(-, Po) d-

Bo(t)= d(a)b(a+t, Po) exp d(a+r, Po) dr da,

Do(t)= (a)d(a+ t, Po) exp d(a+, Po) dr da.

Therefore, if u(a, t) is a solution of (1.1) of constant size Po, then (2.9) holds for all
s > 0 and, of course, (2.8) does too.

Conversely, if (2.9) is valid then, as (2.8) holds, (2.6) and (2.7) will also hold and
the solution of (1.1) will be of constant size.

Now consider the quantity

1-(O)(s) 1- e-’ d(, Po) exp d(r, Po) dr dr.

For s 0,

0_--<(0)(0) 1-exp d(r, Po) dr <- 1.

If we note that for s>0, we have O<-o(O)(s)<(O)(O), then we see that

1-(0)(s)>0 fors>0.

Therefore, we can express (B) from (2.9) as

(B)(s) (Do)(S)/(1-(O)(s)),
which, substituted in (2.8), yields the relation

1- (H)(s)
(Do)(S) (Bo)(S);

-(O)(s)
that is,

(2.11) [1-(II)(s)](Do)(S)=(Bo)(S)[1-(O)(s)], s>0.

This last equality can also be rewritten in another way, as we show below. Having
in mind that for s > 0 and for X(., t) L(+), > 0, the following relation holds:

(Io ) Io 1 (Io 0X )X(a, t) da =-1 X(a, O) da +- (a, t) da
S S --we obtain, after some sample computations, the relations

e(o)(S)
1
(01(- e(II)(s))

S

S \30

exp d(a+’,Po) dr da (s),
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and

(Do)(S) =1 d(a)b(a) da(1-(O)(s))
S

_1 [4’(a) + d(a, Po)d(a)]d(a + t, Po)

exp d(a+-,Po) dr da (s).

It follows that (2.11) is equivalent to the following two relations:

oh(O) d(a, Po)(a) da,

[ (] [’(s + (s, eo(s](s + ,
(2.12) .exp d(s+r, Po) d ds

=[-(0] [’(s+(S, eol(s]b(s+,eo

exp d(s+,Po) dr ds

as seen by substituting (0), Do, and Bo in (2.11). We have shown that (2.11) and
(2.12) are other necessary and sucient conditions for the solution (1.1) to be of
constant size.

Let Q(t) and R() be defined as

Q(t)= [’(s)+d(s, Po)(s)]d(s+t, Po) exp- d(s+,Po) d ds,

R(t)= [’(s)+d(s, Po)(s)]b(s+,Po)exp d(s+r, Po) dr ds.

Taking inverse Laplace transforms, we obtain the following result.
THEOREM 2.1. Suppose that , b, d are bounded, nonnegaive, piecewise continuous

functions, satisfying the compatibility conditions (2.1). e necessary and sucient condi-
tionfor the solution of (1.1) to be ofconsmn size Po is chat either ofchefollowing relations
holds:

(i Do(C)- Do(s(-s) s=o(- o(s)O(t-s s,

where Do, Bo, , and 0 are defined by (2.10),

(t- (sn(-s as (- (s0(-s s,
(ii)

(0 (a, eo(a) a.
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Next we shall derive another necessary and sufficient condition for the solution
of (1.1) to be of constant size, which proves useful for some special cases and does
not impose boundedness restrictions on b, d, and b. Let us assume again that (1.1)
has a solution of constant size Po. As Po= o u(a, t) da, then integrating (2.4) in age
and differentiating in time, we get

0= B(-a, Po) exp d(-, Po) dr da

(.3
+ (a-)exp d(a-t+r, Po) dt da.

The second term in the right-hand side of (2.13) depends only on the functions and
d and (2.13) may then be considered as a Volterra equation for B(t-a, Po). Let us
denote

F(t)=- (a-t) exp d(a-t+r, Po) dr da

[’(a-t)+(a-t)d(a-t, Po)]exp d(a-+r, Po) d da.

Consequently,

(2.14) F(t)= [’(s)+(s)d(s, Po)]exp d(s+r, Po) dr ds.

Let H(s)= B,(s, Po). Then, H(t) satisfies the following Volterra equation of the first
kind

(2.15) H(s) exp d(, Po) d ds F(t).

On the other hand, since (2.2) is valid for all t, including =0, it follows from (2.2)
and (2.5) that

(0) B(O, Po)= b(a, Po)4(a) da d(a, Po)(a) da.

Then, (2.14) implies that

(0=-(0+ (s)(s, o s =0.

Therefore, we can use the following well-known result. Let I =[0, T] and let S
{(t,s):ONsNtNr}. Let FeC(I) with F(0)=0 and let K(t,s),
Assume that K(t, t) 0 for all e I. Under these conditions Io K(t, s)y(s) ds F(t)
has a unique solution y e C(I).

Applying this theorem, we see that, if d C(I) and

[’( + ( ")d(’, Po)] exp d(.+r, Po) dr

then (2.15) has a unique solution H:

(ex (-I "(’,
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where ,-l(f) is the inverse Laplace transform of f Therefore, B(t, Po) can be
determined explicitly in terms of H by integrating

(2.16) B( t, Po) dp(O) + H(s) as.

If B is then inserted in the renewal equation (2.6), we arrive at a necessary
condition which b(a, Po) and d (a, Po) must satisfy.

On the other hand, if u is a solution of (1.1), then it satisfies (2.6) with B(t, Po)=
o b(a, Po)u(a, t)da. Assume that (2.14)-(2.16) are fulfilled. It follows that P’(t) =0
and therefore P(t)= Po. Thus, we have proved the following result.

THEOREM 2.2. Let d C(I) and let dp LI(R+) and b satisfy the compatibility
conditions (2.1) and [b’(. )/ b(. )d(., Po)] exp (-to d(.+r, Po) dr) LI(+) for each

I. Then, (1.1) has a solution with constant size Po in the time interval I [0, T] ifand
only ifb(a, Po), d(a, Po), qb(a), and B(t) satisfy (2.6) and (2.14)-(2.16). In such case,
the solution u(a, t) is given explicitly by (2.4), where B( t) is determinedfrom (2.15), and
(2.16).

Remark 2.2. Note that in this theorem we do not impose boundedness conditions
on b and th as we did in Theorem 2.1.

Remark 2.3. Let Po > 0 and let the assumptions of Theorem 2.2 hold. Let d (a, Po)
and b(a) be such that F(t)O (which is always possible, in view of (2.14)). Then,
B(t) can be determined uniquely and u(a, t) subsequently from it. We should note
that such populations of constant size are not equilibrium distributions. Indeed, suppose
that u(a, t)=-u(a). Then, B(t)=B(O)=qb(O) and, therefore, H(u)=0 and F(t)=0.
This is a contradiction. Therefore u(a, t) is not an equilibrium distribution of (1.1).

The only case when there does not exist a nonequilibrium solution with constant
size is when ck(s)=ck(O)exp(-od(r, Po) dr). In this case F--0 (since b’+d&--0)
and so, H-=0, which gives B(t)=-B(0)=b(0). Therefore, the relation following
(2.15) transforms into 1 =o b(a, Po) exp (-o d(r, Po) dr) da and u(a, t)=
b(0) exp (- d(r, Po) dr) u(a). In other words, from an initial equilibrium distribu-
tion the only possible solution of (1.1) with constant size is that equilibrium distribution
(1.3). We have proved the following result.

THEOREM 2.3. Let Po > 0 be given and let b and ck satisfy the compatibility conditions
(2.1). Then, for any continuous function d (a, Po) such that F(t) 0 and such that
(b’(s)+ dp(s)d(s, Po)) exp (-to d(s+r, Po) dr) L1, there exists a nonequilibrium sol-
ution u(a, t) of (1.1) such that o u(a, t) da=-Po. Furthermore, if qb(a)-
b(0) exp (- d(r, Po) dr), then, the solution is the equilibrium one, u(a, t)=- qb(a).

Theorem 2.3 answers the questions (a), (b), and (c) at the beginning of this section.

3. Some examples. We shall treat some special cases of (1.1) and discuss its
solutions of constant size applying the above theory.

(I) Let d(a, P)= d. Then u(a, t) is a solution of constant size Po if and only if
(2.12) holds. Since 1- (0) can vanish at one point, at most, and all the functions of
which we take transforms are piecewise continuous, it follows that (2.12), for the case
of a constant death rate, is equivalent to the following relations:

(3.1) [qS’(a) + d(a)] da =0,

(3.2) [b’(a)+dck(a)]b(a+t, Po) da=O, t>-_O.
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The last relation follows by observing that, if (3.1) holds and d is constant, then, the
left-hand side of the second equation of (2.12) vanishes. Conversely, (3.1) and (3.2)
imply that u has constant size invoking Theorem 2.1. In summary, if the death rate is
constant and b and 4) are piecewise continuous bounded functions such that the
compatibility conditions (2.1) hold, then u is of constant size if and only if (3.1) and
(3.2) hold. In such case, the solution of (1.1) of size Po is

[ dPo e-ad, > a,
A(a, t)

(a t) e -ta, < a.

(II) Let

K>O, O<-s<-c,
otherwise,

be a uniform distribution on the interval (0, c) so that Po--Kc. Assume that all
individuals die before reaching age c. Then, o d(a, Po) da- +o. Now note that (1.1)
and (2.2) give in this case

Io4)(0) B(O)= b(a, Po)u(a, 0) da b(a, Po)(O) da

d(a, Po)(O) da,

which implies

d(a, Po) da b(a, Po) da 1,

a contradiction. Therefore, given a uniform initial age-distribution on the finite age
interval (0, c), if the initial and boundary date are compatible, then, for any death rate
d (a) such that the life span of any individual is at most c, the population cannot have
constant size, independently of the birthrate b.

(III) Let b(a, P)=-b. Then, u is of constant size Po if, and only if,

;o ;oB(t) b(a, Po)u(a, t) da b u(a, t) da bP(t)=- bPo,

which is equivalent to the following relations:

B,(t) O, B(O)=bPo.

Using Theorem 2.2 we see that these relations are equivalent to the following necessary
and sufficient conditions for a population with constant birthrate b to have constant
size Po:

[’(a)+d(a, Po)(a)]exp- d(a+%Po) d" da=O,

(O)= bPo.
In such a case, u is explicitly given by

bPo exp d(7", Po) dr _-> a,
u(a,t)=

(a-t) exp(-fo d(a-t+r, Po)d’r), t<a.
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LIc-ESTIMATES FOR LOCAL SOLUTIONS OF DEGENERATE
PARABOLIC EQUATIONS*

DANIELE ANDREUCCI"

Abstract. A local sup-estimate for local (sub)solutions of degenerate parabolic equations is proved.
Such local estimates do not involve any dependence on the initial and boundary data, but rather, provide
a bound for the solution in a given domain, only in terms of some integral norm of the solution in a larger
domain. Estimates of this kind for solutions of linear nondegenerate parabolic equations are due to Moser
(Comm. Pure Appl. Math., 17 (1964), pp. 101-134). Sharp estimates of this kind have not been available in
the literature in the degenerate case. The new input here is an interpolation process that permits one to deal
with the degeneracy of the equation. The estimates shown here are sharp and reduce to the classical ones
of Moser in the linear nondegenerate case.

Key words, degenerate parabolic equations, local solutions, local sup-estimates

AMS(MOS) subject classifications. 35K65, 35B45

1. Introduction. Local sup-estimates for solutions of the porous media equation
(or its quasilinear variations) are employed in several papers to study the behavior
(local or at infinity) of such solutions (e.g., [1], [3], [4]).

We are interested here in local sup-estimates that are completely independent of
initial or boundary data. Such a dependence typically appears in estimates relying on
the maximum principle. To our knowledge, quantitative estimates of this kind are not
present in the literature, in a form that is sharp or comparable with analogous results
for nondegenerate equations. In this paper we prove a sharp estimate (see (1.6) below),
coinciding with known results in the linear case [6]. The estimate will take the form
of an interpolation inequality with a free parameter.

We remark that sup-estimates for solutions defined in the whole space EN have
been obtained in [2], where, in particular, a connection is traced between regularizing
effect and sup-estimates.

We will consider nonnegative local subsolutions of the equation

(1.1) u,- div d(x, t, u, Vth(u))=0,

where 4 :[0, o)- [0, ) is a locally AC (absolutely continuous) function satisfying,
for some A > 1,

4)’(s)s
-<A a.e. s > 0.(1.2) 1< b(s)

The first inequality in (1.2) can be allowed to be nonstrict; see Remarks 3.1 and 3.3
below. For the sake of brevity we carry out the proofs only in case (1.2).

We define (s)= ck(s)s-, s >0, and assume in the following that the function
(x, t)- d(x, t, u(x, t), Vth(u(x, t)) is measurable and satisfies

(1.3) d(x, t, u, Vth(u))" Vu->- A-l(u)lVule,
(1.4) IK(x, t, u, v4,(u))l<-A,I,(u)lVul

(of course the constants in (1.3), (1.4) are named A just for notational simplicity).

* Received by the editors April 21, 1989; accepted for publication (in revised form) January 12, 1990.
? Istituto Matematico "Ulisse Dini," Universit/ di Firenze, viale Morgagni 67/a, 50134 Florence, Italy.
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In order to state our main result we introduce the following notation:

)Qo B+)p -- t,

where p, > 0, o-e (0, 1), Xo e R
N are given. We also use the notation

f f fdxdt=(meas (Qo)) -1 ll fdxdrJJ o
Let us define a local subsolution u to (1.1) in Qo as a function

u e C(to, t; L’(B(,+)o)),

Vb(U) e L2(Oo),

satisfying

(1.5) ut-div t/(x, t, u, Vb(u)) =< 0,

in the usual weak sense in Qo (see, for example, [5]). Then we have the following
theorem.

THEOREM. Let u be a bounded nonnegative local subsolution of (1.1) in Qo. Then
for all q, e > 0

(1.6)

+7 1+ Joo O(u)ck(u) dx dr

where y y(e, tr, A, N)" y becomes unbounded as e (or or, or A-1) tends to zero.
We note that (1.6) is also valid for any nonnegative subsolution which can be

approximated locally by bounded subsolutions.
In 2 we prove the theorem, and in 3 we collect some comments and generaliz-

ations.

2. Proof of (1.6). We will need the following elementary inequalities:

(2.1) hAc(s)<=dp(sh)<-h(s), s>0, he(0, 1),

(2.2) hA-lO(s)Op(sh)O(s), s>O, he(O, 1),

(2.1) is proved integrating on (hs, s)"

1 b’(s) A
s s

and (2.2) follows from (2.1).
We notice that (2.1), (2.2) imply that b(s) and b(s) s-2 (a > 2) are increasing

functions of s, and that is nondecreasing.
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LEMMA. Let us define for z, Zo >- 0, and a > 2

(Iz(Ir ) )1/2F(z, Zo)-
(s)

ds dr
Zo Zo

$2 +

Then we have for all z > O, z Zo,

(2.3) (z)> c (Z, Zo)
Z
2

where c c( a, A).
Proof If z (0, Zo), F(z, Zo) 0 and there is nothing to prove.
If z > Zo,

(s) s2 2OF
(.4 (, o

4 dr ds
Zo

Hence

4 <-_(Z-Zo)2 z-2 dr (s)as
ZO

Now we consider two cases: (i) Zo>= z/2 and (ii) Zo< z/2. In case (i)

dr (s) ds >- dr ds2-A-(z)(Z--Zo).
In case (ii)

dr (s) ds dr ds 2-Aa-3(Z)aZ2.
/2 /2

Therefore (2.3) is proved with c 2-A-.
Remark 1.1. Notice that (2.3) implies F(.,z0)Liplo(+) and that F(z, .) is

nonincreasing on +.
Proof of the theorem. We use the approach of 1 and define for all n 0

t k
t,-2 2"+’ P"=p+ p’ k,=k 2,+,

Btn
here k > 0 is to be chosen later.

We consider also a cutoff function ’n such that

’,(x, r)=-0, (x, ’) Q,, r,,(x, -)= 1,

2-+1 2-+2
o-p o’t

and we use as testing functions in the weak formulation of (1.5)

L(x, )= s ds (x, ),
d kn+ +

Q,=Bp.x(tn, t), B,(’) B, x {r};

(x, "r) e Q,+I,

with a > 2.
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The time part of (1.5) yields for all - (t,, t) (the calculations below can be made
rigorous by means of a Steklov averaging process)

U- $2
ds 2, dx dr

N{’< -} +

(2.5) =fro n O
F(u, kn+l) dxd

F(u, k) dx d+
t

We use the lemma in treating the space pa:

-IIQn(div)fndXdT= fIQ ’((Ik+, (S)$2

But

F(u, kn+l)2zn d..

ds)+ ) dx dr

->- (u)-A .tq{u>k.+x} //2 IVu] dxdr

$2

=>2-3a ff (u)lVF(u,k,,+l)]22. dxdr

O f fo C(u)K2.,iVul2F(u,k.+l)_2(fk, ch(s) )2-- s ds
q-

dx dr.

F(z, Zo)-2(Iz D(S)as2
2

ds 4

therefore, for a 0 > 0 suitably chosen, we arrive at the following inequality:

(2.6)
--rio (diva)f"dxdr>=2-4’a(k) f fo IVF(u’k"+l)"12dxdr

-2 (u)F(u, k.) dx dr,0.2p2

where we have also used u _-> k,+l > ko=(k/2), and (2.2).
Adding (2.5) to (2.6) we get

(2.7)
F(u, kn+l)22n dx-Jf-f)(k) IIQ IVF(u, k.+,)C.I axa

=< 71 o.t 1 -5  (Ilull , o) F(u, k,)2 dx dr,

Now fix r/> 0. First we consider the case

’)/1 220aA"

(2.8)
p
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Then the right-hand side (r.h.s.) of (2.7) is majorized by

1+ x F(u,k dxd-.

We also need the following estimate for

]a,+]-= meas {(x, r) Q,,]u(x, r) > k,+}.

Using (2.1) again we have

f(u, k,)2 dxdlg,+,[ dr ds
dk k S

2

(2.9) IA.+,I 6(k") (k.+,- k.)
k 2

2-A"+2)IA+,J6(k).

From (2.7)-(2.9) and the embedding of [5, pp. 74-75], there follows

F(u,k+

Ie.+l/+) IF(u, n+l)2] (N+2)/N dxd

(2.10) C(N)IA,+ll a/(N+a) IVf(u, k,+),l2 & d,

sup F(u,+) &

N DB 1+ (t)-’(k)-(/(+(k)-/(+

F(u, k) &d

with D= C(N)2s, B =2; here and below C(N) is a constant depending only
on N.

If k is such that

fro F(u’k)2dxdrffo F(u’O)2dxd"

D-(+/B-((+/ (t)- 1 + (k)(k)/,

Lemma 5.6 on page 95 of [5] implies that IIo (,x,0 as , i.e.,
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Thus, taking into account F(u, 0)2=< b(u) and recalling the definitions of and

(2.11) 6(llull,o)/’/>llull -/2),- (p)-<+) +- (llull,oo)+/)-llll -’-/),oo ()’+ dx d

(T: C(N)26a:) if we assume also > 1 + e, e.g.,

(2.12) =2+e.

Since obviously

-II u I1o,o--< u Iloo,
we get from (2.11)

(2.13)

(u)llul1-1 < -,
oO,o= d(u)u in Qo,

) (N+2)/2

,,(llulloo,oD’+</=)-< ,=(o-p) -=+) 1 + ,(llulloo,Oo)

"IIo O(u)ck(u)dxd’r"

Let us define

a /(N/2)’

q(, ,) {(x, o)llx- Xol < s, - < o < t},

With this notation, on applying Young’s inequality to (2.13) we have

(2.14) U(p,-) <= aU(po, to)+ T3(Po-p)-(+N)/(’-)Mo,

for any 8 (0, 1); here

()(N+2)/(2(1-/3)) ( ffO )1/(1-/3)Mo 8 -/3/(1-/3) 1 + O(u)ck(u) dx d’r

and ’)/3 "Ygl./(1-/3)"

Define

SO p,

for =0, 1, 2,... and note that (2.14) holds in the form

U(si, ’)<= 8U(s+l, ’+)+ y3((1-tr)trp)-(N+2)/(-/3)o’-(n+2)/(-/3)iMo

By iteration

U(so, ’o) <- 8"U(s., 7".)+ y3((1--cr)o’p)-(N+2)/(’-/3)Mo [80"--(N+2)/(1--/3)] i.
i=0
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Now we choose --1/20"(N+2)/(1-/3) and let n->o. Then, taking the (a+(N/2))th
root of both sides of the inequality so obtained, we arrive at

< "}t4 (1--O")-(N+2)/eo’--(N+)2/e2 1 +
(2.15)

cI’(u)4,(u) dx drJOo
y (2y2) 1/

Finally, if (2.8) is not true, we have

(2.16) Ilull ,o _-<,t,-’ n

Estimate (1.6) follows when we combine (2.15) with (2.16) and 4(-1(x))
x-l(x) (note that -1 exists because of the strict inequality in (1.2)).

3. Comments and generalizations.
Remark 3.1. If ck(u)=u m, m> 1, (1.6) reads (take e=A/m,A>O)

11U 110o, Oo <-- ( ’)
1/(m-l)

-t- (2)
1/x

( 1 + )(N+2)/2A(ffjOo U
m-l+x dx d)l/

for all , I > 0.
In the linear case (u)=u, 1, we can take = t/O in (2.8), so that our

estimate takes the form (2.15), which in turn reduces to Moser’s sup-estimate [6].
Remark 3.2. A solution of u-u= 0, m > 1, is given by

) -1/(m-l)

V(, ) lxl/(-l 1- e (0, r*), x e

T*=(m-1)(2m(N(m-1)+2)m-1)- fixed

Applying to V the estimate of Remark 3.1, we can see that the functional depen-
dence on u of the second term on the r.h.s, of (1.6) is sharp.

We also note that, in (1.6), a corrective term balancing the second term on the
r.h.s, is needed (just consider solutions u const, and let p ). Moreover, in our
estimate, the behavior as p of the corrective term (p/t)-(p/), is the one
predicted by sup-estimates at infinity for solutions of (1.1) ([1], [3], [4]).

The interpolation form assumed by (1.6) allows us to give our estimate for the
subsolution u itself, rather than for w max (u, c) (c > 0 fixed arbitrarily" see Remark
3.3 for an estimate of w).

Remark 3.3. Assume satisfies (1.2) (where we now allow the first inequality to
be nonstrict) only for s >A 1, and u satisfies in Qo

u,-div (x, t, u, V(u)) N b(x, t, u, V(u)),
where

ti(x, t, u, Vb(u)) Vu => A-(u)IVuI-A(1 + uck(u)),

la(x, t, u, Vb(u)) _-< A( (u)lVul + 1),

]b(x, t, u, Vck(u))l<-A((u)[Vu]+ 4,(u)+ 1).
Then, using the techniques of the lemma and theorem above, we can prove for

w max (u, 2A)

(3.1) f ax
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Indeed, in the proof we can take k->2A, so that (2.1), (2.2) still hold in [k/2, ).
Moreover, (2.8) certainly holds if we take

p

this choice accounts for the appearance of (A) in (3.1).
Remark 3.4. Solutions of variable sign. Assume 4 :R-R is an increasing AC

function satisfying (1.2) almost everywhere s 6 , and u is a bounded local solution
of (1.1) in Qo (in the class defined above); u is not required to have constant sign.
Then the previous arguments, with minor changes, prove estimates similar to (1.6) for
the positive and negative parts of u. Analogous extensions hold if b merely satisfies
the assumptions of Remark 3.3 for large values of Is[.
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AN INVERSE PROBLEM FOR A CLASS OF QUASILINEAR
PARABOLIC EQUATIONS*

YANPING LIN

Abstract. The identification of the source control q q(t) of one-dimensional quasilinear parabolic
equations is considered via additional information on the solution of integral type. Existence, uniqueness,
and continuous dependence of the solution upon the data are demonstrated by employing some a priori
estimates, compactness arguments, and the strong maximum principle.

Key words, inverse problem, parabolic, a priori estimates, maximum principle

AMS(MOS) subject classifications. 35R25, 35R30

1. Introduction. We studythe identification ofthe unknown source control q q(t)
in the following quasilinear parabolic equation"

ut a(x, t, u, Ux), + q(t)u + F(x, t, u, ux, q(t)) in

(1.1) u(x, O) ok(x), 0 < x < 1,

u(0, t)=f(t), u(1, t)=g(t), 0<t<T,

subject to the integral identity

(1.2) (x, t)u(x, t) dx: E(t), 0< t< T, 0<s(t) 1,

where QT={(x,t)lO<x<l,O<t<T} with T>0, the functions a=a(x,t,u,p), F=
F(x, t, u, p, q), , f, g, s, E, and are known and

Oa
(1.3) ap=--p (X, t, u,p)>=ao>O.

Problem (1.1)-(1.2) and other similar inverse problems, or parameters iden-
tification problems, have recently been studied by several authors both in one- and
n-dimensional spaces [3], [4], [5], [15], [16]. In [3]-[5] Cannon and Lin solve these
problems classically, while abstract semigroup methods were employed in [15] and
[16]. When a --p and (1.1) is subject to the second boundary conditions ux(0, t) =f(t)
and u(1, t)= g(t), problem (1.1)-(1.2) has been treated by Cannon and Lin [5] with
s(t)=-1. There existence, uniqueness, and stability of the solution are derived via
potential theoretic representation techniques. It is obvious that the method used in [5]
will no longer be good for problem (1.1)-(1.2) due to the nonlinearity of the leading
term, which suggests the need for another alternative.

To interpret the integral condition (1.2), we consider the following. First, if u is
a temperature, then (1.1)-(1.2) can be regarded as a control problem with source
control. Here we investigate the identification of the source control q(t) necessary to
produce the specified or desired energy E(t) on a portion of the domain. Second, let
us consider the example of certain chemicals absorbing light at various frequencies
given by Cannon, Esteva, and van der Hoek in [2]. The intensity of such light on a

* Received by the editors April 19, 1989; accepted for publication (in revised form) December 12, 1989.
? Department of Mathematics and Statistics, McGill University, Montreal, Qu6bec, Canada, H3A 2K6.

Present address, Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
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photoelectric cell gives an electric signal which is proportional to the total amount of
chemical present in the volume through which the light passes. If u denotes the
concentration of such a chemical which is diffusing in a straight glass tube with x
measured in the direction of the axis of the tube, then the electric signal produced by
a light beam passing through the tube at the right angles to the tube between x 0
and x s(t) is proportional to the integral in (1.2) (with P 1) which is the total mass
of the chemical in 0_-< x <_-s(t) at the time t. For such diffusion processes, the integral
condition (1.2) arises naturally and can be used as supplementary information in the
determination of the unknown concentration u and the source q(t). We can also find
other examples in which the integral condition (1.2) arises, for instance, heat trans-
mission in a thin rod in particle diffusion in turbulent plasma [1], [7], [11], [12].

Following [5] we want to eliminate the term q(t)u in (1.1) by introducing the
following transformations:

(1.4) v(x, t)= u(x, t) exp -q() d:

(1.5) u(x, )= v(x, )exp q(:) d:

r(t)=exp q(:)d:

-f’(t) dr
q(t)- f’----.

r(t) dt

Thus, (1.1)-(1.2) can be written equivalently, by (u, q)- (v, r), as

( (x, ,,r(t)a + r(t)F -, in Qr,Vt
r

(1.6) v(x, O) c/b(x), 0 < x < 1,

v(O, t): r(t)f(t), v(1, t): r(t)g(t), O< < T,

and

(1.7) r( t) E i) (x, t)v(x, t) dx, o < < T, 0 < s( t) <= 1.

Problem (1.6)-(1.7) now can be viewed as a quasilinear parabolic equation with
nonlocal boundary condition and nonlinear functional of the solution if we substitute
(1.7) into (1.6). Although (1.6)-(1.7) looks more complicated than does problem
(1.1)-(1.2), it is easier to handle as we shall see below. We now define the solution
pair (u, q) and (v, r).

DEFINITION 1.1. A pair (u, q) is called a solution for problem (1.1)-(1.2) if there
exists an a, 0< a < 1, such that

ueCI+’(OT)f)C2+’(QT) and qeC"/2([O,T]),
and that the pair (u, q) satisfy equations (1.1)-(1.2).

DEFINITION 1.2. A pair (v, r) is called a solution for problem (1.6)-(1.7) if r(t) # 0
and there exists an a, 0 < a 1, such that

v e CI+((T) ffl C2+(Qr) and r e C1+/2([0, T]),

and that the pair (v, r) satisfy equations (1.6)-(1.7).
Here and throughout this paper we shall use the standard notation for H61der

spaces, C a, C1+, etc. defined in [9]. We shall also use the following notation:

Ilv(’, t)II c,o,,)- Iv(x, t)lp dx 1 p <,
[Iv(.,t)l<o.)=ess sup Iv(x, t)[,

x(O,1)
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for the functions v v(x, t) defined on QT-, and Ilf[[,(o,-), 1 _-< p -< c, for the functions
defined on (0, T).

Under these definitions we have the following lemma.
LEMMA 1.1. If (U, q) is a unique solution pair for (1.1)-(1.2), then the pair (v, r)

defined by (1.4)-(1.5) is a unique solution pair for (1.6)-(1.7) and vice versa provided
that r( t) > 0 for [0, T).

Proof It is an elementary argument which we omit.
Our approach as in [5] is that we shall show problem (1.6)-(1.7) has a unique

solution pair (v, r) with r(t)> 0, and then by Lemma 1.1 we will conclude that the
inverse problem (1.1)-(1.2) possesses a unique solution pair (u, q) via the transforma-
tions (1.4)-(1.5).

In order to have a direct relation between and r, v, vx, we differentiate (1.7) and
use (1.6) to obtain

=- vdx+ (s(t), t)v(s(t), t)g(t)+ tvdx

1 { ( v(s(t),t) v(s(t),t))+--E r(t) (s(t), t)a s(t), t, (- r(t)

(1.8) -(0, t)a O, t,, ;) /

E
(x, t)r(t)a x, t,

r
dx

+-- (x, t)r(t)F x, t,-, ;,E o r

We now state our assumptions on the data.
Assumption (H1). Assume that a a(x, t, u, p) is a smooth function with respect

to all of its variables and satisfies the following growth conditions:

(1.9) la(x,t,u,p)lC(l+[ul+lpl) la,(x,t,u,p)[+[ax(x,t,u,p)lC.

Here and in what follows, we denote by C a generic constant which depends only
upon known quantities.

Assumption (H2). f 0, g 0, 0 ( is not identically zero), 0 < s(t) 1,
(x, t)> O, E(t)> 0, and there exists a, 0< a < 1, such that

6c+([0,1]), c+(O), ,s,gC’+/([o,]).

Assumption (H3). F F(x, t, u, p, q) is a smooth function with respect to all of
its variables, F 0 and

(1.10) IF(x, t, u, p, q)[ lq[+ c(lul+lpl+ 1),

where 3 > 0 is such that

(1.11) 0N*= max (t)- (x, t) dx <1.
0NCNT

Remark 1.1. A consequence of (H3) is that equation (1.8) is uniquely solvable
for , given r, v, v.
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Assumption (H4). The data satisfies the following compatibility conditions:

(o)

b(0) =f(0), (1)= g(0), E(0)= cI)(x, 0)(x) dx,

f(O) a(x, O, (x), Cx(x))xlx--o+ F(0, 0, (0), Cx(0), q(0)),

(0)- a(x, 0, (x), Cx(X))xlx=l 4- F(q, O, (1), ,(1), q(0)),

where q(0) is uniquely determined from known data and satisfies

(o)

,(O)=dP(s(O),O)dp(s(O))g(O)+ ,(x,O)(x) dx+q(O)E(O)+a(x,O, dp, Cx)l))

+ cI:,(x, O)F(x, 0, 6, Cx, q(0)) dx- @x(X, O)a(x, O, , Cx) dx.
o

This paper is organized in the following way. In 2, we derive by using integral
inequalities, Young’s inequality, and interpolation inequalities [6], [8], some a priori
bounds on the solution pair (v, r). In 3, we approximate our solution pair (v, r) by
a sequence of smooth functions { v 0, r}, and we employ the a priori estimates obtained
in 2, the strong maximum principle and compactness arguments to conclude that
there is a subsequence of {v, ro} which will converge to the real solution of problem
(1.6)-(1.7). Also, we demonstrate the uniqueness and continuous dependence of the
solution upon the data, and finally, we state our main results for problem (1.1)-(1.2).

2. A priori bounds on (v, r). We shall in this section derive various a priori bounds
for the solution pair (v, r) for problem (1.6)-(1.7) under the assumption that the
solution pair (v, r) exists and is such that r= r(t)# 0 for [0, T).

First, we shall show the following result.
LEMMA 2.1. There exists a C > 0 such that

IIo 2 r2(2.1) v2x dx dr + Vx dx + + i"2) dr < C, (0, T),

and

(2.2)

(2.3)

vll <o )+ rll c.

Proof We multiply equation (1.6) by v, and integrate over Qt to obtain

f f) VtVxdxdT"=II<2 r(t)a(x,t,,) vxxdxdr

+ r(t)F x, t,-,--, vdxdr

I14- I2.

We know from integration by parts that

VtVXX dx dr vtv,] dr- VVxt dx dr

 , xlo  xeX+ 
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Since

we have from assumption (H1),

I,ao f fQ v:xdxd-C IIQ
(2.4)

Vxx dx dr C e (I rl 2 +l v] 2 +lvxl2) dx dr.

Similarly, we see from assumption (H3) that

(2.5) ]6]e vdxdr+C(e) ([D[2+IDx[2) dxdr+ ([r]2+l[2) dr

It is easy to see from (1.8) and assumptions (H1)-(H3) that

from which it follows that

C
(2.6) ][ {]Iv(. t)]]t(o,,)+ []V(" t) t(0,,)}1--6"

But, from v(O, t) r(t)f(t) and v(1, t) r(t)g(t), it follows that

It(o,t)lclPf+rlC(lrl+lPl), It(1, t)lclPg+rlC(lrl+lPl).(2.7)
Since

(2.8) vt1)xl d’r-- (1)t(1, r)1)x(1, "r)--vt(O, ’r)1)x(O, r)) d’r,

we obtain from (2.6)-(2.8) and the trace inequalities [14] that

(2.9) =< c (llvx(’, r)llL(O,1)+ [Iv(’, )11,(o,,)) dr

1)xx dx dr + C e (I vxl = +lvl=) dx dr.

Hence, by taking e small and fixed, we have from (2.3)-(2.9) that

(2.10) Mxa dx C 1 (1 11 xa (11 11) a

Since

(2.11) I)
2 dx dr <= C Ifl = dr + C v dx dr

we see via (2.6) and the trace inequalities that

(Irl2/l’:l =) d’r<=C (llv(,, r)ll,:o,1)/llvx( ", r)llL(0,1)) dr

(2.12)
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after substituting (2.11)-(2.12) with e sufficiently small (fixed) into (2.10) and using
Gronwall’s lemma, we have

2vx, dx dr+ v2 dx<

and then by (2.12)

o’
([r]-+ ]12) dr_-< C.

Finally, (2.2) is a direct application of (2.1).
LEMMA 2.2. There exists C > 0 such that

(2.13) Vx <)/ 11o,) -< C.

We need the following two well-known inequalities to prove our Lemma 2.2.
The interpolation inequality"

2/3 1/,3(2.14) u o,1) =< c u HI(0,I)][ U L’(0,I), U E Hi(0, 1),

and Young’s inequality:

A Bh 1 1
(2.15) ABn+n-h/ A,B >0, n >0, --+-=1 ,h>l.

h’ h

Proof of Lemma 2.2. Let P> 2; then we have

j’l P f0 fotdoo
vxdx- dx= vdxdr

P-,ld- PP-I-,dd

=Jl+J2.
From assumptions (H1)-(H3) and (1.6), we see that there holds for a small e >0

f fQ P-2 2N-ao P(P- 1)Vx Vxx dx dr

+[[_ .x.,
ddQ

P-2 2N(e-ao) P(P-1)v vxdxdr

f( P(P-1)lvxlP-(lvl=+lvl+lrl2+ll) dxd+C(e)
ddQ

and by (2.12) and Lemma 2.1,

vxP-22vxxdxdr
ddQ

<o,a + x(" )II -2(o,)) dx dr.
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Weknow from (2.6) and (2.8) that

I1,1 <c P(llv(" )11 P,o,,/llv(, ’)11 PcOO(o,1)) dr,

and then, we obtain from the estimates for J’is that

P P--2 2
Vx dx + P(P-1)v Vx dx dr

(2.16)
<CPe+C &P dx+C Pllv(" r)ll P dr.L(0,1)

Here we have used (2.2)to bound livingston)and llrllO,T).

If live(’, /)1o,) max {1, ]]o,)} for all (0, T), then we are done. Other-
wise, it follows from the continuity of v that the interval (0, T) can be decomposed
into two paas: (0, T)= GT Lr, where

Gr {tlllv(" t)ll(o,) max {1, Ix(o,)}, t (0, T)},

LT (tlllvx( ", t)II (o,)< max {1,

and Meas(GT) > 0. Thus,

;o ;o1 + &f dx < Ilvx(" )11 t(o,,) dr < C live("Meas (GT) L(O, dr,

and hence, (2.16) will become

P p2 P(2.17) v. dx+ P(P 1)ve-.. a
Here the constant C is dependent upon Meas (GT).

Now we see from the interpolation inequality (2.14) that

I1" / < c ii. P/2 2/3 P/2 1/31o..)= I1.o.)11 I11o.).
and then, by Young’s inequality (2.15) with = and h 3,

x < c I1" / 4/
OXUxL(0,1) HI(0,1)

Ox "1(0,1) + C "Uv ’(O,l)
Since,

and

II-(0,1)- -’ V V dx-]" V dX

P/2

we see that for [0, T],

Io’ Io IoP P--2 2vx dx / P P-1) vx vxx dx dt

}P--2 2<= CP(P- 1 P2r Vx v, dx dt + r vP dx dt

+ Cp2rl-2 vx(’, t)It [--(o,,) dt.
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If we let r/=min {1/2CP2, 1/2Tp(p-1)}, we obtain from the above inequality

(2.18) sup v, dx <- CP4 II/)x(’, t)llPLP/2(o,1) at <- CP4 sup
0<t<T 0<t<T

Let P Pk 2k and Ak SUpo<,<r (o VP dx) /Pk" We take the Pkth root of (2.18)
and, by induction, obtain

Ak<-dkAk_l<=..’<={ -rn=lwhere dm=(Cp4m) 1/P. But, we know that

dm_-<exp (In C+ln2) Y
2"

<oo,
m=l

so that 1-[= d" -< C. Consequently, we can conclude from Vx tO. limk_oo Ak and
A1 -< C (by Lemma 2.1) that

(2.19) < c.

Then, by (2.6) it follows that Ilt:ll/o,1) <- c. [3

LEMMA 2.3. There exist C > 0 and E (0, a) such that

(2.20)

Proof If we write equation (1.6) as the linear equation

v, avvx + B,

where

B(x, t) a,vx + r( t)a,, + r( t)F(x, t,

and ap are bounded functions by Lemma 2.2 and assumptions (H1)-(H3). Thus, we
see from Theorem 6 of [13, p. 363] that there exist fl E (0, a) such that (2.20) holds.

As a corollary of this lemma we have from Schauder’s estimates [9], [14] that

(2.21)

where r, inf {Ir(t)llt (o, T)}.

I1,.,11+,(o,. < C(r,),

3. Existence and uniqueness of the solutions. In this section we shall use standard
approximation techniques to prove the existence of our solution pair (v, r).

Let 0> 0 be a small parameter. We define a sequence {v, r, po} by

v,= r(t)a x, t,-- + r t)F x, t, in QT,

(3.1) v(x,O)=6(x),

v(O, t)= r(t)f(t),

0<x<l,

v(1, t)=r(t)g(t), O<t< T,
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and

(3.2)

(3.3)

where

1 I(t)

E

E o

-alP(O, t)a O, t, rO(t rO(t

(*x(x, t)r(t)a x, t,--ff,--g,] dx

v -0 dx,d(x, t)r(t)F x, t, rO --g, rO

o (x, t)
ok(x), 0 <-- <= O,

(3.4) v(x,t-O), O<=t<T.

In fact, po is an approximation of the derivative : of r. We know from (3.4) that 5
is determined by initial data b in 0 -< <- 0 and r (0) 1 by the compatibility assumption
(H4). We see from (3.2)-(3.3) and assumption (H3) that {r, po} is uniquely determined
in 0_-< t-< 0 by Lemma 1.2 of [5]. Then, we can solve (3.1) uniquely in the usual classical
sense [9], [14] in 0_-< t_-< 0 and v>O bythe strong maximum principle [10, pp. 74-75].
This will determine 5 in 0 _-< t<-20 by (3.4), and then the pair {r, po} is determined
in 0 _-< -<_ 20 with r > 0, . By induction, we have that problem (3.1)-(3.4) possesses
a unique triple {v, r,p} with r>O.

We now apply the arguments for Lemmas 2.1 and 2.2 to (3.1)-(3.3) and see that
there exist/3 e (0, a] and C > 0 independent of 0,

(3.5) IIvOIIcl+(OT+[IrOI[’=(tO,T+IIpOIIc’(tO,T <=C
o =inf{rO(t)lt (0, T)}. Thus, we see from compact-and IIvllc+( < C(r.), where r.

ness arguments that there exist v e C1+((r), re Ct/2([0, T]), and p e C/2([0, T]),
poand a subsequence of {v, ro, }, also denoted by itself, such that

(3.6) v -. v, r - r, p o
_
p as 0-0,

and the convergence is uniform in Cl+((r)x C/([0, T])x C/([0, T]) if A </3.
Unfortunately, we cannot take the limit in (3.1)-(3.3) as 00 since r>O will

not guarantee that the limit function r(t) > 0 for all e [0, T). We must first show that
r(t)>0 on [0, T). Since r(0) 1, we see that r(0)= 1. By continuity there exists at
least a small time interval such that r(t)> 0. Let T* (0, T) be defined by

(3.7) T* inf ( tit(t) 0, (0, T)} > 0.

Thus, by letting 0 0 in (3.1)-(3.4) in f x (0, T*), we see that (v, r, p) will be a solution
of (3.1)-(3.3) in Qr* with 0 and the bar on v removed. From the strong maximum
principle [10, pp. 74-75] and continuity of v, we see that v(x, T*)> 0 in (0, 1). Since

1 1" s(T*)
| (x, T*)v(x, T*) dx > 0r(T*)

E(T*) .o

and r(T*)--0 by (3.7), this contradiction implies that r(t)> 0 in [0, T].
Hence, the limit in (3.1)-(3.3) as 0-0 can be taken and the triple (v, r,p) is

actually a global solution for problem (3.1)-(3.3) without 0 and the bar on v. This is
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because IIvllc2+(oT)<= C, where C>0 is independent of 0, but depends on r.=
inf {r(t)lt e (0, t)} > 0 which depends upon the data. The identity -- p in [0, T] follows
from differentiating (3.2) (with 0 and the bar on u removed) and comparing f and p
together with Lemma 2.1 of [4, p. 598].

We shall now summarize the above as the following theorem.
THEOREM 3.1. Under assumptions (H1)-(H4), there exists a unique solution pair

(v, r) with r > 0 for problem (1.6)-(1.7), which is continuously dependent upon the data.
Proof The existence follows from the above argument. If we let (v k, rk) be the

two solutions corresponding to the data {chk, fk, gk, S k, E k, k, Fk} (k 1, 2), then there
exists an M > 0 such that

IIvll.l(O+llrll,/.(to.<--M, k= 1,2,

where M depends only upon the data. Hence, it follows from an argument similar to
that of [4] and [5] that there exists a C > 0 dependent upon the data such that the
following stability estimate holds:

)1- )211C’+;(OT)+ rl- r211 cl+I/2([0, r])

(3.8)
+

for some O< A N a < l, where n is such that v/r], lv/r], ]/r[ N N for all x and t.
THEOREM 3.2. Under assumptions (H1)-(H4), there exists a unique solution pair

(u, p) for problem (1.6)-(1.7), which is continuously dependent upon the data.
Proof The proof follows from the transformation (1.4)-(1.5), Lemma 1.1, and

Theorem 3.1.
Remark 3.1. We see from the method developed in this paper that if we replace

(1.1) by the more general form

ut a(x, t, u, Ux, q( t))x + q(t)u + F(x, t, u, Ux, q(t)),

our results still hold if the following additional growth conditions are satisfied:

la(x, t, u,p, q)l<-6,lql+C(l+lul+lpl),

where 61 > 0 is such that

max E(t)- I( x(X,t)ldx <1
O<=tNT

and

0__< 6"+6*< 1.

Actually, these conditions are required to guarantee the unique solvability for in the
following equation"

i" ---E5 dpv dx -t--- dP(s( t), t)v(s( t), t)g( t) + (tI) dx

+-- r(t) (s(t) t)a s(t), t,
E

V(s(t), t) /(s(t), t) --f(t))i- r( r(

-(O,t)a(O,t,v(O, t) v,(O, t) -i’(t) I
r(t) r(t) r(t
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+--E (x, t)r(t)F x, t, , V_Xr dx,

if r, v, and v are given.
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ENTIRE SOLUTIONS OF REAL AND COMPLEX MONGE-AMPIRE
EQUATIONS*

TAKAI KUSANOf AND CHARLES A. SWANSONt

Abstract. Real and complex Monge-Ampre equations

(A) det\ox,oxj/=f(Ixl, u, lVu[), xeNN, N_->2,

(B) det
Oz, O#-f(ll,u,lul), zeC, ge2

are considered in the entire spaces Nn and C respectively, N 2. A unified fixed-point approach is used
to generate various conditions for (A) to have radial, strictly convex solutions u(x) in Nn that are asymptotic
to positive constant multiples of Ixl as Ixl , and for (B) to have radial, strictly plurisubharmonic solutions
u(z) in Cn that are asymptotic to positive constant multiples of log tzl as Izl.

Key words. Monge-Ampre equation, entire solution, convex, plurisubharmonic, Gaussian curvature

AMS(MOS) subject classifications. 35J60, 35Q99

1. Introduction. Our primary objective is to present a unified approach for estab-
lishing the existence and structure of radial entire solutions of real and complex
Monge-Ampre equations

(A) det \oXl oxj/-/(Ixl, u, Ivul), xeR, N->2,

(B) act ozio /:f([zl, u, lvul), zeC Ne2,

respectively, i, j= 1,..., N, under various hypotheses in 2 on the function fe
C(N+x+xN+,+) or fe C(N+xNxN+,+), where N+=(0, m), R+=[0, m). As
usual, Ixl and Izl denote the Euclidean and Hermitian norms of points x (x ,..., xu)
and z (z,..., zu) in real and complex N-space Nu and C u, respectively, and 7
denotes the gradient with respect to the coordinates in either space. An entire solution
of (A) is defined to be a real-valued function u e C2(Nu) satisfying (A) at every point
ofN An entire solution of (B) is a real-valued function u e Cz(Cu) satisfying (B) at
every point of C u. Our attention will be directed toward radial solutions of (A) or (B),
i.e., solutions that are functions of t= Ix] or t= lz[, respectively.

The main theorems in 2 contain various sufficient conditions for (A) to have
infinitely many radial entire solutions u(x), which are strictly convex and asymptotic
to positive constant multiples of Ixl as Ixl  , and for () to have infinitely many
radial entire solutions u(z), which are strictly plurisubharmonic and asymptotic to
positive constant multiples of log Izl as Izl Such solutions are positive throughout
Nu [or C u] under the hypotheses of Theorems 2.1A and 2.3A (or Theorems 2.1B and
2.3B, respectively). The proofs are given in 3 on the basis of the Schauder-Tychonov
fixed-point theorem. Some variants of these results are included in 4.
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Since their origin in geometry two centuries ago, Monge-Ampre equations have
retained their central theoretical role in various geometric problems, including the
problem of constructing manifolds with prescribed Gaussian curvature; see, for
example, Bakel’man [3], Kazdan [9], and Pogorelov [17]-[19]. Among the numerous
investigations of Monge-Ampre equations, we mention only the recent studies [1]-
[10], [12]-[23]. Most of the literature, however, has been concerned primarily with
solvability and regularity questions for boundary value problems in bounded domains,
whereas information on Monge-Amp.re equations in unbounded domains seems to
be limited to results of Popivanov and Kutev [20] concerning the Neumann problem
for (A) in exterior domains, and the present authors [11] for (A) in

Standard calculations [7], [8], [16] show that the existence of a positive radial
entire solution u(x)= y(t)(t= Ix]) of (A) is equivalent to the existence of a positive
solution y C2(/) of the ordinary differential equation

(1.1)g ([y’(t)]n)’-Stn-lf(t,y(t),ly’(t)l), t>0

satisfying initial conditions y(0) c > 0 and y’(0) 0. A parallel statement for a positive
radial entire solution u(z)=y(t)(t=lzl) of (B) holds if (1.1)A is replaced by

(1.1)B ([ty’(t)]S)’= s2S/lt2S-lf(t,y(t),1/21y’(t)l), t>0.

In 3 we consider the more general problem of existence of solutions y C2(/) of
the equation

(1.2) ([ty’(t)]N)’=tN(+)-g(t,y(t),y’(t)), t>0

satisfying y(O)=c,y’(O)=O, and y’(t)>0 for t>0, where a[0,1] is a constant.
Evidently (1.2) is of type (1.1)A or (1.1)B when a =0 or a 1, respectively. Such a
problem for (1.2) will be solved by obtaining an appropriate solution of the associated
integrodifferential equation

(1.3) y(t)= c+ s rN(+l)-l g(r, y(r), y’(r)) dr ds, >=O

by a fixed-point analysis.

2. Statement of theorems and examples. The existence of radial entire solutions
of (A) and (B) will be proved under conditions on the function f selected from the
list below. For convenience the domain off is taken to be fl) E/ x E x E+ a restriction
to +xE+x/ is understood if only positive solutions of (A) or (B) are being
considered.

(f) f(t, y, z) is positive and continuous in fl), and nondecreasing with respect to
y and z.

(f2) k-nf(t, ky, kz) is a nondecreasing function of k in some interval (0, ko] and
limkO+ k-Nf( t, ky, kz) 0 for each t, y, z) 3.

(f) k-Nf(t, ky, kz) is a nonincreasing function of k in some interval [ko, oe) and
limk- k-Nf( t, ky, kz) 0 for each (t, y, z) D.

(f3) limy_,_f(t, y, z) 0 for each fixed (t, z).

(f4) t-f(, at, a) dt < oe for some constant a > 0.

(fs) - t, a log t, dt < oo for some constant a > 0.
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THEOREM 2.1A. If (fl), (f4), and one of (f2), (f) hold, then (A) has an infinitude
of positive radial strictly convex entire solutions u(x) in RN such that Ixl-lu(x) has a
positive finite limit as Ixl- 0.

THEOREM 2.lB. If (fl), (fs), and one of (f2), (f) hold, then (B) has an infinitude
of positive radial strictly plurisubharmonic entire solutions u(z) in C such that
(log ]zl)-lu(z) has a positive finite limit as

It can be verified easily that the conclusion of Theorem 2.1A holds for the example

(2.1) det(o2u/oxiox;)=p(lxl)u+q(lxl)lVu[, xN
where either y> 1 and 8> 1 or 7< 1 and < 1, and p, q are positive continuous
functions in N+ such that

(2.2) t+V-lp(t) dt<, tN-q(t) dt<.

Likewise Theorem 2.1B applies to the complex Monge-Ampre equation

det(ou/oz, o)=p(lzl)u+q(lz[)lu[, zCL
where , 8 are as in (2.1), but (2.2) is replaced by

(2.3) t-(log t)p(t) dt <

TOM 2.2A. Conditions (f), (f3), and (f4) imply that (A) has an infinitude of
radial strictly convex entire solutions u(x) in such that [xl-u(x) has a positive finite
limit as Ixl .
TOM 2.2B. Conditions (f), (), and (fs) imply that (B) has an infinitude of

radial strictly plurisubharmonic entire solutions u(z) in C such that (log lzl)-u(z) has
a posiive finite limit as lz .

Theorem 2.2A is applicable to the example

det (Ou/Ox Ox) p(lx) e

for any positive continuous function p in N+ satisfying

ep(t) dt < for some a > 0.

Similarly, Theorem 2.2B applies to the equation

det (Ou/Oz O)=p(Izl)e
where p is a positive continuous function in N+ satisfying

t-+p(t) dt < for some a > 0.

The final theorems in this section asse, in effect, that hypotheses (f), (f) can
be deleted from Theorems 2.1A and 2.1B provided the integrals in (f) or (fs) are
suciently small. It is convenient to prove these results for the equations:

(A) det (Ou/Ox Ox)= If(x, u,

(Bx) det (ou/o=, o) A/(Izl, u, Ivul),
where h denotes a small positive parameter.
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THEOREM 2.3A. For every h in some interval (0, ho], conditions (fl) and (f4) are

sufficientfor (Ax) to have an infinitude ofpositive radial entire solutions with the properties
stated in Theorem 2.1A.

THEOREM 2.3B. For every h in some interval (0, ho], conditions (fl) and (fs) are

sufficientfor (Bx) to have an infinitude ofpositive radial entire solutions with the properties
stated in Theorem 2.1B.

As an illustration, consider an equation of prescribed Gaussian curvature"

(2.4) Oct (02u/Oxi Oxj)= hp(lx])(1 --- [Vu[2)(N+2)/2, XEN,
where p is a positive continuous function in R+ satisfying

(2.5) tm-lp( t) dt < cx3.

If A is sufficiently small, Theorem 2.3A implies that (2.4) has positive radial entire
solutions u(x) in N that are asymptotic to constant multiples of Ixl as Ixl- If u(x)
is any such solution of (2.4), it is obvious that u(x)+ K also is an entire solution of
(2.4) for any constant K.

We note that if the exponent (N+2)/2 is replaced by vE(O,N/2), then (f) is
satisfied, and hence Theorem 2.1A implies that (2.4) has, if (2.5) holds, positive radial
entire solutions u(x) (constant)Ix at for arbitrary A > 0.

3. Proofs of the theorems. The proofs of parts A and B of the theorems in 2 will
be given essentially together by considering the generalized equation (1.2). We employ
the following notation throughout this section without further comment"

qb(t)={1/(1-c)max{1, tl-} if 0--<a<l,
max {1, log (et)} if a 1,

,(t) min {1, t-"}, 0-<a=<l.

Hypotheses on the function g in (1.2) will be selected from (gl), (g2), (g), (g3), defined
to be identical to (fl), (f2), (f), (f3), respectively, with g replacing f; and we also
adjoin the condition

(g4+,) tN(a+l)-lg(t, ac(t), a,(t)) dt < oo

for some constant a > 0.
THEOREM 3.1. If (gl), (g4+) and one of (g2), (g) hold, then (1.2) has infinitely

many positive solutions y C2(+) such that y’(O) 0 and lim,_. y( t)/ ch( t) is positive
and finite.

THEOREM 3.2. If (gl), (g3), and (g4+a) hold, then (1.2) has infinitely many solutions
y C2(+) such that y’(O)=0 and lim,_ y(t)/b,(t) is positive and finite.

Proof of Theorem 3.1. In view of (g4+,) and (g) or (g), the dominated conver-
gence theorem implies that

lim c-rv tN(+l)-lg(t, cb(t), cb(t)) dt=O,
O+

or

lim c-re trc<"+l)-lg(t, cp(t), ctp(t)) dt=O,



REAL AND COMPLEX MONGE-AMPIRE EQUATIONS 161

respectively. Thus, under either hypothesis (g2) or (g), there exists a positive constant
c such that

(3.1) tN+l)-lg(t, 2cb(t),2cd/(t)) dt<-c.
Since (g4+,) implies afortiori

trV-lg(t, adp(t), a(t)) <dt

for the same a > 0, visually the same argument as for (3.1) ensures the existence of a
constant c > 0 such that

(3.2) t-g(t, 2c,(t),2c(t)) dtc

Obviously c can be chosen such that both (3.1) and (3.2) are satisfied; in fact, there
exists a continuum of such positive constants c.

Let 1(+) denote the Fr6chet space of all l-functions in + with the topology
of uniform convergence of functions and their first derivatives on compact intervals
of +. For a fixed constant c satisfying (3.1) and (3.2), we define a closed convex
subset , of 1(+) and a mapping ff’ (+) by

(3.3) , ={y (+)" cy(t)2c(t), Oy’(t)2c(t), t0},

(3.4) y(t)=c+ s r(+-g(r,y(r),y’(r)) dr ds, tO.

In order to conclude from the Schauder-Tychonov fixed-point theorem that there
exists y such that y y, we will now verify that maps continuously into
a relatively compact subset of .

If y e and 0N < 1, then (3.1) and (gl) imply that

cNy(t)Nc+ s r(+-g(r, 2c(r),2c(r)) dr ds

_--<c+ 1- _--< 2cb(t), t->0.
1--ce

If y and a 1, we use (3.1), (3.2), and (gl) to obtain

Cly(t)<=C+ S- r:ZN-lg(r, 2cdpl(r),2Cbl(r)) dr

io,[ioN c+ r-’g(r, 2c(r), 2c0(r)) dr ds

c+ c= 2Cl(t), 0 t 1,

ds

c<=ly(t)<-c+ s-1 r2U-lg(r, 2cqb(r),2cq(r)) dr ds

+ S- r2N-lg(r, 2Ctl(r), 2c11(r)) dr ds

<=2c/ c log c+ c log et<=2Cbl(t), >= l.



162 TAKAI KUSANO AND CHARLES A. SWANSON

Thus c<-y(t)<-2crh(t) for all t_>0, geE[0, 1]. Moreover, if yE, 0_-<a_-<l, also

O<=(.y)’(t)= rV(+l)-lg(r, y(r), y’(r)) dr

<= rN-l g(r, 2cb(r), 2cq(r)) dr

_-<c for 0_-< t-<_ 1,

0--_< (oy)’(t)_--< rrq(+l)-lg(r, 2cd(r),2c(r)) dr

<- ct fort>_-l,

implying that O<-(y)’(t)<-2cq(t) for all t>_-0. Hence oyE 0, and accordingly
maps o into itself.
To prove the continuity of , let {y,} be a sequence in o/ with limn_oo y, =y E

1(+) in the l(+)-topology. We use the abbreviations ,= N(a + 1)-1 and

Then, for 0 _-< c _-< 1,

I(y.)(t)-(y)(t)l<= - r.() d Co() d d

s 16.(-a(lr s

for all => O, and

I(%y.),(t)-(y),(t)l < rGn(r) dr rG(r) dr

<-- r G(r)- G(r) dr

<- r-’la(r) a(r)l dr e O.

In view of (gl) and (3.1)-(3.3), the dominated convergence theorem implies that
(y)(t)(y)(t) and (y)’(t).(y)’(t) as n uniformly on compact
subintervals of N+, establishing the continuity of .

Local equicontinuity of the set (oo)’= {(oy)" Y e o} is a consequence of the
following inequality, holding for all y e o, 0 N q < t N T<"

t
(r) dr

q
rG(r) dr(oy)’(t) oy)’( ,)1 rG

N rg(r, 2Co(r), 2Co(r)) dr
tl

Then, for any compact interval I [0, T] and arbitrary e > 0, there is a corresponding
> 0, independent of tl, t I and y 0, such that l(ffoy)’(t2) (oy)’(tl)l < e for all

tl, ta I with t2- t< &
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The proof of local equicontinuity of(.)’ for a (0, 1] requires the modification
indicated below"

I(Y)’(te)- (ffy)’(t)l

t[I/2 rG(r)dr] 1/N

(3.5) -<t

-t-[I/ rG(r)dr]
’2
rG( r) dr

q
(r) dr-t-[t t71 rG

<= t rG r) dr
tl

1IN

1IN

/lt-- t?l rG.(r) dr

where G(r) g( r, 2cb (r), 2c, (r)). Define

K [ 1 ]’/Nmax G(r)
v + 1 orE T

and note that v + 1 N(a + 1) and
v+l ’+1te _--<(v+l)t(te-tl).

Then (3.5) yields

v+l)l/N tl t2 tli(Y)’(t2)-(Y)’(tI)I<=K- ta(t+l--tl + 2t
1--oz )K[(V+I)i/Ntl--I/N(t2 t,)l/N+tl (t2 t

implying the equicontinuity of ()’ on any compact interval I.
The local equicontinuity of can be verified more easily, and the local uniform

boundedness of and ()’ is clear. It then follows from Ascoli’s theorem that
has compact closure in .

Therefore we can apply the Schauder-Tychonov theorem to conclude that has
a fixed point y. Clearly y(t) satisfies (1.3), and hence also y(t) is a solution of
the original differential equation (1.2) such that y(0) c, y(t) > 0 for 0, y’(0) 0, and

y’(t)=t s(+-lg(s,y(s),y’(s))ds >0 for t>0.

It follows from this formula for y’(t) and L’H6pital’s rule that y e C(+); in paicular

’(...0 [ g(0, 0 ] l/(3. y"(0) lim
to+ L(a+I)N]

The proof can be given readily from the equations

Y’(t) (+1 (+-1t- s g(s, (s) y’(s)) s > 0,

"()=-- -N(+l) SN(+I)-lg(s,(S),y’(S)) ds

+N g(’ Y()’ y’(t)) -( + s(+-g(s, y(s), y’(s)) ds

t>O,
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in the limit - 0+. For these conclusions it is important that g(0, c, 0) > 0, as guaranteed
by hypothesis (gl) (see also (fl)). We remark that (f2) or (f) is easily possible under
the positivity condition in (fl); see example (2.1) as an illustration.

Using the above formula for y’(t) (or (1.3)), we conclude that ty’(t) is nondecreas-
ing for => 1 and bounded above on account of (3.1), (3.3), and the nondecreasing
hypothesis in (fl). Therefore the limit

lira
y(t)

lira ty’(t) s(+l-lg(s, y(s), y’(s)) ds
t(t)

is positive and finite. (For the left equality we used the now well-known general form
of L’H6pital’s rule, not requiring that lim, [y(t)[ ). This proves the asymptotic
propey in Theorem 3.1. An infinitude of such solutions of (1.2) exists corresponding
to a continuum of allowable initial values c satisfying (3.1) and (3.2).

Proof of eorem 3.2. On account of (g4+a) and the alternative hypothesis (g3),
the dominated convergence theorem yields

lim t(+-g(t, b + a(t), a( t)) dt O,
b-

and hence, as in (3.1) and (3.2), there exists a constant bo such that both

(3.7) t(+-g(, b +a(t), a( t)) dt Na
(3.8) t-g(t, b+a(t), a(t)) dtNa

for all b N bo. With (3.7) and (3.8) replacing (3.1) and (3.2), respectively, almost
identical procedure to that used for Theorem 3.1 shows that the mapping (3.4) has a
fixed point in the modified set

%={ye (+):bNy(t)b+a(t), Oy’(t)Na(t), te0}
for any b bo. The proof is then completed as in Theorem 3.1.

Proof of eorems 2.1 (A, B) and 2.2(A, B). Equation (1.2) specializes to (1.1)A
and (1.1)a in the respective cases

=0, g(t, y, z)= Nf(t, y, z),

It is easy to see that the hypotheses (fl)- (fs) in Theorems 2.1A, B and 2.2A, B imply
the corresponding hypotheses in Theorems 3.1 and 3.2. In paicular, (fs) implies that

Ie - t, a log t, dt <

for some constant a > 0. Let a/2. Then for e, since g(t, y, z) is nondecreasing
in y and z,

g(t,(t),(t))=g t,(l+logt),
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and hence (gs) holds. It follows that the conclusions of Theorems 3.1 and 3.2 apply
to (1.1)A and (1.1)B, implying the existence of radial entire solutions u(x) y(Ixl) and
u(z) y(Izl) of (A) and (B), respectively, with the asymptotic behavior described in
Theorems 2.1A, B and 2.2A, B. The strict convexity of u(x) y(Ixl) in part (A) of these
theorems is a consequence of

det (O2u/Oxi Oxj) [Y’(tt)]N-l ,,(y t)>0

for Ixl->0. (For t=0, this is obtained from a limit as t-> 0+, as in (3.6)). The proof
given by Delano [7, p. 339] shows that the solutions u(z) in Theorems 2.1B and 2.2B
are strictly plurisubharmonic in C v.

In order to prove Theorems 2.3A, B, we obtain positive radial entire solutions
u(x)=y(t)(t=lx ]) of (A) and u(z)=y(t)(t=lzl) of (B) as positive solutions y
C2(/) of the ordinary differential equations

([y’(t)]rv)’= ANtV-f( t, y(t), ]y’(t)[), t>O,

([ty’(t)]N)’=AN2+lt2-f(t,y(t),1/2ly’(t)]), t>0,

respectively, containing a positive parameter A. These equations are both of the type

(3.9) ([ty’(t)]N)’=Atrv+l)-Ig(t,y(t),y’(t)), t>O

for a 0 or ce-- 1, respectively. Accordingly, the following result implies the truth of
both Theorems 2.3A, B.

THEOREM 3.3. If (gl) and (g4+a) hold, 0<= OZ <--1, then (3.9), for every A in some
interval (0, Ao], has an infinitude ofpositive solutions y C2(+) such that y’(O) 0 and
lim,. y(t)/qb (t) is positive and finite.

Proof In Theorem 3.1, condition (g2) or (g) was needed only to obtain (3.1) and
(3.2). However, since (3.9) contains a parameter A, conditions (g) and (g4+) are
sufficient for the existence of a number Ao > 0 such that

Ao tu+a-g(t, 2cqb(t),2cq(t)) dt<=cN,

Ao tN-g(t, 2cdp(t),2c(t)) dt<-c

for all c in some compact subinterval of (0, a), where a is the number in (g4+c)
(preceding Theorem 3.1). The proof then proceeds as in Theorem 3.1 with Ag
replacing g.

4. Variations and extensions. The following variant of Theorem 3.1 applies to the
equation

(4.1) ([ty’(t)]rv)’= tv+l)-lg(t,y(t)), t>O

for 0 <-a _-< 1, where now g(t, y) is nonincreasing in y and satisfies

(4.2) t(+)-Ig( t, a) dt < c

for some positive constant a.
THEOREM 4.1. Suppose that g(t,y) is positive and continuous in R+xg+ and

nonincreasing with respect to y for fixed t. If (4.2) holds, then (4.1) has an infinitude of
positive solutions y C2(+) such that y’(O) 0 and lim,_ y(t)/ ck (t) is positive and
finite.
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Proof By the nonincreasing assumption for g(t, y) and by (4.2), a constant c > a
can be selected large enough that both

tN(=+l)-lg( t, c) dt <- c and tS-g( t, c) dt <- c rv.

For such a number c, consider the mapping o%, defined by

(,y)(t) c+ s rN(a+l)-’g(r, y(r)) dr ds, >= O.

The procedure in Theorem 3.1 can then be used to verify that has a fixed point
y , where is given by (3.3), generating the stated solution in Theorem 4.1.

This theorem implies the following results for the real Monge-Ampre equation

(4.3) det (02u/Oxi Ox)=f(lx[, u), x Nrq

and the complex Monge-Ampre equation

(4.4) det (ozu/oz, o)-f(lzl, u),

where f in (4.3) or (4.4) satisfies the respective conditions

(4.5) tN-lf(t, a) dt < c,

(4.6) t2rv-lf( t, a) dt < o

for some positive constant a.
THEOREM 4.2A. Suppose f( t, u) is positive and continuous in R+ x+ and nonin-

creasing with respect to uforfixed t. If (4.5) holds, then (4.3) has an infinitude ofpositive
radial strictly convex entire solutions u(x) in such that Ixl-lu(x) has a positive finite
limit as Ixl-,

THEOREM 4.2B. Iff(t, u) is as in Theorem 4.2A and (4.6) holds, then (4.4) has
an infinitude ofpositive radial entire solutions u(z) in C such that (log Iz[)-lu(z) has
a positive finite limit as

Our results in 3 also can be applied to another class of complex Monge-Ampre
equations

(4.7) det (ou/oz, o)=f(lz], u, u), z c,
where denotes the operator defined by

dp= 2 xj+yj
j=l OXj

xj Re zj, yj Im

This type of equation has been studied by Derridj [8] and Popivanov and Kutev [21].
The ordinary differential equation for radial solutions u(z)= y(t) (t Izl) of (4.7) is,
instead of (1.1)B,

(4.8) ([ty’(t)]rv)’= N2N+lt2N--lf(t, y(t), ty’(t)), t>0.

Application of Theorems 3.1 and 3.2 to (4.8) yields the following results under the
hypothesis

(4.9) tN-f(t, a log t, a) dt < oo for some constant a > O.
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THEOREM 4.3. If (4.9), (fl), and one of (f2), (f) hold, then (4.8) has an infinitude
ofpositive radial entire solutions u(z) in CN such that (log Izl)-lu(z) has a positive finite
limit as Izl-, .

TrEOREM 4.4. If (4.9), (f), and (f3) hold, then (4.8) has an infinitude of radial
entire solutions u(z) in CN such that (log Izl)-u(z) has a positive finite limit as Izl- .

Our methods for (A) and (B) can be extended without essential change to establish
the existence of radial entire solutions for systems of Monge-Ampre equations of
any of the three types

(i) det (o)-u/ox, axe)=f(Ixl, .,, , ,, Iv,,I,...,
k=l,...,M, xeRN, N>_-2,

(ii) det (O21,,lk/OZi O)---fk([Z[, Ul, UM, [VUl[,""",
k=l,...,M, zC N>=2,

(iii) det (021ik/OZi 0)=f(Izl, u,, , u,, u,,..., u),
k=l,...,M, zC, N=>2.

An example of the real Monge-Ampre equation (A) is

(4.10) det (o2u/ox ox)= 2(21x1/ 1) exp [(N-)lx123u, x

where 3’ is a positive constant. It is easily checked that u(x)= exp (Ixl2) is a positive
radial entire solution of (4.10). If 3’> N, then (fl), (f2), and (f4) hold, and hence
Theorem 2.1(A) shows that (4.10) has positive radial entire solutions u(x) with the
asymptotic behavior u(x), wlx as Ixl-. for some positive constant w. Equation
(4.10) then has positive entire solutions having different types of asymptotic behavior
at infinity. A similar example is easy to construct for (B).
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Abstract. Consider the equation ii+u=g(u,p)+ txf(t) where p,/x are small parameters, f is an even
continuous 27r/m-periodic function, rn >-2 is an integer, and g is an odd smooth nonlinear function of u.
The main result is that, under certain conditions, the small 2r-periodic solutions maintain some symmetry
properties of the forcing function f(t), when /z 0. Other interesting results describe the changes of the
number of such solutions as p and /x vary in a small neighborhood of the origin. The main tool used in
this work is the Lyapunov-Schmidt method.
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1. Introduction. We consider the equation

(1.1) ii + u g(u, p)+ txf(t)

where p, /z are small parameters, f is an even continuous 27r/m-periodic function,
g is an odd function of u, sufficiently smooth, and rn-> 2 is an integer.

Our main results are, under certain conditions on g andf, that the small 27r-periodic
solutions of (1.1) maintain some symmetry properties of the forcing term f(t), when
/z 0. We also find the bifurcation curves and describe the changes of the number of
such solutions, as (p,/x) varies in a small neighborhood of the origin. A conjecture
which was stated in Fiirkotter and Rodrigues [2] is proved.

Hale and Rodrigues [1], [5] by studying Duffing’s equation //+u=

pu- u3+/x cos t, showed that the only small 27r-periodic solutions are even functions
of t, if/x 0. They also stated the same result for a general even forcing function with
minimal period 27r under the condition 2o f(s) cos s ds O.

Rodrigues and Vanderbauwhede [6] generalized this result for equations such as
1.1 wheref satisfies the former hypothesis and g(u, p) O(Ipul + u) as (u, p) - (0, 0).
They also presented an abstract version for equations in Banach spaces. Vanderbau-
whede [7] also considers problems related to those above in an abstract form.

Fiirkotter and Rodrigues [2] considered the case in which f is r-periodic, that
is, m=2.

In this work we emphasize the case where f is 27r/m-periodic for rn -> 3, but we
also make some comments about the case m =2 because, in some respects, the
techniques presented here are different from the ones of the work above. The main
features of these papers are to find a set of small 27r-periodic solutions of (1.1) and
to prove that these are the only feasible solutions.

In 2, using the Lyapunov-Schmidt method, we show that symmetries in (1.1)
imply symmetries in the solutions of the auxiliary equation. We call special attention
to Theorem 2.1 which plays a central role in this work.

* Received by the editors August 30, 1988; accepted for publication (in revised form) December 12,
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Tecnol6gico, Brazil (CNPq) under processo 301994/85-MA and the Fundao de Amparo Pesquisa do
Estado de S5o Paulo (FAPESP).
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: Instituto de Cincias Matemfiticas de So Carlos, USP, So Carlos, SP, Brasil.

169



170 M. FORKOTTER AND H. M. RODRIGUES

In 3, under certain conditions on g(u,p) and on f, we prove that if u(t) is a
small 27r-periodic solution of (1.1) then there exists k, -m/2<k<=m/2, such that
u(t+kTr/m) is even in t, for (p,/x) small and /x 30. This is stated in Theorem 3.3,
where it is required that a certain coefficient,/9 p(g,f), is nonzero.

Our results indicate that the bifurcation equation are more degenerate when more
symmetries are present in (1.1).

At the end of 3 we give some examples.
In 4 we prove that the condition p 0 is generic. It is also proved that p only

depends on the coefficients of the Taylor expansion of g(u, 0), around u 0, up to the
order m + 1 if m is even and up to the order m if m is odd.

An application which can be reduced to (1.1) is the equation i5+ tov+ G(v)=
off(tot) where G(v) is O(v2) as v tends to zero, f is an even 27r/m-periodic function
and we look for 27r/to-periodic solutions for to close to too. This includes the pendulum
equation and many other mechanical and electrical oscillators. If we let u(t) %f v(t/to)
and to/to2= 1-p, we get an equation like (1.1).

We thank a referee for pointing out that this problem could also be treated by
using a complexification technique and representation of group Zm, such as appears
in Golubitsky, Stewart, and Schaeffer [3].

A similar approach is used by Vanderbauwhede [8], where he considers a related
problem.

We point out that, if we suppose thatf(t + 7r/m) -f(t) for m even, the conditions
of this work no longer hold and the bifurcation equations become more degenerate.
This is a harder problem which will be presented in a future work. The case m 2 is
treated by Fiirkotter and Rodrigues in [2].

2. The auxiliary equation. Consider equation (1.1)

ii +u= g(u, p) + txf( t),

where (p,/z) varies in a small neighborhood of the origin, and the following hypothesis:

(A) f is a real 27r/m-periodic, even function, continuous on R, and m _-> 2 is an
integer.

(B) g is a C real function defined in a neighborhood of (u, p) (0, 0), odd in u,
and g(u, p) pu + au +u + O([pu3[ + [u[7), as (u, p) goes to (0, 0).

Let be the space of all 27r-periodic real functions, continuous on R, with the
norm I[wl[- Supo=<,__<e Iw(t)[, and let (e)be the space of all 27r-periodic real functions,
with second derivative continuous on R, with the norm [[w[I sup {Iw(J)(t)[, 0_-< t-< 27r,
j=O, 1,2}.

On these spaces we consider the projection

(2.1) (Pw)(t) def cOS tfo: sin Io"=w(s) cos s ds+ w(s) sin s ds.

The Fredholm alternative implies that the equation//+ u h(t), with h in , has
a solution in (2) if and only if Ph 0. Moreover, if Ph 0 then there exists a unique
solution u(t) in (e) such that Pu =0. We indicate this solution by Y{h. From the
variation of constants formula, we obtain

[ Io Io 1(2.2) Yh=(I-P) -cos(’) h(s) sinsds+sin(.) h(s) cossds
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Following the usual procedure of the Lyapunov-Schmidt method, the problem
of finding a 27r-periodic solution u(t) of (1.1) is reduced to that of finding a solution
w in (2) of the following equations"

(2.3a) w Y{(I- P)[g(r cos (.-4)+ w, p)+/xf(. )],

(2.3b) P[g(r cos (.- b)+ w, p)+/xf(. )] =0

where u(t)=rcos(t-cb)+w(t), rR and 4 (-7r/2, 7r/2].
Equations (2.3a) and (2.3b) are called the auxiliary and the bifurcation equation,

respectively. It follows from the implicit function theorem that (2.3a) has a unique
small solution, for (p,/x) in a small neighborhood of the origin. We denote this solution
by w*(r, c, p, tx)(t). If we substitute in (2.3b) we obtain the following equivalent system
of equations:

(2.4a) F(r, b, p,/) der 1
g(r cos s+ w*(r, qb, p, I)(s+ oh), p) cos s ds=O,

.o

(2.4b) G(r, , p, tz) def 1
g(rcoss+w*(r, ch, p, tx)(s+ck),p)sinsds=O.

Jo

The following lemma gives information about some symmetries and estimates of

LEMMA 2.1. If hypotheses (A) and (B) are satisfied, then the solution w* of (2.3a)
has the following properties:

(2.5) w*(O, oh, p, Iz)(t) is an even 2Trim-periodic function of and is independent
of 4;

(2.6) w*(r,kr/m,p, tx)(t+kTr/m) is even in for -m/2<k<-m/2;
(2.7) w*( r, qb, p, 0)(t/ 4)) is even in t;

(2.8) w*(O, 4,p,)-cf/O(lpl/l3l) as (p,/z)-(0,0);

(2.9) w*(r, qb, p, tz)-- w*(O, c, p, tz)+ rS(r, oh, p, I)
where S(r, 6, p,t)=O(r+[l), as (r,p, )- (0, 0, 0).

If m is even then the following properties hold:

(2.10) w*(r, 6, P,/x)(t) w*(-r, 6, P, I)(t-r),
(2.11) w*(r, qb, p, lz)(t)= -w*(r, dp, p, -tz)(t-Tr).

If m 3, the following hold:

(2.12) w*(r, -Tr/3, p, /x)(t- 7r/3) w*(r, 7r/3, p, /x)(t + 7r/3),

(2.13) w*(-r, 7r/3, p,/x)(t-2r/3) w*(r, O, p, tx)(t).

Proof Properties (2.5)-(2.7), and (2.10)-(2.13) follow essentially from the fact
that the auxiliary equation is invariant under certain transformations. Properties (2.8)
and (2.9) can be proved in a natural way.

Let 22 {f: R x R - R: f( + 2r, b) f( t,
R x R, f continuous} with the sup norm.

Let m and n be positive integers, with m >-2 and n _-< m 1. If n is even we define

n as the space ofthe functions y 2=2=, such that y(t, b) can be written in the form:
n/2

(2.14) [an,2j(t) cos2j(t-ch)+b,,2j(t)sin2j(t-dp)]
j=0

where a,,2j is an even 27r/m-periodic function and b,,2 is an odd 27r/m-periodic
function, for j 0, , n!2.
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If n is an odd integer, we define . as the space of the functions y e 2-a’x2"rr, such
that y(t, th) can be written in the form:

(n--l)/2

(2.15) 2
j=0

[a..2+(t) cos (2j+ 1)(t-q)+ b.,2+(t) sin (2j+ 1)(t- 4,)]

where an,2j+l is an even 27r/m-periodic function and bn,zj+l is an odd 2r/m-periodic
function for j 0, 1,. , (n 1)/2.

Remark 2.1. In Lemmas 2.2-2.4 and Theorem 2.1 we allow b to vary in R. To
avoid picking up the same solution twice, in 3 we restrict 4 to (-7r/2, r/2].

LEMMA 2.2. . is closed in 27rx2-rr"
Proof Let us assume first that n is even and that y is in ft.. Then it has the form

(2.14).
It is possible to prove that

a,,zj (t)
1

y(t, d) cos 2j(t- b) d6
do

and

b, 2j(t)
1 Ioz= y(t, b) sin 2j(t- b) db.

From this fact it follows that if a sequence yk G n converges in 2-rr2-rr, then its
limit is in

If n is odd the proof is similar.
LEMMA 2.3. Ifqi, hi, fl are positive integers, y ,, 1,. ,

m-1 then I-I ti=1 y/q’ G -,.
The next lemma plays an important role in this work.
LZMMA 2.4. Ifm and n are positive integers, with m >= 2, n <= m 1, andf I

then Y{f that is, the function (t, ) Y{f(., dp) (t), belongs to (I P)
Proof Let us suppose first that n is even.
Our purpose is to prove that there exist coefficients a,,2j, b,,j in such a way that

a function x(t) given by (2.14) is a solution of Y+x=f(t, c) and x (I-P),n. Since
Y{f(., b) is the unique 2r-periodic solution which belongs to the range of I-P, it
will follow that x Y{f(., c).

If we substitute (2 14) into Y+x=f(t, d) wheref(t, b) aef V"/2 [A,,2(t) cos 2j(t-Z-a j =0

b)+ B,,(t)sin 2j(t- b)] and equate coefficients, we obtain the equivalent system:

//,,2j (4j2 1) a,,2 + 4j/,,2 An,zj,

(4j 1 + 4ja.,  

for j=0,...,n/2.
Now, ifwe let Yl a.., )1 Y2, Y3 3 b.,, Y3 Y4, Y col (Yl, Y2, Y3, Y4), we obtain

the equivalent equation:

 =C y+6
where F col (0, A,,zj, 0, B,,zj) and

1 0 0

0 0

4j 4j2-1
for j=0,... ,n/2.
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The eigenvalues of Cj are +(2j+l)i and +(2j- 1)i.
If m is even then the system 3 Cy is noncritical with respect to 2=/m, the space

of 27r/m-periodic continuous functions. The same holds if m is odd, O<-_j<-n/2<-_
(m- 1)/2, orO<=j<-n/2<(m-1)/2. Ifj=n/2=(m-1)/2, then the system p=Cy is
critical with respect to 2=/m.

For the noncritical cases the equation 3)= Cjy+ F has a unique 27r/m-periodic
solution y(t) col (Yl(t), Y2(t), Y3(t), Y4(t)). Since z(t) d___ef col (yl(- t), -y2(- t),
-ya(-t), y4(-t)) is also a 27r/m-periodic solution, it follows that yl(t) must be even
and y3(t) must be odd functions of t.

For j= n/2-(m-1)/2 we have a critical case. Following Hale [4, p. 275] we
have that

cos mt sin mt

-msinmt m cos mt

sin mt -cos mt

m cos mt m sin mt

is a matrix whose columns form a basis of the space of 27r/m-periodic solutions of
C(y), and

[ -(m 2) sin mt cos mt m 2) cos mt sin mt ](t)=
(m-2) cosmt sinmt (m-2) sinmt -cosmt

is a matrix whose rows form a basis of the space of 27r/m-periodic solutions of the
adjoint equation, =-zQ.

If we define projections P, Q as in Hale [4, (2.5), p. 276], we obtain

pf dp( dp t)dP( t) dt dp’( t)f( t) dt,

Qf ’( (t) t) dt (t)f( t) dt.

Pf(., b)=0 implies that QF 0, for j= (m-1)/2.
Then p= Cjy+ F has a unique 27r/m-periodic solution y(t) such that (Py)(t) 0.
If z(t) de___f CO1 (y(--t), --y2(--t),--y3(--t), y4(--t)), then z(t) is also a solution of the

same equation with (Pz)(t)=0. This implies that y is even and y3(t) is odd.
The above information will provide a solution x(t) of i + x =f(t, oh), and the

condition Py=0 implies that Px=0. This shows that x(I-P)n and that x(t)=
?TCf oh)(t).

The case n odd is similar.
LEMMA 2.5. Let X be a Banach space, and let I R be an interval. Let " I-> X

and g" X-> X be functions with continuous derivatives up to the order n. Let H =g .
Then for n >= 1, OnH/Or(r) can be written as a sum of terms of the form

")/i OU"’ dr drl,, ]
.jl_ .l_ olwhere a n, +. + and yi are constants, for 1,. , n.

Moreover, if i> 1, then a<n and Og/Ou((r))d"/dr" is the only term containing
d"/dr".

The next theorem will be very important in the proof of our main results.
THEOREM 2.1. Suppose hypotheses (A) and (B) are satisfied. If 1 <-_ n <-_ m- 1, then

Onw*/Orn(O, ", p, )(" belongs to (I-P)gTn. Moreover, it has theform (2.14) or (2.15),
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for m even or odd, respectively, with the coefficients aij(t)= aij(p, i)(t) and bi(t)=
bo(p, l )( t).

Proof. We will do the proof by induction. If n= 1 then Ow*/Or(O, .,p,/z)(.)
is the unique solution of Ygy=y, where (Ygy)(t, b) %f Yf(I-P)x
[Og/Ou(w*(O, th, p,/z)(. ), p)(y+cos (.- b))](t) is a uniform contraction with respect
to p, for (p,/z) in a small neighborhood of (0, 0).

From Lemmas 2.1 and 2.4, after some calculations we prove that (I-P)I is
invariant under . Since, by Lemma 2.2, (I-P)ffl is closed in 22 it follows that
the fixed point of is in (I-P)I.

Now let us assume that the result is true up to order n- 1. We will prove that it
is true for n.

y=Onw*/Orn(O, ", p,/z) is the unique solution of y--y where

(w*(O, 4,P,I) P)Y+ T(c,p, tz)](t)(y)(t, oh) ae=r Yf(I-P)
Ou

and T(, p, ), by Lemma 2.5, can be written as a sum of terms of the form

oi (w* p) COS (’--)+
Or / k Or / k Or, /Ti oi

where i> 1 and olw*/OrI, above, means OIw*/Or(O,,p,) for 1=0, 1,’’’,ak,.
Moreover, aj<n, a+’’’+ak,flk, n and +’’’+flk, i, forj=l,’’’,ki, i=
1,...,n.

As before is a uniform contraction in 22= for (p, ) in a small neighborhood
of (0, 0).

From Lemmas 2.1, 2.3, and 2.4, after some calculations it follows that (I-P),
is closed in 2=2=. Then the fixed point of belongs to (I-P),.

3. The bifurcation equations. Since in 2 we obtained much information about
the solution of the auxiliary equation, we now are able to analyze the bifurcation
equations given in (2.4).

LEMMA 3.1. Under hypotheses (A) and (B) the following hold"
(i) a(r, , p, 0) 0.
(ii) If m is even, then F and G are odd functions of r and even functions of
Proof The first pa follows from Lemma 2.1, (2.7) and the second pa follows

from Lemma 2.1, (2.10) and (2.11).
THEOREM 3.1. Suppose hypotheses (A) and (B) are satisfieK en for (r, p, ) in

a small neighborhood of the origin, G(r, , p, )=r- sin m(p +... ), if m is odd
and G(r, , p, ) rm-2 sin m(p +... ), if m is even, where p is independent of
p, and (...) indicates terms of order O([p[+[[+[r]) uniformly on , as (r, p, )-
(0, 0, 0).

Proof We will first prove that

OG(o,,p,g)=O, I=1 2,... m-2
Or

If we let H(r, s) dj g(r cos (s-- )+ w*(r, ,p, )(s), p), then

(0, , p, )= "’j:= 01(0, s) sin (s- ) ds.
Or Or

From Lemma 2.5 it follows that OIH/Orl(O, s) is a sum of terms of the form

YiOuOi(w*,p) cos(’-)+/ k Or Or
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where oqw*/orq--oqw*/Orq(O, dp, p, ix)(s), q=0, Oll,’’’,Oki Ol.ll-[-’’’-[-Ol. kiki---1
and +" "+ flki--i.

Let us assume first that is even. From Theorem 2.1 and Corollary 2.1 it follows
that olG/Orl(O, t, p, IX) is a sum of integrals of the form

’
[a(s) cos 2j(s- oh)+ b(s) sin 2j(s- b)] sin (s- c) ds

where O<-j <- 1/2 < (m- 1)/2 and a(s), b(s) are 27r/m-periodic functions.
That integral can be written as

1
-sin (2j+ 1)4 [a(s) cos (2j+ 1)s+ b(s) sin (2j+ 1)s] ds

2

+ sin (2j- 1)th [a(s) cos(2j-1)s+b(s)sin(2j-1)s]ds

Since j<(m-1)/2 implies that (2j+l)<m and since a(s), b(s) are 2zr/m-
periodic it follows that the above integrals vanish.

The case odd, < rn- 1 is similar.
The same idea shows that (O’-l/Or’-l)G(O, oh, p, tz) is a sum of integrals of the

form

sin mch fo
z

2
a (s) cos ms + b(s) sin ms ds

where a(s)= a(p, Ix)(s), b(s)= b(p, Ix)(s) are 2or/m-periodic functions of s.
From Lemma 2.1, (2.6) it follows that G(r, kTr/m,p, Ix)=O.
The proof can be completed by using Lemma 3.1 and the above results.
Remark 3.1. To evaluate p it is sufficient to compute

(0, , O, 0) sin m4 or (0, , 0, O) sin m,
orm-lo orm-lo

for m even or odd, respectively.
The case m 2 is considered by Fiirkotter and Rodrigues in [2]. The cases where

m--3, 4, 5 are considered with details in 3 in the section of examples.
THEOREM 3.2. Suppose (A) and (B) are satisfied and p O. Then the only small

27r-periodic solutions of (1.1) are such that u(t+ker/m) is even in t, for some k,
m/2 < k <- m/2, for (p, Ix small and Ix O.

Proof Since G(r, qb, p, ix)=r"-IIxsinmd(p+ ...) if m is odd, G=0, Ix0
implies r=0 or sinmb=0. Since u(t)=rcos(t-ch)+w*(r, ch, p, ix)(t), from
Lemma 2.1 it follows that u(t) is even if r=0. If sinm4=0 then 4 =kr/m,
-m/2<k<-m/2. Still from Lemma 2.1 it follows that u(t+kTr/m)--rcost+
w*(r, kTr/m,p, ix)(t+kTr/m) is even in t.

In what follows we will assume that p 0.
Now let us analyze the first bifurcation equation (2.4a),

F(r, dp, p, ix)
1

g(r cos s+ w*(r, d?, p, Ix)(s + th), p) cos s ds=.O.
Jo

If we let g(u, p) pu + au + o(Ipu3l / lull) and since F(0, b, p, Ix) -= 0, after some
calculations we obtain for m > 3,

F( r, oh, P, Ix)= r(p +ar2 + 3arlrIx + 3ahIx2+ .)=0
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where

[(.9’’f)(t)]2 dt, r/def COS 3b
2

27r 47r
(?7{f)(t) cos 3t dt

and. indicates higher-order terms.
We know that r=0 solves F=0 and u(t)= w*(0, ck, p, lz)(t) is 27r/m-periodic

in t.
In order to find other solutions, we consider J %f F/r. To find multiple roots of

J 0 we consider the system:

J(r, b, p,/z) =p+ ar2+3arlrtz +3ahtx2+ O,

Jr(r, 6, P, tz ar + 3arltz + O.

Since det (0(J, J)/O(p, r)) a, for r p =/z 0, if a 0, from the implicit
function theorem it follows that p and r can be found as functions of /x in a
small neighborhood of the origin, for each fixed

In what follows, the case m 3 requires a different treatment from the case m > 3.
If m 3 the admissible values of b are 4’ =0 and b +zr/3. From Lemma 2.1,

(2.12) it follows that F(r, -Tr/3, p, tx)= F(r, 7r/3, p, lz), which implies that the
bifurcation equations are the same for b =-zr/3 and 4 r/3.

Also from Lemma 2.1, (2.13) it follows that F(-r, 7r/3, p,
which implies J(-r, 7r/3, p, Ix) J(r, O, p, Ix). Therefore the bifurcation curve p p(/x)
for b 0 is the same as for b 7r/3, while r r(/x) changes sign.

The bifurcation curve for b =0 is given by p= 3a(r/2-h)/x2+ O([/z[3). The value
of r where the bifurcation occurs is given by r =-2r//z + O(/x2).

If m> 3 we assure that J(0, b, p, /z 0. This follows from Theorem 2.1 and
Lemma 2.1.

It also follows from Theorem 2.1 that J(0, b, p,/x) is independent of b.
Since J(0, 4’, P,/z) does not depend on b and J(0, b, p,/z) 0, it follows that the

solution p p(/z) which we obtain by solving J(0, b, p,/x) 0 and r =0 is the unique
solution of J(0, b, p,/x) 0, J(0, b, p,/x) 0 of r and p as functions of/z. Therefore
for m > 3 we have a unique bifurcation curve, which is given by

The next theorem is very interesting and it describes the changes of the number
of the small 27r/m-periodic solutions of (1.1) as (p,/x) crosses the bifurcation curve.

THEOREM 3.3. Suppose (A) and (B) are satisfied, m >-3, t 0 and p, given in
Remark 3.1, is nonzero. Then there exists a unique bifurcation curve F, which is given
byp -3aA/z+ O(/x 3) where A (1/27r) I [(Y{f)(s)]2 ds and ?{fis the 2r/m-periodic
solution of ii + u =f(t), if m > 3 and by p 3a(r/- A)/x + O(/x 3) if m 3, where

2 (cos 3tb/47r) I (?(f)(t) cos 3t dt.r/
The curve F divides a neighborhood of the origin into regions as is shown in Figs.

3.1 and 3.2 for m > 3 and m 3, respectively, for a, A > O, tx O. The number of
27r-periodic solutions of (1.1) is indicated in the figures.

Examples. In what follows we will analyze the cases m 3, 4, 5. We recall that
the case m 2 was studied in Fiirkotter and Rodrigues [2] where we considered the
example f(t) 1 + cos 2t. From the calculation that will be presented below, if g(u, 0)
au3+/3uS+ O(lu71), to compute the value of/9 for m 3, we only use a, while for
m 4, 5 both a and/3 have contribution on the value of p.

For m=3, we have p=-(3/4r)a o (Tff)(t)cos 3tdt.
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2m+1

1

FG. 3.1

4 4

For m 4,

9

47r

FG. 3.2

:7{(I P)[cos ()(’Cf)](s) cos 3s ds

9

4zr

647r

o (ycf)(s):C[cos :(. ):f](s) cos 2s ,is

(Y{f)(s)Y{[sin 2(. )(f](s) sin 2s ds

For m =5,

45

647r

a [(Y/f)(s)] cos 4s as- [(’/f)(s)] cos 4s as.
47r

+ 3__ , (yCf)(s) cos 5s dsa e (?[f)(s) cos 5s ds
647r

5
16zr

, :Cf s cos 5s as.
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Let us now consider the equation ii+u=g(u,p)+ixf(t), where g(u,p)=
pu + au +u +. , for some specific examples of f(t):

(1) Iff(t)=cos 3t, then p 3a/32, h 1/128, and r/= -(1/32) cos 3b.
(2) Iff(t)= l+cos 4t, then p=--a2/8+fl/6, h 1/450, and r/=O.
(3) Iff(t)=cos 5t, then p=-(5/lO24)a+(5/384), h 1/1152, and r/=0.
4. The genericity of the condition p 0. In this chapter we will suppose that

g C’+2

(m--l)/2

g(u, O) 2
i=1

if m is odd and g Cm+3,

u2i+l m+2),2i+1 +O(lul

m/2

u2i+l [m+3),g(u, 0)= Z O2i+1 + O(lu
i=1

if m is even. In both cases we suppose that g(., p) is odd.
LEMMA 4.1. Under the above assumptions and (A), if k>-3 is an integer,

k<-(m-1)/2 if m is odd k<=m/2 if m is even, then there exist continuous

functions, W1 Wl(a3," a2k-1, r, b, Ix, f)= O(([rl+l[)3), w2= W2(r, ok, Ix, f)=
O((Irl / 11)2+), such that

w*(r, , 0, Ix)-- (Y(f) + W, + 2k+l W2+ O((Ir[ + [[)+3).
The proof of the above lemma can be done by induction on k.
LEMMA 4.2. Under the assumptions of Lemma 4.1, the following hold"
(1) If m 4 is even, then there exists a continuous function g(a3,""" am-,f),

such that

m(m+l) fom+l [(Y[f)(s)]2 cos ms ds+ K(a3,"’, a_, f).p
2

(2) If m 5 is odd, then there exists a continuous function K(a3,." ", a_,f),
such that

m oP --2m-1 m (Y{f)(s) cos ms ds+ g(3, am-2,f).

Proof If m is even, from Lemma 4.1 it follows that

w* Y{f+ W + am+ W2 +"
where ed O((Irl + 11)+3).

Therefore,

/+l(r COS S+ W*(S+ ))+1 sin s ds+...

+(r cos s+ w*(s+ ))+ sin s ds

+-- +(r cos s+ w*(s+ ))+ sin s ds+.

m+l[r COS S+ (2f)(s+ )]+ sin s ds

1 foz+-- ae+l[r cos s+(Y{f)(s+ )+ W]+1 sin sds+....
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From Theorem 3.1, it follows that

G(r, oh, p,/x)= r’-/z2 sin mch[p + O(Ipl + lll + lrl)].
Therefore, to determine p it suffices to consider the part of G, which contains terms
involving rm-1/ 2, for p 0.

Let us first consider the term

ffm+ [r COS $ + (f)(s + )]m+l sinsds.

The pa of this term that involves r- is given by

+ m(m+l)
_

sr cos (Y(f)(s + )] sin s ds.
2

By induction we can prove that

1
cosm-1 s sin s

2m-1 [sin ms-sin (m-2)s]

(m--2)/2

j=l
/3[sin (m-2j)s-sin (m-2(j+ 1))s]}

where flj are constants.
Since Yff is 27r/m-periodic, we have that

’
[(Yff)(s+ 4)]2 sin ds =0ks

Therefore,

if0 -< k < m.

am+ m(m+ 1)
7r 2 r"-’tx 2 [(?7{f)(s + 4,)]2 cos’-’ s sin s ds

m(m + 1)rm-’/_t 2 sin mdp [(Y{f)(s)] cos ms ds.

If we define K(ce3,""" am_l, f) as the coefficient of the term r’-a/z sin mb
obtained from

1 Ioa= (2)/ ce2/+l[r COS +/z(Y/f)(s + b)+ Wl]2/+1 sin sds,
7/" l=!

then we conclude that p has the stated form.
The second part of our lemma is similar. [3

THEOREM 4.1. Under the assumptions on g, in the beginning of this section, the
condition p 0 is generic.

Proof Let us consider the case m >_-2, even. The case m 2 is simple. For m >-4
we have, from Lemma 4.2 that

p Olm+lC [(?7{f)(s)]2 cos ms ds+ K(o3, tXm-l,f)

where c,, 0.
Without loss of generality, we can assume that

’
[(Y{f)(s)] cos ms ds O.
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If p(f,g)=0, then we consider (u)=g(u,O)+eu ’+1. Then p(f,)=
ecru 20 [(if{f)(s)]2 cos ms ds 0 and is close to g in the cm+3-topoIogy, if e is small.

The remaining part of the proof is easy.
The case m odd is similar. ]
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Abstract. Group theoretic methods are used to analyse symmetry-breaking bifurcation for nonlinear
equations defined on a real Hilbert space. An important result is the decomposition of the Hilbert space
into orthogonal isotypic components, since the Jacobian of the nonlinear operator can be decomposed on
the isotypic components. This decomposition is exploited in the detection and computation of bifurcation
points. Then scaling laws that arise in many problems are considered, and a natural context is developed
for the existence of a scaling law based on the symmetry of the problem. The effect of the scaling law on
the bifurcation theory is explored. This theory is applied to the gravity wave problem. Also shown is the
way in which the theory can extend to boundary value problems, where the natural group equivariance of
the equations is destroyed by the boundary conditions.

Key words, symmetry-breaking bifurcation, symmetry groups, isotypic components, scaling laws, gravity
waves
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1. Introduction. In this paper, we use group theoretic methods to analyse sym-
metry-breaking bifurcation for problems defined on a real Hilbert space. Sattinger
(1977), (1979) pioneered work in this field, developing much of the theory in a complex
Banach space. Fujii, Mimura, and Nishiura (1982) extended this theory by considering
the standard, or isotypic, decomposition of a complex Hilbert space. Bossavit (1986)
describes in detail how this isotypic decomposition can be employed when solving
linear boundary value problems on a complex Hilbert space. However, there are some
fundamental differences between group representation theory in real and complex
spaces, most notably the corollary to Schur’s lemma (Corollary 2.9), and so not all of
these results generalise naturally to the real Hilbert space setting. Vanderbauwhede
(1982) considered such problems in real Banach spaces but avoided the differences
between the theory in real and complex spaces.

Golubitsky, Stewart, and Schaeffer (1988) have considered in detail the analysis
of bifurcation in real finite-dimensional spaces on the premise that problems defined
on an infinite-dimensional space can often be reduced to finite dimensions using the
Lyapunov-Schmidt procedure. However, our aim is to develop efficient numerical
methods for the detection and direct computation of symmetry-breaking bifurcation
points. Thus we work with a nonlinear, parameter-dependent equation in a real Hilbert
space, and investigate properties of the equation and the Jacobian of the nonlinear
operator that can be exploited numerically. As bifurcation from a branch of nontrivial
solutions cannot be analysed analytically, in general, we develop the theory assuming
certain generic conditions.

In 2, we present systematically the group theoretic results required later on,
culminating in the main result of the section, Theorem 2.11, which gives the isotypic
decomposition of a real Hilbert space. We turn our attention to bifurcation problems
in 3 and apply the results of the previous section, assuming that the problem is
equivariant with respect to a representation of a compact Lie group. We show that the

* Received by the editors November 8, 1989" accepted for publication (in revised form) June 3, 1990.
This work was supported by the Science and Engineering Research Council.

? Department of Mathematics, University of Surrey, Guildford GU2 5XH, United Kingdom.
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Jacobian can be decomposed on the isotypic components and exploit this decomposi-
tion in the detection and direct computation of bifurcation points. Other authors
(Werner (1988), Healey (1988b), Dellnitz and Werner (1989)) have considered the
computational advantage of restricting to fixed-point subspaces. However, for the
determination of bifurcation points, we will see that the use of isotypic components
is a much more powerful tool.

In 4, we consider scaling laws which arise in many problems. A natural context
for the existence of a scaling law is developed based on the symmetry of the problem,
and the effect of the scaling law on the bifurcation theory of 3 is then explored. Often
one branch of solutions is related to another by a simple scaling, and so there is no
need to compute such a branch. However, we show that bifurcation points can occur
on a scaled branch which do not exist on the original branch. We also show how the
use of a scaling law can lead to a proof of existence of bifurcating branches at a mode
interaction point in some cases.

Finally, in 5, we apply the preceding theory to the gravity wave problem on a
fluid of infinite depth. We also show how the theory can be extended to boundary
value problems where the natural group equivariance of the equations is destroyed by
the boundary conditions.

2. Group theoretic results. In this section we collect the group theoretic results
required in later sections. We develop the theory systematically for the sake ofnumerical
analysts who may not be familiar with it. We consider the group representation theory
on a real Hilbert space, whereas most textbooks work with complex Hilbert spaces.
Many of the results for real spaces are proved in essentially the same way as the
corresponding results on complex spaces, and so we do not give these proofs, but refer
the reader to Barut and Raczka (1986) or Br6cker and Tom Dieck (1985) (which we
will henceforth abbreviate as [BR] and [BtD], respectively). However, there are
fundamental differences in the theory ofirreducible representations on real and complex
spaces (see Corollary 2.9 and the following assertions), and so we then prove the
relevant results culminating in our main result of the section, Theorem 2.11, which
gives the decomposition of a real Hilbert space into its orthogonal isotypic components.

We will consider only compact Lie groups. If F is a compact Lie group, we say
that E is a subgroup of F if O’1 -1 C , for all tr, c E, and is closed in F so that E is
also a Lie group [BtD, p. 28]. Also, E is a normal subgroup of F if it is a subgroup
and /-,/ for all 3, F. If E is a normal subgroup of F, then the quotient group
F/E {),: / F} is also a Lie group [BtD, p. 35]. The centre of F, defined by

Z(F) { F: ,/= 7 V7 F},
is a normal subgroup of F. Further, a homomorphism of Lie groups is a smooth
(infinitely difterentiable) group homomorphism and an isomorphism (denoted by )
is an invertible homomorphism. The kernel of a homomorphism/3" F- F is the set of
elements of F that are mapped onto the identity element of F and is a normal subgroup
of F. The following result plays an important role in our derivation of scaling laws
in 4.

LEMMA 2.1. Let F and f" be compact Lie groups and let fl F - " be a homomorphism
with kernel K. Then

(2.1) /(r) F/K.

Proof. There is a group isomorphism between fl(F) and F/K (Fraleigh (1977,
p. 114)) and so it remains to prove that it is smooth. Now K is a (dosed) normal
subgroup of F and so F/K is a Lie group. Also fl(F) is a closed subgroup of since
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/3 is continuous, and is thus a Lie group. Finally, a bijective homomorphism of Lie
groups is an isomorphism [BtD, p. 22] which proves the result.

Every compact Lie group F has a unique normalised Haar measure dy [BtD,
p. 46] which has the invariance property that for any continuous function f:F--> R and
any 6 F,

and is normalised such that

dy= 1.

IfX is a real Hilbert space with inner product (,), then integration can be extended
to continuous functions h :F--> X by defining r h(y)dye X to be the unique Riesz
representor of the continuous linear functional x--> r (h(y), x) dy [BtD, p. 48]. Thus

(2.2) ( Ii. h( y) dy, x) Iv h( y), x) dy.

Let X be a real Hilbert space with inner product (,) and let the space of linear
homeomorphisms from X to itself be denoted by GL(X). If F is a compact Lie group,
a representation of F on X is a group homomorphism T:F- GL(X) such that the
mapping (y, x) --> T(y)x of F X onto X is continuous. The dimension of a representa-
tion is defined to be the dimension of the space X. An action of F on X is a continuous
mapping

p F x X- X, y, x)-> p( y, x) =- yx

such that

lx X, (’)/13/2)x /1( Y2x)

for all x X and 71, 3’2 F, where 1 is the group identity element. For any action p
of F on X, we can define a representation T of F on X by

T(’,/)x yx.

Then T is called the representation of F on X induced by the action p.
A representation T is called orthogonal if T(y) is orthogonal for all TF.

Important results concerning orthogonal representations of compact groups are given
in the following two lemmas (cf. [BR, pp. 166, 140]).

LEMMA 2.2. Let T be an arbitrary representation of a compact group F on X. Then
the inner product (,) on X defined by

(2.3) (x, y)------ [ (T(y)x, T(y)y) dy
dr

for all x, y X, defines a norm equivalent to the original one, relative to which T is an

orthogonal representation of F.
The inner product defined by (2.3) is called F-invariant since

(x, y) T(y)x, T(’,/)y)

for all x, y X, y 6 F. We will henceforth assume that X is a real, separable Hilbert space
with a F-invariant inner product denoted by (,), so that T is an orthogonal representation

off on X.
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We say that representations T and T of F on real Hilbert spaces X and X,
respectively, are equivalent if there exists a linear homeomorphism A" X -, X such that

AT(y)=T(y)A VyF.

If A is also orthogonal, we say that T and T are orthogonally equivalent. We then have
the following result.

LEMMA 2.3. Two equivalent orthogonal representations are orthogonally equivalent.
Two structures that will be used extensively in later sections are fixed-point

subspaces and isotropy subgroups. For any subgroup of F, the fixed-point subspace
X is defined by

X= {x X" T(o’)x x Vr E},

which is a closed subspace of X since it is the intersection of the null spaces of the
bounded linear operators T(o-)- I for all o- E. Also, for any x X,

Ex ={3, e F: T(T)x=x}
is a subgroup of F called the isotropy subgroup of x. (It is closed in F because T is a
representation and so it is also a Lie group.) We extend the notion of isotropy subgroups
of elements to subspaces, and so we define the isotropy subgroup E v of a subspace
Y of X by

E.={yeF: T(y)y=yVye Y}.

A subspace W of X is F-invariant if T(/)w e W Vw e W, 3’ e F. A nontrivial,
closed, F-invariant subspace W of X is F-irreducible if it has no proper, closed,
F-invariant subspaces. Otherwise it is F-reducible. (If there is no ambiguity with regard
to the group F, we will refer to a subspace simply as invariant, irreducible, etc.)

We now aim to show that the Hilbert space X can be decomposed as an orthogonal
direct sum of finite-dimensional irreducible subspaces, that is,

x=z(R)xi

where each Xi is irreducible, Xi and X are orthogonal for i# j, and every x e X can
be decomposed into the convergent series

x Z x,, x, e X,.

The first result we require is the following (cf. [BR, pp. 141-142]).
LEMMA 2.4. Let W be a closed, F-invariant subspace of X and let W+/- be the

orthogonal complement of W such that X-- W03 W-. Then
(i) W- is a closed, F-invariant subspace of X.
(ii) The restriction of T( y) to W is also a representation of F.
COROLLARY 2.5. Every finite-dimensional invariant subspace of X can be decom-

posed as an orthogonal direct sum of irreducible subspaces.
The next theorem shows that the infinite-dimensional space X can be decomposed

in a similar way (cf. [BR, pp. 169-170]).
THEOREM 2.6. Let F be a compact Lie group and let The an orthogonal representation

of F on the real Hilbert space X. Then X can be decomposed as an orthogonal direct sum
offinite-dimensional irreducible subspaces.

COROLLARY 2.7. Every irreducible subspace ofX is finite dimensional.
A representation on an irreducible subspace is itself called irreducible. We now

take a closer look at those linear operators that commute with irreducible representa-
tions, since this is where the group representation theory on real and complex spaces
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starts to differ. Let W be an irreducible subspace of X on which the (irreducible)
representation of F is 7.. The endomorphism algebra of 7. (over R) is

Dr(7.) {A: W- W: A7.(3,)= 7.(y)A V3,F and A is linear}.

A fundamental result in the theory of group representations is Schur’s lemma and
its corollary, which can be found in Kirillov (1976).

THEOREM 2.8 (Schur’s lemma). Let 7.1 and 7._ be irreducible representations of the
compact Lie group F on subspaces W1 and W2 of X, respectively. Let A: W1 W2 be a
linear mapping such that

A7.1(y) 7"2(/)A

for all "r F. Then A is either zero, or it is invertible, in which case 7"1 and 7"2 are equivalent
representations.

COROLLARY 2.9. Let 7" be an irreducible representation of F. Then Dr(7") is isomor-

phic to either R, C, or H (the quaternions) which are one-, two-, or four-dimensional
algebras over R, respectively, and 7" (and W) are said to be ofreal, complex, or quaternionic
type, respectively.

If 7" is an irreducible representation of real type on the subspace W, then the only
linear mappings that commute with 7" are real multiples of the identity, and in this
case 7" (and W) are also called absolutely irreducible. (Note that for any irreducible
representation on a complex space, the only commuting linear mappings are complex
multiples of the identity.)

The following result p!ays an important role in the proof of Theorem 2.11.
THEOREM 2.10. Let Wbe a F-irreducible subspace ofXwith corresponding irreducible

representation 7". IfA Dr(7") is self-adjoint, then it is a (real) multiple of the identity
on W.

Proof As A is self-adjoint, all its eigenvalues are real. Now consider the three
classes of irreducible representations:

(i) If 7" is of real type then A a/, a R and so the result holds in this case.
(ii) If 7" is of complex type, then Dr(7")C and so

A=aI+bM, a, bR

where M2- --I. Thus the only eigenvalues of A are a +/- ib, which are real if and only
if b 0. Then A- aI as required.

(iii) If 7" is of quaternionic type, then Dr(7") H and so

A aI + bM + cMj. + dMk
2 Mk --I, MflVI--Mj.M Mk, MMk---MkM M, and MkM-where M,2. M

-MiMk -Mj. Using these relations, it is easily shown that the only eigenvalues of A
are a + i(b2 + c2 + d2) /2, which are real if and only if b c d 0, giving A aI. 13

The main result of this section is the decomposition of the Hilbert space X into
orthogonal isotypic components. This decomposition and the associated projections
are well known for complex Hilbert spaces (see Knapp (1986)).

THEOREM 2.11. Let Tbe an orthogonal representation off on Xand letX
where eachX is irreducible. Let {X} be a maximal set ofmutually inequivalent irreducible
subspaces. For each k, let Vrk be the closure of the sum of all the irreducible subspaces Xi
which are equivalent to X. Then

(i) Vrk+/- VI, k and X k 9 Vrk.
(ii) The linear operator Prk defined by

aknk Ir(2.4) P =-;- X(y)T(/) dy
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is an orthogonal projection operator whose range is Vrkk, where nk is the dimension ofXik,
dk is the dimension of the endomorphism algebra associated with Xik (i.e., 1, 2, or 4),
and Xk" F-> R is the character of the irreducible representation ’ associated with X,
defined by

X(y) Tr (’(y))

where Tr denotes the trace.
Before giving a proof of this theore.m, we make some remarks. The subspaces

Vrk PX are called the F-isotypic components of X. If F is a finite group, the Haar
integral is replaced by a finite sum and so the projections onto the isotypic components
become

nkP dlrl
x(v) T(,y)

where IFI is the order of the group F. Also, if T is a unitary representation on a complex
Hilbert space then the projections onto the isotypic components are

n I- X()’) T(?,) d’),.P[
Jr

On an equivalence class of irreducible representations, the character, dimension,
and type are all constant, and so the isotypic decomposition does not depend on the
choice of the maximal set of nonequivalent irreducible subspaces. This ensures that
the isotypic decomposition is unique, in contrast to the decomposition of X into
irreducible subspaces (Theorem 2.6) which is not unique.

Theorem 2.6, Corollary 2.7, and Theorem 2.11 are analogous to part of the
Peter-Weyl theorem for unitary representations on a complex Hilbert space (see Knapp
(1986)).

Proofof Theorem 2.11. In order to prove the theorem, we need some basic results
on group characters of real representations (see [BtD, pp. 80, 101]). If/k is the character
of the irreducible representation ’k, then for all ),, t5 E F

(i) Xk( /-1) Xk( ,),

(ii) Xk((-1) Xk(’l),

Xk(Y)X(Y)dY 0, , not equivalent,
(iii) [ dk, rj, rk equivalent.

For the sake of convenience, we will omit the superscript F on the operators P
and the isotypic components V throughout the proof. The first step is to show that
Pk commutes with the representation Z Let 6 F. Then

k fr -1T(-I)pT()= X(T)T() T(T)T() dT

dk
Xk(Y) T(-IT) dy

d Xk(6T6- T(T) dT

d--k Xk()’) T(),)
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using the homomorphism property of T, the invariance of the Haar measure, and result
(ii) on group characters, which proves that

PkT(5) T(6)P,.

In order to prove that Pk is an orthogonal projection, it is sufficient to show that
it is a bounded, self-adjoint projection on X. Now Pk is bounded since F is compact,
Xk and T are continuous, and nk is finite. We now prove that it is self-adjoint. If
x, y X then

X(’y)T(’y)xd%y

(x,- IvX(’Y) T(T)*y d’yI
x,- .X(y)T(y )ydr

x, X(

using (2.2), the fact that T is an ohogonal representation, the homomorphism propey
of T, the invariance of the Haar measure, and result (i) on group characters. Thus
is self-adjoint.

Now consider the restriction of P to an irreducible subspace W with correspond-
ing (irreducible) representation
commutes with T, we conclude that PI w DF(). As P is also self-adjoint, it follows
from Theorem 2.10 that Plw cIlw, c a. Taking the trace (on W) gives

cn X(T)X( T) dy

where nj and X are the dimension and character, respectively, of r). If r is equivalent
to r, then nj n and so c 1 using result (iii) on group characters. Similarly, if rj is
not equivalent to r, then c 0. Thus P acts as the identity on all irreducible subspaces
whose representation is equivalent to r, and as zero on every other irreducible subspace
so that P P and P =0, j # k. Hence P is an ohogonal projection and the
isotypic components are mutually ohogonal.

Now let M V and suppose that M X. Then M is a closed, invariant
subspace and so M is also a closed, invariant subspace by Lemma 2.4(i). Thus by
Theorem 2.6 we conclude that M can be decomposed as an ohogonal sum of
irreducible subspaces, which contradicts the definition of the isotypic components V.
Hence M =0 and so M X.

3. Symmet-breaking bifurcation theory. In this section, we apply the group
theoretic results of 2 to symmetry-breaking bifurcation theory, which we approach
from a computational viewpoint. Our analysis will therefore deal with a nonlinear
equation in an infinite-dimensional real Hilbert space, without first reducing the
problem to finite dimensions using the Lyapunov-Schmidt procedure.
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Consider the bifurcation problem

(3.1) g(x, h)-0

where g:X x R- X is a C2-mapping and X is a real, separable Hilbert space. We
suppose that g satisfies the equivariance condition

(3.2) T(3")g(x, h g( T( 3")x, h ), 3" F

where T is a representation of the compact Lie group F on X. We assume, without
loss of generality (Lemma 2.2), that X has a F-invariant inner product so that the
representation T is an orthogonal representation of F. It follows immediately from
(3.2) that if (x, A) is a solution of (3.1), then (T(3’)x, A is also a solution for all 3’ F.
These are called conjugate solutions.

Throughout this section, we assume the existence of a smooth curve of solutions
of (3.1) contained in xrx R, which we call the primary branch. We then consider the
possibility of bifurcation from such .a branch. Note that F can be any group that
satisfies (3.2), not necessarily the largest such group.

The following important result uses the isotypic decomposition of Theorem 2.11.
THEOREM 3.1. Let prk be the projection onto the F-isotypic components of X. If

x Xr, then g,(x, A)" Vrk -- V for all k, where Vrk =-- prkX.
Proof. Taking the Fr6chet derivative of (3.2) with respect to x gives

(3.3) T( 3")gx(X, A )p gx( T(3’)x, A T(3’) p gx(X, A T( 3")

for all 3’ F, x, X, and )t R since x Xr. It follows from this that

prkgx(X, A g,(X, A )prk

using definition (2.4) of the projection operators P. The result follows. V]

As a result of Theorem 3.1, if x Xr then gx (x, A) can be decomposed into "block
diagonal" form as

gx(X, A diag (gk(x, A ))

where gk(x, A) gx(X, h)[ v and gk(x, h Vrk- Vrk. Thus gx(X, A) has a nontrivial
knullspace if and only if gx(x, A) has a nontrivial nullspace for at least one k. This

means that in general there are many different possible modes of bifurcation, although,
as we will see, some of these do not arise generically.

This decomposition can be used in solving any linear equation where the linear
operator A:X X commutes with a representation of a compact Lie group F on the
(real or complex) Hilbert space X and is the underlying principle of the paper by
Bossavit (1986). In particular the linear equation Ax b can be decomposed into
several subproblems as

Akxk prkb

where Ak= A v, Ak" V- Vrk and Xk Vrk. The solution to the original problem is
then x E k Xk. Similarly, the eigenvalue problem Ax- ,kx can be decomposed as

Akxk AXk.

When applied to boundary-value problems, this decomposition can result in a consider-
able savings computationally, as the subproblems can be solved on domains or "sym-
metry cells" smaller than the origin domain (see Bossavit (1986)). Since the subproblems
are independent, computational efficiency can be increased by solving them in parallel.
Saffman (1980) observed this decomposition in his study of bifurcation of gravity
waves on deep water but gave no explanation of it.
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We are interested in analysing singular points (Xo, Ao) Xrx R on the primary
branch at which Aro Null (gx(xo, Ao)) is nontrivial. Now co is a closed subspace of
X since gx(x, A) is a bounded linear operator. Also, it follows from (3.3) that ACo is
F-invariant since Xo Xr. We now consider which isotypic components generically
give rise to a nontrivial null space of gx(X, )t). For this result, we consider two classes
of operators that map X x R X. We define C to be the class of F-equivariant
C2-mappings and C to be the class of operators g C1 such that g(x, A)= V G(x, A)
for some function G:X xR R. Note that if g C2, then g(x, A) is self-adjoint for
all (x, A) X xR.

THEOREM 3.2. Suppose that gx(X, A) is a Fredholm operator of index zero and let
g(x, A) g(x, A)I v, where V[ is an isotypic component of X associated with the
irreducible representation rk of F. Also, let be the generalised nullspace ofg(xo, Ao)
for some (Xo, Ao) Xr x R on the primary branch.

(a) Suppose that g C1. en
(i) If rk is absolutely irreducible and is nontrivial, then generically is

irreducible (and hence absolutely irreducible).
(ii) If rk is non-absolutely irreducible, then generically is trivial.

(b) Suppose that g C. If is nontrivial, then generically is irreducible
regardless of the type of.

Proo We base our proof on the ideas contained in the sketch proof of Golubitsky,
Stewa, and Schaeffer (1988, p. 84).

(a) We first prove that if is not irreducible then a small peurbation makes
it irreducible. This is done in two steps. The first step consists of introducing a
peurbation that makes the generalised nullspace and the nullspace coincide. The
second step then reduces the generalised nullspace to an irreducible subspace by an
appropriate peurbation.

Let g C1. As we are considering the linear operator g(x, A), we restrict attention
to the space V[. Since g(x, A) is a Fredholm operator of index zero, is finite
dimensional and V[ can be decomposed as (Dancer (1971))

Also, since Xo Xr, is F-invariant and so, by Lemma 2.4, Y is also F-invariant.
Define XNul (g(xo, o)) and suppose that X {0} and X X. Then
can be decomposed as

(3.4) X XM.

For the first step, we define the linear operator L:X X by

t l =0, t l g=0, t,l =Idl 

and we define (x, A) g(x, A) + elLlX C. Then

g(x, (x, h )l v g(x, h + ElL

It is then easily shown that

ao))=

and that the generalised nullspace of (Xo, o) coincides with .
For the second step, we decompose as
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where V is F-irreducible and W is F-invariant. We then define another linear operator
Lz’X--> X by

L21(v2)- 0, L2I 0, L2IM 0,

L21 v 0, L21 w Id[ w

and we define g(x, A) (x, A) + e2L2x C1. Then

(x, ) (x, )1 ,;: (x, ) +L.
^kIn this case, the generalised nullspace of g,,(Xo, Ao) coincides with the nullspace and

is equal to V. Thus if the generalised nullspace of g(Xo, Ao) is not irreducible, then a
small perturbation makes it irreducible.

We now consider whether an irreducible generalised nullspace is stable under
perturbation. Suppose that o o and is F-irreducible. Then a Lyapunov-Schmidt
reduction can be used to give an equivalent finite-dimensional problem

(3.5) d(x, A) 0, d" V x- ?

where V--No, ( is F-equivariant, and ((0, 0)=0 (Golubitsky and Schaetter (1985,
Chap. VII)). By restricting attention to the isotypic component V, we conclude that
the restrictions of the representation T of F to V and V are equivalent and so there
exists an invertible linear operator A" I"- V which commutes with T. Thus, the modified
equations

(3.6) G(X, A) -= Ad(X, A) 0, G" V x R-* V

have the same solutions as (3.5) and G is also F-equivariant.
Now the representation of F on V is zk and Gx(X, A) commutes with this

representation. Thus Gx(X, A)e DV(z,), the endomorphism algebra of z. By the proof
of Theorem 2.10, if - is of real type (i.e., absolutely irreducible), then Gx(X, A) has
only one (repeated) real eigenvalue a(A) with

(3.7) a(0) =0.

If ’ is of complex type, then Gx(X, A) has only the complex conjugate eigenvalues
a(A) + ib(A) with

(3.8) a(0) b(0) 0.

Finally, if r is of quaternionic type, then Gx(X, A) has only the complex conjugate
eigenvalues a(A)+ i(b(A)2+ c(A)2+ d(A)2) 1/ with

(3.9) a(0) b(0)= c(0)= d (0)= 0.

Clearly the solution (3.7) of one equation in one variable is stable under perturbation,
whereas the solutions (3.8) and (3.9) of more than one equation in only one variable
are not stable under perturbation. In these cases, perturbations exist that reduce the
nullspace of Gx (X, A) to being trivial in a neighbourhood of the origin.

Thus if -k is of real type, then CgNo is generically irreducible. If - is not of real
type, then a small perturbation destroys the generalised nullspace. Also, if CgNo is
trivial, then for any sufficiently small perturbation, it will remain trivial and so in this
case, generically aV’o is trivial.
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(b) If g C2, then (gWok Wok and so, in the decomposition (3.4), M {0}. The
perturbed problem

ff, (x, A =-- g(x, A + eL2x C2

then has an irreducible nullspace, following the proof of (a).
Performing a Lyapunov-Schmidt reduction in this case leads to the finite-

dimensional problem

G(X, A) =0, G: VxR- V

where V-= Wok, G is F-equivariant, G(0, 0)=0, and Gx(X,A) is self-adjoint. Since
Gx(X, A) Dr(Zk) also, by Theorem 2.10 the eigenvalues of Gx(X, A) are of the form
a(A) irrespective of the type of Zk. In this case, the solution

a(0) =0

is stable under perturbation and so generically .qWok is irreducible irrespective of the
type of Zk.

We note that if the generalised nullspace of gx(Xo, ho) is irreducible, then it
coincides with the nullspace and is then the "smallest" possible invariant subspace.
Also, Hopf bifurcation is associated with complex type irreducible representations (see
Golubitsky, Stewart, and Schaeffer (1988, Chap. XVI)).

Let (Xo, ho) XrR be a point on the primary branch such that gk(Xo, ho) has a
nontrivial nullspace contained in V for some k. If q Null (gkx(Xo, ho)*), where *
denotes the adjoint operator, then q V, since X is a Hilbert space and
gk(Xo, ho)" V- Vrk, and so q has the property that ($, x) 0 for all x k 03 V; due
to the orthogonality of the isotypic components. Also, gx(xo, ho) Xr since Xo Xr.

The isotypic component VII say, corresponding to the trivial (irreducible) rep-
resentation, is the fixed-point space Xr whose irreducible subspaces are one-
dimensional and absolutely irreducible. If the nullspace of gx(Xo, ho) is nontrivial,
then, from Theorem 3.2, generically it will be one-dimensional. Also, if
Null(g ho)*) then q Vr=Xr Thus if gx(xo, ho)0, then generically
(q, g (Xo, ho)) # 0, in which case g (Xo, ho) Range (gx(Xo, ho)) and so a singularity of
g(xo, ho) corresponds generically to a limit point (Moore and Spence (1980)). It is
easy to prove from (3.2) that if Xo Xr then gx(Xo, ho): Xr x Xr- Xr, and so generi-
cally (q, g,x(Xo, ho)qq) 0, where q Null (g(xo, ho)). Thus generically the limit point
is simple.

However, if the nullspace of gk(xo, ho) is nontrivial for k 1 and
Null (g(xo, ho)*), then q Vrk and so (q, g (Xo, ho)) 0 since q and g (Xo, ho) are in
different (orthogonal) isotypic components. Thus g(xo, ho) Range (g(xo, ho)) and
so, for k 1, we would expect a singularity of gk(x0, ho) to give rise to a bifurcation
point. Conditions for the existence of a bifurcating branch of solutions at such a
singular point are given in Theorem 3.4. Therefore, we conclude that, generically,
symmetry must be broken for bifurcation from a nontrivial solution branch to occur.

In some cases the linear operators gk(x, A) can themselves be further decomposed
as the following result shows.

THEOREM 3.3. Let Zk be an irreducible representation of F of dimension nk > 1. If
E is a subgroup of F with the property that Zk[ is not E-irreducible and has at least two

nonequivalent E-irreducible components, then Vrk can be decomposed as

E
j=l
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where Vrkff Vrk V {0}, V are the ,-isotypic components of X that intersect Vrk
nontrivially and m is the number of nonequivalent E-irreducible components of ’k. If

F,. F,x Xr, then gk(x, h )" Vk, "-> Vk,j and so gk(x, A can itselfbe decomposed as gk(x, A
F,,diag (gk/(X, A )), where g’J(x, A )" Vr; -> Vk,

Proof First, note that 2 s F or else rk would not be F-irreducible, and E cannot
be the trivial group since all the irreducible components of the trivial group are
equivalent, so E must be a proper subgroup of F. The number of E-irreducible
components of rk cannot exceed its dimension, and so m <-_ nk and is therefore finite
as rk is finite dimensional by Corollary 2.7.

From the hypotheses of the theorem we conclude that each F-irreducible subspace
of the isotypic component V[ can be decomposed into m E-irreducible subspaces,
which we can assume to be an orthogonal direct sum by Theorem 2.6. Collecting
together the equivalent, E-irreducible subspaces in Vrk, we obtain a ;-isotypic decompo-
sition of V[ resulting in the stated decomposition of Vrk.

Now if x e Xr, then x e Xx also as is a subgroup of F and so, by Theorem 3.1,
gx(X, A): V- V for all j. Thus gx(X, A): Vff- Vff and so gk(x, A) can be decom-
posed as stated.

Let (Xo, Ao)eXrxR be a point on the primary branch at which Aro-=
Null (gx(Xo, Ao)) is nontrivial and irreducible with corresponding irreducible rep-
resentation rk. Then 2fo c V. If is a subgroup of F that satisfies the hypotheses of
Theorem 3.3, then 3Co can be decomposed into E-isotypic components 3r Aro f-I V,
j= 1,..., m, which are not F-invariant. Clearly Null (gxk’(X0,)to)) A; and so the
subspaces ,j 1, , m are all nontrivial. Thus in order to detect a singular point,
it is sufficient to consider gkx’(X, A) for only one j. In particular, if there is a E-isotypic
component of A;o of odd dimension with j- 1, say, then the sign of the determinant
of gk’l(x, A can be checked numerically while following the primary branch ofsolutions
in order to detect a singular point, and the other gkx’(X, A),j 1 need not be considered.
A special case of this occurs when the E-irreducible decomposition of rk includes the
trivial representation with multiplicity 1, in which case dim (A;o fl X) 1 since X is
the E-isotypic component of X corresponding to the trivial irreducible representation.
This important special case is featured in the Equivariant Branching Lemma of Cicogna
1981 and Vanderbauwhede (1982).

THEOREM 3.4 (Equivariant Branching Lemma). Let xoXr. Suppose that
gx(Xo, Ao) is Fredholm of index zero and that fo=- Null (gx(Xo, Ao)) is nontrivial. If

(i) aronXr: {0};
(ii) There exists an isotropy subgroup E of F such that

dim (No f-I XV) 1;

(iii) The nondegeneracy condition

(3.10) (6o, gx (Xo, Ao)gOo + gxx(Xo, Ao)qoV) # 0

is satisfied where tpoAfoX, qo Null (g,(Xo, Ao)*) f) X, and v Xr is the unique
solution of

g,(Xo, Ao)V + ga (Xo, Ao) 0,

then there exists a secondary branch ofsolutions tangent to
The Equivariant Branching Lemma gives sufficient conditions for the existence

of a bifurcating branch of solutions that apply to many practical situations, but
bifurcation can also occur when the secondary branches are contained in Xx with
dim (g’of-1XX) > 1 (see Lauterbach (1986)).
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It can be proved in a way similar to the proof of Theorem 3.1 that if Xo Xr, then
gx(Xo, Ao)" V- V and gxx(Xo, Ao)" V x Xr- V. Also, for any subgroup gl of F,
gx (Xo, Ao): Xa Xa and g(Xo, Ao): Xa x Xr - Xa. Thus if Oo V f’) Xx, then

gx (Xo, o)o+ gxx(Xo, ao)oV v x
also and so the nondegeneracy condition (3.10) is satisfied generically.

Our next consideration is the type of bifurcation, i.e., pitchfork or transcritical,
which occurs as a result of the Equivariant Branching Lemma. Since the secondary
branches are contained in XX R, it is sufficient to consider the reduced problem

(3.11) g(x, A) 0, g, =-- glxa X" R- X’.
Now the closed fixed-point space Xx is invariant with respect to the normaliser Nr
of E in F, defined by

Thus the reduced problem (3.11) is equivariant with respect to the quotient group
Nr(E)/E. The following result has been proved by Dellnitz and Werner (1989).

THEOREM 3.5. Let o Null (gx(xo, Ao)), where Xo Xr. Suppose there exists an
isotropy subgroup E of F such that dim (o(3 X) 1.

(i) If dim o 1 then E is the isotropy subgroup of&to, Nr(,) F, and Nr(E)/E
F/E is isomorphic to Z2.

(ii) If dim ro> 1 then Nr(E)/E is either isomorphic to Z2 or is trivial.
Now if Nr(Y,)/E is isomorphic to Z2, then the bifurcation is a symmetric pitchfork

(see Werner and Spence (1984)) with conjugate secondary branches where, if (x, A)
is a slution of (3.11) on a secondary branch, then (T(6)x, A) is the corresponding
solution on the conjugate branch for all 6 N(E)\E. Alternatively, if Nr(E)/E is trivial,
then the bifurcation will be nonsymmetric (either pitchfork or transcritical) and the
two secondary branches have distinct (nonconjugate) solutions.

We now consider extended systems of equations for which a bifurcation point is
an isolated solution. The following result is a generalisation of Theorem 3.1 of Werner
and Spence (1984), which considers the case F Z2. It is proved in a similar way and
is straightforward.

THEOREM 3.6. Let (Xo, Ao) Xr x R and let o= Null (g(xo, Ao)) have finite
dimension. IfJo Vrk {0} for some k 1 and conditions (i) and (ii) of the Equivariant
Branching Lemma (Theorem 3.4) hold, then the extended system

(3.12)

G(y) =0, G: Y- Y,
g(x, h)

G(y) =- gx(X, A)q/,
(l,e-l/

y (x, , h e Y=-- Xr x Vrk f3 X) x R, 1 Vrk t3 X

has an isolated solution (Xo, qo, ho), where qo6 Cofq Vrkfq Xx
if and only if the non-

degeneracy condition (3.10) is satisfied.
Alternative forms of the extended system (3.12) may also be used, for example

(3.13)

g(x, A) ) =0,d(x, a )=-
(a/, gx(x, a. Xr x R- Xr x R
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where , tp VrfXx are the singular vectors associated with the singular value
tr (0, gx(X, h)), which are related by the equations

gx(X, A )q o’, (, )= 1,
(3.14)

g*(x, A) o’, (o, o)= 1.

Finally, all the theory of this section extends to the situation when g" X R- Y
and satisfies the equivariance condition

(3.15) ( ),)g(x, A g( T( y)x, A ), 3, F

where T and T are equivalent orthogonal representations of F on X and Y, respectively.
In particular,

rgx(X, A gx(X, A )Pr
where/ is the projection onto the F-isotypie component of Y (since the dimension,
character, and type of equivalent irreducible representations are constant). Thus
gx(x, A)" Vrk-- /rk. All the other results can be generalised in a similar way.

4. Scaling laws. For many problems, it is possible to take one solution and perform
a "change of scale" to give another solution. Thus for bifurcation problems, distinct
branches of solutions are often related by a simple scaling. This relation can be
expressed as a scaling law, which is similar to the equivariance condition (3.2) but also
involves the parameter of the problem. (See Scovel, Kevrekidis, andNicolaenko (1988)
for an example of such a scaling law.)

We first consider the problem of finding such scaling laws in a given problem and
show that the symmetry of the problem defines a natural context for the existence of
scaling laws. We then consider how the scaling law relates to the bifurcation theory
of 3 and show that, in some cases, the existence of bifurcating branches at a mode
interaction point can be proved using the scaling.

Consider the bifurcation problem

(4.1) g(x, A) 0, g’XxR-> Y

where X and Y are real Hilbert spaces and g is C2. We suppose that g satisfies the
equivariance condition

(4.2) ( ),)g(x, A g( T( T)x, A

where T and T are equivalent representations of the compact Lie group F on X and
Y, respectively. By Lemma 2.2, we can assume without loss of generality that T and
T are ort.hogonal representations. For the sake of simplicity we will take Y=X
and T T but all our results generalise to the case Y

We now show that a natural context for scaling laws can be derived by considering
the group F. Our aim is to define a subproblem of (4.1), where the group F acts on a
"different scale," whose solutions are related by a scaling transformation to the solutions
of (4.1). The solutions of the subproblem will, however, also be solutions of (4.1). The
subproblem will be defined by use of a particular fixed-point space.

Let fl" F-> F be an epimorphism (i.e., fl is a homomorphism and fl(F)= F) with
a nontrivial kernal K. Then the mapping

(4.3) r/K - r ),K - /

is an isomorphism by Lemma 2.1. The quotient group F/K has a natural representation
on the fixed-point space XK given by

(4.4) TK "F/K - GL(XK), TK(),K)=- T(,)I,



BIFURCATION AND SCALING LAWS 195

since K acts trivially on X/(. This representation is well defined since X/( is closed
and F-invariant (as K is a normal subgroup of F) and so T(3’): XK-X/( is a
homeomorphism by Lemma 2.4 (ii) for all 3’ F. It is well known and easily proved
that g:XI’:xRXI’: and so we define our subproblem to be g/((x,h)=0, where
gi,: glx"R. Clearly gK is equivariant with respect to the representation TK of F! K.

We have established that the groups F/K and F are isomorphic. The corresponding
representations on XK and X, respectively, are equivalent if there exists a linear
homeomorphism h :X Xt( such that

(4.5) TK(3"K)h= T(3’)h hT((3"))
If such an h exists, we can assume without loss of generality that it is orthogonal

by Lemma 2.3 since TK and T are orthogonal representations. We are now in a position
to define a scaling law"

If there exists an orthogonal linear homeomorphism h X - XK satisfying (4.5), and
constants b, c, R\{0}, such that

(4.6) chg(x, A g( bhx, lA gK bhx, 1A

then (4.6) is called a scaling law.
If such a scaling law exists, then h’=- hT(3") is also an orthogonal linear homeo-

morphism from X to X/ for all 3’ e F, which satisfies (4.6) and also satisfies (4.5) if

3’ e Z(F), the centre of F. The following result proves the converse.
THEOREM 4.1. If h and h2 are scaling transformations that satisfy (4.5) and (4.6)

for fixed constants b, c,l #O, then h= hiT(3’) for some 3" Z(F), the centre of F
(restricting attention to the F-equivariance of g).

Proof It is straightforward to show that if h and h2 both satisfy (4.6), then

h-l h2g(x, A g( h-l h2x, A ).
Now h-(lh2 GL(X) and is orthogonal. As we have restricted attention to the F-
equivariance of g, we conclude that h-(lh T(3") for some 3’ F. As hi and h2 also
satisfy (4.5), then 3’ Z(F). l-]

Since nothing is gained by combining scaling and group transformations, we
restrict attention to one scaling transformation h satisfying (4.5) and (4.6).

The existence of a scaling law imposes conditions on F and X. Since K is nontrivial,
the requirement that F/K be isomorphic to F cannot be satisfied if F is a finite group
or if K is not a finite group. Also, the existence ofthe linear homeomorphism h X
requires that X and X: have the same dimension, which cannot hold if X is finite
dimensional.

The scaling law defines a relation between the solutions of g 0 and g 0. Thus
(x, A) X x R is a solution of g 0 if and only if (bhx, lZ) XK x R is a solution of
g/ 0 (although, of course, solutions of g 0 are also solutions of g -0). Also, (4.5)
defines a relation between the representations T of F on X and T/ of F/K on X/
with the property that, for any x X, 3’ F, there exists y X such that

y= T(fl(3"))x : hy= Ti(3"K)hx= T(3")hx.
We now consider how a scaling law relates to the bifurcation theory of 3. An

immediate consequence of the scaling law (4.6) is that if bifurcation occurs at (Xo, Ao)
X x R then it must also occur at (bhxo,/Ao) Xrx R, since both the primary and
secondary branches are "rescaled" by h. We now attempt to express this relation more
formally.

Let be a subgroup of F and define

(4.7)



196 P.J. ASTON

which is also a subgroup of F. Clearly/3(f) f, K is a (normal) subgroup of f,
and from Lemma 2.1, f/K is isomorphic to f. We then have the following results.

LEMMA 4.2. Let fx and fhx be the isotropy subgroups of x eX and hxeXI(

respectively, where h satisfies (4.5). If f is a subgroup of F, then fx f if and only if
hx ’ (i.e., (x) -hx)"

Proof. First, suppose that fx- f. Then for every y e f,

T(v)hx hT(13(V))x hx

using (4.5) and as fl(y)ef=f. Thus yefh and so f is a subgroup of fh.
Similarly, for every y e fh,

hT((v))x T(,)hx= hx

again using (4.5). Since h is a linear homeomorphism, we conclude that T(fl(y))x x
and so/3(y) e fx . Hence ye and so -hx is a subgroup of. Combining these
results, we conclude that -hx--,-[3o

The converse is proved similarly.
LEMMA 4.3. If h X- XK is an orthogonal linear homeomorphism satisfying (4.5),

then the restriction ofh to Xa is an orthogonal linear homeomorphism onto Xafor every
subgroup f of F.

Proof. If x e Xa and 2’ e f, then/3(/) e f and so, by (4.5),

T(v)hx= hT(/3(y))x= hx.

Thus hx e Xao. It remains to prove that the mapping h" Xa- Xa is a surjection since
h is an orthogonal linear homeomorphism on X.

Let y e Xao. Then y hx for some x e X. If e f, then there exists 3/e f such
that fl(2,)= 3 since/3 is surjective. Thus

hT()x= T(v)hx= T(),)y= y= hx

using (4.5) and as y e X. Since h is a linear homeomorphism (on X), we conclude
that T(3)x x for all 3 e f and so x e X. Thus h is a surjection as required.

LEMMA 4.4. Let f be a subgroup of F and let h satisfy (4.5). Then W is a closed,
12-invariant subspace of X if and only if Wh=- hW is a closed, f3-invariant subspace
ofX.

Proof Since h is a homeomorphism, W is closed if and only if Wh is closed. Let
we W. If yef, then/3(y) e f, and by (4.5) we have

T(y)hw= hT(fl(3,))w.

If W is f-invariant, then for all we W, T((y))we W for all /3(y)ef and so
T(y)hwe Wh for all y ef. Thus Wh is O-invariant. Conversely, if Wh is f-
invariant, then for all we W, T(y)hwe Wh for all yef and so T((y))we W for
all y e, since h is a homeomorphism. Now/3"f is surjective and so T(3)w e W
for all 3 e f, w e W. Thus W is f-invariant.

LEMMA 4.5. Let f be a subgroup of F and let h satisfy (4.5). Then W is an
f-irreducible subspace ofX ifand only if Wh= hW is an f3-irreducible subspace ofXI(.

Proof. The equivalent result that W is an f-reducible subspace of X if and only
if Wh is an f-reducible subspace follows immediately from Lemma 4.4.

LEMMA 4.6. Let f be a subgroup of F and let h satisfy (4.5). Then W is an
f-absolutely irreducible subspace of X if and only if Wh=- hW is an f3-absolutely
irreducible subspace ofX
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Proof. First suppose that W is O-absolutely irreducible. Let A" Wh
---) Wh commute

with the representation of 12 on Wh. If x W and 3’ 12, then/3(3’) 12 and we have

h-lAhT(fl(3"))x h-lAT( 3")hx

h -1T(3")Ahx

T(fl(3"))h-lAhx

using (4.5) and since A commutes with T(3’) for all 3’ O. Thus h-lAh commutes
with the representation of 12 on W, and as W is O-absolutely irreducible, we conclude
that h-IAh clIw c R. Thus A cIIw and so Wh is Ot-absolutely irreducible.

The converse is proved similarly.
We now consider how the presence of a scaling law affects bifurcation theory.

Henceforth, we will assume the existence of a smooth branch of solutions of (4.1)
contained in X"x R for some subgroup 12 of F, which we will refer to as the primary
branch. As a consequence of the scaling law (4.6), by Lemma 4.3 there must also be
another branch of solutions of (4.1), contained in X" x R, which we will refer to as
the scaled branch. (Indeed there may be many scaled branches obtained by a repeated
application of the scaling law (4.6), but for our analysis we consider only one such
branch.)

In the results that follow, we use the notation

Wo Null (gx(Xo, Ao)), Wo* Null (gx(Xo, Ao)*),

Wh Null (gx(bhxo,/Ao)), Wh* Null (gx(bhxo,/Ao)*),

where (xo, Ao) X x R satisfies (4.1). We also make the assumption that g,(x, A) is a
Fredholm operator of index zero.

LEMMA 4.7. If XO Xa, then o is a closed, O-invariant subspace of X, Wh is a
closed, Ot3-invariant subspace ofX, and hWo Nh Xr. Also, o is O-absolutely irreduc-
ible if and only if hVo is 12t-absolutely irreducible.

Proof Since g,(x, A) is bounded, both Wo and Wh are closed. It is well known
and easily proved that if x e X

y
for some subgroup Z of F, then Null (gx(X, A)) is

Z-invariant. Thus since Xo e Xa, N0 is O-invariant. Also, hxo Xao by Lemma 4.3 and
so Nh is 12-invariant. Taking the Fr6chet derivative of (4.6) with respect to x and
evaluating it at (Xo, Ao) gives

(4.8) chgx(Xo, Ao)tp bg,(bhxo,/Ao)hq

for all q X. Thus if q o, then hq h and so hWo Nh (-I X K. Also, if
then q3 hq for some q X and so from (4.6), q e No. Hence hWo Wh f-I X:. The
final statement of the lemma regarding absolute irreducibility follows directly from
Lemma 4.6.

We now define a bifurcation point to be a point (Xo, Ao) such that the Equivariant
Branching Lemma (Theorem 3.4) guarantees the existence of a secondary branch of
solutions bifurcating from (Xo, Ao), and we then have the following result.

THEOREM 4.8. If Xo6 Xa, then (Xo, Ao) is a bifurcation point where the secondary
branch of solutions has isotropy subgroup Z if and only if (bhxo, 1)to) is a bifurcation
point where the secondary branch of solutions has isotropy subgroup

Proof We must prove that the conditions of the Equivariant Branching Lemma
hold at (Xo, Ao) if and only ifthey hold at (bhxo,/Ao). First, ifdim Wo > 0 then dim Wh > 0,
since hWo 3Oh by Lemma 4.7 and h is a homeomorphism. Conversely, if dim A/’h > 0
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and dim (:Vh 71X) 1 then dim (h n XK) 1 since K is a subgroup of E. Thus
dim g’o > 0 since hg’o g’ n Xn by Lemma 4.7 and h is a homeomorphism.

Now consider the three hypotheses of the Equivariant Branching Lemma"
(i) We observe that, since h is injective,

h(o n Xu) ho n X
=X X

hNX

using Lemma 4.3, Lemma 4.7, and the fact that X"X since K is a subgroup of. Thus on X"= {0} if and only if h n X"= {0} since h is a homeomorphism.
(ii) By an argument similar to (i), we have h(on X) h N X since K is a

subgroup of E. Thus dim (on X) 1 if and only if dim (h n X) 1 since h is
a homeomorphism.

(iii) For the sake of brevity, we introduce the notation g=g(xo, Ao), gh=
g(bhxo, lAo), etc. The nondegeneracy condition to be satisfied at (Xo, Ao) is

(4.9) (o ogao+goV) 0

where o on X, o n X and v X" is the unique solution of

4.0 v+=0.
Similarly, the nondegeneracy condition to be satisfied at (bhxo, lAo) is

h(4.) (6h,g+gV) 0

where h E h n X, h n X, and Vh X is the unique solution of

(4.e) gxVh +g O.

By differentiating the scaling law (4.6), it is easily shown that v Xa is a solution
of (4.10) if and only if Vh =(b/l)hvXa is a solution of (4.12) since b, c, 1#0. Also,
we saw in (ii) that h(oXz) h Xz and so we can write h ho. As h is an
orthogonal transformation, we have,, gx2> (h,, hgx2>

b=-(hx,,ghx2)

for all xl, X2 E X using (4.8). Thus

((gO),Xl x2
__b ((gh),hXl, hx2)
C

and so Xl E ;o* if and only if hxl d’*h, that is, hVo* Nh* n X:. Hence h(Vo* 71Xx)
Nh* n X by Lemma 4.3 and the fact that XX___ XK and so we can write qh hqo
It is then a matter of calculation to verify that

h h hqo + ghhqohv(d/h, ghxaqh + gxxqv)= hd/o, gx, 7

( c o )htPo, -fill h(g"x qo-t- gxqoV)

gxxo+o
bl ’ o o
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since h is orthogonal. As b, c, 0, we conclude that (4.9) holds if and only if (4.11)
holds.

As a consequence of Theorem 4.8, it is clear that every bifurcation point on the
primary branch can be rescaled to produce a bifurcation point on the scaled branch.
However, a bifurcation point on the scaled branch can be scaled back onto the primary
branch if and only if the isotropy subgroup E of the secondary branch has K as a
subgroup, since both the scaled branch and the secondary branch that bifurcates from
it then have solutions in the range of h. In this case, the branch that bifurcates from
the primary branch has isotropy subgroup/3(). It is possible that the symmetry of K
can be lost at a bifurcation point on the scaled branch so that the bifurcation point
cannot be scaled back to a bifurcation point of the primary branch.

The situation may occur where 12= l) (e.g., f- F), in which case the primary
and scaled branches could coincide. However, Theorem 4.8 still holds in this situation
and the two secondary branches then bifurcate from the same branch at different values
of h (provided that 1).

In 3 (Theorem 3.5 and following) we saw that the type of bifurcation can be
determined by considering N(E)/E. It is intuitively obvious that the type ofbifurcation
from the primary and scaled branches must be the same. This is formalised by the
following result.
THOR 4.9. The mapping defined by

is an isomorphism.
Proof We first show that/3(N(5;)) Na(5;). Let y Na(5;). Then

by the definition of Na (5;8) and so/3 y)5; 5;fl (y) since/3 (E 5;. Thus/3(Na (E))
is a subgroup of N(5;).

Now let y N(E). Then yry-1 1 for all r 5;. Now 3’ =/3() for some F
since/3 is surjective. Thus for any 5;,/3(3-1) yo’y

-1 5;, where o-=

and so -1E for all 5; giving N(5;). Thus N(E) is a subgroup of
/3(Nab(Eta)) and so we conclude that/3(N(E)) N(E).

It is straightforward to prove that/3 is a homomorphism and so we now prove
that it is bijective. Let y Na(5;). Then yE Na(5;)/5;. Since /3 is surjective, there
exists F such that /3()= y. By the above result, we conclude that Nn(5;).
Thus/(E) yE and Et Na(5;t)/Et and so/ is surjective.

Let 71, Y2 Na(5;). Then

using the definition of/ and the homomorphism property of/3. Thus/ is also injective.
We therefore conclude that/3 is an isomorphism since it is a bijective homomorphism
of Lie groups [BtD, p. 22]. [3

Throughout our analysis, we have not been able to say that h ho, only that
ho h. In the generic situation, both o and a7 are (absolutely) irreducible
(Theorem 3.2), in which case equality holds by Lemma 4.5 (cf. Lemma 4.6 also).
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However, in a two-parameter problem, it is possible that mode interaction could occur
on the scaled branch so that h ho at a critical value of the second parameter. In
this case, Theorem 4.8 still applies, ensuring the existence of a secondary branch
bifurcating from the scaled branch, thus providing some information about the bifurcat-
ing branches at a point of mode interaction.

We note that it is not possible for a scaled branch to be the continuation of the
primary branch, since the branches have different isotropy subgroups, and the isotropy
subgroup of a branch of solutions is preserved globally along the branch (Healey
(1988a)). However, the primary and scaled branches could intersect at a bifurcation
point.

The purpose of this analysis has been to determine when branches of solutions
are related by a simple scaling, since the numerical computation of two such branches
is clearly unnecessary and wasteful. Thus we conclude that it is sufficient to compute
only those branches of solutions whose isotropy subgroup gl satisfies either gl -l) or
12 12 and K is not a subgroup of l-l. However, it may be necessary to scale the
solution up (in the second case) in order to check for the existence of bifurcation
points on the scaled branch that do not occur on the primary branch.

5. Application to the gravity wave problem. In this section, we apply the theory of
the previous sections to the problem of determining the profile of periodic, two-
dimensional, irrotational travelling waves on the surface of an inviscid, incompressible
fluid of constant density in a channel of infinite depth in the presence of gravity g,
but without surface tension. By taking a frame ofreference that moves with the travelling
waves, the problem can be posed as a steady-state equation involving c, the speed of
the flow at infinite depth, as the bifurcation parameter. Bifurcation from the trivial
solution was discussed by Nekrasov (1920), who formulated the problem as an integral
equation on the free surface, and by Levi-Civita (1925). More recently, Chen and
Saffman (1980) and Saffman (1980) have discovered numerically secondary bifurcations
on the primary branches far away from the trivial solution. We extend their results
and describe a pattern which occurs in the secondary bifurcations.

The profile of the free surface can be found by solving the following differential
equation (Okamoto (1990)):
(5.1) G(O, u)-- ue-2()’r’(s)+ e( sin O(s) =0

where v c2/g, the 27r-periodic function O(s) given by

(5.2) 0 (s) (ak sin ks / bk cos ks)
k=l

is the angle between the horizontal and the free surface at the point (x(s), y(s)) defined
by

(5.3) (x(s), y(s))= (e "(’) cos O(t), e "(’) sin O(t))

and -r is the conjugate of O, given by

(5.4) z(s) (ak COS ks bk sin ks).
k--1

By integrating around a contour in the x-y plane, it can be shown (see Okamoto
(1990)) that

(5.5) e "(’) sin O(s) ds =0.
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This condition ensures that the resulting wave profile is periodic since (5.5) is equivalent
to y(27r)=0 and y(0)=0 from (5.3). A similar argument can be used to show that

(5.6) O(s) ds=O,

which is the justification for omitting the constant term from the Fourier series in (5.2).
We pose this problem in a Hilbert space setting so that the results of the previous

sections can be applied. Thus we define

X f(s) Y (ak sin ks + bk cos ks)" Y k2(a2 + b2) < oo
k=l k=l

with inner product

and similarly

(f, fg,
1 Io fI(s)f(s) ds

Y f(s) (ak sin ks + bk cos ks)" , (ak + b2k) < c
k=l k=l

with inner product

lfo: (fl,f2)Y---- fl(s)f2(s) ds.

Clearly Xc Hi[0, 2rr], Yc L2[0, 2rr], and X Y. Also, if OeX, then rex and
so G:X x R-+ Y (as the constant component of G vanishes due to (5.5)).

Nekrasov’s integral equation can be derived from this formulation by solving (5.1)
for r in terms of 0 and v and then substituting the resulting expression for r into an
integral equation expressing the conjugacy relation between 0 and r.

Having set the problem up, we must determine the group that satisfies the
equivariance condition (3.2) and look for scaling laws of the form (4.6). We define
the following action of the group 0(2) on Y:

(5.7a) Rf(s)=f(s+a), a e [0, 2rr),

(5.7b) Sf(s) -f(-s),

(5.7c) SRf(s)= -f(-s-a), a [0, 27r).

Then X is an O(2)-invariant subspace of Y. This action defines representations of
0(2) on X and Y. It follows from (5.2) and (5.4) that Sz(s)= z(-s), and it is then
straightforward to show that G is equivariant with respect to the representations of
0(2) on X and Y induced by the action (5.7). Also, the inner products on X and Y
are O(2)-invariant, and so the representations of 0(2) on X and Y induced by the
group action (5.7) are orthogonal representations. Further, X and Y are linearly
homeomorphic and the representations on X and Y are equivalent as required.

When seeking scaling laws of the form (4.6), we first determine all the discrete
normal subgroups of 0(2). These consist ofthe finite cyclic groups Z,, n Z+, generated
by Rz/n which are the kernels of the epimorphisms ft, O(2) 0(2) defined by

/3,(R) R,, a 6 [0, 27r),

t.(s)= s.
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The fixed-point subspaces corresponding to the finite cyclic groups are

Xz. {f X" f(s) =f(s + 27r/n)}

and similarly for yz., n Z/. We now define the mapping h, by

h,f(s)=f(ns), nZ+.
Clearly h, maps X onto Xz- and Y onto yz.. It is easily verified that h, is an
orthogonal linear homeomorphism which satisfies

Roh,, h,,R,,o,

Sh,, h,S.

Thus h, meets all the requirements for a scaling transformation and we observe that
G satisfies the scaling law

(5.8) h,G(O, ,) G(h,,O, ,/n), n Z+.
We note that by Theorem 4.1 the scaling transformations h, are uniquely defined since
the centre of 0(2) is trivial

5.1. Bifurcation from the trivial solution. The gravity wave problem (5.1) has the
trivial solution 0 0 for all , => 0 which corresponds to a fiat free surface. This is the
only solution that has 0(2) as its isotropy subgroup. We first consider bifurcation from
the trivial solution, which is of course, well known, and so we only review it briefly
in the current framework. Linearising (5.1) about the trivial solution gives

Go(O, ,)0 ,r’+ 0

for all 0 X, where -.7 is the conjugate of 0.
The nontrivial irreducible representations of 0(2) on X (and Y) are

R, (cos na sin nee) ( 01)S-- n=1,2,3,....
-sin na cos nee

It is easily verified that all these irreducible representations are absolutely irreducible.
The corresponding isotypic components of X are

V, span {sin ns, cos ns}, n 1, 2, 3,...

and similarly for Y. It is interesting to observe that in this case, the isotypic components
are irreducible. We note that the irreducible representation R,--/, S---I does not
arise since O(s)= c, c R does not belong to X (or Y).

When v 1/n, n Z+, then Null (Go(O, v)) V and is thus irreducible. Now the
isotropy subgroup of V, is the cyclic group Z, generated by R=/,. However, dim V, fq

X-) 1, where D, is the dihedral group generated by Rzr/n and S. It is a matter of
calculation to verify that the nondegeneracy condition (3.10) is satisfied with qo
sin ns V, f’l X.. Thus by the Equivariant Branching Lemma, there is a branch of
solutions with isotropy subgroup D, which bifurcates from the trivial solution at
, 1/n. On such a branch, 0 has the form

O(s) Z ak sin nks.
k=l

The normaliser of D, in 0(2) is D2, and D2,/D, Z2. Thus each bifurcation is a
symmetric pitchfork by Theorem 3.5 and subsequent assertions. The distinct conjugate
solutions of OXD. are R,O(s) for a (0,27r/n) and so there is a one-parameter
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"sheet" of solutions (see Sattinger (1973)). The only conjugate solution that is symmetric
(relative to S) is

R=/,O(s)--- Y (--1)kak sin nks,
k=l

which is the conjugate branch of the pitchfork. We will refer to the branch with a > 0
initially as primary branch n and to the branch with a < 0 initially as primary conjugate
branch n.

When 0 is symmetric (relative to S), it is an odd function of s. However, the wave
profile is then an even function of x.

Clearly, the scaling transformations hn do not affect the trivial solution. If we let
{/, S}, then -= D,, n 2, 3, 4,. ., where t. is defined by (4.7). Using the

scaling law (5.8), we can see from Theorem 4.8 that all the primary branches which
bifurcate from the trivial solution and have isotropy subgroup D, are a scaled copy
of the first branch, and so there is essentially only one distinct primary branch.

5.2. Bifurcation from D.-symmetric branches. In general, it is not possible to study
secondary bifurcation analytically, and so we solve the problem numerically. Thus we
now consider the possible modes of secondary bifurcation from Dn-symmetric
branches, assuming the generic conditions that the nullspace of Go(O, v), O X. is
D,-irreducible and that the nondegeneracy condition (3.10) is satisfied. The nontrivial
irreducible representations of the group D,, generated by R2=/, and S, on X (and Y)
are given by

(i) R2=/,=I, S=-I,
(ii) R2/, -I, S I n even),
(iii) Rz./n -I, S -I n even)

27rm 27rm
cos sin

(iv) R2/,
n n

2zrm 27rm
-sin cos

m 1,...,1/2n- 1 (n even),

-1,...,1/2(n-I) (n odd).

Again, all of these irreducible representations are absolutely irreducible and the
corresponding isotypic components of X are

I7"1= f(s)--- Z akcosnks’fX
k=l

2 f s ak sin nk + s" f X
=0

(n even),

17" f(s)" ak cos nk+ s’f6 X
=0

(n even),
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f(s)--- [aksin(nk+m)S+bksin(n(k+l)-m)s
=0

+ Ck COS (nk + m)s + dk cos (n(k + 1) m)s]"f X},
rn 1,. .,1/2n-1 (n even),

=1,...,1/2(n-I) (n odd),

and similarly for Y. Since the linear operator Go(O, v), 0 X. maps each isotypic
component of X to the corresponding isotypic component of Y (by the generalisation
of Theorem 3.2), we can consider the situation when Null (G0(0, v)) is an irreduc-
ible subspace of each isotypic component separately. By differentiating the equivariance
condition (3.15) with respect to x, it is easily verified that if q Null (G0(0, v)), then
R/,q Null (Go(R/,O, v)), and so for every singular point on the primary branch,
there is a corresponding singular point on the primary conjugate branch to consider.
We are then interested in any conjugacy relation between the secondary branches that
bifurcate from the primary and primary conjugate branches.

(i) At every solution (0, v)Xo. xR of (5.1), we have

Go(O, v)AO 0

where AO= (d/da)O(s+ a)l=o O’(s). This is easily shown by differentiating the

R-equivariance condition with respect to a and evaluating at a 0. Now~ if 0 XD.,
then O’(s) V1; therefore the component of Go(O, v) associated with V1 is singular at
every (nontrivial) solution point, and so the Equivariant Branching Lemma cannot be
applied directly in this case. Zufiria (1987b) has investigated this class of bifurcation
for the gravity wave problem and we will not consider it further. A consideration of
bifurcation of this type for more general problems is given in Aston, Spence, and Wu
(1990).

(ii) If Arc Q2 is irreducible, then dim r= 1 and so the bifurcation will be a
symmetric pitchfork by Theorem 3.5. The isotropy subgroup of V2 is On2 generated
by R4/n and S and so this case corresponds to a period-doubling bifurcation. The
secondary, conjugate branch is obtained by applying Rz/n. Now if rp c V2, then
R=/n V3, and so the corresponding secondary branches which bifurcate from the
primary conjugate branch are associated with a different isotypic component and are
not symmetric relative to S. We note, however, that all these branches are 0(2)-
conjugate and so there is essentially only one distinct secondary branch of solutions
at the bifurcation.point. We will refer to this case as bifurcation of mode (n/2)+.

(iii) If Vc V3 is irreducible, then dim V= 1. The isotropy subgroup of r is the
dihedral group/,/2, generated by Ra=/n and SR2/,. Thus we a.gain have a sym.metric
pitchfork, period-doubling bifurcation. In this case, if q c V3 then R=/,q V2 and
so the secondary branches that bifurcate from the primary conjugate branch are
symmetric with respect to S. Again, there is essentially only one distinct secondary
branch of solutions. We will refer to this case as bifurcation of mode (n/2)-. The
period-doubling scenario is summarised in Fig. 1.

Before moving on, we must emphasise the difference in the isotropy subgroups
of the secondary branches emanating from the primary and primary conjugate branches
associated with period-doubling bifurcation. In Toland and Jones (1985) and Jones
and Toland (1986), bifurcation at a double eigenvalue in the capillary-gravity wave
problem (i.e., when the surface tension is nonzero) is considered, together with the
effect of a small perturbation in the surface tension from a critical value. The group
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,/

FIG. 1. Period-doubling bifurcations.
)n/2-symmetric solutions.

Dn-symmetric solutions, Dn/2-symmetric solutions, and

that satisfies the equivariance condition for the capillary-gravity wave problem is the
same group O(2), and so the period-doubling scenario just described applies for this
problem. Toland and Jones considered only symmetric waves (that is, solutions which
satisfy SO 0) and found that at mode interactions between branch 2 and higher
branches, a perturbation in the surface tension resulted in secondary bifurcations on
branch 2 on both the primary and primary conjugate branches. They then claimed that
these bifurcation points are related by symmetry, which cle.arly cannot~ be true since
they are associated with the different isotypic components V2 and V3. Thus we must
conclude that the two secondary bifurcation points are, in fact, independent of each
other.

(iv) We first observe that these Dn-irreducible representations restricted to the

subgroup~Z2 {/, S} are not Z2-irreducible. Thus by Theorem 3.3, the isotypic com-
ponents Va.m can be decomposed as

V4m-- Va,m V

where

I7’,, {fe 17"4,,, "Sf=f},
’a tr4,rn. Sf __f}.V4,m {f

Also, the linear operator Go(O, ,), OeX" aps the subspac V4,m of X to the
corresponding subspace of Y and similarly for V,. Thus if c V4, is D-irreducible,
then dim 2 but dim(XQ4, 1 and dim( "V4,)= 1 Now the isotropy

asubgroup of 4,m iS the cyclic group Z, where =gcd (m, n), whereas the isotropy
subgroup of V, is the dihedral group Dr. Thus dim ( Xl) 1 and so there is a
secondary branch of solutions with isotropy subgroup D. Clearly such a bifurcation
can be detected numerically by a sign change in the determinant of the approximation
to Go(O, )[. and so the linear operator Go(O, )[. need not be considered.

If n/1 is odd, then the normaliser of D in D is simply Dl, and so the bifurcation
is nonsymmetric by Theorem 3.5 and the solutions on the two secondary branches are
distinct. However, in this case, a shift by /l (i.e., an odd multiple of /n) applied
to e Xo results in a symmetric function, and so the secondary branches bifurcat-
ing from the primary conjugate branch are O(2)-conjugate to those bifurcating from
the primary branch.

If n/1 is even, then the normaliser of D in D is D2 and D2/D Z2. Thus the
bifurcation is a symmetric pitchfork by Theorem 3.5, where the secondary conjugate
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branch is obtained by applying the shift operator R=/. In this case, no shift by an odd
multiple of 7r/n applied to q 71XD, results in a symmetric function. Since dim 2
on the primary conjugate branch, we can again restrict attention to the symmetric part
of the isotypic component V4.,,, resulting in a distinct secondary branch of solutions
bifurcating from the primary conjugate branch.

Thus in each case, there are two distinct branches of solutions which bifurcate.
Dellnitz and Werner (1989) show that no other subgroups of Dn give rise to distinct
branches of solutions via the Equivariant Branching Lemma. We will refer to this case
as bifurcation of mode rn (for rn < n/2). These results are summarised in Fig. 2.

v

(i) n even

FIG. 2. Structure of secondary bifurcations from primary branch n >-3.
conjugate solutions.

(ii) n odd

distinct solutions and

We note that if 1, then the secondary bifurcation point can be scaled down
onto branch n/l and so, on any branch, the only bifurcation points that have not
already occurred on lower branches are those for which m and n are coprime.

5.3. Numerical procedures for the gravity-wave problem. A pseudospectral colloca-
tion method is used to solve the gravity wave problem (5.1) numerically using the
Fourier coefficients of the function 0 as the degrees of freedom. This method has the
advantage of spectral accuracy as 0 is a smooth function. Also, the fixed-point subspaces
and isotypic components of the finite-dimensional approximation spaces are easily
identified. However, there is the drawback that the Jacobian matrix is full and has no
banded structure.

On primary branch n, it is sufficient to solve for 0 on the interval (0, zr/n) using
the equally spaced meshpoints si (ir/(N + 1) n), 1, 2, , N, where N is the
number of sine functions in the approximation for 0 XD-. For a given vector of
Fourier coefficients, both the functions 0 and - can be evaluated at the collocation
points using only one Fast Fourier Transform (FFT). The FFT will be most efficient
if N is chosen such that N+ 1 is a power of 2.

Since secondary bifurcation points must occur on the primary conjugate branch
whenever they occur on the primary branch, it is sufficient to check only the primary
branch for possible bifurcation points. When seeking bifurcation from branch n, n _-> 3
of mode m < n/2, it is sufficient to solve for q V,,, on the interval (or symmetry
cell) (0, 2/n]. We observe that in this case q is always symmetric (relative to S).
Now it is computationally convenient to work only with symmetric functions and so,
when seeking bifurcation from branch 2, we can find both possible modes ofbifurcation
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by c,hecking both the primary and primary conjugate branches for bifurcation with
q V2 (so that q is symmetric). The isotypic com,ponent 3 does not then need to be
considered. Also, it is sufficient to solve for q V2 on the interval (0, r/2]. Thus if N
collocation points are used to solve for 0 on a primary branch, all the possible
bifurcation points can be found by considering only matrices of order at most 2N+ 2,
irrespective of the increase in the period of the solution on the secondary branch. This
clearly illustrates the power of this approach.

In order to find a secondary bifurcation point, the path-following package PITCON
(Rheinboldt (1986)) is used to follow a primary branch of solutions away from the
trivial solution, initially using the first Fourier coefficient associated with the lowest-
order sine function in the expression for 0 as the continuation parameter. At each
step, the determinant of the Jacobian matrix defined on an isotypic component (or
the appropriate subspace of an isotypic component) of the finite-dimensional approxi-
mation space is evaluated. Clearly, many such matrices can be found and their
determinants evaluated at each step and, as the matrices are dependent only on the
primary branch solution, this procedure could be performed in parallel, resulting in
a considerable saving in computation time. Once a sign change of a determinant has
been detected, the bifurcation point can be found directly by solving the extended
system (3.13) by Newton’s method, using the last computed point on the primary
branch as the initial approximation. The singular value cr and the singular vectors q
and q are found by performing inverse iteration on the eigenvalue equations

J’Jq o-Zq, JJ Tcp o’z q,
which can be derived from (3.14), where J is the Jacobian matrix under consideration.
Only one LU-decomposition of the matrix J is required to perform the inverse iteration
since forward and backward substitutions can then be used twice for each system.
Generally, the vectors q and p change very little at each Newton iteration of the
extended system, and so one inverse iteration is usually sufficient to update p and q
between Newton iterates. Alternatively, the vectors q and q need not be corrected
after every Newton iterate, in which case an updated value of cr is obtained as

=J
using the updated matrix J. This procedure saves the costly LU-decomposition of J at
some of the Newton iterates.

The full Newton method is used to solve the extended system, as the cost of
evaluating the function, which requires computing the singular value o-, is more
expensive than the decomposition of the Jacobian of the extended system. Also, the
same storage space can then be used for the matrix J and the Jacobian of the extended
system so that storage for only one matrix is required.

The advantage of using the extended system (3.13) instead of (3.12) is that the
vector of derivatives of the singular value r with respect to the Fourier coefficients of
0 can be evaluated efficiently using FFTs. Otherwise, this operation would be very costly.

Once a secondary bifurcation point has been located, branch switching is easily
achieved by adding a small multiple of the singular vector q onto the symmetric
solution and using one of the (nonzero) Fourier coefficients of o as the continuation
parameter.

It is well known that the primary branch solutions develop sharp crests as the
amplitude ofthe wave increases, resulting in a limiting wave profile that has a 120-degree
corner at the crest (Amick, Fraenkel, and Toland (1982)). This produces a boundary
layer in 0 at the origin as the primary branches are followed away from the trivial
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solution, and so the number of terms N in the Fourier expansion for 0 has to be
increased as the computation proceeds. Clearly, a local mesh refinement strategy would
be required to follow the primary branches up towards the limiting wave, which is not
possible with a spectral method (although see Tanaka (1983)). However, we will not
be concerned with the near limiting waves.

5.4. Numerical results for the gravity-wave problem. Primary branches 2-10 were
followed in the range 1/n _-< v _-< 1.19/n, n 2, 3, , 10, checking for all possible modes
of bifurcation. On branch 2, no bifurcation of mode 1- was found, but a bifurcation
point of mode 1+ was found. Exactly one of every other possible mode of bifurcation
was found on each of the branches 3-10 in the specified range. These bifurcation
points, scaled back onto the first primary branch for purposes of comparison, are
presented in Table 1. The bifurcation points on branches 2 and 3 agree closely with
the results of Chen and Sattman (1980), and those of mode 1 agree with the results
of Saffman (1980) but are given to greater accuracy. The results in Table 1 were all
computed with N 255. By taking N 383, we can verify that the error in the computed
values of v is of the order of 10-11 whereas the error in the computed values of 0]]
is of the order of 10-6. Also, Zufiria (1987b) checked primary branch 1 for a bifurcation
which breaks the reflectional symmetry (associated with the isotypic component V1),
and found none.

TABLE
Bifurcation points on branches 2-10.

Branch Mode

Chen and
Saffman Sattman
(1980) (1980)

2 0.4406510 1.17535981841
3 0.4402020 1.17513246000
4 0.4396202 1.17483980293
5 0.4391432 1.17460105308
5 2 0.4404909 1.17527864507
6 0.4387711 1.17441341967
7 0.4384939 1.17426460109
7 2 0.4399007 1.17498076008
7 3 0.4405696 1.17531849738
8 0.4382697 1.17414451964
8 3 0.4404000 1.17523265296
9 0.4380851 1.17404592240
9 2 0.4393677 1.17471330800
9 4 0.4406018 1.17533484504
10 0.4379308 1.17396367239
10 3 0.4399996 1.17503053726

1.175351
1.175102

1.175
1.175
1.175
1.175

1.174

From these results there appears to be an ordering of the bifurcation points. Let
u,,n be the value of u at which there is a bifurcation from branch n of mode m, scaled
back to the first branch (by multiplying by n). Then these results suggest the following
ordering on the bifurcation points:

ml m2 : 1]ml ,n 1]m2,n
gll n2

This ordering is the same as that found by Zufiria (1987a) for a Hamiltonian
approximation to the finite-depth problem. Such an ordering has also been explored
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by Scovel, Kevrekidis, and Nicolaenko (1988) in their investigation of the Kuramoto-
Sivashinsky equation. It is interesting to observe that both Zufiria and Scovel et al.
were solving fourth-order ordinary differential equations that are O(2)-equivariant
and satisfy scaling laws of the form (4.6).

We seek to determine the value t, defined by

lim /l,n"

To this end, we computed bifurcation points of mode 1 on higher branches; the results
are given in Table 2. We make the assumption that as n-,

1
//1,n lYcx3 -[- C

n

for some a R. Using the last two values in Table 2 for n- 500 and n 1000, we
obtain an approximation to , given by

u= 1.17307544040.

In the same way, we obtain an approximation to the norm of 0 at , u, which
is given by

I1 - 0.4362479.

Having established this pattern in the bifurcation structure, we conjecture that
there are no secondary bifurcation points on any primary branch with 011 < 0.4362479.

5.5. Extension to nonperiodic problems. The procedure outlined in this section
based on O(2)-equivariance can be applied to nonperiodic problems in certain cases.
As an example, consider a second-order, ordinary differential equation of the form

(5.9)
g(x, h =- x"+f(x, x’, h O,

g" H2[O, r] x R- L2[O, or],

together with the homogeneous Neumann boundary conditions

(5.10) x’(0) x’(Tr) 0.

We can define a corresponding periodic problem by g(x, )= 0, g" HZ[-7"r, 7r]
R- LZ[-’n", "n’], together with 2w-periodic boundary conditions. The periodic problem
is equivariant with respect to the translations

Rx(s) x(s + a), a e R,

and we assume that it is also equivariant with respect to the reflection

SlX(S)=x(-s),

TABLE 2

Bifurcation points of mode on higher branches.

Branch Mode II011o

20 0.4371592 1.17355440666
50 0.4366304 1.17327590512
100 0.4364422 1.17317717624
250 0.4363263 1.17311646942
500 0.4362871 1.17309598530
1000 0.4362675 1.17308571285
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Thus the periodic problem is O(2)-equivariant. However, the only group action that
respects the Neumann boundary conditions and leaves the interval [0, r] invariant is
S1R, the reflection about the midpoint of the interval.

Now any solution of the Neumann problem can be extended onto the interval
[-r, 0] using the reflection operator $1. This extended function is C at s =0 and it
is also in Hz[-yr, yr]. Since g is equivariant with respect to S, the extended function
satisfies (5.9) on the interval [-r, r]. Similarly, this function can be extended to a
2r-periodic function which satisfies (5.9) on the whole of the real line using the
translation operators Rzn, n E Z. Thus every solution of the Neumann problem can
be extended to a solution of the periodic problem. Now the S-symmetric solutions
of the periodic problem are precisely those which satisfy the Neumann boundary
conditions (since 2r-periodic even functions are also even about s r). Thus in order
to find solutions of the Neumann problem, we can use the procedure described in this
section to find S-symmetric solutions of the corresponding periodic problem. This
technique has been employed previously by Fujii, Mimura, and Nishiura (1982) and
by Armbruster and Dangelmayr (1987).

Similarly, if the boundary conditions associated with (5.9) are the homogeneous
Dirichlet conditions

(5.) x(0) =x() =0,

and g is equivariant with respect to R, a E R and the odd reflection $2 defined by

Sx(s) -x(-s),

then any solution of (5.9) which satisfies the boundary conditions (5.11 can be extended
onto the interval [-r, 0] using the reflection operator $2. This extended function is
C at s 0, is in H2[-r, r], and satisfies (5.9) on the interval [-zr, r]. As before, this
function can be extended periodically over the real line. In this case, the S2-symmetric
solutions of the periodic problem are those which satisfy the boundary conditions
(5.11). Thus we can find solutions of the Dirichlet problem by using the procedure
described in this section to find S2-symmetric solutions of the corresponding 0(2)-
equivariant periodic problem.

Many equations of the form (5.9) are equivariant with respect to the group
generated by R, S, and S2, which we will call 02(2). In this case, branches that
bifurcate from the O2(2)-symmetric solution (which is often the trivial solution) have
isotropy subgroup generated either by Rz=/n, $1, and SzR/n, in order to satisfy the
Neumann boundary conditions (5.10), or by Rz/n S2, and SR=/, in order to satisfy
the Dirichlet boundary conditions (5.11). These two classes of solution are conjugate
solutions of the 2r-periodic problem and are related by the shift operator R/zn. In
both cases, the group is the dihedral group /2n generated by the "rotation" SISR=/n
and the reflection either S or $2 (since (SIS2R=/,)= R2=/,). The analysis of secondary
bifurcation is then very similar to that of 5.2 but is applied to the group Ozn.

We now consider the case where (5.9) is defined on the interval [0, r/2] and the
associated boundary conditions are the mixed conditions

(5.12) x(O)=x’(/2)=O.

If g is equivariant with respect to 02(2) generated by R, $1, and $2, then any
solution of (5.9) that satisfies the boundary conditions (5.12) can be extended onto
the interval [r/2, r] using the reflection operator SR, and this function can then
be extended onto the interval [-r, 0] using the reflection operator $2. This extended
function is in H2[-r, r], satisfies (5.9) on the interval [-or, r], and can be extended



BIFURCATION AND SCALING LAWS 211

periodically over the real line as before. The solutions of the O2(2)-equivariant,
2r-periodic problem which satisfy the boundary conditions (5.12) are those which are
symmetric relative to $2 and S1R=. Such solutions must have period 2r/n for some
odd integer n.

In all of these cases, we have been able to extend the group of symmetries under
consideration from the discrete group Z2 or the trivial group to the continuous group
0(2) or 02(2)). Thus it is possible that a scaling law could exist for the problem as
described in 4.

Finally, we consider the situation where the boundary conditions and the group
reflection do not "match" as they do in the above examples. For the purposes of
illustration, we will consider the case where g is equivariant with respect to R and
$1 only and we have the Dirichlet boundary conditions (5.11). If a solution of (5.9)
that satisfies the boundary conditions (5.11) is extended onto [-zr, 0] using the reflection
$1, the resulting function is only Co at s 0 and so cannot be in H2[-cr, or]. Thus the
procedure of selecting solutions of the 2r-periodic problem that have certain sym-
metries breaks down in this case. Hence we must consider only the group actions that
respect the boundary conditions. This leaves the group Z2 generated by the reflection

S1R= about the midpoint of the interval. Bifurcation could then occur by breaking the
reflectional symmetry, resulting in a symmetric pitchfork bifurcation. However, generi-
cally, secondary bifurcation will not occur since all the symmetry in the problem has
been broken. Alternatively, if (5.9) has a trivial solution for all A, then bifurcation
from the trivial solution might occur without breaking the reflectional symmetry, and
generically this would be a transcritical bifurcation. On such a primary branch,
secondary bifurcation might occur by breaking the reflectional symmetry. Clearly, a
scaling law of the type described in 4 cannot hold in this case since the group Z2 is
discrete.

Thus we conclude that if g is just O(2)-equivariant, then the choice of boundary
conditions makes a fundamental difference to the structure of the solution set of (5.9).
All these extensions can also be applied to elliptic partial differential equations in
rectangular domains of higher dimension.
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Abstract. The sufficiency of the Matkowsky condition concerning the differential equation ey"+
f(x, e)y’+ g(x, e)y=0 is considered under the assumption that f(0, e) =f’(0, e) f(’-l)(0, e)=0 and
f(m)(0, e)S0. It is proved that the Matkowsky condition implies resonance in the sense of N. Kopell.
Y. Sibuya has proved such a problem if f(0, e) 0 and f’(0, e) 0 m ].
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1. Introduction. In this paper we consider a differential equation

d2 t) dv
(1.1) e dx---5+ F(x, e) -x + G(x, e)v O,

where F and G are holomorphic in two complex variables x and e in a domain

(1.2) xDo, lel<po,

where Do is a domain in the x-plane and po is a positive number. We assume that Do
contains a real interval

(1.3) Io {x; -a-< Re x=< b, Im x =0},

where a and b are positive numbers. We also assume that

(1.4) F(x, O) -2x",

where m is a positive integer.
We say that the differential equation (1.1) satisfies the Matkowsky condition on

Io, if there exists a nontrivial formal power series solution of (1.1),

(1.5) v(x, e)--
rl=O

such that all the v,(x) are bounded on the real interval Io. We also say that the
differential equation (1.1) exhibits resonance in the sense of N. Kopell on Io, if there
exists a solution v(x, e) that converges uniformly on Io as e --> +0 to a nontrivial solution
of the reduced equation

dv
(1.6) F(x, O) -x + G(x, O)v O.

We will prove the following main theorem.
TiOgM 1.1. The Matkowsky condition implies resonance in the sense ofN. Kopell.
Y. Sibuya [9] has proved that the Matkowsky condition implies resonance for the

case in which

(1.4)m:1 F(x, O) -2x,
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and Do is a disk with the center at x 0, i.e.,

(1.7) Do {x; Ixl < ro for some ro> 0,

by using the properties of Whittaker’s parabolic cylinder functions and Hermite
polynomials. Furthermore, in that proof, Theorem 1.2 below, and a theorem concerning
uniform simplification [8], play an important part.

THEOREM 1.2 (Y. Sibuya [9]). Let

(1.8) S={e;a<arge<b,O<lel<p}, j=l,2,...,u

be sectors in the complex e-plane, where p is a positive number and the a’s and the b’s
are real numbers. Let 6(e),. ., 6(e) be functions of e. Assume that

(i) S [..J S2 [,.J" J S {E; 0< [E <
(ii) g(e) is holomorphic in S.
(iii) 6j(e) is asymptotically zero as e 0 in S, i.e.,

I()l=<K,lel, N-O, 1,... in Sj

for some positive numbers KN.
(iv) If Sj f’) Sk # (, we have

(a.9) I.()-()l<-coexp[-c/ll3 in Sjf’)Sk

for some positive numbers Co, cl, and h.
Then there exists a positive number H such that

(1.10) 16(e)l_-<H exp[-c,/lel] in Sj j= 1,2,..., ,.
Lin [4] has shown that the condition that Do is a disk is not necessary, so that

the sufficiency of the Matkowsky condition is proved for the general case for m 1,
by the use of Lin’s cohomological theorem, as follows.

THEOREM 1.3 (C. H. Lin [5]). LetSj={e; aj <arg e </3j, 0<lel <p},j- 1,. .,
be sectors in the right half complex e-plane, where p > 0:

’7"1" < --OO0 < Ol < 01. 2 < 1 < 01"3 < [32 < 01"4 < [33 <’’" < 01., < ,_1 < ,
Let ch l(e), ch2(e)," ., 4’ (e) be functions of e. Assume that

(i) 4,J(e) is holomorphic in Sj and continuous on

Sj-{e; a<-arg e <-, O<le[<=p}.

(ii) bJ(e) is asymptotically zero as e tends to zero in S.
(iii) [bl(e)[ <= H exp {-/x. Re [1/[e[]}

on the line segment arg e =-(Do, 0 < [e < p;

[b(e)[-<- H1 exp {-/x. Re [1/[e[]}

on the line segment arg e -(Do, 0 <[e[ < p, for some positive numbers tx and

(iv) ]bJ(e) b+l(e)[ =< H exp {-/x. Re [1/[el]} in

(j=l,2,...,

Then there exists a positive number H such that

H. exp {-/x. Re [1/11]} in Sj (j=l,2,..., ).
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Matkowsky [6] has demonstrated that the resonance phenomenon occurs for
functions F(x, e) more general than those having a single simple zero in the interval
by the following example:

(1.11) et"-x3(x2-1)(x-2)2y’=O, -a<=x<=b, b> l,

(1.12) y(-2)=a, y(b)= , n # 2.

In this paper we will prove the theorem concerning uniform simplification in a
full neighborhood of a higher-order transition point and treat the problem of resonance
for the case in which F(x, e)(F(x, 0) =-2x’") has a higher-order zero in the interval

Io and Do is a domain (not disk) in the x-plane containing the real interval [-a, b].
In this analysis we will use Theorems 1.2 and 1.3.

2. Reduction to a standard form. Let Po be a positive number, and let D be a
domain in the complex sO-plane which contains a real interval

(2.1) I {so: -or =< Re sc =</3, Im sc 0},

where cr and/3 are positive numbers.
We will consider a linear differential equation

dZv dr+(2.2) e--+f(x, e)
d

g(x, e)v=0,

where f and g are holomorphic in two variables : and : in the domain

sCuD, [el<po.(2.3)

Set

(2.4)

We assume that

(2.5)

(2.6)

fo(s:) =f(s, 0).

fo(O) =f6(o) o, o,
sc’fo(s) < 0 for

Under this situation, we can write fo as

(2.7) fo() h(),

where h(() is holomorphic in the domain D and

(2.8) h() <0 for I.

Let us change the independent variable by

(2.9) x=()=
2

fo(t) dt

Then (2.2) becomes

(2.10)

where

(2.11)

d2v dv
+ l (x, -:-+ O(x, o,

ax
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Since

m+l
(m + 1){6()}"4/()

2

we have

(2.12) F(x, e)= -2x + ek(x, e),

and k(x, e) and G(x, e) are holomorphic in the domain

(2.13) xDo, lel<po,

fo(),

where Do is a domain in the x-plane which contains the real interval

(2.14) Io {x: -a <- Re x _<- b, Im x 0},

where

a= fo( t) dt b= fo( t) dt

Let r2 be a sufficiently small positive number and rl be a positive number with rl > b, a,
respectively. Set

x)/Z<x<(r /2}.(2.15) D {x xi + ix: -r2 < x2 < r2, -(rl

Then D is a simply connected domain in the complex x-plane which contains the
real interval Io. We can choose r and r2 so that D = Do.

Another transformation,

(2.16) v= w. exp - F(, e) dt

takes (2.10) to

(x,+ o(x, -a(x, =0.

Note that

F+e -G =x+eR(x, e)(’)
4 ox

where R(x, e) is holomorphic in a domain (2.13).

3. Frl slet mer ess. We consider the system

d
dw

0

which is equivalent to the single linear differential equation (2.17). It is well known
among expeas that there exists a two-by-two matrix

(3.2) (x, )= E (x)
h=0

whose components are formal power series in e such that
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(i) The components of the two-by-two matrices Th(X) are holomorphic in the
domain Do.

(ii) det To(x) 1 in the domain Do.
(iii) The formal transformation

(3.3) dw T(x, e) du
e-d-x e

reduces (3.1) to

(3.4) e -d-x du 2m-1 du
x2"+e Z at(e)xr

and each at(e) is a formal power series in e with constant coefficients. Furthermore,
if we put

(3.5) at(x)= a,he h,
h=0

we have
2m --2

(3.6) R(x, 0)- a,oX= O(x2"-1)
r-----0

in the neighborhood of x 0 [1], [2].
Note that (3.4) is equivalent to the single linear differential equation

(3.7) e2d2u[_X2m 2m--2 )+e E ar(e)x u=O.
r-O

A formal power series in e"

(3.8) v(x, e)= E v,,(x)e"

is called an outer expansion, associated with the differential equation (2.10), if (3.8)
formally satisfies (2.10). The power series (3.8) is an outer expansion if and only if

dvo(x
(3.9) -2x +Go(X)Vo(X) O,

dx

(3 10) -2x"
dVk(X) d 2

-t- Go(x)v,(x) L,(x)-
Vk_,(X)

k 1, 2,"
dx dx2

where Go(x)= G(x, 0) and Lk(X) is linearly homogeneous in Vo, Vl,’’’, Vk- and
(dvo/dx), (dvl/dx),. ., (dVk_/dx) with coefficients holomorphic in Do.

DEFINIXION 3.1. The differential equation (2.10) is said to satisfy the Matkowsky
condition if there exists a nontrivial outer expansion (3.8) such that all the Vk(X) are
bounded on the interval Io.

LEMMA 3.2. The differential equation (2.10) satisfies the Matkowsky condition. Then
the differential equation (3.7) satisfies

(i) am_l,O+ m is a nonpositive even integer;
(ii) a,o=0(r=0,1,...,m-2).
Proof The transformation

(3.11) u y" exp [-x’+/(m + 1)e]
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changes (3.7) into

(3.12) ey"- 2xmy’- ar,e x + mxm- y 0.
r=O =0

Ifthe differential equation (2.10) satisfies the Matkowsky condition, then, by manipulat-
ing the transformations (2.16) and (3.3) together with (3.11), we can show that the
differential equation (3.12) satisfies the same condition. It follows from (3.12) that

(3.13) 2xmvto(X)+ ar,oxr-b mxm-1 Vo(X)=0;
L r=0

that is,

(3.14) Vo(X) c. x-1/2a-,,-m/2 exp r/l-m

r=O,rm--1 2(r+ 1 m) ar,oX

where c is a constant.
Hence, if Vo(X) is to be holomorphic at x =0, it must hold that
(i) -1/2(a,-l,o+ rn) is a nonnegative integer;
(ii) ar,o=0 (r=0, 1,’’’, m-2).

This completes the proof of Lemma 3.2.

4. Uniform simplification. We will assume that the transformed differential
equation (3.7) satisfies conditions (i) and (ii) of Lemma 3.2. Then (3.7) is called fully
reducible by stretching and shearing (Wasow [10]). Let us change the independent
variable by the stretching transformation

X --/.-2t, 8
-1

--/[z 2m+2.(4.1)

Then (3.7) becomes

t2’ + E /2m-2r-2. Or e bl O,
dt2

r=0

where

/2m-2r-2 ar(e)-- (o(1), r# m- 1,
(4.3)

a,,-1,o + o(1), r rn- 1.

Let bl, b2,. ., bzm be complex parameters and b be a real constant, and consider
the differential equation of the form

(4.4) y"-[z2m + blzm-l + + [b + b+l]z-l +. + b]y O.

The differential equation (4.4) has a solution

y(z, b, b)= y(z, b; bl, b,.+l,""", b2m),

which is an entire function of z, b, bl," , b2,,. Respectively, y(z, b, b) and y’(z, b, b)
admit the asymptotic representations

Y(z,b, bj)--z-m+l(b’s)-m/2exp[0--<k<m+lE
-ak(b,bJ)m+ 1 k

zm+l-k]
(4.5)

{1 + O(Z-’/Z)},

Y’(z’b’b)=z-+’(b’)+m/2exp[O<-kE<m+, --ak(b’b)z"+l-kJm+ 1 k

{-1 + O(z-1/2)}
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uniformly on each compact set in the (bl, , b2,,)-space, as z tend to infinity in any
closed subsector of the open sector larg zl < 37r/(2m + 2). Here

(4.6) 1+ Z b. z-J+(b+b,,+l)z-"-1 =1+ Y, a(b,b)z-.
j=l,jCm+l h=l

The solution y(z,b,b) is subdominant on largzl<Tr/(2m+2) and therefore it is
uniquely determined. Furthermore, if we put

2m

(4.7) y(z, b, bj)= rl(z, b)+ rlj(z, b)bj+O(lbl]2+ "+]b2ml2)
j=l

in the neighborhood of (bl,’" ",b,,+l,’" .,b,,)=(0,...,0), we can obtain the
following properties of r/(z, b).

LZMMA 4.1 (Ohkohchi [7]). If z is positive real and the constant b is real, then
rl (z, b) is a real-valued function. Furthermore, rl (z, b) satisfies the following conditions:

(i) q(z, b) is an entire function of (z, b).
(ii) rl(z, b) and rl’(z, b) admit, respectively, the asymptotic representations

(4.8) 7(z, b z_b/_,/ exp [ 1
-z [+O(z-’/)],
m+l

(4.9) rl’(z’ b) z-b/+m/2 exp [ --m + zm+l] [_l + O(z_l/2)

uniformly on each compact set in the b-space, as z tends to infinity in any dosed subsector
of the open sector larg z[<3rr/(2m+2).

(iii)

(4.10) r/(0, b) 2(m+b)/(2m+2)(m nt- 1) -(m+b)/(2m+2)
F(1/(m + 1))

r((b+ m+2)/(2m+2))’

(4.11) ,rl,(O,b)__2(b+m+2)/(2m+2)(mnt_l)_l_(b+m)/(2m+2) r(-1/(m + 1))
F((b+m)/(2m+2))"

If we put

(4.12) y,(z, b, b)=y(w-’z, (-1)b, G’(b)),
where

to exp and G b to-kbl tO ),
+1

then, for each integer k, yk(Z, b, bj) is a solution of the differential equation (4.4) (see
Sibuya [8]). Note that

y(z, b, b) yh(Z, b, b) if k h (mod 2m + 2).

It holds from (4.5) that

y,(z, b, b) (oo-kz) (-1)k+’am+’(b’bj)-(m/2) [1 + O(z-1/2)]

exp[(- 1)+1
o_-<p<,,+l m + 1 p

ytk(Z b, bj)---(.O--k{(--1)k+lam+l(b’bj)--(m/2)}z(m/2)+(--1)k+lam+l(b’bj)

exp [(1)k+l a,(b, bj) m+l-p] k+,z {(-1) "ql"O(z--1/2)}.
o<_-p<,+l m + 1 p
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Here we used the identities

ah((--1)kb, Gk(bj)) to -hk" ah(b, bj)

The solution yk(Z, b, bl)--> 0 as x-> in the sector

(4.13) argx-
m+l 2m+2

(h l, 2, .).

(4.15)

(4.16)

Then we have

(4.17)

(4.18)

yo(z, b, bj)= C(b, bj)yl(z, b, bj)+ d(b, bj)y2(z, b, bj),

yl(g, b, by)= C*(b, bj)y2(z, b, by)+ C*(b, b)y3(z, b, b):
From (4.12), (4.17), and (4.18) we easily derive

Y2k(Z, b, bj)= C((--1)2kb, GZk(b))Y2k+l(Z, b, by)
(4.19)

+ ((-1)2kb, G2k(bj))Y2k+E(Z, b, bj),

Y2k+l(Z, b, bj)-- C*((--1)2kb, G2k(bj))Y.k+(z, b, bj)

(4.20) + (*((--1)2kb, G2k(b2))yk+3(z, b, bl),

From (4.12), (4.19), and (4.20) we obtain

C2k(b, by)= C((-1):kb, G2k(bi)),
;_k(b, bj)= (((--1)kb, G2k(bj)),

(4.21) Czk+l(b, bj)= C*((--1)kb, GZk(bj)),
(2k+l(b, bj)= (*((--1)2kb, G2k(bj)),

Next, let us put

(4.22)

(k-0, 1,...,m).

(k=O, 1,2,...,m).

Wk.h b, bj
yk(Z, b, by) yh(Z, b, by)
y’k(Z, b, b) y’h(Z, b, bl)

Therefore, the solution yk(Z, b, bj) is called a subdominant solution in sector (4.13).
The two solutions yk+I(Z, b, bj) and yk+(Z, b, bj) of the differential equation (4.4)

are linearly independent (see Lemma 4.2 below). Therefore, yk(Z, b, bj) is a linear
combination of yk+(Z, b, b) and yk+z(Z, b, bj).

Set

(4.14) yk(Z, b, bj) Ck(b, bj)yg+(z, b, bj)/ k(b, bj)yk+(z, b, bj).

Relation (4.14) is a connection formula for yk(Z, b, bj). The coefficients Ck(b, bj) and
Ck (b, bj) are the Stokes multipliers for Yk (Z, b, bj) with respect to Yk+a (Z, b, bj) and
Yk+2(Z, b, bl). We will study the Stokes multipliers Ck(b, bj) and k(b, bl) as functions
of b, bj, bz,,,.

Let us put

Co(b, by)= C(b, by), Co(b, by)= C(b, by),

Cl(b, by)= C*(b, by), l(b, by)= *(b, b).
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The determinant is known as the Wronskian of the functions Yk and Yh. It follows
from (4.4) that the right-hand member of (4.22) is independent of x. Then we have
the following lemmas.

LEMMA 4.2 (Hsieh and Sibuya [3]).

Wk,k+(b, by)= 2" (Jl) -Otm+l((-1)kb’Gk(b))’F?Fl/2-k.(4.23)

LEMMA 4.3.

(4.24)
b b2m=0

_{0 (j# m+l),
1/2 (j= m+l).

Proof Differentiating (4.6) with respect to by and putting bl b2m =0, we
derive

_1 m--1]--l/2 Z-- -h,(4.25) 2[l+b’z- Y A.z
h=l

where

It follows from (4.25) that

A) aj-1 0,

Thus we get (4.24).

obj b b2m =0

A =1/2, .,zJ+-,J
., +
"1 =0.

Using these results, we can obtain the properties of the Stokes multipliers C(b,
C*(b, by), (b, by), and (*(b, by) as follows.

LEMMA 4.4.

C(b, 0) =0

(4.26) C*(b, 0) # 0

LEMMA 4.5.

]_,EMMA 4.6.

for b+ m -(2m +2)k, -(2m +2)k-2,

for b + m -2k, k O, 1, 2,

(b, by)=-oo 1-2"am+l(b’bj),

d*( b, by w l+2"""+’(b’b ).

k=0, 1, 2,.-.,

(4.27)

for

(4.28)

det

OC(b, bj) OC(b, bj)
Obp Obp+m+

OC*(b, by) OC*(b, by)

b=-m-2k(m+ 1),-m-2-2k(m+ 1)

(b:, b ,’’’, b2,,)= (0, 0,..., 0),

i)= 1,2,.-., m-1.

LEMMA 4.7.

(k=0, 1,2,...),

OC(b, by)
b b2m =0,
b= -m-2k(m+ ),-m-2-2k(m+

SO (pm).
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Using Lemmas 4.5-4.7, we can obtain the following lemma. The proof is similar
to that of Sibuya [8, Case iv].

LEMMA 4.8. There exist two positive numbers p and p2, functions 8(e),
62(e),’’’, 82,,(e), and a two-by-two matrix P(x, e) such that

(i) j e (j 1, 2,. , 2m are holomorphic in the sector

(4.29) S={e; larg el<p,
(ii) 6j(e) are asymptotically zero as e - 0 in the sector S,

(4.30) 16j(e)l_-< gll, N-0, 1, 2,... in S

for some positive numbers Ks.
(iii) Entries of P(x, e) and P-l(x, e) are holomorphic in the domain

(4.31) x G D {x; Ixl < r}, e S.

(iv) P(x, e) admits theformal transformation matrix r(x, e) (3.2) as an asymptotic
expansion as e 0 in S which is valid uniformly in D2.

(v) The transformation
(4.32) W= P(x, e) V
takes (3.1) into

(4.33) t 0 1 tdV
2m V8--d-x x2mnt-8. E {ap(e)WSp(e)}x2m-p 0
p=l

in the domain (4.31).
Using this result and manipulating with rotations of the disk D2, we can prove

the following lemma.
LEMMA 4.9. There exist sectors

(4.344) S ={e: og<arge<j,o<lel<p3} j= 1,2,...,k,
where p3 is a positive number and the a’s and ’s are real numbers, functions 3p(e)
(j=l,2,...,k;p=l,2,...,2m), and two-by-two matrices P(x, e), P2(x, e),

", Pk(X, e) such that
(i) S1US2...USk--{e;O<IeI<p3}.
(ii) 6p(e) (p 1, 2,. , 2m; j 1, 2," , k) is holomorphic in the sector Sj.
(iii) tp(e) (p 1, 2,. , 2m; j 1, 2,. , k) is asymptotically zero as e - 0 in the

sector Sj.
(iv) Entries of P(x, e) and P-l(x, e) are holomorphic in the domain

(4.35-j) x c D2, e c Sj.
(v) P(x, e) admits the formal transformation matrix T(x, e) as an asymptotic

expansion as e 0 in the sector Sj which is valid uniformly in the domain O2

(vi) The transformation
w=(x, )v(4.36)

takes (3.1) into

0
d x2,

2m

(4.37-j) e--d--x + e. Z [ap(e)+ 6Jp(e)]X2m-p
p=l

in the domain (4.35-j).
Remark 4.10. In Lemmas 4.8 and 4.9,

a,.(), ag() =o.
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(5.3)

for some positive numbers KN, p;
(iv) If Sj fq Sh , we have

(5.4) Ip(e)-hp(e)l<-coexp[-cl/ll]

5. An estimate for a(e). In the previous section we have obtained that 6(e) is
asymptotically zero as e --> 0 in the sector Sj. In this section we will derive an estimate

(5.1) I()1 --< ,p exp -j for e Si and p 1, 2,..., 2m,

in the domain D(disk), where ,p is a positive number. To do this we need the
following theorem, which is easily obtained from Theorem 1.2.

THEOREM 5.1. Let

(5.2) S ={e: a<arge<,O<lel<p3}, j= 1,2,...,k,

be sectors in the complex e-plane, where p3 is a positive number and the a’s and ’s are
real numbers. Let(e (j 1, 2," , k; p 1, 2,. , 2m befunctions ofe. Assume that

(i) SlS2’’’S={e:O<lel<P3};
(ii) (e) are holomorphic in the sector .
(iii) (e) are asymptotically zero as e 0 in the sector S;

N=0,1,... in

in S Sh

for some positive numbers Co, cl, and h. Then, there exist positive numbers Hp (p
1, 2, , 2m such that

(5.5) [6p(e)[<-_Hp.exp[-cl/le[] inS, j=l,2,...,k.

To derive (5.1), we have only to prove that, if S Sl , we have for each p
(p=l,2,...,2m)

(5.6) [6p(e)- 6p(e)l <= M,l" exp [-rm+I/[e[] for e

where M.,! is a positive number. To derive an estimate (5.6), we need some preparations.
Roughly speaking, we shall derive in this section that the difference between two

Stokes multipliers of the differential equations (4.37-j) and (4.37-/) is exponentially
small. Then, using the implicit function theorem, we show that the difference 6J(e)-
61(e) is exponentially small.

Let us consider the differential equation (4.4). This equation admits solutions
yk(Z, b, b) (k=0, 1,"" ,2m+l). Set

bj)=(yk(z, b, bj) yk+,(Z, b, bj)](5.7-k) ’klI’k Z, b,
y’(z, b, b) y+l(g, b, b)]’

where denotes O/Oz. These matrices (5.7-k) are fundamental matrix solutions of (4.4)
and

k(z, b, by) h(Z, b, bj) if k= h mod 2m + 2.

Set

Ck(b, bj)
(5.8) rk(b, bj)=

Then, we have from (4.14) that

(5.9)

(k=0, 1,... ,2m+1).

k(z, b, b)= Itk+l(Z b, b)F(b, b).
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Fix and j so that S ["] Sj (. Choose a branch of e 1/(m+l) in the sector S (] Sj. Set

(5.10) A(e)=
0 e

Now, we consider (4.37-j) and (4.37-/). If we put

dPl,h(X e)= A(e)xIth(xe -I/(m+l), a, al + 6t a2,, + 6,,,)

(5.1 l-h) A(e)’tlth(Xe -1/(m+a), a, ap + 6lp),
dPj,h(X,e)--A(e)XIth(Xe-1 a, ap+6) (h 0, 1, 2,... ,2m + 1),

then t,h(X, e) and j,h(x, e) are fundamental matrix solutions of (4.37-/) and (4.37-j),
respectively. Furthermore we have

(5.12) dPt,h(x, E)-"lffl,h+l(X E)Fh(a, at, + 6p),
(5.13) %.h(X,e)=dj,h+l(X,e)Fh(a, ap+8p) (h =0, 1,2,""" ,2m+l).

Set

(5.14)

where

(1
Ql,h(X, e)=Cbl,h(x, e) exp {(--1)hE(z, ap + 6)J}
Q.h(X, e)=d.hh(X e) exp {(--1)hE(z, ap + 6)J}

(h=O, 1,-.. ,2m+l),

--1/(re+l)Z=XE

(5.16)
E(z, ap + 8p) ak(a, ap + 8p) m+l-k

0_<k<m+l m+ 1- k
z

It is known that, if (x, e) is in a domain

(5.17-h) arg xe --1/(m+l)

m+l

37/"

2m+2
v, x 6 D:z, e 6 St fq S,

where v is a small positive number, we have

(5.18)  )11 u. Q,(x,  )-111 H-I 1
where H is a positive number depending on v, q is a real number, and II" denotes a
usual norm of matrices. Furthermore, the matrix

(5.19) Qj,h(X, E)--Ql,h(X, e)

is asymptotically zero as e 0 in the sector Sl fq S uniformly in the domain (5.17-h)
(see Sibuya [8]).

Let P(x, e) and P(x, e) be the matrices given in Lemma 4.9. Then Pl(X, e)l.h(X, e)
and P(x, E)dj,h(X e) are two fundamental matrix solutions of (3.1) in the domain

(5.20) x 6 D2, e St fq S.
Therefore, there exists a two-by-two matrix Lh(e) such that

(5.21) Pt(x, e)dPt,h(x, e)= P(x, e)%.h(X, e)Lh(e).
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Note that Lh(e does not depend on x. It follows from (5.21) that

exp {-E(z, ap + 6p) J} Lh(e) exp {E(z, ap + 61p) J}
(5.2)

Qj.h(X, e)-’P(x, e)-’P,(x, s)O,.h(X, e).

Hence, the matrix

(5.23) exp {-E(z, ap + 6p)J} th(e) exp {E(z, ap + 6p)J}- 12
is asymptotically zero as e--> 0 in the sector St fq Sj uniformly in the domain (5.17-h),
where 12 is the two-by-two identity matrix.

LEMMA 5.2. Let

{a,,() al())(5.24) Lh(e) \dh2,(e) d2h2(e

Then

(5.25)

(5.26)

dh,(e)--l, dh(e)--l----O as e-)O in Sf-IS

Id,hz(e)l_--<c exp -(ri-i[e[ Idhl(e)l<--_c exp
(m+ 1)[el

for e S 0 Sj, where c is a positive constant

Proof Using (5.24), we get from (5.23) that

(exp [-E(z, ap + p)] 0 )(dhll(e)0 exp [E(z, ap + t)] dh21(e)

exp [E(z, ap + tp)] 0 1

0 exp[-E(z, ap+6p)] 0

_/dhl(e) exp (-E(z, av + ,5)+ E(z, av + ,5p)) 1

\ d,(e)exp(E(z, av+5p)+E(z, ap+Bp)}

dhl2(e))d2h2(e)

dhl2(e)exp{-E(z, ap+8p)-E(z, ap+6lp)}, )deh2(e) exp (E(z, ap + 8p)- E(z, ap + 8p)}- 1

as e - 0 in S! (q S.
On the other hand,

E(z, ap + p) E(xe -1/(’+1). ap +)
1 xm+l-k1

x"+1 + ., ak(a, ap + 6p) (.+l-k)/(,+l)(m+ 1)e k=l m+ 1-k e

and, since 6(e) and 6p(e) (p= 1, 2,..., 2m) are asymptotically zero as e-*0, it holds
that

ak(a, ap + 6p) ak(a, ap + 6) --O (eO).

Note that there are values of xD2 and of eSlOSj for which (5.17-h) is true and
z"+1 {xe-1/(m+l)}m+l is positive, as well as other such values for which z0+1 is negative.
Choosing such values with Ixl =r, we can obtain Lemma 5.1.
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DEFINITION 5.3. TO shorten the expressions for the calculation that follows, the
notation

a(e)b(e) in the sector S

will be introduced to indicate that

[a(e)- b(e)] exp [2r"+l/(m + 1)lel]
remains bounded, as e 0 in the sector S (see Wasow 10]). Furthermore, the notation

a(e) : b(e) in the sector S

will be interpreted as the sense that, for 0 < r’ < r,

{a(e)- b(e)} exp {2r’m+l/(m + 1)[e[} 0,

as e- 0 in the sector S.
We easily obtain from (5.12), (5.13), and (5.21) that

Lh+l(e)Fh(a, ap + 61p) Fh(a, ap + 6p)Lh(e).(5.27)

That is

(5.28)

This relation is important in the following analysis.
LEMMA 5.4.

dh2(e)/"

(5.29) h a, ap + 6 tp h a, ap + 6p 0 in the sector Sj St.
Proof The determinants of both sides of (5.28) imply that

{dh+l( 2h;1 h+l h+l
11 e)d (8)-d12 (e)d21 (e)}(h(a, apqlp)

h(a, ap + a){dl(e)d2(e)- d2(e)dl(e)}.
That is

(.3o) a+( +

Here we used (5.26).
On the other hand, we see from the (1, 2)-element of the matrix relation (5.28) that

dh+l11 (e)=C(a, ap+6)d2(e)+d2(e).
That is

(5.31) =d().

It follows from (5.30) and (5.31) that

d"+l), +)a a
Fuhermore, using (5.31) (dfl(e)d+e)), we get

,, t)(a, a.+.)=a,)h(a, a.+).
That is

dh+2[,, ,){.a, a. +) .a, . +)
h(a, ap + 6){d,(e)- d h+2t,, e)} =0.
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Hence, we can obtain

Similarly, we get

dh+2k{ h+2k+2[,, ,e)-d,,

(S.32)

Note that

{h(a, ap + 3lp)_ h(a, ap + + )}.

dh+2k+2[11 ,e)
{Ch+2k(a, -l- t dh+2k ap

(k=0, 1,...,m).

(cf. Sibuya [9, form. (11.47)]). We can obtain from (5.32) that

1 m+l

d h+2ste)-O.

Since

h(a, ap+3p)#O and d h+2s
11 (e)----" 1,

we can get (5.29).
LEMMA 5.5.

(5.33)
Cl(a, ap + (lp) C2h+2(a, ap + 6) Cl(a, ap nt- ($Jp) Ch+2(a, ap + 6)

(h=0, 1,..., m-2).

Proof It follows from (5.27) that

Lh+(e)Fh+l(a, ap + atp)Fh (a, ap + a)
(5.34) Fh+l(a, ap + 6)Lh+l(e)Fh(a, ap + ap)

Fh+l(a, ap + a)rh(a, ap + 6)L(e).
That is

(5.35)
;)
d,())d()

(5.36)

We see from the (1, 1)-element of the matrix relation (5.35) that

dh+211 (F,){Ch+(a, ap + (p)Ch(a, ap + (p)-- lh(a ap + (p)}
+dh+2z

12 I,e)dh+l( a, Op + ()Ch(a, ap +
dhl(e)(Ch+l(a, ap + (Jp)Ch(a, ap + 6Jp)+ dh(a, ap + 6Jp)}
+ dhl(e)Ch+l(a, ap + (Jp).

Note that

dh+2z1 te)dh(e) in SfqSj,
which follows from (5.32). Using (5.29) and (5.26), we can obtain from (5.36) that

(5.37) Ch+l(a, ap + 8)Ch(a, ap +8) Ch+l(a, ap + 6)Ch(a, ap + 6) in St f] Sj.
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So we have proved (5.33)h=O.
Putting h 1, 3 in (5.37), we can get

Cl(a, ap + 6tp)C2(a, ap + 61p)C3(a, ap + 61p)C4(a, ap + 61p)
Cl(a p 31- Jp) C2( ap .21- Jp) C3([ p -Ji- Jp) C4(a p -21- Jp)

Hence we get

{Cl(a, ap + 6p)Ca(a, ap + 6ip)_ Cl(a, ap + 6p) C4(a, at, + 6p)}
C2(a, ap + 6p)C3(a, at, + 6p)

(5.38) ={C2(a, ap+6)C3(a,a+6)-C2(a, ao+6)C3(a, av+Bp
c.(.. a. + a. +

in the sector SI f-I Sj.
It holds from Lemmas 4.4 and 4.7 that

C2k(a, ap + 6p)l:o 0 and
OC:zk(a, ap +

e=O

Hence we get

(5.39) C2(a, ap + lp) O(ap + 61p) O(at,) O(eq) as e --> O,

where q is a some real number. Since

(5.40) C2k+l(a, at, + 0,

we obtain

Cl(a, ap + 6Sp) C4(a at, +)
C(a, ap + t/p) C3(a, ap + tp)

=O(e q’) as e->0,

where q’ is a real number.
Therefore, from (5.38) we get

[ 2r’’+1 ]{Cl(a, ap + $tt,)C4(a, ap + $v)- Cl(a, at, + 6Jp)C4(a, av+6o)}- exp (m-iiiel
O(eq’) exp [{2r’’+1-2r"+l}/(m + 1)le]]

-->0 as e ->0,

where r’ is positive and r-r’ is a sufficiently small positive number. Here we used
(5.37)h=2. Thus we have proved (5.33)h=.

Similarly, we can prove Lemma 5.5.
LEMMA 5.6.

C2h+l(a, tip + tp) C2h+l(a, ap + $Jp)
(5.41) Cl(a ap + (p) Cl(a, ap + tJp)

inSlr-)s (h=l,2,. ., m-l).

(5.42)

Proof Putting h 1, 2 in (5.37), we can get

Cl(a, ap + t/p) C2(a, ap + 6p)C2(a, ap + 6p)Cl(a, ap + 6p)
C3(a, ap + 61p)
Cl(a ap q- tlp)

C,(a, ap + 6) C2(a, at, + 8) C:(a, ap + Jt,)Cl(a, ap + 6sp)
C3 a, at, + 6Sp
Cl(a, ap + 6Sp) in Ss CI S.
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Hence

(5.43)

in Sj fq Sl,

LEMMA 5.7. Let

C*(a, G2h(av + 6J + sv) C*(a, G2h(av + 6,)fzh(ap, Sp)= C*(a, av + 6Jp + Sp) C*(a, av + 6Jp)
f2h+l(ap, Sp) C*(a, ap + 6 + sp)C(a, G2h+2(ap + + Sp))

Assume that e and e are sufficiently small positive numbers. en, if

(s.48)
I,,I + la l +"" +
la l + la l +’’"

in S r"] sj (h=l,2,..., m-l).

(h=l,2,..., m-l),

(h=0, 1,-.., m-2),

So, by an argument similar to the proof of Lemma 5.5, we can obtain

C3(a, av + 6v) C3(a, av + 0 in St fq
Cl(a, av + 6p) Cl(a, ap + 6p)

Here we used (5.39), (5.40), and (5.37)h=1. Thus we have proved (5.41)h=1. Similarly,
we can prove Lemma 5.6.

We put

S (S1, Sm_l, Sin+l, Sm+2, S2m
(5.44) (6/1 6, "’’, 61m--1 --6Jm -1 61m+l --6Jm+l, 612m--6J2m)"
Note that, if a(e) b(e) in S, then a(e)" b(e) in S. We have obtained in Lemmas
5.4-5.6 that

h a, ap + 6Jp + Sp h a, ap + 6Jp
(5.45) --(.l) l--(--1)h2Zm+l(a’aP+Jp+sp)- (.01-(-1)h2zm+l(a’ap+6jp)

:= 0 in Slrq

C*(a, ap + 6p + sp)C(a, GZh+(ap + 8+ Sp))
-C*(a, ap + 6Jr) C(a, G2h+2(av + 6Jp))

(5.46) C*(a, av + 6J + sp)C*(a, G2h+l(a, + 6Jp + Sp))
C*(a, ap + 6Jp)C*(a, G2h+l(ap + 6J))

:0 inSjfqSl (h=0,1,...,m-2),

C*(a, GZh(av + 6Jp + Sv)) C*(a, Gh(av + 6Jp))
0

(5.47) C*(a, av + 6Jp + Sp) C*(a, ap + 6Jp)
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there exists a unique solution

s= g(ap, a’p)

(gl(ap, a’p),..., gm-l(ap, a’p), g,,+l(ap, a’),..., gz,,(ap,

of the system of equations

(5.49) f(ap, sp) a, (k= 1,2,. ., 2m-1;p 1,. ., m- 1, re+l,. .,2m),
such that gl, g2," ", gin-l, gin+l," ", gZm are holomorphic in the domain (5.48) and

gk(a,, O) =0 (k= 1," ", m- 1, m+ 1,. ., 2m).

Proof. It holds that

Of2h(ap, Sp)
(5.50) os

1(O0-2hk 1)
ap=O,Sp=O C*(a,O)

ofh+,(a,, s,)
(5.51) OSk ap 0,Sp 0

(5.52)
Of2,,_(ap, Sp)

19 Sk ap O,Sp 0

Here we used (4.25), (4.26), and (4.24).

19C*(a, ap)
Oak ap=O

(h=l,2,...,m-l)

-(2h+Z)k C*(a, O)
OC(a, ap)

Oak ap=O

(h=0, 1,..., m-2),

={0 l+a

(k m+l),
w (k= m+l).

Now we consider the Jacobian determinant of system (5.49) with respect to
s, , Sm-, S,,+, ", S2,, at ap O, Sp O.

0Sp /

0

0

OSk OSk+m+0

9f2m--10 0 0
19Sm+1

0
Of2h+l OfZh+,
OSk OSk+m+0

l+a

1 19C*
(w -2jk-1)

C* 19ak

oC
OO -2jk" C*

--EgO
l+a V1 0

(h =0, 1,..., m-2; k= 1, 2,..., m-1),

1 OC*
(o9 -2jk 1

C* Oak+m+

oC
O)

-2jk" C*
19ak+m+

(j, k= 1,2,..., m-l),
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OC* OC*
Oak ". Oak+m+1

oC "" oC

Oak Oak+m+l ".,

where V1 and V2 are the (m- 1)-by-(tn- 1) matrices whose components are to

and to-2jk (j, k= 1, 2,’’’, m-1).
Hence we get

1 m--1

(5.54) V=. Iwl. Iv=l.
k=l

OC* OC*
Oak Oak+m+
oC oC

Oak Oak+m+l

Note that

-1

1 1
--2 --4

--4 --8

to
--2(m--2)

to --4i --2)

--2
to --1

1

to--2(m--1)
--4(m--l)

--2(m--2)(m--1)

-4

to
--2( --1) 1

Therefore, by virtue of (4.27), the Jacobian determinant V is different from zero Thus
we have proved this lemma.

Now we apply this lemma to (5.45)-(5.47). If we put

a,(e)’ 0 in the sector Sl fq Sj,

we can obtain from Lemma 5.7 that

s g(ap, a’p)= O(la’pl).
That is

IL()-L(e)IH" exp[-2r"+’/(m + l)ll-I in SItS
(k-1,. .,m-l,m/l,. .,2m)

for some positive number H, where r-r’ is a sufficiently small positive number.
Therefore, thanks to Theorem 5.1, we can obtain

ISk(e)l<-- I-I,k. exp [--2r"/l/(rn+ l)lel] for e S,
where /-/,k are positive numbers.

6. Proof of the main theorem. In this section, as an application of Theorem 1.3,
we will prove the main theorem. Let S be sectors in Theorem 1.3. Furthermore, for
simplicity, we assume that tn + 1 is even.
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To prove the main theorem we need the following lemmas which were proved by
Lin [3]. We state them here.

LEMMA 6.1. Let f(e) be holomorphic in S f’)S+I and asymptotically 1 as e tends
to zero in Ss fq Sj+

Then there exist functions gj(e) in S that are, respectively, holomorphic in S and
asymptotically 1 as e tends to zero in S such that

f(e) gs+,(e)/g(e) (j 1, 2,..., v- 1) in S fq Sj+

We are now in a position to prove the main theorem, Theorem 1.1.
Case I. x > 0. The transformation

(6.1) u y. exp [--xm+l/(m -b 1)lel]
changes the formally transformed equation (3.7) into

(6.2) ey"-2x’y’- ar(e)x + mxm-1 y=0.
r=0

Ifthe differential equation (2.10) satisfies the Matkowsky condition, then, by manipulat-
ing the transformations, we can show that the differential equation (6.2) satisfies the
Matkowsky condition. So (6.2) has a formal power series solution

(6.3) y(x, e)= E y,(x)e".
n=0

Therefore, (3.7) has a formal solution of the form

(6.4) exp [--xm+l/(m-I- 1)e]. E y,,(x)e",

which is subdominant on the positive real axis.
On the other hand, it follows from (4.2) that (3.7) has two independent solutions

yo(Xe -1/(m+l), b, bp) and yl(xe -1/(’+1), b, bp). Since Yo is subdominant and Yl is
dominant on the positive real axis, there exists c(e), which does not depend on x,
such that

(6.5) Y. y,,(x)e" c(e) yO(X8-1 b, bp) exp (r]e
We can choose S such that the sector S contains arg e 0. Set

(6.6) y#(x, e)= yo(xe -1/’+1, b, bp + 6p) exp [xm+l/(m + 1)e].

Note that (5.16) and

I{Yk(Z, b, bp + 6p)-- yk(Z, b, bp)} exp {(--1)kE(z, bp)}
2rn

(6.7)
p=l

(k=0, 1,... ,2m+l),

where K is a positive number and q is some real number (see Sibuya [9, Lemma 3.1]).
It follows that

(6.8)

xm+l
(m+l)e
-E(xe-1/(m+1), bp(8))

y,, ak(b, bp)
=1 m+ 1-k

xm+ -k
E
-(m+l -k)/(m+
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remains bounded as e- 0. Here we used

ah(b, bp)= O(bh(s))= O(/x=-(2"+2)) O(E l-hI(re+l))

(h=2,...,m),

So we get from (6.5) and (6.6) that

al(b, bp)=O.

c(e)y#(x, e)- 2 y,,(x)e"

c(e){yo(z, b, bp + 8p)-yo(z, b, b,)} exp {E(z, bp}

exp [x’+I/(m + 1)s E(z, bp)]

o(;())-0
as s-+O uniformly on x>O. We have shown that the actual solution c(s)y#(x, s)
tends to the formal solution Y y,(x)s" as e o 0 on the positive real axis x > O.

Case II. x<O. We consider the asymptotic behavior of c(s)y(x, s) on the
negative real axis x<O, by using the connection formulas for y(z,b, bp) and
y(z, , b +

Let us put

yee(x, e) y(z, b, bp) exp [x+/(m + 1)s],

y(x,) y(x, )
Y(x,s)= d

(x, )+xms y d y e-y(x,y (x,) (x,)+x

So we have

Y#(x, e)C(s)=%.o(X, s)exp[x’+/(m+ 1)e]./" C(e)

(6.9) =%m+,(x, ). II r(b, b.()+ a())
h=O

xrn+l
.I=.C(e).exp

(m+l)e

Similarly, putting

y*(x, ) yo(Z, b, bp(8)) exp [xm+l/(m nt- 1)8]

c(e)-" Z y,,(x)e",
rl=O

y**(x, e) ya(z, b, bp(e)) exp [x’+/(m + 1)e],

y*(x,e) y**(x,s)
Y*(x, e) d d

y** e)+ me-y*y*(x, )+x-ly*(x, ) (x, x *(x, )
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we get

(6.10)

where

Y*(x, e)C(e)=Po(X, e) exp[x’+l/(m+ l)e] I2" C(e)

.h.c()--(I)m+l(X E)" h=0H F(b, bp(e)) exp (m--lie

h(X, )= A(E)XI)’(Xt -1/(m+l)e, b, bp) (h=0, 1,’’’ ,2re+l),

which is a fundamental matrix solution of (3.4). Note that (I)m+l(X
are asymptotically known on the negative real axis arg x

If we put

we can obtain from (6.10) that

2 y,,(x)e" c(e)y*(x, e)
n=0

(6.12) =c(e){Al(bp)y,,+l(Z, b, bp)+A2(bp)y,,+2(z, b, bp)}

exp [xm+l/(m -’b 1)e].

On the other hand, we have from (6.9) that

c(e)y#(x, e)= c(e_,){all(bp + 6Jp)y,,+l(Z, b, bp -t- aJp)

(6.13) + m,(bp + 6Jp)y,,,+2(z, b, bp + 6Jp)}

exp [x’+l/(m + 1)e].

Since m + 1 is even, it follows from (6.12) that

a(bp) exp [2xm+l/(m + 1)e]

remains bounded as e- +0 on x < 0. So, as an application of Theorem 1.3, we prove
that

Al(bp + 6p) exp [2x"+’/(m + 1)e]

remains bounded as e- +0 on x < 0. To shorten the expressions for the calculation
that follows, the notation a(e) ; b(e) in S will be introduced to indicate that

{a(e)- b(e)} exp [2r’d’+’/(m + 1)e]

remains bounded, as e -* 0 in the sector S for a, b < ro < r (cf. Definition 5.3). That is

m+l/(m+ 1)" Re(l/e)]{a(e)- b(e)} exp [2ro

remains bounded as e 0 in S.
Noting that

ak(b, bp + t/+l) ak(b, bp +p 6p)---O (e-O in SlOSl+l)

by the same argument as Lemma 5.2, we can easily obtain

(6.14) d(e) 1 (e-*OinSlf’)Sl+), (i= l,2; h =O, 1,...,2m+l),

( )(6.11) H F(b, bp(e))= AI’(bP) A12(bp)
h=O A2,(bp) A22(bp)
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=0, d2h’(e)’exp (ije --0(6.15) dh2(e) exp
(m + 1)e

as e0 in SISI+ uniformly in (5.17-h). In (6.15), we consider the cases in which
h-0 and h- m+ 1. Since -r/2 < arg e < r/2, it follows from (5.17-0) that -,n’/(m+
1) < arg x < or/(m + 1). So we can choose values of x e D such that arg x 0. Hence
we have from (6.15) that

(6.16) dl(e) ; 0 in SI(SI+

Similarly, in (5.17-(m + 1)) we can choose a value x D1 such that arg x= 7r. Then we
get from (6.15) that

(6.17) d2"+l(e) =; 0 in Slf’SI+

(5.27)

we get

That is

Since

/+1L+l(e)F(b, bp + 6p)= r.(b, bp A- tp )L(e),

Lm+l(8) H r(b. b + 6.)= 1-I r(b, b + 1+1) Lo(e).p
h =0 h =0

(dl+l(8) dr2+l(8))(All(bp -I-tlp) Al:(bp + 61p)
dl+l(e) d+l(e) az1(bp+6) azz(bp+

(6.18)

A21(bp+62’) A22(bp+6)l)] dl(e) d2(e)

We see from the (2, 1)-element of the matrix relation (6.18) that

m+ld2+l(e) Al,(b+8)+d (e). Al(b+8)
1+1)dl(e) Al(bp + +) + dl(e) A2(bp +pp

That is

Al(bp + p) A21( bp -I- p/+l) dl(e)
m+l(e22

(6.19) 1

dm+l(e22

!+1) rlm+l[dl(e) A22(bp + 6p -,,21 (e) A11(bp + 61p]

; 0 in S 0 Sl+

Here we used (6.16) and (6.17). Since

do m+l11(e)/d2:z (e)’-’l (e -0 in S,),

which follows from (6.14), by virtue of Lemma 6.1 there exist functions gl(e) (/=
1,2,.", v) in S! such that

(6.20)

(6.21)

gl(e)" 1 (e0 in SI),

dl1(e)/,22"4m+l(E) gl+l(e)/gl(e) in SI["I SI+I
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Then (6.19) reduces to

(6.22) gl(e)A21(bp d" tlp)-gl+l(e)A21(bp d" B/+1) 0 in Sir) Sl/

In 5 we considered the case in which the domain D is a disk with center at zero.
In this section, the domain of x contains a disk with center at zero, although the radius
of the disk is small. So we get

I(e)l H. exp [-2r+/(m + 1)e]] in S
(/= 1, 2,..., u;p= 1,2,..., 2m),

for some positive number H1.
Let ro be a positive number with a < ro < r and choose o with 0 < o< /2 such

+1that r+1 ro cos o> 0. Then if arg e o (or -o), we get

m+l m+lrz /lelro Re[I/el.

Therefore, for some sector that contains the line segment arg e o (or -o), say S
(or S), we have

()l,l()lg .exp -2to (m+l). Re (p=l,2,...,2m).

That is

(6.23)
6p(e) ; 0 in arg e =-Wo,

6,(e);O inarge=wo (p=l,2,’’’,2m).

On the other hand, it holds that

(bp)=O(p(S)),A21(bp d- 6p)-A2

A21(bp);O.

Putting 1, u and using (6.23) and (6.20), we obtain

(6.24)
g,(e). A2,(bp +) ; 0 in arg e =-Wo,

g,,(e). Al(b, + 6) ; 0 in arg e Wo.

If we put (e)= gj(e)’Al(bp(e)+ 6(e)) and apply Theorem 1.3 to (6.23) and
(6.24), we can obtain

gj(e). A21(bp(e)+ 6(e)) ; 0 in S.
That is

(6.25) A21(bp(e)’4rJp(e));O in S (j=l,2,...,u).

Here we used (6.20).
Now, by virtue of Cauchy’s integral representation theorem, we can prove that

I{az1(bp(e)+,p(e))-az1(b,(e))} exp [2o /(m+ 1)e]]
2m(6.26) <= H. 2 [6p(e)l,
p=l

where H is a positive number (cf. the proof of Lemma 3.1 in [8]).
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We now return to (6.12) and (6.13), and use (6.25) and (6.26). Then we get

c(e)y#(x, e)- ., y,,(x)e"

c(t)[{A11(bp -I- 6p)-All(bp)}y.,+l(z, b, bp + 6p)
+ All(bp){y,,,+l(z, b, bp + 6p)-y,,,+l(z, b, bp)}]

exp {+E(z, bp)}. exp [-E(z, bp)+X"+l/(m+ 1)e]

+ c(e)[{Azl(bp + 6p)-A21(bp)IYm+2(z, b, bp +

+ azl(bp){Ym+2(z b, bp + tJp)--Ym+z(Z, b, bp)}]

exp {-E(z, bp)}. exp [+E(z, bp)+x’+l/(rn+ 1)e]

c(e). O(6p(e)) Y,,+I(’, "," exp {E(z, bp)}+ c(e). all(bp)" O(6p(e))
+ c(e). O(6p(e)) Y,,+2(’, "," exp {-E(z, b, bp)}

+ c(e). azl(bp) exp [2xm+l/(rn + 1)e]- O(6p(e))
-0

as e +0 uniformly on x < 0.
Thus we have proved that c(e)y#(x, e) converges uniformly on a real interval to

a nontrivial solution as e tends to zero on the positive real axis.
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this research.
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Abstract. Previous results concerning the existence of right inverses of linear difference operators on

Banach Spaces of holomorphic functions are extended. The Stokes phenomenon is analyzed for a class of
very singular linear difference equations.
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Introduction. This paper is concerned with homogeneous linear difference
equations of the type

(0.1) y(s+ 1)-A(s)y(s)=O,

where s is a complex variable and A is an n n matrix function, meromorphic at
More precisely, we shall assume that A Gl(n; C{s-}[s]), n N. We are interested in
the global asymptotic properties of solutions of (0.1), i.e., their behaviour as s- o in
an arbitrary direction.

It should be noted here that, in general, solutions of (0.1) are not analytic in a

(reduced) neighbourhood of . However, it is easily seen from (0.1) that any solution,
analytic in a left half plane, can be continued analytically to a region of the form
U(R), where

(0.2) U(R)={sC: [s+x[>=RVx>=O}, R>0.

Similarly, the relation

y(s):a(s)-’y(s+l)

implied by (0.1), shows that any solution, analytic in a right halfplane, can be continued
analytically to a region of the form U(R), R>0. Therefore, we shall consider the
asymptotic behaviour of solutions of (0.1) in regions of either type.

The usual approach to this kind of problem is the following. First, the existence
of fundamental solutions of the equation with a prescribed asymptotic behaviour, in
different sectors covering a neighbourhood of oo is established. Next, the relations
between these solutions are studied.

For example, let Y and Y2 be holomorphic fundamental solutions of (0.1),
admitting the same asymptotic representation in a left and an upper halfplane, respec-
tively. The connection matrix P is defined by

(0.3) Y:
As Yl(S-k- 1) Yl(S)-1-- Y2(s-k- 1) Y2(s)-1-- A(s), P is a periodic function of period 1.
Obviously, (0.3) defines the analytic continuation of Y1 to an upper halfplane and
knowledge of P implies knowledge of the asymptotic behaviour of Y1 in this upper
half plane.
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The asymptotic representations that play a role in the study of (0.1) are the
so-called formal solutions of this equation. It is known that (0.1) possesses a formal
fundamental solution of the form

I(s) =/3(s) diag {s exp ql(s),’’’, sm exp q,,(s)},

where/3 e Gl(n; C[[s-/P]][sl/p]) for some p e, m et(m _-< n), G is a constant matrix
and

P

(0.4) qj(s) djs log s + Idj,hShIp
h=l

with d e Q and /j,h e C for each j e {1,. ., m}, h e {1,. ., p} (cf. [2], [13], [16]). All
constants figuring in this representation are uniquely determined by the matrix function
A, except for/Xj,p, which is determined up to a multiple of 27ri (this is related to the
fact that any matrix solution of (0.1), when multiplied from the right with a periodic
matrix function, remains a solution of (0.1)).

If di d for all i, je{1,..., m}, the numbers

1
degr (qi q

P

will be called the "levels" of the difference equation. The most difficult case to deal
with is when di # dj for at least one pair (i,j) with j. In this case we will say that
the "level 1 +’’ is present in (0.1). If d dj for all #j, we shall, with a slight abuse
of terminology, speak of a difference equation of level 1 + (cf. [4]).

Existence theorems for solutions of homogeneous linear difference equations with
a prescribed asymptotic behaviour have been the subject of various studies since the
beginning of this century (cf. [1], [3], [5], [7], [12]). The most general result so far is
a theorem by Birkhoff and Trjitzinsky (cf. [1]). It states that, in every quadrant F of
the form

F= see- 2_arg(s-so)<=(k+l)2;Isl>-R keT,z, soeC R>0,

there exists a holomorphic fundamental solution of (0.1), represented asymptotically
by a given formal fundamental solution as s in F, provided R is sufficiently large.
However, the proof of this result contains some inaccuracies and its correctness has
been questioned.

In [7] we have derived existence theorems for both linear and nonlinear difference
equations using a method developed by Hukuhara, Sibuya, Malgrange and others, for
analogous problems in the theory of differential equations (cf. [6], [11], [14], [17]).
It is based on the existence of right inverses of linear difference operators on Banach
spaces of functions that are holomorphic in suitable ("proper") regions of the complex
plane. Later we realized that the class of "proper" regions considered in [7], at least
in the presence of level 1 +, was too restricted, and that our results could be easily
extended. This is explained in 2 of the present paper. These generalizations permit
us to give a straightforward proof of the theorem of Birkhoff and Trjitzinsky, thereby
settling the first half of our problem.

Next, we turn to the second part: the connection problem or Stokes phenomenon,
i.e., the change in asymptotic behaviour of solutions of the equation, as they are
continued analytically beyond certain "maximal regions." This phenomenon has been
studied in [8], under "generic" conditions, and in particular the link with the theory
of resurgent functions was explained. It is closely related to the problem of analytic
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classification of difference equations, which has been solved by Ecalle in [4]. Neverthe-
less, the precise nature of the Stokes phenomenon in the most general case of (0.1)
has remained somewhat mysterious. The results presented in 2 also contribute to a
better understanding of this phenomenon.

The maximal regions in which a solution of (0.1) may be represented asymptotically
by a given formal solution are bounded by curves of the form

Re{q(s)-q(s)}=c, i,j{1,...,m}, i#j.

We shall call these curves Stokes curves of level k if d d and 1/p degr (q-q)- k,
and Stokes curves of level 1 / if d # d. Due to the infinite number of possible
determinations of the/,p in (0.4), there is a countably infinite number of Stokes curves
of the levels 1 and 1 / (we do not distinguish between curves that differ only in the
value of c). Whereas two Stokes curves of a level less than or equal to 1 generally
have distinct limiting directions, those of level 1 / all have the same limiting directions,
viz. those of the positive and negative imaginary axis. This makes the analysis of the
Stokes phenomenon more delicate in the presence of the level 1 / than otherwise. In
order to distinguish between different solutions, we must take into consideration their
behaviour along curves of the type

Re s(log s + iO) c, 0 R.

Section 4 deals with the Stokes phenomenon of homogeneous linear difference
equations of level 1 +. We study the properties of the periodic matrix functions connect-
ing two fundamental solutions of (0.1) represented asymptotically by the formal
fundamental solution in different maximal regions (a method to compute the leading
parts of these connection matrices from the asymptotic behaviour of the coefficients
of the formal fundamental solution is discussed in [9]).

Throughout this paper, we have restricted ourselves to "classical" asymptotic
expansions, just as in [7], however, all statements remain valid (with slight
modifications) when these expansions are replaced by asymptotic expansions with
suitable Gevrey-type error bounds (cf. also [10]).

I. Definitions and notation.
I.I. Classes of holomorphic functions admitting an asymptotic power series rep-

resentation. In order to describe the asymptotic properties of solutions of (0.1), we
introduce families of closed unbounded regions of C, indexed by a parameter R R+,
which measures the distance to the origin. We define classes of holomorphic functions
on these regions, admitting an asymptotic expansion with uniform error bounds.

We shall restrict our attention to subregions of C\E-. All results obtained for this
type of regions can be easily "translated" into analogous statements for corresponding
regions in C\+, by means of the following equality:

y(s+ 1)-A(s)y(s)= -A(s){fi(-s)-A(-s- 1)37(-s 1)},

where A and )7 are defined by

(s) a(-s 1)-1, fi(s) y(-s).

DEFINITION 1.1.1. An asymptotic set $ of closed regions is a decreasing set of
closed unbounded regions S(R) of the complex plane, defined for all R > 1, with the
property that d (S(R), 0) --> as R -> .

DEFXNIa’ION 1.1.2. Let I be an index set and let Si={Si(R),R>I} be an
asymptotic set of closed regions for all L By U ii S and f’li S we shall denote
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the sets

respectively. A set of the first type will be called an asymptotic set.
If I is a finite set then U ii Si is again an asymptotic set of closed regions. If, in

addition, ii S(R) for all R > 0, then also flier S is an asymptotic set of closed
regions.

DEFINITION 1.1.3. Let S be an asymptotic set of closed regions. By // (S) we shall
denote the set of all functions f on C with the following properties:

(i) There exists a positive number R such that f is continuous on S(R) and
holomorphic in int S(R).

(ii) There exist an integer ho, a positive integer p and complex numbers ah, h 771
such that, for all N N,

sup S NIP S)- ahS-h/p < 00.
sS(R) h=h

If these conditions are fulfilled we write

E ahs-h/P=f and f---f, s-->oo, sS(R).
h =ho

Remark. Different functions that coincide on S(R) for some R > 0, will be iden-
tified. More precisely, a "function" f is to be thought of as a representative of the
equivalence class of all functions g with the property that there exists a positive number
R such that g(s)=f(s) for all s S(R).

Let I be a finite index set and suppose that, for every /, S is an asymptotic
set of closed regions. Then, obviously, (UI Si) is contained in rqii (s). if, in
addition, int LJI Si(R)-- LJi int S(R) for all R> 1, then it immediately follows that
(U,, S,)=f"I,, (S,).

DEFINITION 1.1.4. Let I be an index set and, for every I, let S be an asymptotic
set of closed regions such that

int U S(R)= U intS(R) for allR>l.
iI iI

Let S LJ S. By (S) we shall denote the set

ii

by (S) the set of all f J/t (S) such that

] u Clr-’/"]l,
pl

and by 4o(S) the set of f (S) with the property that f 0.
In the following definition some particular examples of asymptotic sets are given.
DEFINITION 1.1.5. For all ao, /3o[-7r, 7r] such that ao</3o, we define the

following asymptotic sets:
(i) The "closed sector" S[ao,/30] defined by

S[ao,/3o](R) {s C\-: ao_-< arg (s + Re) _-</30 for all a [-7r, 7r]};

(ii) The "half-open sectors" S[ao,/30) Uo<<o S[ao,/3] and S(ao,/30]
U,,,o<,,, <o S[a,/o];

(iii) The "open sector" S(ao,/30) U,,o<,,<t<to S[a, ].
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If S is any of the sectors defined in (ii) and (iii), then S will denote the closed sector
S[o,/o].

1.2. Canonical forms and formal invariants. We use the following notation"

K= U C{s-’/P}[s’/"], I= U Cs-1/p[s1/p].
peN p

Let S be an asymptotic set. If AEnd(n;(S)) and FGl(n; (S)), or A
End (n;/) and F G1 (n;/) we shall denote by AF the matrix function

AF(s) F(s+ 1)-lA(s)F(s).
By AA we shall denote the linear difference operator defined by

AAy(s)= y(s+ 1)-A(s)y(s),

where y belongs to a suitable space of n-dimensional vector functions.
Let A, B G1 (n; (S)). The difference operators AA and An are said to be formally

equivalent if there exists a matrix function F G1 (n;/) with the property that

If A G1 (n; (S)) the difference operator AA is known to be formally equivalent

to a difference operator Ay, of the following particular type. The matrix function is
block diagonal,

diag {A1, , A,}, m N]

with diagonal blocks of the form

Aj(s) exp {qj(s + 1) q(s)}(1 + 1/s)%,
where, for j6 {1,. ., m},

(1.2.1) P

q(s) ds log s + [.l,j,hSh/p, p [, d 7//p, /X,l,’’’,/x/,pC,
h=l

0 _<- Im X,p < 2-, and

G=Tffn+N, ,/ C, 0_-<Re 7< l/p, neN, N is a nilpotent

n x n matrix.

The matrix function is uniquely determined by A up to permutations of the diagonal
blocks. We shall assume that the blocks are arranged in such a way that

di<-_d ifi<j, i,j{1,...,m}.

DEFINITION 1.2.2. A matrix function with the above-mentioned properties will
be called a canonical matrix or a canonical form of A.

The numbers d, 7, and/X.h (j { 1," , in}, h { 1,. -, p}) are formal invariants
of the difference equation AAy=0. They are uniquely determined by the matrix
function A.

We shall further use the following notation:

Q diag {qlIn,. ", q,In,n},

Y(s)=eQ(S)s (note that A(s)= (s+ 1)(s)-l),
d(A)={dl,. .,d,},

k(A) {degr q :j {1,. -, m} such that d 0} (degr qj
here is understood to be a rational number not exceeding 1).
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DEFINITION 1.2.3. Let k k(A), k # 0. By Ek(A) we shall denote the set of all
real numbers a with the property that there is a j {1,. -, m} such that dj- 0, degr
qj k and

a arg P,j,pk if k # 1,

a=2 arg(/Zj,pmod2zri) ifk=l.

Furthermore, we define: Eo(A)= and Z(A) LJkk(A),k(A).
The elements of E(A) are comparable to the Stokes directions in the theory of

homogeneous linear differential equations.
DEFINITION 1.2.4. By O(A) we shall denote the set of all real numbers 0 with the

property that there is a j {1, , m} such that dj # 0 and

djO Im/Xj,p mod 2 zr.

The problem of transforming a given matrix function A into a canonical form
is equivalent to that of finding a solution of the equation

Y(s+ 1)= A(s) Y(s)A(s) -1

in some appropriate set of matrix functions Y. By o-(A) we shall denote the matrix
function corresponding to the linear mapping

y --> AYA-1.

It is easily verified that o-() is a canonical form of o-(A). Hence it follows, for example,
that

d(r(A)) {d- d’: d, d’ d(A)}.

It will often prove convenient to partition other matrices in the same way as a

given canonical matrix (cf. (1.2.1)) associated with the particular problem under
consideration. If M is an n x n matrix, the notation Mij (i, j e { 1, , m}) will always
refer to a block of M in that partition and not to a single matrix element.

2. Existence theorems.
2.1. Preliminaries. The following sections are mainly concerned with the existence

of right inverses of linear difference operators AA defined on Banach spaces of
holomorphic functions of the type described in the definition below.

DEFINITION 2.1.1. Let r and let G be a closed region of the complex plane.
By B(G) we denote the Banach space of all functions f with the following properties:

(i) f is continuous on G and holomorphic in int G;
(ii) I[fl[r--- supso Isrf(s)[ < C.

If S is an asymptotic set of closed regions the following two statements are
equivalent:

(i) f o(S);
(ii) There exists a positive number R such that f B,.(S(R)) for all r.
Let S be an asymptotic set of closed regions S(R) with the additional property

that s S(R) implies s + 1 S(R) for all R > 1 and let A Gl(n; (S)). It is easily
seen that there exists a real number u such that the difference operator AA maps
Br(S(R)) into B,._,(S(R))" for all r and all sufficiently large R.
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DEFINITION 2.1.2. An asymptotic set ofclosed regions S is proper for the difference
operator A if there exist real numbers ro and v, positive numbers Ro and K, and linear
mappings

A, :B,.(S(R))" Br_v(S(R))"

defined for all r_-> ro and all R _-> Ro such that

(i) AAr,Rf= Ar_u,RAf f for all fe Br(S(R)) n,
(ii) [IA,fII- Kllfl[,
(iii) If r’> r => ro, then A,l,(s()).- A,,.
2.2. The asymptotic sets So. Let C > 0, 0 E. We shall consider regions of the

complex plane bounded by curves of the following type:

trc(0) {s C: Re (s log s ei) C},

where log s has the principal value.
We begin by deriving some properties of these curves. First of all, note that a

change from 0 to -0 is equivalent to a reflection of crc(O) with respect to the real
axis. Therefore, we shall restrict the discussion to nonnegative values of 0.

If Isl < 1, then Re s log Isl < 1/e and, consequently, Re (s log s e i) < I/e+ 7r+ 0.
From now on we shall always assume that C is so large that d(crc(0), 0)> 1. We put

Im s x, Re s p.

On the set V-’{(x,p)G2: xO if p=<0} we define a function F by

F(x, p) p log x/(p2 + xa) x{arg (p + ix) + 0}.

By assumption, F(x, p) < C for all (x, p) with the property that p2 + x2 _< 1. Furthermore,
we have

DpF(x, p) 1 + log /(p2 q_ X2).
Consequently, DpF(x, p)> 1 whenever p2+x2-> 1. Hence it follows that, for every
x , there is a unique p R such that

(2.2.1) F(x,p)=C.

Indicating this number by p(x) and differentiating (2.2.1) with respect to x we obtain

(2.2.2) p’(x)={O+arg(p(x)+ix)}{l+log/(p(x)2+x2)}-1, x(-oo, ).

Obviously, the function p(x)/x log x/(p(x)+ x) is bounded on Ixl> 1 and hence

(2.2.3) p(x)=
logx

For a more detailed description of the curve trc(0) it is convenient to distinguish the
following three cases.

Case 1. 0=< 0 < 7r/2. The corresponding class of curves (reflected with respect to
the imaginary axis) has been studied in [7]. These curves are completely contained in
the right halfplane p>0. p(x) has an absolute minimum which is attained when
arg (p(x)+ ix)=-0. The symmetrical case (0 =0) is represented in Fig. 1.

Case 2. 0= r/2. In this case p’(x) is positive for all x, but tends to 0 as
x -o. The curve trc(Tr/2) is contained in the right halfplane p > 0 and is asymptotic
to the negative imaginary axis. It is easily seen that p(x)= O(1/log x) as x-*-c (see
Fig. 2).
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FIG. FIG. 2

Case 3. 0 > 7r/2. The curves in this class intersect the negative imaginary axis at
x =-C(0-7r/2)-1. Furthermore, we have

arg(p(x)+ix)+O>O for allxl

in this case, as can be seen from the following argument. Suppose that arg (p(x)+ ix)+
0 < 0 for some x < 0. This would imply that

p(x) log x/(p(x)2 + x:) C + x{arg (p(x) + ix) + O} > O,

but this is in contradiction with the fact that arg (p(x)+ ix)<-0 <-7r/2 and, con-
sequently, p(x) < 0. Hence, by (2.2.2), it follows that p’(x) > 0 for all x e E (see Fig. 3).

Now let 0 and R > 1. By C(0, R) we shall denote the value of C such that
d(crc(O), O)= R.

DEFINITION 2.2.4. Let 0 . S will denote the asymptotic set of closed regions
{So (R), R > 1 }, where

So(R) {s 6 C: Re (s log s e i) >- C(O, R)}.

Furthermore, we shall put

s(-, o] s, s[0, )= s(o, ]=s, s[-, 0) _oo.
2.3. Proper asymptotic sets. Let 0 and A AA, where A G1 (n, (So)). In

order to prove the existence of linear mappings Ar,n defined on the Banach spaces
Br(So(R)) and possessing the properties mentioned in Definition 2.1.2, we proceed
exactly as in [7, 12]. Thus we obtain the following addition to Proposition 4.12 in [7].

PROPOSITION 2.3.1. Let S [.J 0t-,,3 So, where a and are real numbers such that
a <--_ . Let A G1 (n; ill (S)) and assume that

(i) [Tr/2-Tr/k, --Tr/2]fq,k(A)=f for all k k(A) such that k0;
(ii) [c,/3]f3 0(A)-.

FIG. 3
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Then S is proper for the difference operator AA
The next proposition is concerned with the cases S So and S S_ (note that

So is the set of lower halfplanes {s C" Im s-<-R}, R > 1, whereas S_oo is a set of
upper halfplanes). Although it shows some resemblance to Proposition 4.16 in [7], the
assumptions made here are much more restrictive and therefore a stronger statement
can be made.

PROPOSITION 2.3.2. Let S So or S S_o andA G1 (n; l(S)). Assume that there
exists a positive number a less than 1 and a positive number Ro such that, for all s S(Ro)
either of the following inequalities holds"

Then S is proper for the difference operator AA
Proof Without loss of generality we may assume that A is continuous on S(Ro)

and holomorphic in int S(Ro). For every R -> Ro and r_-> 0 we define a linear mapping
Ar,R by either of the following expressions: for all f Br(S(R))",

(i) Ar,Rf(S) f(s 1 + h A(s 1 A(s h )f(s h 1 if the first inequal-
ity holds, and

(ii) Ar,Rf(S) _o A(s)- A(s+ h)-lf(s+ h)ifthesecondinequalityholdsh=-O

Consider the first case. For all s S(R) we have

hence

h=O
sup IsT(s)[

sS(R)

liAr,Rflirt= a h l +h+
h=O Ro / Ilfllr.

With the aid of these estimates we readily verify that the mappings Ar,R possess the
required properties. The second case can be dealt with analogously.

2.4. Analytic simplification of linear difference operators. Propositions 2.3.1 and
2.3.2 can be used to derive existence theorems for solutions of nonlinear difference
equations, admitting asymptotic power series expansions in appropriate regions of the
complex plane. These, in their turn, can be applied to achieve analytic simplification
of homogeneous linear difference systems. Thus, for example, the statements made in
Theorems 15.16 (concerning a class of nonlinear equations) and 17.13 (on block
diagonalization) of [7] can now be extended immediately to all proper asymptotic sets
mentioned in Proposition 2.3.1. We shall not explicitly state the generalized versions
of these theorems here, but refer the reader to [7].

One immediate consequence of Proposition 2.3.1 is the following theorem.
THEOREM 2.4.1. Let S U o,tl So, where a and fl are real numbers such that

a <- t. Let A G1 (n; l (S)), let f4 be a canonicalform ofA, and let Gl (n;/) such

that A*= f4. Furthermore, assume that
(i) [r/2-r/k, r/2]fl,k(tr(A))= for all kk(tr(A)) such that k#0;
(ii) [c,/3171 0(tr(A))=.

Then there exists a unique matrixfunction F G1 (n; d//(S)) such that and AF A.
With the aid of the above-mentioned extension of Theorem 17.13 in [7] the

following result is obtained.

THEOREM 2.4.2. Let A G1 (n; d//(S(-r, r))) and let f4 be a canonicalform ofA.
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(i) If -r/2 (cr(A)) there exists a matrixfunction F G1 (n; A//(S[-cr/2, r/2)))
such that AF A.

(ii) If zr/2:(tr(A)) there exists a matrix function FeG1 (n; A/(S(-cr/2, r/2]))
such that AP A.

Remark. The condition A eGl(n;(S(-,r))) may be replaced by A e
G1 (n; (So)) for some 0 greater than r/2 in case (i) or less than -zr/2 in case (ii).

The proof of Theorem 2.4.2 is roughly analogous to that of Theorem 18.13 in [7].
The difference with the latter theorem consists in the fact that here the asymptotic
expansion of the matrix function F is also valid as s - m in the direction of the negative
(case (i)) or positive (case (ii)) imaginary axis. The asymptotic behaviour of F in the
opposite direction can be deduced from the following lemma (by identifying F with
a vector solution of the equation A(A)y 0).

LEMMA 2.4.3. Let OR and AEG1 (n; (SoU S[-r/2, r/2])). Assume that f is
a solution of the equation AAy--0 with the following properties:

(i) f is continuous on the set So(R) U S[-zr/2, zr/2](R) and holomorIhic in its
interior, for some R > O.

(ii) f grows at most exponentially of order 1 as s-> in So(R). Then f grows at

most exponentially oforder 1 as s -> o in S[-zr/2, zr/2](R) provided R is sufficiently large.
Proof Let seS[-zr/2, r/2](R) and suppose that Ilmsl>e and s:So(R). Let

n(s) be the smallest integer such that s+ n(s)e So(R). Suppose that R is so large that
A-1 is continuous on the set So(R) U S[-r/2, r/2](R) and holomorphic in its interior.
Then we have

y(s)=A(s)-lA(s+l)-1... A(s+n(s)-l)-ly(s+n(s)).
By assumption, there exist positive numbers c and C such that, for all sr e So(R),

ly()l-<- c e lcl.
Moreover, there exist positive constants d and D such that, for all
So(R) [A S[-zr/2, zr/2](R),

IA(ff)-[_-< Dlffl
Hence it follows that

(2.4.4) [y(s) -<_ CD(Is + n(s)l an(s) e cls+n(s)l.

According to (2.2.3) there exists a positive constant K, independent of s, such that

[Im s[
Re(s+n(s))<-K

log [Im s["
Since [Im s[ > e, this implies that

Is+ n(s)] _-< (K + 1)[Im s[.
Hence

n(s) log Is + n(s)[ _-< K[Im s[{1 + log (K + 1)}.
The proof is completed by inserting the last two estimates into (2.4.4).

The next two theorems are based on Proposition 2.3.2. They can be proved by
the familiar method of successive block diagonalizing transformations. The existence
(and uniqueness) of these transformations can be deduced from Proposition 2.3.2 in
the usual manner.

THEOREM 2.4.5. Let S= S-o or -o, let A G1 (n; (S)), and let 4 be a canonical
form ofA of the form (1.2.1). Assume that, for all i, j {1,..., m} such that j and

di dj,
degr Re (qi qj 1.
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Then there exists a matrix function F G1 n; l S)) such that

AF(s)- f4(s)(In 4- s-rB(s))

where r, r> l, BEnd(n;(S)), and B-diag{Bll,’’’,B,m}. Moreover, this
matrix function F is determined uniquely by its asymptotic expansion.

A complete reduction of A to the canonical form in general is possible only if we
drop the requirement that the asymptotic expansion of F be valid as s- in both
horizontal directions. The following theorem will be needed in 4.

THEOREM 2.4.6. Let S {S, S_, S, _}. Let A G1 (n; /()) and let ft be a
canonicalform ofA. Assume that the conditions of Theorem 2.4.5 are satisfied. For every

G1 (n;/) such that A’= A, there exists a unique matrix function F G1 (n; /.(S))
with the following properties:

(i) AF= ft and =;
(ii) There exist positive numbers k and R such that both F(s) O(sk) and F(s)-1

O(sk), S - c S (g).
Remark. If A is upper or lower block triangular in the usual partition, then the

same is true of F.

3. A result of Birkhoff and Trjitzinsky. Let A G1 (n; C{s-1}[s]), or, more gen-

erally, A G1 (n; K), and let be a canonical form of A. As we mentioned in 1.2,
there exists a matrix function G1 (n; K) with the property that

A*=A.

This section deals with the following problem.
If a is any direction in the complex plane, does there exist a matrix function F,

analytic in a sector containing a half-line with direction a, such that

AF= and /3=0?

So far we have been able to answer this question in the affirmative for all directions
except those of the positive and negative imaginary axis. In order to include the latter
directions we had to impose a rather mild condition, viz. that either d(cr(A))= {0}, or
else that 0 or r or both -r/2 and r/2 do not belong to E(tr(A)) (cf. Theorem 2.4.2
above and Theorem 18.18 in [7]). It is the purpose of this section to remove this last
restrictive condition.

DEFINITION 3.1. A quadrant F is an asymptotic set of closed regions F(R) (R > 1)
of the following type:

F(R)= sC’a<-arg(s-so)<-a+-,lsl>-R
where So C, a 1(7r/2), 7/.

THEOREM 3.2. Let A G1 (n; K) and let 4 be a canonicalform ofA. Let F be any
quadrant. There exists a matrix function F G1 (n; (F)) such that

AF=A.
As a matter of fact this theorem was proved by Birkhoff and Trjitzinsky in [1].

Unfortunately, their methods are not very transparent and the argument is very hard
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to follow. Here we have tried to remedy certain inaccuracies contained in this paper
and have sketched a considerably simplified version of their proof.

We shall consider the case that a =-7r/2. All other cases can be proved
analogously.

The proof consists of two steps. The first step is to carry the matrix function A
into a block-triangular form by a suitable transformation. In the paper by Birkhoff
and Trjitzinsky this is achieved by a rather particular method which has been exposed
in earlier papers by Birkhoff alone. It is quite different from the one we used in [7],
but the results are essentially the same. These can be stated as follows (cf. Lemma 9
of[l]).

PROPOSITION 3.3. Let o S(-Tr, 7r) and A G1 (n; J/t(o)). Let f4 be a canonical

form of A. There exists a matrix function F1 G1 (n; M(So)) such that

AF=A(In+s-rB(s)),
where r> 1, BEnd (n; M(So)) and Bij=-O if i>j, i,j{1,. .,m}.

For the proof of this proposition we refer the reader to Proposition 18.15 of [7].
The second and more delicate step is the final transformation of AF1 into A. Put

AFt=A1. We now search a matrix function FG1 (n; s(F)) with the following
properties"

(i) A1 A;
(ii) Fij=0 if i>j, i,j{1,..., m}.

If j {1,..., m} and i<-j, the block Fi must satisfy the following inhomogeneous
difference equation:

(3.4) Z(s+l)=(A1),(s)Z(s)A(s)-l+ (A1),h(S)Fh(S)A(s) -1.

For every j > 1 there are j equations that we can solve successively, beginning with
Fj, then F_I, etc. First, let us suppose that d d for some i<j. As dl <- d for all
<j, it follows that d d for all such that i<=l<=j.

LEMMA 3.5. Let <--_j and assume that di dj. Then there exists a number e (0, r/2)
and, for every such that <= <-j, a matrixfunction FIj Hom (M(S)nJ, sg(S)"’), where
S S(-Tr+ e, e), satisfying (3.4) with replaced by I.

The statement above can easily be deduced from Theorem 15.1 of [7] by means
of induction on j-/. If di dj for all i,j {1,..., m} the assertion of Theorem 3.2
follows immediately. Now suppose that di < dj for some j { 1, , m} and some <j.
Consequently, dl < dj for all l_-< i. In that case the proof is completed by repeated
application of Lemma 3.7 below.

DEFINITION 3.6. Let 0, Xo R. By F0,xo we shall denote the asymptotic set of closed
regions Fo,xo(R) (R > 1) defined by

Fo,xo(R) {s So(R): Im s <_- Xo}.

LEMMA 3.7. Let O, xoR, BEnd (n; M(Fo,xo)), and h (M(Fo,o)). Let

A(s) exp {q(s + 1) q(s)}(I + s-B(s)),
where q(s) ds log s +=11Ul’hSh/p’ P’ d 7lip, IXh C for all h {1,. , p}. Suppose
that d < 0 and dO Im/Xp mod 27r. Then the equation

(3.8) Aay=h

possesses a solution y Nx<x0 s(F0,) ".
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Proof. The homogeneous equation AAy 0 possesses a fundamental matrix Y of
the form

Y(s)=Z(s)sOeq(s),

where G is a constant matrix and Z G1 (n; s4(Fo,xo)). Since, by assumption, 0 1/d
(Im/.Zp mod 2r) and as/Xp obviously is determined modulo 27ri by A, we may assume
that

dO < Im/Xp < dO + 27r.

Let R be a positive number such that Z is holomorphic in int Fo,xo(R) and represented
asymptotically by Z as s- c in Fo,,o(R). Let So denote the point on the boundary of
So(R) with the property that Im So Xo. Consider the linear mapping A of Bo(Fo,xo(R))
(cf. Definition 2.1.1) defined by the following formula:

Af(s) Y(s) fc d
Y(+ 1)-’f() + A(s)-’f(s)

(s) 1 exp {2ri(s ’)}

wheref Bo(Fo,xo(R)), s FO,xo(R) such that Im s < Xo and C(s) is a path going from
So to infinity in such a way that it intersects the line Im "- Im s exactly once, in a
point between s and s / 1.

It can easily be verified that the vector function Ah is a solution of the equation
(3.8). In order to prove that it has the desired asymptotic properties, we shall show
that, for all r>0 and all X<Xo, A maps the Banach space Br(Fo,o(R)) into
Br+v(I’o,x (R)), where v is some fixed real number.

For all s F O,xo(R) let s’ denote the point on the boundary of Fo,xo with the property
that

Re (s’ log s’ei) Re {(s +1/2) log (s+1/2) el}.

Let Cl(S) be the path from oe to s’ such that

Re (r log re i) Re (s’ log s’ ei), Cl(s)

and let C2(s) denote the directed line segment from s’ to So (see Fig. 4). Let r>0,
x < Xo, andf Br(Fo,(R)). Putting

f Y(+ 1)-lf(sr)
Y(s)

,(s)
d"

1 -exp {27ri(s- ’)}- Ii(s), i= 1, 2

we have

(3.9) Af(s) I,(s) + I2(s) + A(s)-f(s).

C2(s) Im Xo

FIG. 4
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The second term may be written as follows:

(3.10) I2(s) Y(s) Y(s’)-1 exp {27ri(s’- s)} exp {2ri(s s’)}Iz(s’).

Noting that, for all s F0.x (R) and all " C2(s),

exp {27ri(s- s’)}
1 -exp {27ri(s-

lexp {-27ri(s- st)} 1[ -1-< [1 -exp {27r(x- Xo)}] -1

and taking into account the rapid decrease of Y(’+ 1) -1 along C2(s) we readily verify
that

sup I(s’) r+a exp {27ri(s- s’)}Iz(s’)] < .
sI’o,x(R)

The term Ii(s) in (3.9) and the product

Y(s) Y(s’) -1 exp {27ri(s’-s)}

in (3.10) can be dealt with by the methods used in [7, 12]. Indeed, the integral Ii(s)
is similar to the one figuring in (12.2) of [7], where the above product can be estimated
in much the same way as the integrand of I+(s) defined on p. 71 of [7]. Thus we find
that Af Br+d(Fo,x(R)), provided R is sufficiently large. Hence it follows that Ah
/(Fo,) for all x < Xo. This concludes the proof of the lemma.

Remark. With the aid of Lemma 3.7 we can prove a slightly stronger statement
than the one made in Theorem 3.2, namely, the existence, for all x and all

0 O(tr(A)), of a matrix function FG1 (n; (Fo,)) with the property that Av= A.

4. The Stokes phenomenon.
4.1. A preliminary transformation. In the remaining sections we shall determine

the "maximal asymptotic sets" for and study the connection between different funda-
mental matrix solutions of the linear homogeneous difference equation

(4.1.1) Aay =0

where a 6 G1 (n; C{s-1}[s]).
In order to avoid the complications caused by the intermingling of different types

of Stokes phenomena (associated with different levels) we shall make the simplifying
assumption that the set d(A) defined in 1.2 has m distinct elements.

Let be a canonical form of A and let U denote the asymptotic set of closed
regions U(R)(R > 1), defined by (0.2). According to Theorem 18.16 in [7] there exists
a matrix function T G1 (n; (U)) such that

a7"(s) a(s)(In + s-rB(s)),

where r> 1, B End (n; (U)) and Bij 0if i>j, i,j {1, , m}. (Actually, Theorem
18.16 only states the existence of matrix functions TeG1 (n; (S[-Tr, 7r)) and Te
G1 (n; (S(-Tr, 7r])) with analogous properties, but these can be seen to coincide in
some sector, provided l ’2.) Let S be an asymptotic set of closed regions with the
property that $(R)c U(R) for all R > 1. In the following sections we shall consider
fundamental matrix solutions of (4.1.1) of the form

Y= TFY,

where F is a solution of the equation

(4.1.2) Z(s+ 1)= aT"(s)Z(s)(s) -1
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with the properties that FGI(n;M(S)), F(oo)=In, and Fij---0 if i>j, i,j
{1,... ,m}.

4.2. Connection matrices. Let G1 and G2 be open regions in U(1) such that
G1CI G2# . Let F1 and F2 be solutions of (4.1.2), holomorphic in G1 and G2,
respectively.

DEFINITION 4.2.1. The connection matrix ofthe pair (G, F2) is the matrix function
P defined by the expression

P=  ’F? F2 V.

Obviously, P is a periodic matrix function of period 1. If both F1 and F2 are
upper block-triangular in the usual partition, then so is P.

In what follows we shall always be concerned with the case that one of the two
regions G and G2 is a lower or an upper halfplane. It can easily be verified that (4.1.2)
possesses a unique formal solution h=o Fhs-a/P(P t), with the property that Fo I,.
Hence, according to Theorem 2.4.6, there exist four unique matrix functions

F0o G1 (n; M(S0O)), F-0o G1 (n; M(S_0O)),

#oo 6 G1 (n; M(S’0O)), t6-0o 6 G1 (n; M(_oo)),
with the properties mentioned in the theorem. Moreover, all four matrix functions are
upper block triangular (cf. the remark below Theorem 2.4.6). Let P0o and P-0o denote
the connection matrices of the pairs (F0o,/-0o) and (F-0o, #0o), respectively. Obviously,

these too are upper block triangular. Let have the form (1.2.1). For all i,j {1, , rn}
we have

Pi(s) exp (qj(s) qi(s))s-’(F0o(s)-l ff’-0o(s))ijs Gj.

If <j, due to the fact that di < d;, the first factor on the right-hand side of this identity
decreases very rapidly as Re s -> -oo. In view of the growth properties of F0o and #-0o
this implies that Pj tends to zero as Re s-->-oo and hence must vanish identically.

Similarly, it can be seen that P0o= 0 if #j. Now consider the diagonal blocks
Fi and F { 1, , rn}. Both satisfy the equation

Z(s + l A,T(s)Z(s)A,(s)-’

1+ (In,+s-rB,,(s))Z(s) 1+

This equation has a solution GG1 (n; M(S(-r, r))) represented by the infinite
product

(4.2.2) G(s)=su, (In,+B(s+n))-1 s -u’, s U(Ro)
n=0

and a solution ff] e G1 (n; M(0o) (3 M(_0o)) represented by

#,(s) =su’ H (In,+B,(s-n))s-N’, sS-0o(Ro)OS-_oo(Ro),
n=l

where B(s)= s s-N’Bi(s)s u’ and Ro is some sufficiently large positive number. It is
easily seen that

lim F, s lim ff] s
Res-> Res->
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Furthermore, if Ro is sufficiently large, Fi and Fi as well as their inverses are bounded
on So(Ro) S_o(Ro). Hence, by Theorem 2.4.6, Fi must coincide with F, in a lower
halfplane and with FS. in an upper halfplane, whereas/3 must coincide with . in
a lower halfplane and with ff’ in an upper halfplane. Consequently, the connection
matrices P and PiS. can both be represented by the infinite product

I-[ (In,+Bi(s-n)), i{1,...,m}

in a lower and an upper halfplane, respectively. We shall assume that Ro is so large
that F and (F)-1 are bounded on the (closed) halfplane S-(Ro), and, moreover,
F and its inverse have the same properties with respect to S_(Ro).

Now let G be an open region in U(Ro) such that

G= U G+x,
xl

and supso Im s =-infso Im s o.
Let F be a solution of (4.1.2), holomorphic in G and with diagonal blocks F, F,

where Fi is defined by (4.2.2), for all e {1, , m}. F may be continued analytically
to a holomorphic function in

U G+x(-I U(Ro).
x

This function will again be denoted by F.
In the following lemma we consider the connection matrices of (F, F) and

(F-,F).

LEMMA 4.2.3. Let Y---FY, {1,’’ ", m} and let P denote the matrix function
defined by

(s)-IF(s)-IF(s) {r(s) if s S-(Ro),
n(s)

.(s)_,F_O(s)_,F(s) {Z(s if s _(Ro).
For all i,j {1,..., m} and all s So(Ro) S_oo(Ro) the following identity holds"

Pq(s) lim Yi(s- n)-’Fi(s- n) Y(s- n).

Proof. We shall prove the statement for all s S(Ro), by means of induction on
j i. If j 1 we have, for all s So(Ro) and all n Z,

Pij(s) Yi(s- n)-lFij(s n) Yj(s- n)+ Yi(s- n)-a(F)i’(s n) Y(s- n).

Due to the fact that d < d while (F)- is bounded on q(Ro), the second term on
the right-hand side of this identity tends to zero as n- c.

Now suppose that j- > 1 and that the statement is true for all pairs of indices
(k, l) such that l-k <j-i. Then we have

Pq(s)- Yi(s- n)-’Fq(s- n) Y(s- n)

2 Yi(s- n)-l(F)ihl(s-- n) Yh(S-- n) Yh(S-- n)-aFhj(S-- n) Y(s n).

Again the product Y(s-n)-(F)(s-n)-Yh(s-n) tends to zero as nc for all

h > i. By assumption, for all h <j the product Yh(s- n)-Fhj(S n) Y(s- n) tends to
a finite limit, namely, Phi(S), as n c. Consequently, the right-hand side of the above
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identity tends to zero as n-+ oo and the result follows. For s S_oo(Ro) the proof is
analogous.

4.3. Maximal asymptotic sets. Let 0o=max {0 O(o’(A))’O<-_O} and let all ele-
ments of O(o(A)) be numbered in such a way that 0N < 0N/, N Z. For all N
and all i,j {1,. ., m}, nij(N) will denote the smallest integer not less than

1

2rr
{(d,- 4)0N Im (IX,,p -/Zj.p)}.

By the definition of 0(o-(A)), there exists an integer M such that

1
n(N) =- { di 4 O -Im

and an integer M’ such that

1
nq(N)+l

2rr
{(d,- 4) 0v,- Im (/z,.p tZa,p)}.

Suppose that <j. This implies that di< d. Then, obviously M’< M_-< N. Hence it
follows that

(4.3.1) O<- nv(N-1)- nv(N) <- I i, j e {1, m}, <j, N 77.

For all N e g we define an upper block-triangular matrix function FN by means of
the following recursive relation for the blocks (FN):

(FN)g Fi (defined in (4.2.2)),

exp {2nij(N)rri(s ’)} N(4.3.2)
(FN),(s)= Y(s) d

(s -exp {2rri(s ’)} I, (’) Y(s)-, <j,

s int U(Ro), where

(4.3.3) Io(’) Y(’+I) Z A()(FN)h()Y()
i<hj

and C(s) is a contour in U(Ro), enclosing the negative imaginary axis as well as the
points s-n, n, but not s (see Fig. 5).

LEMMA 4.3.4. Let R and R’ be positive numbers such that R’> R > Ro. Let Uo
U(R)\ U(R’). There exist positive constants c and C such that, for all i, j { 1, , m}
and all N 77,

sup Yi(S)-’(FN)ij(S) Y(s) <-- C e clNI.
U

(s)

s-1 s sl

So(Ro)

FIG. 5



CANONICAL FORMS AND STOKES PHENOMENON 255

_Proof. For all k {1,. , m} we define Uk U(R ke)\ U(R’+ ke), where e is
a sufficiently small positive number such that U,, c U(Ro). For all (s, r) U,, x U,, we
have

[exp {2 nij (N) 7ri( s sr) }1 =< exp {4(R’ + me)Tr[ nij( N)[}.

Hence, in view of (4.3.1), we obtain the inequality

(4.3.5) lexp {2n(N)Tri(s ’)}1 --< Co eclNI,
where Co and Co are positive numbers independent of N.

If s Uk for some k{1,..., m-l} the contour C(s) in (4.3.2) may be chosen
in such a way that C(s)c U,+I and d(,s+’)>=e for all ’ C(s). Then there exists
a positive number K such that

(4.3.6) ]1 -exp {27ri(s r)}l-1 _-< K for all s U,,_I and all sr C(s).

We shall prove the lemma by means of induction on j i. Ifj 1 the expression
in (4.3.3) is reduced to

IN 1AT, () Yi(+ )- () ().
Due to the fact that d < dj, this function tends to zero very rapidly as Re
uniformly on Urn. Consequently, the integrals

(s)

exist and are bounded by a constant, independent of N. With (4.3.5) and (4.3.6) it
follows that, for all N 7,

sup IY(s)-I(FN),j(s)Yj(s)I<=C1 eqlNI,
U

where cl and C1 are positive constants independent of N.
Now let j-i= k > 1 and suppose that for all < k there exist positive numbers c

and C such that

(4.3.7) sup [Yg(S)-I(FN)gh(S) Yh(S)[ C,e’lNI
Urn_

for all N 7/and all h, g e { 1, , m} such that h g =/. Then we have, for all N 7/,
all h {1, , m} such that < h <j and all s U,-j+h,

Y(s + 1)-lA,rh(S)(FN)h)(S) Y(s)l<-_lY(s+ 1)-lA,(s) Yh(s)tf)_h eC-hlul.

Inserting this into (4.3.3) and using the estimates (4.3.5) and (4.3.6) we conclude that
there exist positive numbers c and C such that (4.3.7) holds for k as well. Hence
it follows that for all {1,. , m-1} there exist positive numbers c and CI such
that (4.3.7) holds. Since Uo c U for all e {1,..., m- 1} this proves the lemma.

With the aid of residue calculus it is readily verified that, for all i,j {1,. ., m}
such that <j and all N 7/, the matrix function (FN)j satisfies the equation

T -1Z(s+ 1)-- Aii(s)Z(s)tj(s -I- ., Ah(S)(FN)j(S))(S)-’.

Hence it follows that, for all N e 7/, Fu is a solution of (4.1.2).
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THEOREM 4.3.8. For all N 7/ let P and P denote the connection matrices of
F, FN) and F-w, Fry), respectively. Let R1 > Ro. There exist positive numbers d and
D such that, for allj 1, , m, all j and all N , thefollowing inequalities hold"

sup [(P)q(s) exp {-2(nij(N)- 1)is}[ D eaINl,
s$(R1)

sup ](P)q(s) exp {-2nq(N)is}] D eINI.
s$_(R)

COROLLARY 4.3.9. ere exists a positive number R such that

lim F(s)= F(s) if Im s -R,
N

lim F(s)= F-(s) ff Im s R.

Proo For all Ne, all i, je(1, , m} suCh that i<j and all seS(Ro) we have

(4.3.10) (F)q(s) Fq(s)+ Z Fn(s) Yn(s)(P)n2(s) (s)-ih(j

Applying Theorem 4.3.8 and noting that, according to (4.3.1),

nn2(0) nn2(N) N for all h <j, N Z,

we obtain the following inequality for all s S(R)"

[(FN)o(s)-- Fi(s)] Z [F,(s) Yn(s)[] (s)-]Dnj(s) exp {N(d-2 Im s)},
ih(j

where Dn2(s) D exp {2(nn2(0) + 1) Im s}. If we take R > max (R, d/2) the first
statement follows immediately. The second statement is proved analogously.

Proof of eorem 4.3.8. Let Co be a U-shaped contour in the interior of
U(R) U(Ro) enclosing the negative imaginary axis. By means of residue calculus it
is easily shown that

N(S)-(FN)o(S)- (PN)o(S)+
1=1

N is defined by (4.3.3) andwhere Iq

exp {2nq(N)i(s-)} N(P)q(s) d 1-exp(2i(s-)}
Iq (),

for all Ne , all i,j (1,..., m} such that i<j and all s with the propey that
]Im s]R.

Consequently, the following identity holds for all n e "
(s-l).(s--n)-(FN)o(s--n)(s--n)=(PN)o(S) + Z lo

l=n

Making n and applying Lemma 4.2.3 we find

(P)q(s) (P)q(s) if Im s-R,
((P),2(s) if Im sR.

Hence it follows that

+ exp {-2(nq(N) 1)i}
(4.3.11) exp(-2(nq(N)-l)is}(P)q(s)=

dc
d exp{-2i(s-)}-I

I()
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for all s So(R,), whereas

(4.3.12) exp {-2nj(N)Tris}(P-)j(s)

for all s S_w(R). Writing

I,(r)= Z Y(sr+ 1)-la(") Yh()Yh()-’(F)hj() Y()
i<hj

and using Lemma 4.3.4 we obtain, for all " Co, the estimate
N NIIij() <-Cel 2 IY(+I)-IA()Yh()I,

i<h<--j

where c and C are positive constants. As di< dh if < h, the integral

Idl Y(’+ 1)-’A,(sr)

is convergent for all < h. Furthermore, the functions

q(s, ’) [exp {-27ri(s ’)}-

and

q(s,

are obviously bounded on S(R) Co and S_(R) Co, respectively. With (4.3.1) it
is now easily verified that the expressions in (4.3.11) and (4.3.12) lead to estimates of
the required form.

Remark. The matrix elements ofP (i.e., the connection matrix of (Fu, F) and
(Fu, F-W)) can be computed from Fu by means of the following recursive relation:

(P) 6i if ij,

--6ij-- fc dexp{Znil(N)Tri(s-)} Ii()(Pv1)lj if i<j
<l 1 -exp {2ri(s ’)}

where I u. is defined by (4.3.3).
The next, and final, proposition is concerned with the asymptotic behaviour of

the matrix functions Fu.
PROPOSITION 4.3.13. Let N 7] and S* LI o<o<o+, So. We have

Fu 6 G1 (n; (S*)).

Moreover, Fu is the unique solution of (4.1.2) which is analytic in a right halfplane and
possesses the properties mentioned in Theorem 4.3.8.

Proof Let 0 e (0u, 0u+a) and let

S- So f3 So.
Putting

Ndh-dj dhj ]h--ld,j+2(nhj(N)-- l)7l’i-" ]Zhj

for all h,j {1, .., m} and all N ’, and using Theorem 4.3.8 we find

IYh(s)( + ’lPN)h(S)Y(s)-=exp{(dhslogs+tzs)(l+o(1))} S-->oO, sS(R)

for all j {1,..., m} and all h <j. By Definition 2.2.4,

Re s log s ei >= C( O, R1)
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for all s So (R1), hence

Re (dhjS log s + txs) <- dhjC(O, R1) q- Re {(/x uhj idhO S}
if h <j and s So(RI). Now, 0 e (0, ON+) implies that

N0 < dhjO Im/x h < 2

With the aid of the above inequalities we readily verify that

Yh(S)(P+)hj(S) Y(s)-’O, s-oo, s S-(R),
if h <j and R is a sufficiently large number. With (4.3.10) we conclude that

FN F G1 (n; So(S)).

In a similar manner we prove that

FN F G1 (n; So(So f’l S_oo)).

As F and F are represented asymptotically by the series Yh=O Fhs-hIp as s - oo in
So(R1) and S_(R1) respectively, it remains to be shown that Fu admits the same
asymptotic expansion as s-oo in a "strip" of the form So(R)f-l{seC’llmsl<-R},
where R is a suitable positive number. This follows immediately from a Phragm6n-
Lindel6f-type of argument (cf. [15, p. 180]). Thus we conclude that Fu e G1 (n; sd(So))
for all 0 (0u, 0+) and, consequently, Fu e G1 (n; sq(S*u)). Since here we have not
used any properties of FN, except for those mentioned in Theorem 4.3.8, the second
statement now follows from Theorem 2.4.1.

In conclusion we can say that, unless PN-1 Pu or Pu Pu+, the asymptotic
sets S* mentioned in Proposition 4.3.13 are maximal in the following sense: for every
N e77 there exists a (unique) matrix function FN e G1 (n; sq(S*N)) with the property

that AFr A, whereas FN G1 (n; (So,,,)) and FN G1 (n; Q(SoN+I))O Analogously,
there exist maximal asymptotic sets N, defined by

gN U e iVrSo+r N 7/
ONKOKON+

and unique matrix functions /3 e G1 (n; ()) such that AN=. The Stokes
phenomenon in the class of difference equations considered in this section can be

co,mpl,etely described by determining the connection matrices of (Fu, Fu+l) and
(FN, FN+I), N 7/, and the connection matrices poo and p-oo defined below Definition
4.2.1.
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INEQUALITIES FOR THE ZEROS OF THE AIRY FUNCTIONS*

GIOVANNA PITTALUGA? AND LAURA SACRIPANTE?

Abstract. By using a theorem of Sturm type the authors show that the approximations obtained by
truncating the asymptotic series for the real zeros of the Airy functions Ai (x) or Bi (x) are in fact lower
and upper bounds. A lower bound for the zeros of the derivatives of these functions is also derived.

Key words. Airy functions, zeros, inequalities, Sturm comparison theorem
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1. Introduction. It is well known that the Airy functions Ai (x) and Bi (x) play
an important r61e in the asymptotic theory of differential equations (see Olver [7,
Chap. 11]). They satisfy the so-called Airy differential equation

(1.1) y"-xy =0,

which arises naturally as an approximation to the general second-order differential
equation reduced to the normal form [5, p. B4].

The functions Ai (x) and Bi (x) have infinitely many real zeros on the negative axis:

O> a > a2>" and O> bl > b:>. .,
respectively.

For these zeros the following asymptotic expansions, due to Miller [5], hold:

(1.2) a,, -f(A,,),

(1.3) b, -f(i,),

where

(1.4)

3(4n- 1)Tr 3(4n-3)Tr
h,= /xn= n=l,2,...,

8 8

5 5 77125 108056875
f(z) z2/3 1- 48z2 36z-t 82944z6 6967296z

162375596875 )+ 334430208zlO -"
These approximations, even if truncated to the first terms, give good numerical results
also for moderate values of n, but do not furnish any information about the error.
Moreover,

(1.5) al =-2.33810741 ..., bl =-1.17371322"’’,

and, as n ->

(1.6) a- (4n- 1)r b- (4n 3)"

For the properties of the Airy functions, we refer to Miller [5], Olver [7], and
Abramowitz and Stegun 1 ].

* Received by the editors June 13, 1988; accepted for publication (in revised form) December12, 1989.
This work was supported by the Ministero della Pubblica Istruzione of Italy.
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One- and two-term asymptotic representations for the zeros an, with bounds for
the error term, can be found in a paper of Hethcote [2]. In a more recent paper,
Laforgia [4] has found an analogous one-term asymptotic representation for the zeros
bn.

Inequalities for the zeros an and bn can be obtained by means of the following
theorem of Sturm type, due to Hethcote [3].

THEOREM 1.1. Let cn and dn, n 1, 2,..., be the zeros (in increasing order) of
u(x) and v(x), respectively, which are nontrivial solutions of u"+p(x)u =0 and v"+
q(x)v =0 with continuous p(x) and q(x). If cn dn 0 as n- o, p(x) >- q(x) and either
p(x) or q (x) is nonincreasing, then cn >- dn for n 1, 2,. .

By applying this theorem, Hethcote [3] has found the following inequalities for
the nth zero an of the function Ai (x):

(3 5 )2/3<=an<_2/3(1.7) An + arctan
48An

where ,Xn 3(4n 1)r/8 and n 1, 2, .
The Hethcote result shows that an is greater than the two-term approximation

obtained by truncating asymptotic expansion (1.2). Indeed, it is easily verified that

>-A/3 1+ >-A/3 1+(1.8) an=>- An+garctan48An
The aim of this paper is to improve (1.7) by means of Theorem 1.1. We also derive,
in a similar way, lower and upper bounds for the zeros bn, n 1, 2, , of the function
Bi (x), by truncating the asymptotic series (1.3).

The main results are stated in the following theorem.
THEOREM 1.2. The error in stopping at any ofthefirstfive terms ofMiller’s expansions

(1.2) and (1.3) is bounded by the next term and has the same sign. Furthermore, the
following inequalities hold:

an> -F(An), bn>
where

3(4n- 1)Tr 3(4n-3)Tr
An= /n= n=l,2,...,

8 8

5 5 77125 108056875 162375596875)F(z)=z2/3 1-48z2 36z41 +
82944z6 6967296z 334430208z1

To establish these results, it is necessary to prove, step by step, that the approximations
obtained by considering an even or odd number of terms in the asymptotic series (1.2)
and (1.3) are in fact lower and upper bounds, respectively. The essence of each
successive step is quite similar, but details are progressively more complicated. So, in
the following two sections, we will give only the outline of the proof for the first of
the required results related to the zeros an of Ai (x) that improve the Hethcote inequality
(1.8).

We have established the complete proof of Theorem 1.2 by using the symbolic
system MAPLE, as we will explain at the end of 3.

2. The comparison equation. In order to apply Theorem 1.1 we will refer to, instead
of (1.1), the differential equation

(2.1) u"+ (1 + 36--) u 0
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which is satisfied by the functions

(2.2)
A(:) ()1/6 Ai [_(:)2/3],
B(:) ()1/6 Bi [_(:)2/3].

If a, and/3,, n 1, 2,. ., denote the positive zeros (in increasing order) of A(:) and
B(:), respectively, then we have

(2.3) a,=(-a,)3/, /3,=(-b,)3/2, n=l,2,....

Hence, from the asymptotic expansions (1.2) and (1.3), we get

(2.4)
where A, and/z, have the previous values (1.4), and

2(5125527207540840354254098107432375)T(z) = z 1- ---t
5637144576zlo32z 6144z4 196608z6 176160768z8+

+...

Furthermore, (1.5) and (1.6) give

and, as n

al 2.383446612 /31 =0.8477186453

c, - (4n 1 ), /3, - (4n 3).

The differential equation (2.1) will be compared with the differential equation

v"+G()v=O,(2.5)
where

(2.6) G(:)=2 g’ 4\g’/
+g,2,

which is satisfied by

(2.7) v(:) (g,)-l/2 cos g(:).

As we will see, (2.1) and (2.5) are "very close" for a proper choice of the function
g(:). For this choice it will be necessary to take into account that the asymptotic
expansions (2.4) yield

a.- s(.), . s(/.),(2.8)
where

3(5S(z) z 1 -7-z2+--
1105 82825 1282031525 1683480621875 \

31104z4 746496z6+ )1504935936z 139314069504z1

3. The first approximation for the zeros of Ai (x). In this section we will prove the
following inequality for the zeros a, of Ai (x)"

(3.1) a. < --/2/3 1- 48A2 3

For this purpose we use in (2.6)
5 1105 7r

(3.2) g(:) :-+
72s: 31104:3 4’

as suggested by (2.8). From (2.6) we obtain

{g’(y)]P(Y)’
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where y 5/722 and

2214 y5 2213
y4_P() =-i-U -5

So, we easily get

for > 7, with t =0.335....

103 2212 10487. 221 194801y3_ y2+y_3313"
125 250 100

()- + <0,

Now we note that the function (2.7), with g() given by (3.2), has infinitely many
positive zeros ,, n 1, 2,. ., belonging to the interval < <. Hence, observing
that

lim ,, +c, lim . a. O,

and that the coefficient of u in (2.1) is a continuous decreasing function in 0 < <,
we see that the conditions required in Theorem 1.1 are satisfied. Thus we may conclude
that , <- an forn_->l.

Now we consider the equation

5 1105 zr
(2n- 1)

zr
(3.3) so- 7--+ 31104sc3-- -.
This can be written in the form

with

5 1105 2
q-(sc)-72sc 31104+ ’-,

where I is defined in (1.4).
We observe that the root of (3.3), which we have previously denoted by :, lies

in the interval 2,]i/12 < sc < oe, where the function 0,(:) decreases. Since from (1.8)
and (2.3)

< 1+32
we have N < , and consequently,

..(.)>.(.).
Then, taking into account that

we obtain

Finally, by observing that

5 1255 2/3

a,, <--/2n/3 1-
32 644,]

5 1255
0<-- --<1

32A 6144A. 4
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and using a well-known inequality [6, p. 35], i.e.,

0<h<l,

we establish (3.1).
Now, to complete the proof of Theorem 1.2 it is necessary to repeat the previous

procedure three times. Since the algebraic calculations become progressively harder,
we have overcome this difficulty by using a symbolic mathematical system. Therefore,
rather than go into full details, we will limit ourselves to some remarks.

First, we add a term to g(:). Consequently, using the same notation,
(a) We find the function G() and, to apply the Hethcote theorem, we prove that

the difference G()-(1 + (5/36:2)) does not change sign in the interval of the zeros.
(b) We prove that, in the same interval, the function 0,() is always decreasing.
(c) We reach a new inequality by evaluating 0,(sc) in the bound previously

established.
The most important functions and the inequalities arising at each step of our proof are:

1. First step.

5 1105 82825 7r
g(:) -+72 31104sc3 746496scs 4’

[g,(y)]2Pl(Y),
5 5 77125

a. > --A2n/3 1 +48A2 36A4 8--6n
2. Second step.

5 1105 82825
g(:)-- -72+

31104sc3 746496

G()- 1 + [g,(y)]2P2(Y),
5 5/

a,, < -h 2/3,, 1

3. Third step.

5 1105 82825
g(:) -72:+ 31104:3 746496

G()- 1 + [g,(y)]p(y),

(a > -I/ 1
481 3614

where y 5/72 and

51281261 27372926
Pl(Y) Y+100 125

7012956328919 8691232890407
y4+

10000 500

1282031525 7r

1504935936 4’

77125 1080568Z5__’
48A2,, 36A4 P82944A----6967296A8,,]"

1282031525 1683480621875 7r

15049359367 1393140695049 4’

77125 108056875

8294416 696729618. 162375596875)3344302081 lO

7794996033 y2
500 250

50103718291 y3

5244570435487yS_ y6
2OO
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8036308150637 120471895488961y7 + y8,
20 16

P2(Y) -538713799/4+
14820773151 22493384194527

1000 5000
2

3278666826931429

8000

1046709128741315107

100000
y4

1261062200876664583
50000

63904681252050534991
50000

6

65735260766514133374699
1000000

201944954419818577655571

2000000

51451761784634525153637151
20000000

446783909020831299739690853
4000000

ylO

6915678312435105438853099514641
1600000000

11

P3(Y)
53751522223401

1000

20773109330799
+

2500

11109302866435629
800O

2 10150465536010571741
50000

y3

5891049024457820012593
200000

124822663524782054290243
100000

1915502133858050816171199
1000000

y6

17640498460982180295968469

125000
7

275535841743189774672030148599
20000000

2407238710365594019145408696631
2000000

y9

2714794473352765497329024782474641
1600000000

lO

8743352521135634635371369160970219
16000000

11

4879371953642767944759121947186563
1280000

12

8017389739675545363259673692504139
25600

y13

84223328375724498468133493019784801
4096

14

y5
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4. Bounds for the zeros of Bi (x). In this section we will consider again the
differential equation (2.1), but we will refer to the second solution, i.e., to the function
B(c) defined in (2.2). Let us remember that we have denoted by ft,, n 1, 2,. , the
positive increasing zeros of B(:) that are related to the zeros b,, n 1, 2,. ., by the
second relation in (2.3).

The procedure for deriving inequalities satisfied by the zeros b, is perfectly
analogous to that used for the zeros a,. We give only a sketch of this procedure.

In the first instance, let us consider the simple case

g() so+
4

Here it is very easy to verify that Theorem 1.1 can be applied. So we obtain

(4.1) /3, _-> /x,, n=l,2,...,

The next step is to choose

We observe that

2/3b,_<--x, n=l,2,....

if s0>0,

5 7/-
g(:) -+-.

72: 4

f(z) z2/3 1-4-zZ+288z------

where

b,, > __/[./,2/3 1 +48/X n 1 2,

The next steps parallel the ones for the function Ai (x).

5. A bound for the zeros of Ai’ (x) and Bi’ (x). To complete the study of the zeros
of the Airy functions, it is natural to ask whether the same analysis can be adapted to
establish similar bounds for the zeros a’, and b’, of the derivatives Ai’ (x) and Bi’ (x).

In fact, it is well known that the following asymptotic expansions due to Miller
hold:

a, -f(/x,), b’ -f(A,),

while z, and A, are given by (1.4).
Unfortunately we can prove only the following theorem.
THEOREM 5.1. For the zeros a’, and b’, of the derivatives of the Airy functions

Ai’ (x) and Bi’ (x), respectively, the following inequalities hold:

(5.1) a’, => -[(4n -3)7r]2/3, b’, > [(4n 1)Tr]2/3, n 1, 2,

and that, from (4.1), the zeros/3, lie in the interval ((7r/4), +c).
Now, as in 3, it is possible to obtain a lower bound for b, by applying Theorem

1.1, that is,
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Indeed, if we denote by a’,, n 1, 2,..., the positive zeros (in increasing order)
of the function

A(7) (_)--1/6 Ai’ [- (:)2/3],
which satisfies the differential equation

(5.2)

we have

and consequently

u"+ 1 u O,

c’/x, 1- 3 2++""61444,

3,(7 1463
/xn cen lq

72c,2 31104ce,4 +"

As in the previous section, we first compare (5.2) with the differential equation (2.5),
by assuming that in (2.6)

g() :+--.
4

We find that G()= 1, and so we can apply the Hethcote theorem and easily establish
the first of the two inequalities (5.1).

Then, if we add a term to g(sC), i.e.,

7 7/-

g() :++-
72 4’

we find

(722-7)2"

Since in this case G() is an increasing function, the conditions required in Theorem
1.1 are not satisfied.

The same remarks hold for the zeros of Bi’ (x).

Acknowledgment. The authors are grateful to Professor F. W. J. Olver for his
careful reading of the manuscript and useful suggestions for improved formulation of
the paper.
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Abstract. The spherical harmonics of degree less than or equal to k in R n-1 are used to generate the
spherical harmonics of degree k in R n.
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A homogeneous polynomial of degree k in the real variables, x, x2, , x,, that
satisfies Laplace’s equation,

02H 02H 02H
+’’" + o,

Ox21
is called a spherical harmonic of degree k in R".

The set of all spherical harmonics of degree k in R" forms a vector space over
the field of complex numbers. We denote this vector space by Hk Let dk dim H,k

Then

(n+k-3)!dk=(n+2k-2),,

[2, p. 140]. An elementary argument by induction on k shows that

dk= Y d-l, n=3,4,5,. ..
j=0

This dimensional equality suggests a deep relationship between the spherical harmonics
of degree less than or equal to k in R "-1 and the spherical harmonics of degree k in
R". We investigate this relationship here.

Let Y,-1 denote the unit sphere in R", and (f, g) be the usual inner product on
That is,

(1)

where

(f g)= fy._, f(x)g(x) dx,

2E {(x, x, ., x,)" x +x+... +x,
n--1

Spherical harmonics of different degrees are orthogonal with respect to the inner
product (1) [2, p. 144]. Thus, letting {P), P],..., P--,} be orthonormal bases for
each of the vector spaces H_I, on taking the union of these bases overj =< k we obtain
a set of d,k orthonormal spherical harmonics that forms a basis for the vector space
of harmonic polynomials of degree not exceeding k in R "-1. Re-indexing, we let
{P1, P,’’’, Prig.} denote such a basis.

The following theorem shows how the spherical harmonics in R-1 can be used
to generate the spherical harmonics in R ", n 2, 3, 4,. .
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THEOREM. Let P1, P2,’’’, Pd be orthonormal spherical harmonics in R n-1 of
degree less than or equal to k. If x (Xl, x2, , x,) R", and (tl, t2, , t,-1)
,,-2, then

(X -[- ix2t, + ix3t2 +’’" + ix, t,--1)k= Z Y(x)P( t),
j=l

where Y, j 1, 2,. ., d k, are homogeneous harmonic polynomials of degree k in R,
and Y, Y) 0 ffj 1.

Proof Consider the multinomial expansion

(X + ixtl +’’" + ixt_l)k= Z c

Here a= (a, a, a), and x,XllX2 and similarly for ’-. When
restricted to the unit sphere ,-2, any polynomial of degree j in t, t2,’’’, tn-1 is a
linear combination of spherical harmonics of degree not exceeding j [2, p. 140]. Thus,
on restricting to the unit sphere, each monomial can be written as a linear
combination of the spherical harmonics P, P2," ", Pd. A rearrangement then yields

(x, + ixt +...+ ix.t._): Y(x)(t).
j=l

The Y are clearly homogeneous polynomials of degree k in x, x,..., x,. Fuher,
since t+ t+... + t_l 1, they are harmonic. To see that these Y are oahogonal,
consider the function

G(u, b)= l (lUl--2U2--"" .+,u,)k(,b,+2b2+ .+,b,)kds

f (u, )k(b, )k d:.

The function G is an ohogonal invariant. That is, G(Ou, Ob)= G(u, b) for any
ohogonal transformation O ofR ". Thus, there exists a polynomial (h, , v) such that

G(u, b)= [(u, u), (u, b), (b, b)]

[1, pp. 244-245]. Fuher, since G(u, b) is homogeneous and of degree k in the
components of u and b, it follows that

[(u, u), (u, b), (b, b)]= c(u, u)(u, b)(b, b),
where the sum is over all nonnegative integers a, fl, y such that 2a +fl k and
2y + k. Thus we have the polynomial equation

(2) 2 c(u, u)(u, b)(b, b)’= (u, )(b, ) d.
n--1

Now let

u (1, it1, it2,..., itn-1),
n--2

b 1, is1, is2," is,_1),
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Then (u, u) (b, b) 0, and (2) becomes

But

(u, b)k=(l+Sltl+s2t2 +." .+S,_lt,_) k.
Further, appealing to the fact that any polynomial of degree j when restricted to the
unit sphere is a linear combination of spherical harmonics of degree not exceeding j,
and using the Funk-Hecke theorem [1, p. 247], it follows that

(1 -I- Slt -i- s2t2/" "/ Sn-ltn-1)k-- E AjP(t)P(s),
j=l

where the Aj are constants. Thus we have

j=l j=l

from which it follows that

forj #/.

This completes the proof.
It is perhaps interesting to note that the generating function given in the preceding

theorem produces the same spherical harmonics in R2 as does taking the real and
imaginary parts of (x + iy) k. Laplace’s equation in R is 02H/Ox2=O, and thus the only
harmonic functions in R are 1 and t. These are the spherical harmonics in R . The
unit sphere in R has equation 2= 1, and the result of the theorem in this case is

(x + iyt) YI(x, y) 1 + Y(x, y) t.

Thus, Y(x, y) Re {(x+ iy) k} and Y2(x, y) Im {(x+ iy)k}. Our dimension-
invariant result therefore suggests that use of the complex fz-1 provides a simple
means of generating the spherical harmonics in R2 only because behaves as does
when is restricted to the unit sphere = 1.

The result of our theorem can be used to develop integral operators for harmonic
functions in R [3]. That is, if x (x, x2, , xn) R and H(x) satisfies

02H 02H 02H
ox

+"" + axe. o, Ilxll < R,

then there exists a function h(z, t), analytic in the complex variable z in the disk
[zl < R, and continuous in R"- on the unit sphere tll- 1, such that

H(x)=F(h)

I h(x + ixh + ix3t2 +" + ix,t,_, t) dr.

In the case n 3, this integral operator reduces to the Bergman B integral operator [4].
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In view of the inductive relation that obtains for the spherical harmonics in
increasing dimensions, it appears that the generating function presented here is, in a
sense, natural. It is certainly far simpler than classical generating functions for the
spherical harmonics [5]. In particular, the simplicity of this generating function makes
it easy to construct the spherical harmonics in rectangular coordinates, as polynomials
in their variables. This can be done by hand, or using a symbol manipulation computer
language such as MACSYMA.
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FAMILIES OF ORTHOGONAL AND BIORTHOGONAL
POLYNOMIALS ON THE N-SPHERE*
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Abstract. The Laplace-Beltrami eigenvalue equation He A on the n-sphere is studied,
with an added vector potential term motivated by the differential equations for the polynomial
Lauricella functions FA. The operator H is self-adjoint with respect to the natural inner product
induced on the sphere and, in certain special coordinates, it admits a spectral decomposition with
eigenspaces composed entirely of polynomials. The eigenvalues are degenerate but the degeneracy can
be broken through use of the possible separable coordinate systems on the n-sphere. Then a basis for
each eigenspace can be selected in terms of the simultaneous eigenfunctions of a family of commuting
second-order differential operators that also commute with H. The results provide a multiplicity of
n-variable orthogonal and biorthogonal families of polynomials that generalize classical results for
one and two variable families of Jacobi polynomials on intervals, disks, and paraboloids.

Key words, multivariable orthogonal and biorthogonal polynomials, the n-sphere

AMS(MOS) subject classifications. 22E70, 33A65, 33A75

1. Introduction. Orthogonal polynomials in one variable which also satisfy
second-order ordinary differential or difference equations have proven extraordinarily
useful in the development of special function theory and in the practical approximation
of functions (e.g., Askey [2]). Orthogonal and biorthogonal families of polynomials in
several variables which satisfy second-order partial differential or difference equations
are similarly very useful but there is as yet no general theory and more examples are
needed. In this paper we will study such families which are related to the Laplace-
Beltrami eigenvalue equation on the n-sphere. Our procedure provides a uniform
setting within which to classify several known examples related to the n-sphere and
to generate many new examples. Our approach falls within the theory of Dunkl’s
differential-difference operators (Dunkl, [5], [6]); the main contribution of our paper is
to point out the power of separation of variable methods in this theory. (Note" There is
also a considerable literature on discrete analogues of the Laplace-Beltrami eigenvalue
equation on the sphere in which the symmetry groups are finite, e.g., Stanton [25].)

It was shown by Lam and Tratnik [21] that the Lauricella functions

(1.1) =FA [M + G -1; -ml,... ,-mn
1,"" ,’n

;Xl"" ,Xn

and
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(1.2) (1 x)MFA

form a biorthogonal polynomial family where mi 0, 1, 2,..., M ’=1 mi, G
n and the , are positive real numbers. (We will derive the inner=1 g X k=l Xi

product later.) Here, the Lauricella function FA is defined by the series

where

1 if m=0(a)m a(a + l) (a + m -1) ifm_>l.

As is easily verified by adding the standard partial differential equations for the FA
(Appell and Kampe de Feriet [1]), these polynomial functions (I) satisfy the eigenvalue
equation

(1.4)

where

H -M(M + a 1)(I),

n n

(1.5) H Z (xiSij xixj)O:ix + Z(i Gxi)Oxi.
i,j--1 i--1

Here 5ij is the Kronecker delta. Note that H maps polynomials of maximum order mi
in xi to polynomials of the same type. It is easy to see that as the mi range over all
nonnegative integers the functions (1.1) form a basis for the space of all polynomials
in variables x,... x,, and that the spectrum of H acting on this space is exactly

(-M(M+G-1)’M=O, 1,2,...}.

(For n 2 equation (1.4) appears in the classification by Krall and Sheffer [20] of
all second-order partial differential operators such that the Mth order orthogonal
polynomials in two variables, with respect to some weight function, are eigenfunctions
of the operator.) We will look for other bases of solutions to equation (1.4), both
orthogonal and biorthogonal with respect to a natural inner product.

Equation (1.4) is closely related to the Laplace-Beltrami eigenvalue equation on
the n-sphere (Eisenhart [7]). To see this, consider the contravariant metric determined
by the second derivative terms in H:

(1.6) giJ 5ijxi xixi, 1 <_ i,j <_ n.



274 E.G. KALNINS WILLARD MILLER JR. AND M.V. TRATNIK

Then det(gJ) g-1 xlx2.. "xn(1 -x) and

(1.7) giJ 1 x xi

Note that

{1 if k,
otherwise.

Thus

n

ds2 E gijdxidxj
i,j=l

determines a metric on a Riemannian space with associated Laplace-Beltrami operator

n

A straightforward computation yields

(1.9)

where

H An + An

Thus if "Yi ’)%+1 } then H An, but in general H differs from An by the
first-order differential operator An.

To identify the Riemannian space we introduce Cartesian coordinates zo, zi,... zn
in n + 1 dimensional Euclidean space and restrict these coordinates by the conditions

(i.II)

n

z0
2 1-EX’- 1-X

i--1

Zl
2

Xl

Z2
2 X2

Z2n Xn.

Note that z + z2 +... + z2 1. Defining a metric ds2 by
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we find

/ dxidxj.(1.12) ds2
i,j-’l

Thus the space corresponds to a portion of the n-sphere Sn. We can consider the
coordinates {xi} for 0 < xi and x _< 1 as covering the portion of the n-sphere given

n 2_1by 0 <_ z, k=l zk
We can transfer the SchrSdinger equation (1.4) with vector potential An to one

with a scalar potential Vn through the use of a multiplier transformation p. Setting
O(x) p(x)(x) for a nonzero scalar function p we find

provided

(An -+- An)
= (An + Vn(x)) -M(M + G- 1),

(1.1) p-1 X1/2-1/4 Xn’/2-1/4(1 X)’+/2-1/4.

A straightforward but tedious computation gives for the scalar potential:

(1.14)

1 (%- 1/2)(i- ) 1 (/n+l- 1/2)(’n+- )
4 xi 4 1 -x

i--1

1 [ (n-3)(n+l)+ (l-G)2-1-
4

or, in terms of Cartesian coordinates,

(1.15)
4 zV

= z
1 [ (n 3) (n + l)+ (1- (7) 2 1-

4

The equation H _= (An + Vn) A has a natural Riemannian metric

(1.16) dw=g1/2dx’"dxn =x...x’(1-x)-1/2dx...dxn
(Eisenhart [7]). Furthermore, the operator H p-Hp An + Vn is formally self-
adjoint with respect to the inner product

(1.17) <1, 2) (x)2(x)dw
>O,x<l

where II/1, /I/2 are twice continuously differentiable functions of the xj which take
complex values"
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(H’I, 2> (1,H’2).

This induces an inner product on the space of polynomial functions (I)(x) p, with
respect to which H is self-adjoint:

(,) (,

=/"" f,>0,<
(1.18) (I) (I)2 db,

(I) (x)(I)2 (x)p-2 (x)dw

d& xT-... Xn-(1 x)"+-idx.., dxn,
(H(I), (I)2) ((I), H(I)2).

(Indeed, H is clearly formally self-adjoint and the boundary terms obviously vanish
for the V sufficiently large. The result can then be extended to all " > 0 by analytic
continuation.) Thus (., .) is the natural inner product associated with equation (1.4).

A first-order symmetry operator for the equation H(I) AO is a differential oper-
ator

n

K Ef(x)0 + g(x)
i--1

such that

[H,K] HK- KH 0

(Miller [22]). The first-order symmetry operators form a real Lie algebra under addi-
tion of operators, multiplication of an operator by a real scalar, and the commutator
bracket [A, B] AB BA. If 7t ")’2 %,+1 1/2 then H An and it is well
known (Eisenhart [7], [8]) that the Lie algebra of real symmetry operators of An is
so(n+l), with dimension n(n+l)/2 and a basis ofthe form {Lk} where 0 <_ I < k _< n
and Lk --Lkt. Explicitly,

(1.19) L ZOz zkOz

and

Lij 2v/xixj(Ox -0), 1

_
i,j

_
n,

(1.20) L0i 2V/Xi(1- x)O, 1 <_ <_ n.

Furthermore, all real second-order differential operators S that commute with An
can be expressed as linear combinations over R of real constants, elements Lk and
elements LkL,k,. For /,... %,+ arbitrary, however, we have the following lemma.
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LEMMA 1. If K is a first-order operator such that [K,H] 0 then K c,
multiplication by the real constant c. The second-order operators

(1.21)

S0i 4xi(1 x)02 + 413q(1 x) "n+lxi]Ox
Li + 4[(’yi 1/2)(1 x) (%+1 1/2)xi]O,

(1.22) Si0, 1 _< _< n,

do commute with H" [Sij, H] =[Soi, H] O. Also

(1.23) 8H E sij + 2E s0i.
i,j--1 i--1

We conjecture, but have not proven, that linear combinations of the Sij and S0i
are the only second-order operators commuting with H.

If S is a second-order symmetry operator for H then S’ p-lSp is a second-order
symmetry for H An + Vn and, necessarily, S T + f where T is a second-order
symmetry for A, and f is a real-valued function. Thus S is a formally self-adjoint
operator with respect to the inner product (., .) and S is formally self-adjoint with
respect to (., .).

2. Orthogonal bases of separable solutions. In the paper (Kalnins and
Miller [13]) and in the book (galnins [11]) all separable coordinates for the equation
An ,I/ are constructed, where An is the Laplace-Beltrami operator on Sn. It
is shown that all separable coordinates are orthogonal and that for each separable
coordinate system the corresponding separated solutions are characterized as simulta-
neous eigenfunctions of a set of n second-order commuting symmetry operators for An.
These operators are real linear combinations of the symmetries Li2, 1 _< < j _< n + 1,
where Lij is a rotational generator in so(n + 1). For n 2 there are two separable
systems (ellipsoidal and spherical coordinates), while for n 3 there are six systems.
The number of separable systems grows rapidly with n, but all systems can be con-
structed through a simple graphical procedure. (In general, the possible separable
systems are the various polyspherical coordinates (Vilenkin [26]), the basic ellipsoidal
coordinates, and combinations of polyspherical and ellipsoidal coordinates.) Moreover,
the equation (An + Vn) , where the scalar potential takes the form

/1 (i c0(2.1) Vn z q z ao, al, an const.,

is separable in all the coordinate systems in which the Laplace-Beltrami eigenvalue
equation is separable. (That is, Vn of this form is a Stdckel multiplier for all separable
coordinate systems on Sn; see Boyer, Kalnins, and Miller [3].) Indeed, the equation
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with potential (2.1) is separable in general ellipsoidal coordinates. Since all other
coordinates are limiting cases of ellipsoidal coordinates, the conclusion follows. (Note:
If each aj -1/4kj(k + m- 1) where k and m are nonnegative integers with
mj >_ 1, then the equation (An + Vn) A can be viewed as a resriction of the
Laplace-Beltrami eigenvalue equation (AM 4- VM)q2 , on the N-sphere where

nN ,j=o mj 4- n, in which the variable dependence on the subspheres Sm has
already been factored out. Moreover, using the canonical equation technique found in
Kalnins, Manocha, and Miller [12] we can show that all solutions of the above equation
for general 9’ are solutions of the flat-space wave equation in 2n + 2 dimensions with
signature (n + 1, n + 1). Thus the conformal symmetry algebra of the wave equation
can be expected to transform solutions of the eigenvalue equations among themselves.
Lemma 2 and Corollary 1 below are examples of this action.)

The results of Kalnins and Miller, characterizing separable systems by symme-
try operators, can easily be translated to the present case. In those references (for
Vn 0) the symmetry operators are given explicitly as linear combinations of the

2 The results for the potential (1.14) are similar" L2j is replaced bysymmetries Lij.
Sj p-1SOp and takes the same linear combinations. Moreover, since the defining
symmetry operators for a separable system are real linear combinations of the L2j plus
scalar functions, they are formally self-adjoint with respect to the inner product/’, "/.

These results can now easily be extended to results for solutions of

(A. +

through the mappings

A, + A,, p(A, + V,)p-

=p.

Thus all separable solutions map to R-separable solutions of (2.2) (Miller [22]).
The R-separable coordinates and solutions are determined by commuting symmetry
operators S of A, + AN which are obtained from expressions in Kalnins and Miller
[13] or Kalnins [11], where each occurrence of n2j is replaced by Sj. The defining
symmetry operators are all formally self-adjoint with respect to the inner product (., .).
Finally, since each Sj maps polynomials of maximum order mk in xk to polynomials
of the same type, it follows that a basis of separated solutions can be expressed as
polynomials in the x. Since the symmetry operators are self-adjoint, the basis of
simultaneous eigenfunctions can be chosen to be orthogonal.

We conclude from this argument that every separable coordinate system for the
Laplace-Beltrami eigenvalue equation on the n-sphere yields an orthogonal basis of
polynomial solutions of equation (1.4), hence an orthogonal basis for all n-variable
polynomials with inner product (1.18).

As an example we work out the separation equations for spherical coordinates
{u} on Sn:
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z l-x-- 1-Un

Z Xl UlU2 Un

z x ( u)u. u,

Z2n_l xn-1 (1 un-2)un-lun
z , (1 u,_)u,.

(Note that in terms of angles {0i) we usually set ui sin2 0i.) It follows that

(2.5) uj (wj/wj+,w,, j 1,.j ,n-1

where

Wt Z Xi.
i=1

In terms of the {ui}, the operator (1.5) becomes

(2.6) H
i

ui(1-ui)O2u+ Vj- "/p ui Ou
?.ti+ Un j--1 \p--1

Equation (1.4) is separable in these coordinates with separation equations

Here O 1-I= Ok(uk) and the ci are the separation constants, with cn -M(M +
e-).

Noting that the hypergeometric equation

u(1 u)
d2g + [c- (a + b / 1)u]

dg
u abg 0

admits the solution

g 2F1 ( a’ b ) (a)m (b)m um
c

;u
m= (c)mm!

a polynomial for a 0,-1,-2,..., and requiring that be a polynomial in the {xi}
we obtain the solutions
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nwhere Ei=I li M and li 0, 1, 2.... This determines O to within a normalization
factor.

In the special case n 2 we have the result of (Proriol [23]) and of (Karlin and
McGregor [14]):

(2.9)

where P(a’#)
k (x) is a Jacobi polynomial.

Returning to the general case, we have the eigenvalue equations

(2.10) SO cO, l 1,..., n,

where

(2.11)
S uz(l -ul)O2ul + [’1 (’ + ")’2)u] Oul,

Sk ZSk- - Uk(1 Uk)O2uk + [1 "}" "- k (1 -}- -" "k+l)Uk]Uk

k 2,3,... ,n,

and Sn H. Furthermore, [Si, Sj] 0 and the Si are self-adjoint with respect to the
inner product (., .). It follows immediately that

(O, Ore) 0

unless g m, g2 m2,..., in ran. The measure d& becomes in these coordinates

d& Ul’l-lu1+’2-1 un+’"+’’-1(1--u1)’2-1(1--u2)’3 -1".. (1-un),+-dul dun,
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where 0 < ui < 1. In terms of the symmetries Sij, S0i, (1.21)-(1.22), we have

where we set Shh O.

3. Orthogonal bases for another space of polynomials. Now we make
the change of coordinates xi y, 1 _< _< n, and look for solutions of (1.4) that
are polynomials in the yi. In general, H does not map polynomials in the yi to
polynomials, but in the special case "71 ’72 "Tn 1/2, G "Tn+ + n/2
s/2 + (n + 1) /2, we have

(3.1) H

and H does map polynomials to polynomials of at most the same degree. Moreover,
the differential operators

(3.2) Li -Lj yOyj -yOy, 1 <_ < j <_ n,

commute with H and form a basis for the symmetry algebra so(n).
second-order symmetries take the form Sj L2j, 1 <_ < j _< n, and

The special

Soi=L,-2 G- y,Oy,= 1-EY
j=l

2GyiOy

and clearly map polynomials to polynomials of at most the
measure takes the form

same degree. The

d& (1 y2 y2n)8/2-(/2)dy dyn,

where -1 _< yi

_
1 and

(3.4) p-1 (1 y y2n)S/4.

Again, H and the Stk are formally self-adjoint with respect to the inner product

(3.5) (I)l’ (I)2) /" ]___ (I)l (Y)-2(Y)
<1

where (I)l, (I)2 are polynomials in the yi.

Every separable coordinate system for the equation
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(3.6) H(p -M(M / G- 2M a nonnegative integer,

where H is given by (3.11 yields an orthogonal basis of multivariable polynomials with
respect to the inner product (., .). (For n 2 this equation is also on the list of
Krall and Sheffer [20].) Indeed, for spherical coordinates ui sin2 Oi we obtain the
orthogonal basis of polynomials in y:

e+2it’101 H [sinOk]2(+’"+-)2(+’"+t-)+(k-1)/2(cOsOk)
k=2

x u+"’+"-2F (-g=’ 2( +’"2(+...+ =-1+e=-)+ in ++ n/2(n- 1//2 + s/2

where 2gi 0, 1, 2,.. for 1 <_ <_ n-l, in 0, 1, 2,.., and the C(x) are Gegenbauer
polynomials

Ck(x)-(2A)kk! 2F1 (-k, k+2A1A+!2;--x/21
(Erd61yi et al. [9]). (The eigenvalues are defined as before.)

Using the results of [11] or [13], many other orthogonal bases can be worked out.
Moreover, the symmetry group SO(n) permits the derivation of addition theorems for
the basis elements, related to the addition theorem for Gegenbauer polynomials and
Koornwinder’s addition theorem [5]-[7].

Next we relate the Cartesian coordinates z and the ya via

(3.8)
2 yn2Zn--1

z2n 1 y2 y2n

a simple permutation of the relations (2.4), so that the (separable) spherical coordi-
nates v are associated with the Ya through

From the point of view of separability for the Laplace-Beltrami eigenvalue equation,
these v coordinates are equivalent to the u coordinates introduced earlier, since
one system can be obtained from the other through the action of an element of the
SO(n-4- 11 symmetry group for this equation. However, the term An breaks this
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symmetry so that from the viewpoint of the eigenvalue equation for H, with 71
72 ""Tn 1/2, these are distinct coordinates. The separation equations for the vi

are identical to those for the ui if we interchange ")’n 1/2 and 7,,+1 s/2 + 1/2. For
n 2 the orthogonal basis of polynomials is

(3.10) ,.2g. +s/2+1/2 (COS 92) sin21 2CS/2(sinO1)U22211

where/1,12 0, 1/2, 1, ,...,/1 + 12 N and vj sin2 0j. This is in agreement with
the basis of Koschmieder [18], [19].

For n > 2 we have an orthogonal basis of polynomials of the form O rI=l Ok,
where

1 <k <n-l,

+...+,_. (-n-l, 2(.l + + .n-2) + .n-l + (n- 2)/2 + s/2On--1 Vn_ 2F1 2(1 +’" + en-2) + (n- 1)/2 ;vn-1

n--1 O, 1, 2,...,

On [sin On]2(l +’"+n- )(72(t’l +’"+’-)+(n-1)/2+s/2 (COS On
in O, 1/2, 1,""

where 1 +’" + in M and vj sin2

4. The "mixed" case. Next we consider the more general mixed case with
variables Xl,... ,x,,1,Yl," ,Yn2, nl + n2 n, where

(4.1)

nl n2

i=1

Zl
2

Xl

Z2nl Xnl
2 y2Znl+l I

Zn2 2
Yn2

a=l

and look for polynomial solutions in xi, Ya of the equation

(4.2) HO(x, y) -M(M + G 1)O(x, y),

where 7n+ 7hi +2 t’n 1/2 and
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1
H E(Sab YaYb)Oy, yb / E(5ijXi-

a,b i,j

1

ai a

G=n2+l s

2 + 7i + , 2M a nonnegative integer.

For reference,

(4.4)

Note that H maps polynomials in xi, ya to polynomials of at most the same order.
The induced measure is

0<Xi, --l<ya<l, Exi + EYa2 < 1,
a

and

p--1--" XTll/2--1/4 7n1/2--1/4 (X?% 1 Xi E)y2a
Equation (4.2) admits the symmetry algebra so(n2) with basis

Lab --Lba YaOyb YbOy., l ga<b<n2.

The operators H and Sink are formally self-adjoint on the space of polynomials in xi,

Ya with respect to the inner product

((I)l, (I)2) / /0 (I) l(X, y)22(X, y) dcO.

However, in general the Sink do not map a polynomial to one of the same or lower
order in each variable, e.g.,

4 2Sia 4xiyaO2 2 + xiO 4xiyaOy + iyaO, 2xiOx 2%yaOy,,
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although they do map polynomials to polynomials. It is still true that each symmetry
operator S maps a polynomial eigenspace of H into itself.

It follows that all separable coordinate systems for the n-sphere yield bases of
orthogonal polynomials in the mixed case (indeed multiple sets of such bases, de-
pending on the ordering of the variables xi, ya). For example, if we choose spherical
coordinates u sin2 0 in the form

where

U
W+I

we find the orthogonal basis of polynomials:

l 1,’" nl
I nl + 1,..., nl + n2
l=n +n2+ 1

where

(4.7)

Ok(Uk) Uk +’"+k- 2F1 (--k, 2(12(1--"""- "- "-k-1)k-1+) +kl+ +’’’1+’’’+k+ k+l 1

ck --( +"" + ik)(i +’’" + ik + +’’" + 7k+ 1),

Ok(Uk) [sin 0k]2( +’"+k-)6’2
Ck --(1 """"" "- k)(l -}-"""-- k -]-Q’I -}-"""-" k+l 1),

k nl + 1,... n2 + nl 1,
+’"+,-1 (-,n, 2(i "+’" + n-1) + n + G- 2 )n(’)n(Un) un 2F2 2(gl +"" n-1) + G- s/1 2

Here ,... ,in1, In and 2n1+,"" 2n+n2- are nonnegative integers (Recall that
.+ .+. .+.: 1/2.)

5. Biorthogonal families of polynomials on Sn. We begin this section with
a simplified proof of the biorthogonality of the polynomials (1.1) and (1.2) with respect
to the inner product (., .); see (1.18), (1.19). Let be the space of all polynomials
in x,...
consisting of solutions (I) to the eigenvalue equation

(5.1) H(I) -M(M + G 1)(I),
where H is given by (1.5). Since the functions

(5.2) Dm(x) FA [M + G-1; -m,... ,-mn
’)’1’’" ’)’n

;Xl’’" Xn

clearly satisfy (5.1) for M in=l mi and since the highest order monomial in these
solutions is x ..xn it follows that the Dm for m+.../mn m M form
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a basis for ’,M and, as the m range over all nonnegative integers, a basis for .
(Note: dim,M- {M+n-1

n-1 )’) Since H is self-adjoint we have ,M _l_ ,M’ for
M M. Thus

(Dm,,Dm)=0 form’m.
It is simple to verify the recurrence relation

(5.4)

where

/j for j i, l <_j <_n
%+1 forj =i

"yn+ + 1 forj=n+l

(5.5) J= { mimJ-1 forforjj=ii, l_<j_<n

h?/= M- 1, (=G+2.

We can consider Pi 0x as an operator

Indeed we have the following lemma.
LEMMA 2. Pi, (1 <_i <_ n), maps ,M onto ,y.
Proof. The proof is immediate from (5.4). For a basis free proof we can easily

verify the operator identity

(5.6) [tP GP + PH,
where/2/is the operator H with the ,j replaced by j. Then if HO -M(M+G-1)O
we have/:/(PiO) -/I?/(2t:/+ 1)(Pi(I)). The null space of Pi acting on ,M is of
dimension (M+,-2 for n > 2, hence the dimension of the range of Pi isn--2

(M:2-1)1 (M+n-2)n_2 (M+n-2)n_l =dim<,. D

COROLLARY 1. The operator Pi-Pj maps ,M into ,Y4, where 1 <_i < j <_ n
and

/k ")’i + 1

,j+l

for l <_ k <_n+2, k #i,j

for k=i
for k-j

/1/= M 1, (=G+2.

Proof.
 i(p, v(p, + (p, P )U.

Thus if H(I) M(M + G 1) (I) we have

/([Pi Pj](I)) -2t:/(/t:/+ ( 1)[Pi Pj](I).
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The operator P induces an adjoint operator P; " , defined by

(P*q,, I,’) (, Pq’)
for all 6 , I,’ 6. A straightforward computation yields

(5.7) P* -xi(1 x)Oz 3’i(1 x) + 7n+lXi.

THEOREM 1. P is a 1-1 map of, into ,M.
Proof. Taking the adjoint of the relation (5.4) we obtain

P;/-I
Furthermore, P* is 1-1 since Pi is onto.

Let
Cm(X) (p{)ml (p,)m, 1

be the result of applying m, operators P,,..., m operators P{, one at a time, to
the function 1 ,, where - ")’i + mi, 1 < <_ n,

")/n+l --/n-F1 -" m.
(Each time an operator P is applied it lowers 3’ and %+1 by 1 and leaves the other
7’s unchanged. The order in which these operators are applied makes no difference
in the result.) It follows from the recurrence relation

(l_/i)FA [-(M + i)- (’n+l i) + I; -ml,

’1,’’" ,")/i 1,...
and a simple induction argument that
(.)

C(x)=%,m(I_x)MFA [-M- n+171"-);’’" ,"/n

(mi + 1),... -mn
Xl,... Xn

")In

--mn Xl Xn |

;-i-x’"’’ 1-x

where %,m is a nonzero constant. It follows from Theorem 1 that the C belong to
(M+n-1ff-,M for M ml +.’. + ran. Since there are n-1 of these functions for fixed M

and since they are clearly linearly independent, they form a basis for ,M.
Now consider the inner product

(C,DZ,).
If m M # m’ M’ the inner product vanishes, since Z,M -[- 7,M" If m m’

for some Thusbut m m then mi > m
(Cm,Dm,) (1,P1... Pnm"Dm,), 0

since PnDm, 0. (Here, is a nonzero constant.) We conclude that the set
{Cm, D, } is biorthogonal. (This family is a generalization of biorthogonal polyno-
mials in two variables studied by Appell and Kamp4 de F4riet [1] and extended by
Fackerell and Littler [10].)
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Note that the norm of the weight function is

(5.10)

dx2 fl-xl Xn-1

JO

=(1,1).=

fi ")’k i] X)"yn --1dxn xk (1
k--1

The relation
=(c P,D2,) Pi Cm, Dm, )’)’

yields (for m m) the recurrence relation

(C,D) _mi(M + G 1)(C,D).
The normalization of the biorthogonal basis can be obtained from this result and
(5.10).

Now we extend the biorthogonality relations to the full n-sphere. We make the
change of variables

xk y, k 1,2,... n

in (5.10) and extend the domain of integration to negative values of Yk, since the
integrand is even in all variables, to get

(5.11)

V’ -Yl
dyndyl

J-v/---
dy2

J- /1--%/ --Yl Yn--1

+ 1/2)(1, 1) F(y +"" +’yn + + 1/2)’
Here we have set "n+l + 1/2. (This is a generalization of the weight function for

the biorthogonal family {Vm(8) (x), U(m8) (x)} on the n-sphere of [1], which is obtained by
setting /1 n 1/2.) Under this change of variables the polynomials {Cm, Dm }
become

In the special case 2 "n 1/2 these are exactly the U)(y) and Vm(s) (y) of [1,
p. 269]. (To see this transform mk m/2, reverse the order of the sums in FA by
transforming the summation indices as jk mk/2- jk, and then use the reflection
formula F(z)F(1 z) r/sin(rz) to represent these polynomials in terms of FB, as
given on p. 269.) The biorthogonality demonstration given above immediately implies

2m ,2m’ m,
k=l
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where

+...+R<
(1 y2 y2n)S/2-1/2y(y)(y)dyl dyn

Also, since the operator H is self-adjoint with respect to this inner product and since

U and Vm(s) are eigenfunctions of H we have

(5.15) (z(’’) v’(’’) (r(’) r(’)
,’2m ,’2m’ )=,2m ,2m’ )=0 ifMM’.

Here, U(y) and V{ (y) are strictly even degree in all the variables y with
total degree 2M. We define odd degree polynomials as follows:

2m+l(Y) Yk ,2m (Y),

(5.16) U(’) [kq ] rr("s) (y),+(Y) y

where Q is any subset of (1, 2,..., n), and

=k+l ifkQ,

(5.17) =Tk ifkQ.

Since the weight function is even in all variables and the odd degree polynomials are
odd in the variables Yk, k Q, we immediately deduce by parity

2m+1 2m

(5.18) k +,, 2m 2m’+l 0.

Also, (E(’) rr(’) vanishes by parity unless both polynomials are odd in exactly2m+l 2m+l]
the same variables, in which case it is easy to verify that

Similarly,

k’2m+l, "2m’+l k2m+l,2m’ 0

THEOREM 2. Let
z(,)
2q (Y)

"2q+ (Y),

ifM M.

(’s) (y)2qrr(,g ’s) (y) --= U.(.,s)2q+l(Y)"
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Then

if M T M’.

In the case n 1 the biorthogonal polynomials are orthogonal:

The measure on the interval -1 _< y _< 1 is

dw(y) (y2)-/2(1 y2)/2-/2 dy.

For -)’ 1/2 these are exactly the Gegenbauer polynomials. For general " they are a
generalization of these polynomials [4, p. 256].

The same construction with Um- Vm can be carried out for all the orthogonal
systems of polynomials in the variables xk as found in 2 to obtain orthogonal poly-
nomials in the variables Yk on the full n-sphere. In general, something is lost in this
construction, however. The polynomials Um Vm are (except for the even case) no
longer eigenfunctions of H. Indeed, we have the following lemma.

LEMMA 3. Let (I)(y) be a polynomial eigenfunction of H:

HO -M(M + G- 1)O

in the coordinates Yk, where xk y, 1 <_ k <_ n, and let Q be a subset of {1, 2,... n}
with IQI > 0 elements. Then Q =_ [I-[ieQ yi](I)(y) is an eigenfunction of the operator

GH corresponding to parameters "k, Tn+l, if and only if

and

Then

/k --’k for k t Q,

G’= a- IQI M’= M + 2

H’Q -M’(M’ + G’ 2)q.

It follows from this result that in the case where ")’1 ")’, 1/2, the construc-

tion leading to Theorem 2 yields the biorthogonal polynomials U (y) and Vm(8) (y) of
[1]. These polynomials are all eigenfunctions of H. Similarly, for 1 n
the same construction applied to the families of orthogonal polynomials in xk, found in
2, leads to the families of orthogonal polynomials in Yk, found in 3, all eigenfunctions
of H.

As a referee has kindly pointed out, Lemma 3 can be generalized if we use Dunkl’s
differential-difference operator [5]. In the coordinates yi and for general 1, ’’’, qtn+l,
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Dunkl’s operator is defined as

1[
n n

Hp(y) Z (iij -yiyj)Ou,yp + (1 2G)Z yjOyp
i,=1 =1

(This differs from the operator (1.5) with xj y] only in the last term.) The eigen-
value equation is

p(y) -M(M + G 1)p(y).
Note that always maps polynomials in the yi to polynomials and that p Hp
for polynomials p which are even in each of the variables yj and H if j } for
all j. Furthermore, since the operators b, which map p(y) to p(y,...,-yj,..., Yn)
for j 1,..., n, commute with , we can assume, without loss of generality, that
each eigenfunction is either even or odd in every one of its variables yj. We have the
following generalization of Lemma 3.

LEMMA 3’. Let (y) be a polynomial eigenfunction of:
-M(M + G- 1)

in the coordinates Yk, where Xk y, 1 k n, and let Q be a subset of {1, 2,..., n}
with [Q[ > 0 elements. Then V [He Y](Y) is an eigenfunction of the operator

G’ ff and only ffcorresponding to parameters +,, "), 1 forkQ,

and

Then

G’ G-IQI M’ M + 2

H’Q -M’(M’ + G’- 1)Q.
Similar comments apply to the "mixed" case in 6.
6. The "mixed" biorthogonal case. Using the techniques introduced in 5

we can now easily determine a biorthogonal basis of polynomials in the mixed case
with coordinates (4.1). We set

nl -+- n2 n, x
_ _

xk y2
k=l

i

k=l k=l

n2

k--1

The basic building blocks are the polynomials

,2,(x, y) -(1 x y2)M+lflFA
-M- ff4- s/2 + ;--mk,--hk --Xk --y

/k, 8k 1--x--y2’ 1--x--y2
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and

(6.2)
)

m,2 (x, y)

Fa(M+)f/l++"’+%+s+’"+sn+s/2-1/2;-m, -(a .)"Yk sic
xk yk

The weight function is

(6.3) w(x, y) xl- (y)e-/ (1 z yz)e/-/

with ,s > 0 and s > -1. The inner product is
(6.4)

=/.../
J

rthermore,

(6.5) (1, ), v(z +... + z, + +... + . +/ + /z)"
It follows from the results immediately preceding (5.10) that the polynomial sets (6.1)
and (6.2) are biorthogonal. However, since they are even functions of the yu they do
not form a basis for all polynomial functions in the variables x, yu. To construct such
a basis we define functions

("),+ (x, y) y ,

,+(,y) u , (,y),

where Q is any nonempty subset of (1, 2,..., n).
By parity we have

n(") ),, 0, (") n(’) 0m2+1m2

C(’s) n(’s) 0 if Q Qm,2+l m2+ll,s

If Q Q a simple computation yields

(,) n(,) (,,+,) n(,,+,,)

k=l k=l

Since (’) andm, m, are eigenfunctions of H there are additional orthogonality
relations obeyed by the C’s alone and by the D’s alone. Collecting all these results,
we have the following theorem.

THEOaEM 3. Let
(")(x y)c(’)(x, y) ’-m,m (,s)
,0+(x, y),
n(’) (x, y)D(’)(x, y) ’--m,m (,s),0+(x, y).
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Then

In general, the biorthogonal polynomials listed in Theorem 3 are not eigenfunc-
tions of H. However, in the case sl sn2 1/2 it follows from Lemma 3 that
each of the polynomials satisfies the eigenvalue equation

HO -(M + 2t7/) (M + + G- 1)(I),
where G nl’k= /k + (n2 + 1)/2 + s.

Similarly, the above procedure when applied to any one of the orthogonal bases
discussed in 2 leads to an orthogonal polynomial basis with respect to the inner
product {., "),8. Restriction to the case s sn2 1/2 yields eigenfunctions of H
and coincides with the results of 4.
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THE ADDITION FORMULA FOR LITTLE q-LEGENDRE POLYNOMIALS
AND THE SU(2) QUANTUM GROUP*
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Abstract. From the interpretation of little q-Jacobi polynomials as matrix elements of the irreducible
unitary representations of the SU(2) quantum group an addition formula is derived for the little q-Legendre
polynomials. It involves an expansion in terms of Wall polynomials. A product formula for little q-Legendre
polynomials follows by q-integration.
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polynomials, addition formula, product formula
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1. Introduction. Quantum groups were recently introduced by Drinfeld [5] and
Woronowicz 17]. Interesting examples are provided by deformation into a noncommu-
tative Hopf algebra of some suitable commutative Hopf algebra of functions on a
specific group. The most elementary nontrivial example comes from deformation of
the algebra of polynomials on SU(2) (cf. Woronowicz [18]). We denote the resulting
quantum group by SU,(2).

It has been proved by Vaksman and Soibelman [15], Masuda et al. [11], [12], and
Koornwinder [10] that the matrix elements of the irreducible unitary representations
of the quantum group SU,(2) can be expressed in terms of the little q-Jacobi poly-
nomials. In the present paper we use this interpretation to derive an addition formula
for the little q-Legendre polynomials, i.e., for the q-analogues of the Legendre poly-
nomials within the class of little q-Jacobi polynomials. The derivation of this formula
is straightforward and analogous to a proof of the addition formula for Legendre
polynomials using irreducible representations of SU(2) (cf. Vilenkin [16, Chap. 3]).
However, the resulting formula involves noncommuting variables. It is less easy to
rewrite it equivalently as a formula involving only commuting variables. We can do
this by using an infinite-dimensional irreducible ,-representation of the Hopf algebra
considered as a ,-algebra. The result (Theorem 4.1) gives an expansion in terms of
Wall polynomials (little q-Jacobi polynomials with the second parameter equal to zero).

Our addition formula somewhat resembles an addition formula for (continuous)
q-ultraspherical polynomials derived by Rahman and Verma 14], but for that formula
a (quantum) group-theoretic interpretation is not yet known. It would have been hard
to find our formula without guidance from the quantum group. Indeed, that it is
possible to obtain such a formula demonstrates the power and depth of the quantum
group-theoretic interpretation of special functions. It turns out to be highly nontrivial
to prove this formula analytically or to show that its limit case for q ]’ 1 is the addition
formula for Legendre polynomials. The analytic proof has been done by Rahman [13]
and the limit result is proved by Van Assche and Koornwinder [2].

The contents of this paper are as follows. In 2 and 3 the preliminaries about
q-hypergeometric orthogonal polynomials and quantum groups, respectively, are pre-
sented. The derivation ofthe addition formula is given in 4. Finally, a product formula
for little q-Legendre polynomials is derived from the addition formula in 5.
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t CWI" Centre for Mathematics and Computer Science, Postbus 4079, 1009 AB Amsterdam, the Nether-

lands.
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2. Some q-hypergeometric orthogonal polynomials. Let 1 qC. We use the
familiar definitions and notation for q-shifted factorials and q-hypergeometric func-
tions (cf. [6, Chap. 1], [10, 2]). The little q-Jacobi polynomials

( q-’’abqn+l )(2.1) p,(x; a, bl q) := Zthl aq
q’ qx

occur as part of a classification by Hahn [7] of orthogonal polynomials satisfying
q-difference equations. Their detailed properties as orthogonal polynomials are given
by Andrews and Askey 1 ]. For a b 1 we will call these polynomials little q-Legendre
polynomials.

The special little q-Jacobi polynomials obtained by putting b:=0 in (2.1) are
known as Wall polynomials; cf. Chihara [3, 5, Case I], [4, Chap. 6, 11 ]:

(2.2) pn(x; a, 01 q)= 2tl(q-n, 0; aq; q, qx)

(Chihara uses another notation). We will put a := q". These polynomials can be viewed
as one ofthe many q-analogues ofthe Laguerre polynomials in view of the limit formula

limpn((1-q)x; q", 01q)= L(x)/L(O).
ql

By specialization of the orthogonality relations for the little q-Jacobi polynomials we
obtain the orthogonality relations for the Wall polynomials:

(qa+l; q)oo (A q,(+l(q; q)
(2.3)

(1-q)(q; q)
p,(t; q,O[q)p,(.t; q,O[q)t(qt; q)odot=, (q.+; q),

where the q-integral is defined by

f(t) dqt:= f(qk)(qk_qk+),
k=O

and where we suppose that 0< q < 1 and c > -1. From [3, Forms. (5.1), (5.2)] together
with (2.2) we obtain the three-term recurrence relation

xp(x; a, OIq)=-q(1-aq+)p+(x; a, 01q)

+qn(1 +a-aq"-aq"+)p,,(x; a, OIq
(2.4)

-qn(a aq)pn_,(x; a, 01 q),

p_l(X; a, 0[ q)= 0, po(x; a, 0[ q)= 1.

Put

Pn(q k" qlq):=((q,+l.. q)(qk+l., q)oo(q+l., q)n)/2(q; q)(q; q)
(2.5)

(--1)nq(k-n)(a+l)/2pn(qk q, 0[q).
Then (2.3) can be rewritten as

(2.6) 2 p,(qk; q[q)p(qk, q[q)=6, n,m=0,1 2,...
k=O

Since the ohogonality measure in (2.3) has compact suppo, the ohonormal system

{L(qk; q q)}=o,a,,..., n=0, 1,2, ,
is complete in the Hilbe space . Hence, we have also the dual ohogonality relations

(2.7) 2 L(qk" qlq)L(ql; q"lq)=k,l, k, 1=0, 1 2,...
n=0
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We conclude this section with an expression of Wall polynomials in terms of a 3(2

(2.8) pn(x; q O]q)
(-1)nqn(n+2+l)/2xn ( q-"’ q-n-’x-1(q+l., q), 3t2 0, 0

q’ q

This follows by putting b := 0 in

q, qx (q-"+lx; q)- 2t2 --n+l_ q, +2abx
qa, q x

(qb; q),q("-l/Z(-aqx)" (q-’, q-"a-l x-1

(qa; q). 3d qb, 0
q’ q

Here we have used a transformation formula for 2(1 (cf. [6, Chap. 1]) in the first
equality and reversion of summation order in the second equality (see also [8]).

3. The quantum group SU,(2). In the rest of this paper we fix 0 /x (-1, 1). Let
be the unital ,-algebra generated by the two elements a and 3’ satisfying the relations

aT= txya, ay* txy*a, yy* y*y,

aa* +/x2yy* L

Let " - (R) be the unital ,-homomorphism such that

Then acts as a comultiplication and thus becomes a Hopf algebra with involution
which we say to be associated with the compact matrix quantum group SU,(2). In the
limit for/x ’ 1, becomes the algebra of polynomials in the matrix elements of the
natural representation of SU(2), and the comultiplication is then induced by the group
structure of SU(2).

It is possible to embed the ,-algebra as a dense ,-subalgebra of a C*-algebra
by a universal construction. The C*-algebra approach is emphasized in particular by
Woronowicz [17], [18]. In this paper we could work with the C*-algebra, but only
elements of the dense ,-subalgebra will be needed, so we will use this latter algebra.
Other references for SU,(2) besides [17] and [18], are [5], [15], [11], and [12].

The irreducible unitary co-representations of (which are called irreducible
unitary representations of SU,(2) in [18] and [10]) have been completely classified
[18], [9], [15], [11], [12], [10]. Up to equivalence, there is one such co-representation
for each finite dimension. We will denote the co-representation of dimension 21 + 1 by
l’ (l =0, 1/2, 1,.. "), and its matrix elements with respect to a suitable orthonormal

1,/xbasis corresponding to the quantum subgroup U(1) by t,m (n, m =-l, -l+ 1,. l).
Then the co-representation property of i’" is expressed by

l,/x l/x I,(3.1) (t.,,.) E t;,,g@tk,.,.
k=-l

The t, have been computed explicitly in terms of little q-Jacobi polynomials (cf.
[15], [11], [12], [10]). Here we will only need the cases that /=0, 1,2,. and m or
n =0. Put

(3.2) pl,k(X) := Ix--k(l--k)pl_k(X;
/.2 k /2

(3.3) p?(x) := pl,o(X) pl(x; 1, 1[/./,2).
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Here the notation (2.1) for the little q-Jacobi polynomials is used and (3.3) gives a
little q-Legendre polynomial. Then (cf. [10, Thm. 5.3]), for k =0, 1,. ., l,

t.o (a t,,,k(YY*)Y

(3.4)
t,= (a*)p,,( yy*)(-y*),

,k k

l k kt,_ p,(*)

Hence

(3.5) t/, p(yT*).

The irreducible .-representations of the .-algebra M on a Hilbert space are
classified in [15, Thm. 3.2]. There is a family of one-dimensional and a family of
infinite-dimensional representations, both parametrized by the unit circle. We pick one
of these infinite-dimensional representations: Let Y( be a Hilbert space with orthonor-
mal basis eo, el," . Put e-l, e-z,""" :--0. We define a .-representation of - of M on
Y by specifying the action of the generators of M"

’(a)e, :: (1

(3.6)
r(a*)e. := (1- 2.+2)1/2
’r( y)e. := t-"e,,,

en+l

r(y*)e,:=’e,.

4. Proof of the addition formula. Let 0, 1, 2,.... A special case of (3.1) is

(I)(t,) l/x l,/xt,@ ,o.
k=-l

Hence, by (3.4) and (3.5),

P(cI3(77")) P(77* Pl

(4.1)
k=l

I Q /Ub’)/: kp k
k=l

This formula might already be called an addition formula for little q-Legendre poly-
nomials p. It involves noncommuting variables. In the limit, for ’ 1, the variables
commute and (4.1) becomes the classical addition formula for Legendre polynomials.
In three steps we will rewrite (4.1) into a formula involving commuting variables: First,
we represent (4.1) as an operator identity on the Hilbert space Y((R) by using the
representation -(R) - (cf. (3.6)). Second, we let these operators act on the standard basis
of (R) ;. Thus we obtain a family of vector identities in (R). Third, we take inner
products with respect to another suitable orthonormal basis of Y((R) Y. This will yield
a family of scalar identities.
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Apply r(R)r to both sides of (4.1) and let both sides of the resulting operator
equality act on ex+y(R)ey. Then

p?((r(R)r)@(yy*)) ex+(R)ey =p(txx+)p?(txY) ex+y@ey

+ (__l)kk(x+2y+l)(2(x+y+l); 2)/2(2(y+1); 2)/2

o )pk(2y) ex+y+k e+(4.2) .p,(:x+:y

+ E )(+:r-:+)(:(x+)., -:) I/:(:., -:) I/:
k=l

p(:+:-: - -:))p,(:Y e+y_@ey_.

(Remember the convention that e, =0 for n < 0.)
In order to say more about the left-hand side of (4.2) we consider the action of

(ee*) (e@a + a*@ r)(e*@ a* + a@v*)
on ex+y@ ey. We obtain

(r )((rr*)) e+@ey
+2y+ 2+2y+2)/: + /- (1- (- ex+y+ey+
+(:+:y + :y :+4y :+4y+:) e+y ey

++:-( :x+:) /( )/ ex+_ e_
Hence, if

belongs to (R) , then

((R) r)(O(yy*))f= E Cy_, tx
y=O

(4.3)

Now choose

f:= E Cy ex+y(R)ey
y=O

x+2y--1 1 -/x 2x+:y) ’/:( 1 -/x 2y

"[- Cy Ub
2x+2y "4;" ]A,

2y [./,2x+4y [z2x+4y+2)

--Cy+l lA, x+2y+I(1 t.t2x+2y+2) l/2(1 --/.t 2y+2) 1/2] e+y(R) ey.

where Py is defined in terms of Wall polynomials by (2.5). Then f (R) and, by
(2.4), the expression in square brackets on the right-hand side of (4.3) is equal to

2z
lz Cy. Define

(4.4) fz: Y Py(tX2z;/xzl/x2) ex+y(R)ey.
y=O

Then, by the orthogonality relations (2.7), the vectors {fzX}z=o,l,2,... form an orthonormal
basis of

(4.5) @ C e,+y(R)ey.
y=O

We also have

(4.6) (.(R) .)(@(yy,))fzX 2z_,,x
/z j.
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Now take the inner product of both sides of (4.2) with respect to fz and apply (4.4),
(4.6), and the self-adjointness of (yy*) acting on (R) Y(. Assume also the convention
that P, := 0 and p. := 0 for n < 0. Then we obtain

p(,z)p( z x z. x )/ ;/./, I/./, 2) --p(l..2x+2y)p(Db2y)Py([. [. IDb

k=l

(4.7) .p,.%(. 2+2y_. 2 2x 2)

+ E (--1)kk(x+2y-2k+’)(2(x+Y>; --2)/2(2y; --2)/2
k=l

Finally substitute (3.2), (3.3), and (2.5) in (4.7) and replace 2 by q. Then we obtain
the following theorem.

Tnzoz 4.1 (addition formula for little q-Legendre polynomials). For x, y, z
0, I, 2, we have

p, qZ; , q)p(qZ; q, 01 q)

p,(q+Y; , lq)p,(qY; , lq)py(qZ; q, 01 q)

(q; q)++(q; q),+q<-’+)
=, (q; q)+y(q; q),-(q; q)

(4.8)

L (q; q)(q; q),+q<+-’+’>
+ L

p,-(q+Y-; q, qlq)p,-(q’-; q, qlq)p-(q’; q, 01q).

Remark 4.1. We could have derived the final result (4.8) from (4.1) as well by
using one of the other members of the series of infinite-dimensional irreducible
-representations of M as given by [15, Thin. 3.2]. The same result would also have

been obtained by use of the faithful .-representation of M given in [18, Thin. 1.2].
Fuhermore, it can be shown that formula (4.8) taken for all x, y, z 0, I, 2, and
with q is equivalent to (4.1).

Remark 4.2. It is possible to give a more conceptual interpretation of the occur-
rence of Wall polynomials in the addition formula. Namely, it can be shown that Wall
polynomials have an interpretation as Clebsch-Gordan coefficients for the decomposi-
tion of the .-representation (r@r)o of M as a direct integral of irreducible .-
representations of

5. The product formula for little q-Legendre polynomials. If we multiply both sides
of (4.7) with py(,z. 2) and sum over z, then by (2.6) we obtain the product
formula

P?(/UI’2x+2y)P?(ib2Y)’-- E P?(/jb2x)(Py(ld’2z’

After substituting (3.3), (2.5), and (2.8) and after replacing x by x-y and/x 2 by q, we
get the desired product formula.
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with

THEOREM 5.1. For x, y 0, 1, 2," we have

pl(qx’, 1, llq)pl(qY; 1, 1]q) (l--q) pl(q z’, 1, l[q)K(qx, qY, qZlq)qZ
z=0

K(qX, qY, qZlq):
(qX+l; q)(qy+l; q)oo(qZ+l; q)ooqXy+xz+yz

(q;q)(1-q)

.{3P2(q-X,q-y,q-Z )}20,0
q’q
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ASYMPTOTIC BEHAVIOUR FOR WALL POLYNOMIALS AND THE
ADDITION FORMULA FOR LITFLE q-LEGENDRE POLYNOMIALS*

WALTER VAN ASSCHE? AND TOM H. KOORNWINDER$

Abstract. Wall polynomials Wn(x; b, q) are considered and their asymptotic behaviour is described
when q c 1/" and n tends to infinity. The results are then used to derive the addition and product formulas
for the Legendre polynomials from the recently obtained addition and product formulas for little q-Legendre
polynomials.

Key words. Wall polynomials, addition formula, product formula, basic hypergeometric polynomials,
Legendre polynomials

AMS(MOS) subject classifications. 33A65, 42C05

1. Introduction. The Wall polynomials W,,(x; b, q) are defined by the recurrence
formula

(1.1)
W.+.(x; b, q)= {x- [b + q-(1 + q)bq’]q"} W.(x; b, q)

b(1 q")(1 bq"-’)q2"W,._l(X; b, q), n =0, 1, 2,

with initial values W_l =0 and Wo 1. Clearly W,,(x; b, q) is a monic polynomial of
degree n in the variable x. Some properties of Wall polynomials are given in Chihara’s
book [4, p. 198]. These polynomials are closely related to the continued fraction

x (1-b)qx (1-q)bqx (1-bq)q2x
1+ 1 + 1 + 1 +

which was studied by H. S. Wall [16]. The Wall polynomials were also studied by
Chihara [5] because they have a Brenke-type generating function, i.e.,

Z W,,(x; b, q)
z

A(z)B(zx),
,:o (b; q),( q; q),

where

A(z) Z (-1)nq n(n+l)/2 z__._f_= (zq; q),
,:o q;

Z
B(z) --o (b; q)i; q),,"

We have used the notation

(b; q),=(1-b)(1-bq)... (1- bq"-l),

(b; q)= lim (b; q).;

* Received by the editors March 13, 1989; accepted for publication (in revised form) October 10, 1989.
Catholic University of Leuven, Department of Mathematics, Celestijnenlaan 200B, B-3030 Leuven,

Belgium. This author is a Research Associate of the Belgium National Fund for Scientific Research.
$ Centre for Mathematics and Computer Science, P.O. Box 4079, NL-1009 AB Amsterdam, the Nether-

lands.
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the latter limit exists whenever Iq < 1. From this generating function we easily find

W,,(x; b, q)= (-1)"(b" q),,q,,(,+,)/2 (q; q),,
=0 (q; q).-2i; q) q

(-1)"(b; q).q"("+a/22( q-", O; b; q, x),

k(k_l)/2(--q-nx) k

(b;q)k

where the q-hypergeometric (or basic hypergeometric [6]) function is defined by

(al q)k’’" (ar+l q)k zk
r+lCr(al,’’’, at+l; bl,""" br; q, z)= 7--o -/i ii" "(br’, 2 (q; q)"

If 0 < q < 1 and 0 < b < 1 then the Wall polynomials are orthogonal with respect to a
positive measure supported on the geometric sequence { q"" n 1, 2, 3, .} and we have

2 Wn( qk+l b, q) Wm( qk+l b, q)
bk
=0,

k--O q; q)k
nm.

The orthonormal polynomials are given by

--n(n+l)/2q
(1.3) w,,(x; b, q)= x/b"( q; q),(b; q),

W(x;b,q),

and they satisfy

(1.4) (b; q)oo Z w,(qk+l; b, q)Wm(qk+l; b,q)
k=0

b k

(q; q) 6n.,, n, rn => 0

and the three-term recurrence relation (1.1) becomes

(1.5) xw,,(x; b, q)= an+ Wn+l(X b, q)+ b,,w,,(x; b, q)+ a,,w,,_l(X; b, q)

with w_ =0, Wo 1, and

a,,=an(b, q)=q"x/b(1-qn)(1-bq"-),
(1.6)

b, b,(b, q)= q"[b+ q-(1 + q)bq"],

n 1, 2, 3, ,
n =0, 1, 2, .

Sometimes it is convenient to use the notation

(1.7) (b" q)o 2 f(qk+’) bk
k=0 q; q)k

f(z) dtx(z, b, q), f C[0, 1]

so that/x(.; b, q) is the orthogonality measure for the Wall polynomials W,(x; b, q).
Recently Koornwinder [8] obtained the addition formula for little q-Legendre

polynomials by using the fact that the matrix elements of the irreducible unitary
representations of the quantum group S,U(2) (see, e.g., Woronowicz [17], [18]) can
be expressed in terms of little q-Jacobi polynomials (Masuda et al. [9], Vaksman and
Soibelman 13], Koornwinder [7]). The little q-Jacobi polynomials are defined in terms
of q-hypergeometric functions by

p,,(x; a, b q) 24)1( q-", abq "+1" aq; q, qx)

If a q and b= q then these little q-Jacobi polynomials approach the Jacobi
polynomials P(,’t)(1-2x)/P(,,’’t(1) as.q tends to 1 [1], [3]. If a b 1 then we have
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the little q-Legendre polynomials. Notice that for b 0 we essentially have the Wall
polynomials"

tp ;,0lq =(-1)"q
(.+,)/2

(b; q),,
W,(x; b, q)

(.8)

wn(x;b,q).ig;q

The addition formula for little q-Legendre polynomials is

p,( qZ; 1, 11 q)py( qZ; qX, Oi q)
=p( qX+,; 1, 1 q)pm( q’; 1, lq)p( q; qX, 01q)

(q; q)x+y+(q, q)m+q(y-m+k

:, (q; q)x+y(q;22 Pm-k(qx+’; qk, qk [q)+
(1.9

.p_( qy; qk, qk[q)py+( q; q, 01q)

(q; q)y(q; q)m+gqk(x+y-m+l

=, q; q)y( 2 Pro-k( qX+y-k; q, q q)+

"Pro-k( qy-k., q, qlq)p,-( q’, q, 01q)

with x, y, z 0, 1, 2,. .. Rahman [11] has given an analytic proof of this addition
formula while Rahman and Verma 12] have given similar formulas for the continuous
q-ultraspherical polynomials. The right-hand side of the above formula can be con-
sidered as an expansion of the left-hand side in terms of Wall polynomials. For q 1
we should get the familiar addition formula for Legendre polynomials (see, e.g., [2,
pp. 29-38]), but this limit involves some interesting asymptotic formulas for the Wall
polynomials W(x; b, c/) with 0< c < 1 and n tending to infinity. This was the main
reason for investigating such asymptotic formulas for Wall polynomials.

In 2 we establish some weak asymptotics for Wall polynomials. In 3 we show
how the addition formula for Legendre polynomials can be obtained from the addition
formula for little q-Legendre polynomials by letting q 1, and in 4 we obtain the
familiar product formulas for Legendre polynomials from the product formulas for
little q-Legendre polynomials.

2. Weak asymptotics for Wall polynomials. For little q-Jacobi polynomials
p(x; a, b lq) we can put a q and b q’ and let q 1 to find Jacobi polynomials on
[0, 1]. However, if either a or b is zero, which is exactly what happens for Wall
polynomials, then the limit as q 1 is (1 +(x/(a- 1)) . Therefore another approach is
needed to handle the behaviour of Wall polynomials as q 1. It turns out that we can
find some relevant results if we consider the polynomials W(x; b, c 1/) for n . We
will prove a more general result for ohonormal polynomials {pk(X; n)" k O, 1, 2,
n N}, where k is the degree of the polynomial and n an extra (discrete) parameter.
The recurrence formula for these polynomials is given by

(2.1) xp(x; n)= a+l,p+(x; n)+ b.,p(x; n)+ a,p_l(X; n),

where ak,>O, bk,, , po(X; n)= 1, and p_(x; n)=0. Ohogonal polynomials with
regularly varying recurrence coefficients [15] are of this type.
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THEOREM 1. Assume that Jr, s] is a finite interval that, for all n, contains the support
of the orthogonality measure for {pk(X; n)}. Assume moreover that

(2.2) lim a.,n A > 0, lim b.,. B

and that

(2.3) lim (ak,.- a-l,n) 0, lim (bk., bk-l,.)----0,

uniformly in k, then

(2.4) limP,+(x;n) (x-B),-,o p,(x; n)
p

2A

uniformly on compact sets of C\[ r, s ], where p (x) x + v/x2 1 (the square root here is

defined to be the one for which ]p(x)l> 1 for x C\[-1, 1]).
Proof Let K be a compact set in C\[r, s]; then the distance between K and [r, s]

is strictly positive. Denote this distance by 6 > 0. A decomposition into partial fractions
gives

p/_l (X; n) k dLk
pk(X" n) ak,, Y

j=l X--Xj,k

where {Xj,k: 1 <=j <-- k} are the zeros of pk(X; n) and {dj,k: 1 <--_j <-- k} are positive numbers
adding up to 1. Since all the zeros of pk(X; n) are in Jr, s] we have [X--Xj,k[> 6 for
x K and therefore

(2.5)
pk-,(X; n)

<
p(x, n)

holds uniformly for x K. Consider the Turfin determinant

Dk(X; n)=p,(x; n)
ak,

By using the recurrence relation (2.1) we find

(2.6)

Pk+l(X; n)pk-l(X; n).

bk bk- l.nDk(X; n)=Dk_l(X; n)+ pk(X; n)pk_(X; n)
Clk,

2+ak’n--a2k-l’npk_2(X; n)p(x; n)
ak,nak- 1,n

(see [14, Thm. 4.10, p. 117]). If we define

Dk(X; n)
R,,.(x)

Pk+l(X; n)pk(X; n)’
then by (2.6)

pk-,(X; n) Ibk,,,- bk-l,n[ Pk-,(X; n)]Rk..(X)I<--IRg_,,.(X)[ +
Pk+l(X; n) ak,, Pk+l(X; n)

la k,,-- a 1,hi Pk-2(X; n)+
a,,ak_,, p+l(x; n)

so that by (2.5) we have for x K

ak,nak+l,n ak+l,n ak+l,n
ak, 1,nIRk,.(x)] < 6 [Rk_,.(x)]+[bk,.--bk-l,.[ 62 +1 --a,_ 5
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By the conditions imposed there exists a constant C such that ak, < C for every n
and k (cf. [4, Chap. IV, Example 2.12]). Therefore, by (2.3),

Ie,(x)l_-< IRk_,,(X)I+ An, x K,

where An- 0 as n-. Iteration gives

IR(x)l-a (C/)=- 1
< /lRo (x)l(C/)2n, xK.

(c/)_

If 6> C then obviously R,,n(x)->O as n-* (use
which by (2.2), (2.3), and (2.5) leads to

p.(x; n) p._l(X; n)
(2.7) lim =0,. p.+(x; n) pn(X; n)

uniformly for x K (provided 3> C). By (2.5) the sequence of analytic functions
pn(x; n)/p,+(x; n) is uniformly bounded on compact sets of C\[r, s] and thus there
exists a subsequence converging to some function L(x), uniformly on K. Use the
recurrence formula (2.1) and the properties (2.2), (2.3), and (2.7) to find that this limit
satisfies

A
x= +B+AL(x),

L(x)

and since ]pn(x; n)/pn+(x; n)l < C/6 < 1 for x K by (2.5) we have

L(x)
-p

2A

This gives the result for 6 > C. This can be extended to hold for 6 > 0 by using the
Stieltjes-Vitali theorem (cf. [4, p. 121]) and the uniform bound (2.5). [3

Remark. The asymptotic behaviour actually holds uniformly on compact sets of
C\O, where is the closure of the set of zeros of pn(x; n) as n runs through the
integers. Clearly, 12 is a subset of [r, s] since the zeros of pn(x; n) are all inside the
interval [r, s]. The condition that the joint supports of the orthogonality measures
should be contained in the finite interval [r, s] can also be relaxed. Only the zeros of
pk(X; n)(k<-n+l,n=O, 1,2, ") must lie in [r,s].

COROLLARY 1. Suppose 0 < b < 1 and 0 < c < 1. Then

(2.8) limWn+k(x;b,c’/n)={b(l_c)(1 bc)e2ik/2 k( x-[b+l_-_2_b__c]c_

uniformly on compact sets of C\[O, 1 ].
Proof The proof follows immediately from

W,+k(x; b, c/n) _{b(l_c)(l_bc)c2} ( x-[b+ l-2bc]c
!irn Wn+k_,(x; b, c ’In)

/2p
,2cx/b(1- c)(1Zg-c)/’

which in turn can be proved by using Theorem 1 with recurrence coefficients ak,
ak(b, e 1/n) and bk, bk(b, e l/n) given by (1.6). [3

COROLLARY 2. Suppose 0 < b < 1 and 0 < c < 1. Then

(2.9) limPn+k(Z; b,O’cl/") (_l)k{b(1--c)}k/2 z b + 1 2bc]c )n-oo p,(z; b, Olc’/") 1-bc P 2cx/b(1-c)(1-bc)
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uniformlyfor z on compact subsets of C\[0, 1], where pn(x; a, b lq are the little q-Jacobi
polynomials.

Proof. This follows immediately from (1.8) and Corollary 1. 0
It is important in the asymptotic formula (2.4) that the variable x stays away from

the zeros of pn(x; n). On the set f, the closure of the zeros of pn(x; n), the orthogonal
polynomials will oscillate. The following theorem gives a result about the weak
convergence of measures involving the polynomials pk(X; n) on It, s] in terms of their
orthogonality measures.

THEOREM 2. Assume that r, s] is afinite interval that, for all n, contains the support
of the orthogonality measure Ixn for the orthonormal polynomials {pk(X; n): k
O, 1, 2, .}. Assume, moreover, that for all k ’
(2.10) lim an+k,n--A, lim bn+k,n--B’,

then for every continuous function f on r, s]

ilim f(z)p,,(z; n)p,,+k(Z; n)dl,,(z) =1 I t+zA f(z)Tk((z-B)/(2A))
i; dz

Hence

zmp,,(z; n)p,,+k(Z; n)dtx,,(z)=

where

i= 1,2,...,m

if k=j-1,

aj.k b,. if k =j,

a+l., ifk=j+l.

Oln,n+klOln+kl,n+kl+k2" Oln+kl+...+km_l,n+k
-l=ki<=l
i=l,2,...,m

kl+...+km=k

Because of this equation and by (2.10) it follows that the limit as neo of

Ir z’r’P,,(Z; n)pr,+k(Z; n)d(z) is the same as the limit of

1 ( B+2A (z-B)()4A2(z_Bdzz U. U.+
z- B

)2A dB--2A 2A 2A

since the Chebyshev polynomials ofthe second kind U.((z B)/2A) are the ohogonal
polynomials with constant recurrence coefficients a. A and b. B. Use the identity

1 Tk(X)- T.+k+(x)
U.(x)U.+(x)= l_x2

to find

1
z U. U.+k 44A2 (z B)2 dz

2A2 aB-za 2A-- [ "+2AzTk((z-B>/2A) dz -a [ "+’AzT2"+k+z((z-B>/2A) dz.

" .-ZA (4A2 (z B)2 " .-2A (4Az (z B)

where T,, (x) are the Chebyshev polynomials of the first kind.

Proof We follow the ideas of Nevai and Dehesa [10, Lemma 3]. Let m be a

positive integer and apply the recurrence formula (2.1) repeatedly to get

zmpn(z n)-- Ogn,n+klOln+kl,n+kl+k2" Oln+kl+...+km_,,n+kl+...+kmPn+kl+...+km(Z’ n),
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If 2n + k+2> m then the second term on the right-hand side vanishes because of
orthogonality, and thus we have the result when f(x)= xm. The general result follows
from the Hahn-Banach theorem: let the operators Lk,,(k, n=0, 1,2,...), defined on
the Banach space C[r, s] of continuous functions equipped with the supremum norm,
be given by

L,f= f(z)p(z; n)p+(z; n) dx(z).

These are uniformly bounded operators because, by Schwarz’s inequality and the
orthonormality,

f(z)p(z; n)p+(z; n) d(z)

N [f(z)p(z; n)d(z) f(z)lp+(z; n) d(z)

Now use Weierstrass’s result that the polynomials form a dense subspace of
C[r,s].

Corollary 3. Suppose 0 < b < 1 and 0 < c < 1. enfor every continuousfunction
f on [0,1]

lim f(z)w(z; b, cl/)w+(z; b, c/)d(z; b, c/)_
[n+zaf(z)Tk((Z--B)/(2A)
--n-aa 4A (z B):

dz,

where A=cb(1-c)(1-bc), B=(b+ 1-2be)c, and T,(x) are the Chebyshev poly-
nomials of the first kind.

Proof The proof follows because the Wall polynomials w,(x; b, c/") satisfy the
conditions of Theorem 2, with recurrence coefficients ak,, ak(b, C

given by (1.6).
3. The addition formula. The little q-Legendre polynomials p,(z; 1, l lq) and the

Wall polynomials p,(z; a, Olq) are analytic functions of z and the addition formula
(1.9) holds for every z { q"’n =0, 1,2,...} (which is a set with an accumulation
point). Therefore it follows that

pmZ; 1, 11 q)pyZ; q, 01 q
p( q+Y; 1, 1 q)p( qY; 1, 1 q)py(Z; q, 01 q)

+ 2
q’ q)+y+k(q; q)m+kqky-+k) q+y k, qk

(3.1)
"P-k( qY; qk, qklq)py+k(Z; q, Olq)

(q; q)y(q; q)+kqk+y-m+ qk

"P-k( qy-k., qk, qk[q)py_k(Z., q, Olq)
holds for every z C and x, y 0, 1, 2,. . It is well known that

(3.2) lim p,(z; q, qlq)= R’(1-2z),
q?l
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where R’’t)(x) are Jacobi polynomials with the normalization R’t)(1)= 1, i.e.,
R’’t3)(x) P’’t)(x)/P’’t3)(1). Fix b, c in (0, 1) such that log b/log c= fl/7 with fl, 7
positive integers, substitute in (3.1) q= bl/(n)=cl/(nv), X= n, y= ny, and let n-
through the integers. Then by (2.9), (3.1), and (3.2)

R’)(1-2z) R’)(1-2bc)R’)(1-2b)

+ (m+k) kk(k,k)[ (k,k)/
m-k

=1 (m-k)[(k])2 (1 bc) ---kl 2bc) 1-2c)

(_l){b(1-c)}/ z-[b+l-2]c
1 bc k27]

+ (m+k) xkn(kk)r _k(1 2C)
=1 (m-k)(k!)2 (1--c)k(oc) AkI--2bc)Rk’k)

Now use the formula T(x)= [p(x)+ p-(x)]/2; then

k=l (m-k) !(k])2 ck[b(1--C)(1--bc)]k/2

R(k,k), (k,k)r (z-[b+l-2bc]c)-kl--2bC)Rm-kl--2C)Tk
2c4b(1-c)(1-bc)

Finally, choose

1-2z= xy-x/1-x2x/1- y2t,
1-2be x,

1-2c=y;

then

R’)(xy -41 x2x/1 y2t) R(’)(x)R(,,’)(y)

+2 Y (-1) k (re+k)! 2_2k{x/l_x2x/l_y2}k

k=l (m-k)!(k!)2

(k,k) ,’,(k )R_),,-,y) V(t),

which is the familiar addition formula for Legendre polynomials. By our method of
proof this formula only holds for e CR (because we use Corollary 2), but since all
the functions considered are analytic in t, the result definitely holds for every e C.

4. Product formulas. If we multiply both sides of the addition formula (1.9) by
P,+k(q; q, Oq)q(+)/(q; q) and sum from z=0 to m, then by the ohogonality
(.4) and by (.S)

q(X+)z
p( q , q)p( q; q, ol q)p,+( q q’, o q)

q; q7z=O

qk(y-+)q, q)+,+( q, q)+ q,+ q q q
(q;q)+,(q;q)_(q;q) -( ;q, q)p_( ;q, q)

2 q= q+=
"z=oP+ q 01 q) (q; q)=,
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which holds whenever k {0, 1,..., m}. In terms of orthonormal Wall polynomials
we have by (1.8)

P,,-k( qX+y; qk, qk q)p,,,_k( qy; qk, qk q)

(q; q)m-k(q; q)2 -k(y+k-m) -k(x+l) (q; q)y(q; q)x+y ],/2
(4.1) (-1) k q ].qq; q)m+ q; q)y+( q; q)+y+2

(q+l; q) E Pm(q; 1, 1]q)wy(qZ+l; q+l, q)
z=O

q(X+l)
Wy+k( qZ+,; qX+l, q)

q; q)’

which can be considered as a product formula for the little q-Legendre polynomials
and which (for k 0) is equivalent with the product formula given by Koornwinder
[8]. If we use the notation (1.7) then

q(X+l)z
qX+l; q) z=o2 Pro( qZ; 1, 11 q)wy( q+’; qX+l, q)w+k( q+", q+" q)

q," q)z

p 1, 1 [q Wy(Z; q)Wy+k(Z; q q) d(z; q+l, q).

Fix b, c in (0, 1) such that log b/log c=/y with and y positive integers and let
q b 1/(") c1/(", 1 + x nil, y ny. Then as n we have by Corollary 3 and by
the uniform convergence in (3.2) (keep in mind that p((z/q); 1, l[q) is a polynomial
of degree m)

R(, (, ) (m- k) (k): _{m-kl 2be)Rm_k(1-2c)=(-1 c b(1-c)(1-bc)}-k/2

(m+k)

1 [ B+ZA

(,o(

_
r(( /

--B--2A 4A2 (z B)2
dz,

where A e(b(1 c)(1 be) and B (b + 1 2bc)c. Setting be x, e y gives the
familiar product formulas for Legendre polynomials"

R(k,k)_(1-2x)R, (m k) (k)
_(1-2y)= (-1) {xy(1 y)(1-x)}-/

(m+k)

1 B+ZA

,o(

_
r(( /a,_
4A (z B)

with A xy(1 x)(1 y) and B x + y 2xy.
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AN EXISTENCE THEOREM FOR MODEL EQUATIONS
RESULTING FROM KINETIC THEORIES

OF POLYMER SOLUTIONS*

MICHAEL RENARDYf

Abstract. A local existence and uniqueness theorem is proved for a set of partial differential
equations modelling the flow of polymer solutions. The constitutive relations considered here are
motivated by kinetic theory. The stress tensor is given by an integral which involves the solution of a
linear diffusion equation. The coefficients of this diffusion equation depend on the velocity gradient.

Key words, polymer rheology, kinetic theories, local existence

AMS(MOS) subject classifications. 35K15, 35L20, 35Q99, 76A10

1. Introduction. General existence theorems for the partial differential equa-
tions of continuum mechanics are relatively recent, even for the case of elasticity. The
initial value problem for compressible elastic materials occupying all of space was
solved in [6], and the Dirichlet initial-boundary value problem is treated in [7], [2],
and [3]. Existence results for incompressible materials were obtained in [4] and [12]
for the initial value problem on all of space and in [5] for the Dirichlet problem.

Viscoelastic fluids such as polymers are characterized by a constitutive relation
which gives the stress as a functional of the deformation history. Most popular models
fall into two categories: integral and differential models. Integral models give the
stress by an integral expression involving the history of the deformation gradient;
differential models give the stress as the solution of a differential equation which
involves the stress and velocity gradient. There is, however, a class of models motivated
by considerations of kinetic theory, which can in general not be represented in either
integral or differential form. Instead, such models require the solution of a diffusion
equation in order to determine the stress [1]. Because of the practical impossibility--
except in special cases--of solving this diffusion equation, such models have only
had limited applications in solving flow problems. For the case of dumbbell models,
however, computers may soon have the capacity to obtain solutions, at least in two-
dimensional flow problems.

For materials with instantaneous elasticity, the terms of leading differential order
in the equations of motion are like those for elasticity. A natural approach to a math-
ematical existence theory is therefore to regard the problem as essentially "elastic"
and to treat the memory as a perturbation. This has been successfully carried out for
integral models; see, e.g., Chapter III of [9], and also for differential models [11]. In
this paper, we shall discuss the models from kinetic theory in a similar fashion. We
shall in part be able to rely on the results of [11], but the solution of the diffusion
equation raises new issues.
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tions, University of Minnesota. This research was supported in part by the Institute for Mathematics
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The equations of motion for an incompressible fluid are

p(OV. + (v V)v) divT Vp+f,

div v 0.

Here v denotes the velocity, p the pressure, T the extra stress tensor, p the density
(assumed constant), and f is a given body force. We investigate molecular models
which are based on treating polymer molecules as dumbbells consisting of two beads
connected by a spring and floating in a Newtonian solvent. We shall assume that the
solvent contribution to the stress is small relative to the polymer contribution and
can be neglected; if this is not the case, the equations of motion can be treated as a
perturbation of the Stokes equations, and existence results can be obtained along the
lines of [10]. Let R denote the vector between the two ends of the dumbbell, and let
(R,x, t) denote the probability density for dumbbells in R-space (this probability
density depends on the point x in space and the time t; since has the interpretation
of a probability density, it will always be nonnegative and f (R,x, t) dR 1). The
spring force is given by F(R) -7(IRI2)R, and the stress is given by

(2) (x, t) -n / RiFj (R)(R, x, t) dR.

Here n is the number density of dumbbells and the integral extends over all possible
values of R. We shall consider infinitely extensible as well as finitely extensible dumb-
bells. For infinitely extensible dumbbells, R can be any vector in IR3. For finitely
extensible dumbbells, the potential associated with F(R) becomes infinite at a finite
value R0 of IRI, and the integral in (2) extends only over the ball IRI _< Ro. The
probability density (R, x, t) obeys the diffusion equation

aAa + divot (- Re

Here we have used subscripts R and x to indicate the variables with respect to which
derivatives are being taken. Our convention for the gradient of a vector is that the first
index refers to the component of the vector and the second index to the direction of
differentiation. The quantities a and/ are positive constants. The reader is referred
to [1] for the derivation of (2) and (3) and for a discussion of possible generalizations.

We seek solutions of (1)-(3) for x E gt, t > 0, where gt is a bounded domain in
]R3 with smooth boundary. We impose Dirichlet boundary conditions,

(4) v(x,t)=O, xEO, t_>O,

and initial conditions,

v(x, 0) vo(x), (a, x, 0) Co(R, x).

Concerning the spring force, we shall make one of the following two assumptions:
(F) The function 7 is C-smooth from [0, oc) to (0, oc), 7’ > 0, and there exist

numbers a >_ 0 and k > 0 such that limlll_oo 7(IRI2)/IRI k. Moreover,
limsu,l l o 7,(lal)/lal*- is finite and higher derivatives of 7 have at most
polynomial growth as ]R] oc.
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(F’) For some R0 > 0, the function , is Ca-smooth from [0, Ro2) to (0, oc), /’ _> 0, and
there exist numbers a > 1 and k > 0 such that limlll_Ro (IRI2)(Ro- IRI) k.
Moreover, limsupltl__.Ro /(ll:tl2)(R0 -II:tl)a+l is finite and higher derivatives of
grow at most like powers of (Ro- IRI) -1 as IRI Ro.

In the first case, the dumbbell is infinitely extensible, in the second case it is
finitely extensible. The assumption ’ _> 0 means that the spring gets stiffer as the
dumbbell is extended; this assumption is usually made in molecular models. The
analysis that follows can be modified to allow faster growth of / as IRI --+ c or,
respectively, IRI R0, but slower growth would pose difficulties. In particular, we
have to exclude a 1 in (F’). This case corresponds to the most popular model of
finitely extensible dumbbells (see [1]). There is, however, no specific reason to assume
a 1 rather than a larger value of a.

The goal of this paper is an existence and uniqueness theorem for solutions of
the problem defined by (1)-(5). The paper is organized as follows. In 2, we define
an iteration scheme which is used to construct the solution. The scheme alternates
between solving an equation of the same type as encountered in incompressible elas-
ticity and solving a linear diffusion equation such as (3). In 3 we define the function
spaces used to carry out the analysis and state a precise theorem. The proof is given
in 4.

2. Iterative construction of solution. We apply the operation O/Ot/(v.V)/
(Vv)T to the equation of motion (1). The resulting equation, written in components,
reads (here and in the rest of the paper, the summation convention is used)

(6)

where q Op/Ot + (v. V)p. Using (2), we find that- + (v. V) Tij -n R/Fj(R) - + (v. Vx) (l:t,x, t) dR,

and using (3), we find further

(8)

o )]Tv

n / RiFj(R)[cAl + divR (-(V,v). Re F(R))] dR

f / O
(RiFj(R))Fk(R)dRnc Ap(RiF (I:t)) dR- n k

0
(RiFj(R)) Ovk Rl dR.

Next we note that

0

(9)
0
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By combining (8) and (9), we find

(10)

By inserting (10) into (6), we finally obtain

(11)

The iteration is based on equations (3) and (11). Given an iterate vm, we deter-
mine Cm by solving equation (3),

(o )- + (vm. Vx) Cm cAlm + divl (-(Vxvm) Rem flF(R)m),

(12b) Cm(R,x, 0) Co(R, x).

We define Wm in terms of Cm by equation (2) and then determine a new velocity field
vm+l by solving the problem

p + (v-,. v) vl+

02vr+’---’--l f Oqm+

o dn Z
0
(RF(n))(n) dna(R,F(n))

0 0(13a)
Ovr [ 0 0 dR(R(n))R Ox
m m Ov OTk Ov?[Oo OT, + ( V) ?Ox Ox Ox Ox
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(13b) div vm+l 0,

(13c) vre+l=0, xEOFt, t>_0.

0vm+l
(13d) vm+(x, 0) v0(x), Ot (x, 0) v(x).

Here v is the initial value of Ov/Ot, which can be computed by applying the Hodge
projection to (1). Equations (13) also yield a new iterate for q, from which an approx-
imation to the pressure p may be recovered. However, this is not necessary in order
to proceed to the next step of the iteration.

3. Definition of function spaces and statement of results. Since has
the meaning of a probability density, L-spaces are natural for the R-dependence.
However, the definition of T in (2) involves integrals of against increasing functions
of R, and we shall therefore use weighted Ll-spaces. We define

(14a) Xn,o= {l/)" ]R3-- ]R I/(1 + IRIn)I(R)I dR < },
in the case of infinitely extensible dumbbells, and

(14b)

in the case of finitely extensible dummbells. Here B denotes the ball of radius R0.
Moreover, we let Xn,k be the space of all whose derivatives up to order k lie in Xn,O.
Finally, let

(15) Xk N Xn,k,
n--O

with the natural topology of a Fr(!chet space. The space Xk consists of functions which,
together with their derivatives, vanish at infinite order as IR[ --. or IRI + R0,
respectively. Instead of working with this Frchet space, it would be possible to work
with Banach spaces of functions vanishing at sufficiently high order; however, different
orders of decay would have to be chosen for higher derivatives of than for itself.
This would make the precise statement of a theorem rather laborious. The analysis
that follows is not substantially complicated by the fact that X is a Frchet space
rather than a Banach space.

We make the following smoothness assumptions:
(SI) The domain t C ]R3 is bounded and 0gt is of class C5.
(S2) vo e H4().

4 Hk(gt Xs-2k), where Hk(gt; Xt) stands for [,--0 Hk(gt;Xn,t) More-(s3) o
over, 0 >_ 0 and f o(R,x) dR 1 for every x t.

4 Wk,1 H4_k (t))"($4) For some T > 0, we have f k=0 ([0, T];
In addition, we need compatibility conditions between the initial data and the in-

compressibility and boundary conditions. Note that by applying the Hodge projection
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operator to equation (1), we can obtain an initial value for Ov/Ot, and, after differen-
tiating (1) with respect to t, we can-obtain initial values of higher time derivatives in
an analogous fashion. We shall denote the initial value of Oiv/Ot by vi. These initial
values for time derivatives of v satisfy the incompressibility condition because of their
construction, but we still need to require that they satisfy the boundary conditions.
We assume the following compatibility conditions:
(C1) div v0 0 and v0 0 on 0.
(C2) Vl, v2 and v3 vanish on 0.

The goal of the paper is the following result.
THEOaEM. Assume that (S1)-($4), (C1), (C2), and (F) or, respectively, (F’)

hold. Then there is a T’ e (0,T] such that the problem (1)-(5) has a unique solution
with the regularity

(6)

4 3

v e A Ck([0’T’]; H4-k(2)); T e N C([0’T’]; H3-k());
k=0 k=0

3 3-k

e N N Ck([0’ T’];H(; Xs-2k-21))"
k=O l=O

The proof will be based on showing that the mapping E vm vm+l defined
by (12) and (13) is a contraction in an appropriate complete space of functions. This
space of functions, denoted by Z(M, T), is defined as the set of all functions v
F/ [0, T] - IR3 with the following properties"

4

(17a) v e N Wk’([0’ T’]; H4-k()),
k--O

(17b) Ilvllo,4 + Ilvll,3 + Iiv112,2 + I{vl13, + Ilvl14,0 <_ M,

(17c) div v 0,

(17d) vlon O,

(17e)
(x, 0) o(x), --(x, o) v(x),

(92v
-b(x, o) v.(x),

3V
b-(x, o) v(x).

Here ]l" IIk,t denotes the norm in W,c([O,T’];Ht()); below we shall also use the
notation I1" IIk,,p for the norm in W,v([O,T’]; H(2)). In Z(M, T’), we introduce the
metric

(18) d(v, w) Ilv w]lo,3 -4-Ilv wllx,2 -4-]Iv wll2,x + ]Iv wl]3,o.

It is easy to see that Z(M,T) with this metric is complete. We refer to [11] for a
proof that it is not empty (provided M is large enough).

We note that (13) is of the same type as problem (16) considered in [11]. The
quantity

(19) (7(IRI)RR6 + 27’(IRI2)RRRR)" dR
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assumes the role of Cjkt in [11]. We note that the symmetry condition

(20) C
and the strong ellipticity condition

(21)

with a > 0 depending continuously on E { E L I > 0, f dR 1}, are satisfied,
because we have assumed 7 to be an increasing function of IRI 2. Hence the results
of [11] are applicable to (13), and most of the proof in the following section will be
concerned with solving the diffusion equation (12).

4. Proof of the theorem. In order to show that E is a contraction in Z(M, T’),
we shall have to choose M sufficiently large and T’ sufficiently small. The estimates
used in the proof will involve bounds of the form K(M, T’, al, a2,... ), where the size
of al, a2 etc., can be kept within given bounds. It is important that the size of K for
large M can be controlled by choosing T’ small enough. This leads us to the following
definition.

DEFINITION. A continuous function K(M, T’, al, a2,’" )" ]R+ ]R+ ]R+... ---+

IR+ is called controllable, if there are continuous positively valued functions T(M, al,

a2,... and w(al,a2,... such that K(M,T’,al,a2,... < w(al,a2,... as long as
T’ <_ T(M, al,a2,...).

We begin by stating the results of [11], which can be applied to problem (13).
This problem is of the form

(22)

LEMMA 1. Let v, h and C be given such that div v 0, v[on 0 and C satisfies
the symmetry condition (20) and the strong ellipticity condition (21) with a positive
lower bound 7 for in (21). Moreover, assume that bounds of the following kind hold:

(23a) livllo,4 + Ilvllx,3 + Iiv112,2 + Ilvl13, + Ilvll4,o < M,

(23b) Ilvllo,3 + Ilvll,2 + Ilvl12, + Ilvll,o < K,

(23c) IlCllo,3 + IIC11,2 + IIC112, + IiC113,o < M,

(23d) IICIio,2 + IICll,x + IICII2,o < K,

(23e) [Ihl[o,2 + Ilhl[, + Ilhll2,o < K,

(23f)
0h- + (v. V)h

0,2,1
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Finally, assume that wo E H4(), wl E H3()) with norms bounded by K, that
div wo div wl O, and that wo, w, and the initial values of 02w/Ot2 and
Oaw/Ot3, as determined by (22), are compatible with the boundary condition wlo O.
Then (22) has a solution

4

w e N Ck([0’ T’]; H4-k()),
k-0

and we have

(24) llwl{o, + llwll, + llwll,, + llwll, + llwll,o < (M,T’,K,

where is controllable.
LEMMA 2. Consider (22) and a second equation

(25)
p - 4- (. V) (vi

Oxi
4- Cijkl(x, t)

OxyOxl
4- hi,

div@=0, "1o=0, @(x, 0)=wo(x), (x, 0)=w(x).
Assume that the assumptions of Lemma 1 also hold for (25) (with the same constants
M, K and /). Moreover, assume that for t 0 we have

(26) v=v, ,=v, v=v, C=C, (=C, h=h, l=h..

Then we have an estimate of the form

(27)

The function (M, T’, K, ") tends to zero as T O.
We need to establish analogous results for (12). For given v Z(M,T), we have

to find satisfying

(28)
0(- + (v. Vx)) =aAl + divl(-(Vxv). Re F(R)),

(1, x, o) Co(a, x).

The following lemma holds.
LEMMA 3. Given v Z(M,T’), there exists a unique solution of (28) which has

the regularity

3 3-k

(29) e N N Ck([O’T’];Hl(;Xs-2k-21))"
k=0/=0
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Let I1" II(n) be the norm in

3 3-k

(30) N Ck([0’ T’]; Ht(gt; Xn,s-2k-2t)).
k-0 l-O

For every n, we have an estimate of the form

(31) IIll(n) <_ Cn K(M, T’, n),

where Cn depends only on the initial data and K is controllable.
We note that it is in general neither possible nor necessary to obtain a bound for

K(M, T’, n) which is independent of n. By using (29) and (28), we find, moreover,
that

(32) 0 3 3-k

0" + (v. Vx) e N N Wk’c([0’ T’]; Ht(a; X6-2k-2t)).
k=O/=0

In addition to (28), let us consider a second equation of the same form:

(33) (- + (’" Vx)) =aArtb + divt((-Vx). R F(R)),
(R, x, 0) 0(R, x).

The following result holds.
LEMMA 4. Let v, , E Z(M, T’) be given. Let I1" II[n] denote the norm in

2 2-k

(34) N N Ck([0’ T’]; Hi(a; X6-2k-2t)).
k=O /=0

Then for every n, we have an estimate of the form

(35) I1 ell[n] -< K(M, T’, n)d(v, fi).

Here d(v, ") is as defined in (18). The function K(M,T’, n) tends to zero as T’ O.
Using the equations, we find, as a consequence, a similar estimate for

(36)

in the space

2 2-k

(37) Ck([0, T’]; Hi(a; X4-2k-2t)).
k=O/=0

By combining Lemmas 1 through 4, it follows easily that E is a contraction in
Z(M, T’) if M is chosen sufficiently large and T is chosen sufficiently small. The
theorem follows immediately. The rest of the paper will therefore be concerned with
the proofs of Lemmas 3 and 4.
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We introduce Lagrangian coordinates, which we shall denote by X. Let x(X, t)
denote the Eulerian coordinate corresponding to X, i.e., the solution of the problem

0
(s) o-Tx(X, t) v(x(X, t), t), x(X, 0) x.

Let (R, X, t) (R, x(X, t), t). Equation (28) cn then be written in the alternative
form

t(R, X, t) cARe + divR(-(Vxv(x(X, t), t)). Re F(R)),
(a)

(R, X, 0) 0(R, X).

This is a parabolic equation for , in which the only derivatives are with respect to R
and t, while X only appears as a parameter in the coefficients and initial conditions.
We note that the transformation (X, t) (x(X, t), t) is smooth enough so that if
has the regularity claimed by Lemma 3, then so does and vice versa.

The fact that solutions of (39) with the regularity claimed by Lemma 3 are unique
follows from a straightforward application of the maximum principle. It also follows
from the maximum principle that positivity is preserved, and by integrating both sides
of (39) we find that f (R, X, t) dR f (R, x, t) dR 1 for all t. To show the ex-
istence of solutions, we cannot use standard results available in the literature because
the coefficients of the equation are unbounded. To get around this difficulty, we use
a sequence of approximating problems with bounded coefficients, for which we derive
uniform estimates. The cases of infinitely and, respectively, finitely extensible dumb-
bells have to be treated somewhat differently, and we shall first deal with infinitely
extensible dumbbells.

Let x(R) be a C-function such that X(0) 1, X is a monotone decreasing
function of IRI, and x(R) IRI- for large IRI, where u is a sufficiently large number.
For N e IN, let XN(R) x(R/N). We now replace (39) by the approximate problem

OCN aAaCN + divot [XN(R)(-(Vv(x(X, t), t)). RCN F(R)N)],(40) Ot
(R, X, 0) 0(R, X).

We note that equation (40) has bounded coefficients. Hence the existence of solutions
and their decay as IRI-- c are easily established. We now multiply (40) by IRIn
and integrate. This yields after an integration by parts

___0 f ial2nCg(R, X t) dRot J
a(4n2 + 2n) f IRI2n-2N(R, X, t) dR

(41) J

+ 2n /IRI-=XN(R)JR. (Vxv(x(X, t), t)). R

+ R. F(R)] CN(R, X, t) dR.

The term R. F(R) is negative, and all other terms on the right-hand side of (41)
can be estimated by a constant (depending on n but not on N) times f(1 + IRI 2n)
CN(R, X, t) dR. Hence (41) yields a bound of the form

(42) [ IRIN(R, X, t) <_ K(n, Mt)/(1 + IRI2n)o(R, X) dR.
J J
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We next derive estimates for derivatives with respect to R. We differentiate (40)
with respect to Ri and obtain

(43)

The last term on the right-hand side of this equation can be further transformed as
follows:

(44)

Since OCN/oqRi is not positive, we cannot proceed in exact analogy to (41) above.
Instead, we first decompose OCN/OR r+ -r-, where r+ and r- are solutions to
the problems,

(45)
&r+ cAar- + divp [XN(R)(-(Vcv)" Rr+ flF(R)r+)] + s+Ot

r+(R, X, 0)= max(0.0 (R,X) 0)
and, respectively,

(46) Ot

x, 0/- m x(- X/, O)
Here s+ and s- denote the positive and negative parts of the expression in (44). Since

r+ and r- are positive, we can now proceed as above, in place of (41), we obtain

(47)

and an analogous equation for r-. (A minor problem in deriving (47) arises from the
fact that Ar- does not necessarily exist at t 0, but we may justify the argument by
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approximating the initial value of r- by a sequence of smoother functions and then
passing to the limit.) Using (44), we find that

(48)

dR

The first integral on the right-hand side of (48) involves only CN and no deriva-
tives of CN; it can hence be estimated using (42) above. The integrand in the sec-
ond integral can be estimated for large IRI by a constant times XN(R)(MIRI2n +
IRI2n-IlF(R)I) ]j(Tr + -). From (47), we therefore obtain an estimate e the form

(49)

Note that K3 does not depend on n, but that the previous term in (49), which is neg-
ative, has a factor n in front. By summing the inequalities corresponding to (49) over
all values of/and all choices of + or -, we can therefore get bounds for f II:tl2’r+ dR.
As a consequence, we have found estimates for the first derivatives of CN. Bounds for
higher derivatives are obtained in an analogous fashion after differentiating (40) with
respect to the components of R. The calculation involves higher derivatives of CN
than are known to exist at t 0, but the argument can be justified by approximating
the initial datum by smoother functions and passing to the limit. Proceeding in this
fashion, we find that

(5o) Cg e L([0, T’]; L2(gt; Xs)).

Derivatives of CN with respect to X can be estimated by taking difference quo-
tients in (40), estimating the difference quotients of CN, and then taking limits. Prob-
lems near the boundary of 2 are avoided by first extending v and 0 so that they are
defined for X outside Ft. This can be done in such a fashion that the extended func-
tions have the same level of regularity as the original ones; for example, the method of
reflection across the boundary can be used to obtain such extensions (cf. [8], p. 38).



KINETIC THEORY OF POLYMER SOLUTIONS 325

Mixed derivatives with respect to R and X can be estimated by taking difference quo-
tients with respect to X after first differentiating with respect to R. The calculations
are tedious but straightforward and we omit them. We find in this way that

3

(51) CN e N L([0’ T’]; Hl(gt; Xs-21)).
/--0

Finally, temporal derivatives of CN can be estimated by using the equation itself. This
yields

3 3-k

(52) CN e N N Wk’([0’ T’]; Hi(a; Xs-2k-2t)).
k=O l=O

All these estimates are uniform in N.
Using the uniform bounds on the CN, we can extract a subsequence which con-

verges, in the sense of distributions, to a solution of (39). Unfortunately, it is not a
priori clear that

3 3-k

(53) e N ’ Wk’([0’ T’]; Hi(a; Xs-2k-2t)).
k=O/=0

The difficulty is that the spaces Xk are based on Ll-type norms, and the limit of a
distributionally convergent bounded sequence in L may not be an L-function, but a
singular measure. To show (53), we need a separate argument. We approximate the
initial datum 0 by a sequence oM such that oM has the additional regularity

4

(54) oM e N Hk(; X0-2k),
k--O

and oM o in the topology of

4

(55) N Hk(gt; Xs-2k).
k--0

Let CNM be the solution of (40) which is obtained when the initial datum is replaced
by oM. Then the same argument as above yields

3 3-k

(56) e N N Wk’([0’ T’]; HI(a; Xo-2k-2t));
k=O/=0

moreover, in the topology of

3 3-k

(57) N ’ Wk’c([O’T’];Hl(;Xs-2k-21))’
k=0 l-O

we have CNM Cg uniformly in N. From (56) and (40), we conclude that

(58) 0NM 3 3-k

Ot E N N Wk’([0’T’];H’(a;Xs-2k-2’))"
k=O/=0
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From (56) and (58) it follows that

3 3-k

(59) e N N Ck([0’ T’]; H(a; Xs--)).
k=0/=0

For fixed M, the bounds for CNM are again uniform in N. Let now Hn be a reflexive
Banach space such that

N Wk’([0’ T’];H(a; Xn,o-2k-2))
k=0/=0

k=O

a

k=O 1=0

Such a space IIn can be constructed using appropriate Sobolev norms. Let II
,e II. Then, for every M, we have a uniform bound for in the norm of each
IIn, hence we can extract a subsequence which converges weakly in each 1-In o an
element CM of II. Since, for M oc, converges to CN uniformly in N, we find
that the sequence Cg also converges in

3 3-k

(61) ’ N Ck([0’ T’]; g(; Xs-2k-2)).
k=O l=O

By taking limM CM, we obtain a solution with the desired regularity. This
concludes the proof of Lemma 3 for the case of the infinitely extensible dumbbell.

The proof of Lemma 4 is based on the same type of estimates, applied to the
function - . We omit the details.

For the case of finitely extensible dumbbells, we use approximation by infinitely
extensible dumbbells. We extend the initial datum 0 by zero for IRI > R0, and
we define an approximation 9’ to the spring constant 9’ as follows. Let X be a C-function [0, 1] [0, 1] such that X(s) 1 in a neighborhood of 0 and X(s) 0 in a

2 5) weneighborhood of 1. Let xe(R) X(7(IRI- Ro + ). Then define

/(IRI 2) if IRI <_ Ro ,
 ((Ro IRI > Ro(:) (R)(IRI) + (1 x(R))9,((R0 )2) if Ro e <

<Ro- .
We now consider the problem with spring constant e, which is infinitely extensible
and satisfies the assumptions which we required for the infinitely extensible case. We
now define

if IRI </to- ,
(63) w(R) -I11

1 2(Ro--e)
i./.o..._) + (2o_) (IRI- Ro + e) if IRI > Ro e.

The function we and its gradient are continuous at II:t[ Ro, and w has linear growth
at infinity. We now repeat the estimates above, but instead of multiplying the equation
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by powers of IRI, we multiply by powers of w(IRI). The resulting estimates turn out
to be uniform in e as e --+ 0, and Lemma 3 follows by passing to the limit.
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THE EFFECT OF TEMPERATURE DEPENDENT VISCOSITY ON SHEAR
FLOW OF INCOMPRESSIBLE FLUIDS*
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Abstract. This paper studies the effect of temperature dependence of the viscosity on the stability of
classical Couette flow between two parallel plates. When the viscosity increases with temperature, it is well
known that the flow becomes increasingly stable. With decreasing viscosity, however, if the dependence is
sufficiently strong, the flow is found to become unstable.

Key words, fluid dynamics, plane Couette flow, temperature dependent viscosity, reaction-diffusion
equations, invariant sets
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1. Introduction. In this paper we consider a rectilinear flow of an incompressible
Newtonian viscous fluid, and assume that the viscosity is temperature dependent. In
particular, we are interested in situations where the viscosity decreases with increasing
temperature.

In general, the dissipation caused by viscosity has a stabilizing effect. However,
when the heat generated by this mechanism raises the temperature, thus causing the
viscosity to decrease, the flow may nevertheless become unstable. It is the object of
this note to investigate if, and when, this possibility might arise. We do this for a
simple problem of an adiabatic rectilinear shearing flow between parallel plates, one
moving with respect to another, at constant distance from one another.

Choosing Cartesian coordinates, with the x-axis perpendicular to the plates, we
choose units such that the plates are situated in the planes x 0 and x 1. We assume
that the plate at x 0 is at rest and that the plate at x 1 moves with the constant
velocity V in the direction of the positive y-axis. Between the plates the flow is parallel
to the plates and uniform in the y- and the z-direction. Thus it is completely described
by the velocity v(x, t) and the temperature O(x, t).

If we normalize units so that the density and the specific heat both become unity,
conservation of momentum and energy yield the equations

(1.1) vt=crx, 0<x<l, t>0,

(1.2) Ot=crvx, 0<x<l, t>0.

Here tr denotes the shear stress. We shall assume that it is related to the velocity
gradient through the linear expression

(.3)

where/x denotes the (temperature-dependent) viscosity.
At the plates we have

(1.4) v(0, t) 0, v(1, t) V

and at 0 we prescribe the velocity and the temperature

(1.5) v(x, O)= Vo(X), O(x, O): Oo(x), 0 < x < 1.
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Here Vo and 0o are given functions such that Vo> 0 when 0< x-<_ 1 and 0o> 0 when
0-<x -< 1, and Vo is taken compatible with the boundary conditions (1.4), that is,
Vo(0) 0 and Vo(1) V.

Note that the boundary conditions (1.4) imply the following compatibility condition
for cr and 0"

(x, t)
(1.6)

(O(x, t))
ax v.

If Vo(X) Vx and 0o(X) a, where a is a positive number, then the solution of 1.1 )-(1.5)
can be written down explicitly"

(1.7) v(x, t) Vx, O(x, t) h( t),

where h (t) is determined by

h(t) ds
V2t.(1.8)

(s)

Since v,(x, t)= V for this solution, it describes a uniform shearing flow.
Problem (1.1)-(1.5) was first studied in some detail by Dafermos and Hsiao [DH]

and subsequently by Tzavaras [T1 ]-[T3]. These authors have shown that if/z (0) tends
monotonically to some finite positive constant as 0- o, and either/x 2 is concave or/x
is convex, then for sufficiently smooth initial data, problem (1.1)-(1.5) has a unique
solution, which converges to the uniform shearing flow as t-.

If, however, Ix (0) tends to zero as 0 - c, the situation becomes much more delicate
[DH], IT1]. Thus, if/x is taken to be

(1.9) /x(0)=0-, or>0,

then global existence is still ensured provided a < 1, i.e., provided/x does not decrease
too rapidly, and the flow converges to the uniform shearing flow as [DH], IT1].
However, when a->_ 1, no such results are known. It is the object of this paper to
explore in particular this parameter range.

It is natural to distinguish three cases"

(I) c (0, 1),

(IX) c 1,

(IXI) c > 1.

Assuming throughout that Vo W2’:(0, 1) and 0o W1’2(0, 1) we shall prove the
following theorems.

TI4EOREM A. Suppose that 0 < cr < 1. Then (1.1)-(1.5) has a unique global solution
(v(x, t), O(x, t)) that converges asymptotically to the uniform shearing flow"

Vx(X, t) Vh- O(t-(1-)/(1+)) as c,

O(x, t)= {(l + cr) V2t}l/l+)[l + O(t-l-)/l+))] as c.

This theorem is not new. It has been proved in [DH] and [T1] by means of energy
methods. Here we use maximum principle arguments to identify appropriate invariant
regions, in order to establish existence and asymptotic behaviour. This method has
recently also been used for this purpose by Tzavaras [T3].
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THEOREM B. Suppose that ce- 1. Then (1.1)-(1.5) has a unique global solution
(v(x, t), O(x, t)) which behaves asymptotically as

lim v,c(x, t)-
V

O*

lim t-1/aO(x, t)- O*(x),
t--

where O* is a positive function that depends on the initial data. In addition

V
tr(x, t) =- l + O( t-1)] as t--> o

for every x [0, 1 ].
Remark. In view of the compatibility condition (1.6), we can say about 0* that

O*(x) dx Vx/.

For ce > 1 we will show that the situation becomes completely different. Specifically,
we will prove the following result.

THEOREM C. Suppose o > 1. Then the uniform shearing flow is unstable.
The proof is based on the study of the solutions emanating from a particular

family of initial functions (Vo, 0o). For such solutions we prove the following dichotomy:
Either there exists a point x0 [0, 1] and a finite time T such that

O(xo, t) --> oo as ’ T,

or

v(x, t) V as too

on a set [0, 1 ]\ , where the exceptional set can be made arbitrary small by a suitable
choice of initial data.

To prove these results it will be more convenient to use tr instead of v as a
dependent variable. By (1.3) we have, when we use (1.9),

(1.10) vx Ocr,

and so, when we differentiate (1.1) with respect to x and use (1.2) we obtain after
some rearrangement

(1.11) crt---olOa-lo’3+O-O’xx in Q,

(1.12) 0 0o"2 in Q,

where Q (0, 1) x R+. The boundary conditions become in terms of o-, in view of (1.1)"

(1.13) O’x(0, t)=0, trx(1, t)=0, t>0,

and the initial conditions,

(1.14) tr(x, 0) fro(X), O(x, O) Oo(x), x [0, 1],

where cro 0ff Vox. The remainder of the paper will be devoted to the study of system
(1.11)-(1.14) for the three ranges of the parameter a.
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We note that by a simple scaling of the variables it is possible to set the velocity of
the top plate V equal to unity. Specifically, if (v(x, t), O(x, t)) is a solution of (1.1)-(1.5)
with/z given by (1.9), then (v(x, t), O(x,/’)) is a solution of (1.1)-(1.5) with V= 1 if
we set

(1.15) t= V-2’t, (x, t)=- v(x, t), O(x, t)= V-20(x, t)

and scale the initial data appropriately. Thus setting V= 1 in 2 and 3 involves no
loss of generality. In 4, where we construct specific initial data, it is more convenient
to choose V appropriately.

2. The easel)< t< 1. For a (0, 1) it is convenient to replace 0 by a new variable

1
(2.1) q=O’-.

1--re

Then system (1.11)-(1.14) becomes

re 0
-3

(2.2) 0-,= {(1-re)q}-/(1-0-xx in Q,
1-a q

q,=0-2 in Q,

O-x(0, t)=0, O-x(1, t)=0,

0-(x, O) 0-o(X), q(x, O) qo(x),

(2.3)

(2.4) t>0,

(2.5) xe[0,1],

where qo 0-"/(1 re).
Seeking solutions of (2.2)-(2.3) which are independent of x, we arrive at the

following system of ordinary differential equations"

l+re q,(2.6) y,=_y2, =qy,
1--re

where primes denote differentiation with respect to and we have set

0-2
(2.7) y --.

q

This system can be solved explicitly. It yields

1-re
(2.8) Y(t)-l+re t+A’ q(t)=B(t+A)(1-)/(l+)’

where A and B are positive constants. Hence

(2.9) 0-(t)
1 re

B (t + A) -’/1+’).

Plainly (2.8)-(2.9) is a solution of (2.2)-(2.5) for suitably chosen initial values of 0-

and q.
The solution (2.8)-(2.9) suggests new dependent variables

(2.10) :(x, t) (t + 1)-<’-)/<l+)q(x, t),

(2.11) (x, t) (t + 1)/(1+)0-(x, t).

If we rewrite (2.2)-(2.5) in these variables, define the new time

(2.12) =log (t+l)
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and set

r(x, z)= (x, t), s(x, "r)= g(x, t),
we obtain the following system of parabolic equations"

(1-a )inQ,r -r

(2.13a)

s=+s(1-a

1-a l+a 2) +{(1-a)r}-/(’-) esxx in Q,

together with the initial and boundary conditions

sx(0, t) :0, Sx(1, t)=O, t>0
(.3b)

r(x, O)= ro(x), s(x, O): So(X), x [0, 1 ],

where/x 1/(1 + a) and ro and So are positive functions on [0, 1]. If ro, Soe W1’2(0, 1),
then the local existence and the uniqueness of a classical solution on an interval
0-< =< To, where To depends only on the supremum norm of ro and So, and of 1/ro
and 1/So, follow from a straightforward contraction argument IS]. Thus, if we obtain
a priori bounds from above and below for r and s, which are uniform in time, it follows
that the problem (2.13) has a solution that exists for all t->0.

To prove the a priori bounds, we use the notion of invariant regions. An application
of Theorem 4.1 of [CCS] yields that the rectangles

1-a 1-a
a <s< b 0<a<b,Eab (r,s)’a<r<b,

l+a l+a

(see Fig. 1) are invariant regions for (2.13).
Consequently problem (2.13) admits arbitrarily large invariant rectangles. Thus,

if ro, So WI’(0, 1) and there exist positive constants r, r, s, and s such that

r <= ro(x) <= r so < So(X) < s

then (2.13) has a unique global solution (r(x, t), s(x, ’)). If in addition we assume that
the constants rk, s k (k 0, 1) are related through the expression

(sk)e= (1-- a)rk/(1 +a),
which involves no loss of generality, then

r< r(x, "r) < r
(2.14)

so <- s(x, z) <-- s
in Q.

Thus we have proved the following theorem.

2 1- rs=
l+ct

FIG. 1. Invariant regions.
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THEOREM 2.1. Problem (1.11)-(1.14) with initial data 0o, tro wl’2(0, 1) such that

0 < O’0 O’0(X) O"1 O<O0<O0(x)<O1-

has a unique classical solution on Q. In addition

cr(t+ 1)-/(l+)=<o’(x, t)=<o’l(t+ 1) -/(1+ in

O(t+l)l/(l+=< O(x, t) <- 01(t+l) /(1+ in

when the constants r, 0k (k O, 1) satisfy the relation (r) 0)1-/ (1 + a).
Having established global bounds for r and 0 in Q, we can now turn to the

question of large-time behaviour. We begin with the observation that both o- and 0
converge to their mean values # and 0 defined by

t(t) o’(x, t) dx, O( t) O(x, t) dx.

Defining g(t) and (t) in a similar fashion we obtain the following estimate.
LEMMA 2.2. We have

(a) Ils(’, -") as r-,

(b) r(., ) f()I1 O(e-v’) as r

where

1 1-

l+a 1+

and I1" I1 denotes the norm in L(O, 1).
Proof. We multiply the equation for s by -sxx and integrate over (0, 1). This

yields, when we integrate the left-hand side by parts and use the boundary conditions,

s, dx= -e"" {(1-t)r}-/(l-)s dx- g(s, r)sxdx,
2dt o

where

Because r(x, r) is bounded above by r in Q, we have

{(1-a)r(x, r)}-/’-") >= {(1 ce)rl} -a/(1-a) de=f ao

2 tx’r 2 2 g2 dx,(2.15)
2 dt s dx <= -ao e sx dx +- Sxx dx +2A

where A is a positive number, which may depend on r. If we choose A ao e’, (2.15)
becomes

2 --t*r g2(2.16)
2 dt sx dx <- ao e Sx dx+ e dx.

2 2ao o

Finally, we observe that in view of the boundary conditions s e H(0, 1), and we can
use Poincar6’s inequality to estimate the first term on the right of (2.16). This yields
in the end

Io2 2(2.17) - s dx <-_ -A e"" s dx + B e

g(s’ r)=
l-t l+a

and so
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where A and B are positive constants, because g is uniformly bounded in Q by (2.14).
An elementary computation now reveals that (2.17) implies that

’l

2(x, 7.) dx < C 7.>0,(2.18) sx e-2,
o

where C is some positive constant.
To complete the proof of part (a), we note that for some (7.) [0, 1] we have

s((7.), 7.)= g(7.). Hence

and so

s(x, ",9-(’,’)= Sx(, ) d
(-)

(2.19) Is(x, 7.)-g(7.)l<= [sx(, 7.)1 as <= s(s, 7.) asc

Substituting (2.18) into (2.19), we arrive at the desired bound.
To prove part (b), we solve the equation for r in terms of s. This is possible since

the equation is linear in r:

We obtain

r -yr+ S2.

r(x, 7.)= e-r’r(x, O)+ e- eVPs2(x, p) dp.

However, by part (a) and the uniform lower bound for s,

s(x, ) -() + (x, ),

where

lie(., )ll_-< e-Hence

(2.20)

where

r(x, 7.)= e-r’r(x, 0)+ e-" erPg(p) dp+ p(x, 7.),

lit,(’, ’,) I1 c e-"*.

If we integrate (2.20) over (0, 1), we obtain

(2.21)

whence

?(7.) e-V(0)+ e-v e’Pg(p) dp+ p(x, 7.) dx,

r(x, 7.)- f(7.)= e-V{r(x, 0)- (0)}- p(x, 7") dx,

because
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Remark. Equation (2.21) yields a relation between and g. In view of the estimate
for p(., z) we can write it as

(2.22) (z) e

Another relation between f and g is supplied by the compatibility relation (1.6) in
which we have set V 1. This yields after transformation

(2.23) s(x, z){r(x, z)} "/(’-> dx= (l-a) -"/(->.
o

Applying Lemma 2.2, we deduce from (2.23) that

(2.24) g(z){

It now remains to determine the asymptotic behaviour of
This is done by means of the equation for r(x, z). It yields, upon integration over (0, 1),

’= -,+ s dx -,+()+ ,o(),

where the prime denotes differentiation with respect to z and to(r) O(e-’’) as z c.
Eliminating by means of (2.24) we finally obtain the equation

(2.25)

where

g()= --’y+ {(1 )}-2a/(1-),
and o3(z)= O(e-r’) as zoo. Plainly, g has a unique zero :o given by

1
(1
_
a)(l_a)/(l+):o- 1__ a

>0 if0<sc<sCo,
g()

<0 if :o<:<m.
Thus

and, because g’(o) < -%

(z) o as z-cx

f(z)=(o+O(e-r’) as

The limiting behaviour of g(z) now follows from (2.24)"

g(z) no+ O(e-r’) as z- o,

where

% {(1 a ):o} -"/(1-") (1 + a )-4/(1-4).
In summary, we have proved the following theorem.
THEOREM 2.3. Let the initial data tro and Oo satisfy the conditions of Theorem 2.1

and let V 1. Then the asymptotic behaviour ofthe solution tr, O) ofproblem (1.15)-(1.18)
is given by

tr(x, t)= {(l + ce)t}-/l+)[l + O(t-1/l+))] as t->,

O(x,t)={(l+a)t}l/<l+)[l+O(t-<l-)/(l+)] as t->c,
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and v, satisfies
vx(x, t)= 1 + O(t-(1-a)/(l+a)) as t-> oo.

The error terms are all uniform with respect to x [0, 1 ].
Remark. It is readily seen from the solution (y, q) of the system of ordinary

differential equations (2.6) that the powers in the error terms in Theorem 2.3 are optimal.

(3.1)

(3.2)

with

(3.3)

(3.4)

3. The case a = 1. When a 1, Problem (1.11)-(1.14) becomes

0-t -0-3 "31- 0--10-xx in Q,

0 00-2 in Q

o-x(0, t) 0, 0-(1, t) 0, t>0,

0-(x, O) 0-o(X), O(x, O) Oo(x), x [0, 1 ].

As in 2, we rescale the variables, writing

(x, t) (t+ 1)-1/20(x, t), (x, t) (t+ 1)1/20-(x, t).

If in addition we introduce again the new time variable z log (t + 1), we obtain for

r(x, ’)= (x, t) and s(x, z)= g(x, t)

the system of equations

e/2s
l"

(3.6)

with boundary conditions

(3.7)

and initial conditions

(3.8) s(x, O) 0-o(X),

Observe that because

s(0, t)=0, s(1, t)=0, t>0

r(x, O) Oo(x), x [0, 1].

the boundary conditions (1.4), with V 1, yield the identity

(3.9) r(x, t)s(x, t) dx 1.

To prove the a priori bounds on r and s, we no longer can use the method of
invariant regions. However, since the lower-order terms in (3.5) for s now do not
depend on r, we can still use a maximum principle argument to obtain the desired
bounds. As before, we consider the pair of ordinary differential equations obtained
from (3.5)-(3.6) by omitting the diffusion term:

(3.10) y,= _y(y2_1/2),

(3.11) z’ z(y-1/2).
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Here primes denote differentiation with respect to r. Let y(’; a) be the solution of
(3.10) with initial value y(0; a)=a and let z(r; a, b) be the solution of (3.11) with
y y(’; a) and initial value z(0; a, b)= b. For any a R the solution y(r; a) exists, is
unique and bounded for all r _-> 0. It can actually be found explicitly and for any a > 0
its large-time behaviour is given by

1
(3.12) y(r; a)=--+O(e-) as r-o.

Because z satisfies a linear equation with bounded coefficients, z(r; a, b) also exists
for all time.

By uniqueness we have

(3.13) al < a2 :::> y(r; al) < y(r; a2) for r_>- 0

and because the right-hand side of (3.11) is increasing in y when y > O, we also have

al < a2, bl < b2
(3.14)

==> z(r; al, hi) < z(-; a2, b2) for r_-> 0.

Set al min tro and a2--max tro. Then by the maximum principle

y(’; al) --< s(x, r) -< y(r; a2) in Q,

and so, by (3.12),

(3.15) s(x, r)=--+O(e as r-oo,

uniformly in [0, 1].

To estimate r we set b min 0o and b2--max 0o, leaving al and a2 unchanged.
Then for any x [0, 1] we have 0o [b, b2] and hence

z(r; a, b) <= r(x, r) <- z(r; a2, b) in Q.

Note that (3.10) and (3.11) imply that

Therefore

and hence

z’ y’

z(r;a,b)=
ab

y(r; a)

z(r; a,b)=vab+O(e-) as

Thus we have established the existence of a global solution (r, s) of (3.5)-(3.8) as well
as uniform bounds in Q.

Reformulating this result in terms of the solution (or, 0) of (3.1)-(3.4) we obtain
the following theorem.

THEOREM 3.1. Problem (3.1)-(3.4), with initial data tro, 0o wl’2(0, 1) that are
positive in [0, 1], has a unique solution (tr(x, t), O(x, t)) on Q. In addition there exist
positive constants A+, B such that

A-(t+l)-l/2=<tr(x, t)<-A+(t+l)-1/ in 0.,
B-(t+l)’/Z<=O(x,t)<=B+(t+l) ’/2 in 0..
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For the asymptotic behaviour of solutions of (3.1)-(3.4) we have only a partial
answer.

THEOREM 3.2. Let (00(x, t), O(x, t)) be the solution of (3.1)-(3.4). Then

1
(a) 00(x, t)=-[l+O(t-1)] as t->oo,

(b) O(x, t) 0*(x)x/[ 1 + o(1)] as ->

uniformly with respect to x [0, 1], where O* is a positive function that depends on the
initial data.

Proof. Part (a) is an immediate consequence of (3.12).
To prove part (b), we observe that

1
(3.16) d--d {log r(x, 7)}= s2(x, r) -- u(x, ’)

and recall that u(x, -)= O(e-) as --c uniformly in x. Integration of (3.16) over
(0, ’) yields

(Io(3.17) r(x, ’)= r(x, O) exp u(x, s) ds

and hence, because u(x,. e L(O, oe) for every x e [0, 1],

lim r(x, ’) exists.

Returning to 0 gives the second limit.
Theorem 3.2, (1.3), and (1.8) yield the following corollary.
COROLLARY 3.3. Let (00(x, t), O(x, t)) be the solution of (3.1)-(3.4). Then

1
O*lim vx(x, t) =-- (x), 0<_-x<_- 1.

This completes the proof of Theorem B.
Remarks. 1. If So does not depend on x, then neither do s(x, t) nor, by (3.16), do

v(x, t) depend on x. Hence we deduce from (3.17) that in that case 0* is a constant
if and only if 0o is a constant. This example shows that in general we cannot expect
convergence to the uniform shearing flow if a 1.

2. Because O*(x) 0 for every x [0, 1] it follows from Theorem 3.2 that, as when
0 a 1, O(x, t) - oo as t- oo for every x [0, 1]. As we will see in the next section,
this will cease to be true when a becomes greater than 1.

4. The case tz > 1. In this section we shall study a particular family of solutions
of the problem defined by (1.1 1)-(1.14).

As in the case 0 a 1, we introduce the function

1
q--O1-

0 --1

and use q to rewrite system (1.11)-(1.14) as

t) 0
3

(4.1) 00t-- +{(a 1)q}/(’-l)00x in Q,
a-lq

(4.2) qt_ _002 in Q
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with boundary and initial conditions

(4.3) r,(0, t) 0,

(4.4) tr(x, O) tro(X),

o’(1, t)=O, t>O,

q(x, O) qo(X), x [O, 1],

and that

Note that

For what follows it will be convenient to introduce the integral

(4.7) iv def O’20(X){(O- 1)qo,v(X)}-t dx.

/3 and 6
c--I

We define the following family of initial functions"

(4.5) tro(X)=(a-1)t3/2 for 0_<-x<-l,

jc forx[0,6],
(4.6) qo,,(x)

1 for x(6,1].

I=(1-ct3)3"+1 and V,:(a-1)-t3/Iv

I- 1 and Vv--> Vo de--f (a-l)-/2 as 3,-->0.

In terms of the original variables v and 0 the initial data are now given by

vo(x) {(c 1)qo,(s)}-ro(s) ds, x [0, 1],

Oo,(x) {(a 1)qo,(x)}-/(- x [0, 1]

It is readily verified that

vo,,(x) - Vox in L2(O, 1) as 3, 0,

Oo,,(x)(a-1) -1/(-1) in L(0,1) as3,-0.

The idea underlying this choice of initial functions is based on the observation
that if we set q small compared to o- in the neighbourhood of x 0, it will soon reach
zero, according to (4.2), unless o- drops sufficiently fast. However, diffusion of o-

towards the origin may prevent this from happening and thus cause q to remain positive
for all time. Which of these two possibilities will occur is still an open question.

In this section we will use the family of solutions introduced above to show that
the uniform shear flow (3, (t)) is unstable. By this we mean that there exists a 0 > 0
such that for any e > 0 there exist initial functions (vo,, 0o,) from the family introduced
above such that if

Vo, / 0o, &0)II /lv Vol <

where O’o 0ff Vow,. For positive initial values O-o, 0o wl’2(0, 1) the local existence and
uniqueness of a solution (r, 0) of (4.1)-(4.4) are readily established.

Let 0 < c < 1 be a constant to be determined appropriately and 0 < 3, < 1 a para-
meter. Define
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then there exists a finite time T such that either the solution ceases to exist at T,
or

IIv(t)-ll/(1 / t)-l/+l)llov(t)-(t)l[L2+lvv- Vo[> p for t- T.
More precisely, we will prove the following theorem.
THEOREM 4.1. Let a > 1 and let for some b (0, 1),

b(1-b)
8(l/b)"

Let Co,v, 0o,v and Vv be defined as before and let (vv(x t), Ov(x t)) be the corresponding
solution of (1.1)-(1.4), (1.9) on a maximal interval [0, Tv) where O< Tv <_ o. If

4c
O<y<--- and T=o,

then

]vv(x, t) Vv[ O( -’/2) as o(a)

uniformly on (6, 1 ];

(b) O(x, t) is uniformly bounded on (6, 1] x [0, ).

Using the definition of Vo,v, 0o.v and Vv, we can readily check that the uniform
shear flow (v*, t(t)) corresponding to the initial and boundary conditions Vo(X)= VoX
and Oo=(a-1)-/- is unstable in the sense formulated above. In particular,
Theorem C follows from Theorem 4.1.

The proof of Theorem 4.1 is based on estimates for the solution pair (or, q) (from
now on we shall omit the subscript 3’). We begin with an upper bound for q.

LEMMA 4.2. Let (or, O) be the solution of (4.1)-(4.4). Then for 0 <- < rl <= 1 and
b > 0 we have

;o’fo’(4.8) q(,t)<-q(,O)-l+ b
cr(l,r) dr+b cr(x,r) dxdr.

Proof. Integration of cr over (:, r/) yields

(, (,, = (x, x_-< (x, x

or

(4.9) o’(, t)>=cr(rl, t)- tr2x(X, t) dx

Hence, for small t, when in view of the initial dtta the right-hand side of (4.9) is
nonnegative,

(’, ->-(n,
(,

x(X, x
(4.10)

l+b
o’2(r/, t)- b Cr2x(X, t) dx,

b
(4.11) (1-x)2>--bx2, 0-<x=<l, b>0.

l/b

where we have used the inequality
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Note that if the right-hand side of (4.9) is negative, the right-hand side of (4.10) is
also negative, and hence (4.10) is still satisfied.

Integration of (4.2) finally yields, together with (4.10),

q(:, t)= q(sc, 0)- o-2(sc, r) d"

;o’ Io’Iob
o’2(q, "r) d’r+ b try(x, -) dx d’,--< q(:, 0)-

1/ b

which we set out to prove.
In the next lemma we show that the diffusion term in (4.8) is uniformly bounded

with respect to y for bounded %
LEMMA 4.3. Let (tr, q) be the solution of (4.1), (4.2) with initial data (fro, qo) given

by (4.5) and (4.6). en

(4.12) (x, ) dxd <- I.2

Proof Because of boundary condition (4.3), we have

(x, t) dx (x, t)xx(X, t) dx

((4.13) {( 1)q}- + dx

,{(- 1)q}- dx- 4{( 1)q}--I dx.
o

We now integrate (4.13) over (0, t). Because

 fo’,{(-l)q}-’dxd= {(-l)q}-’dx

(4.14) - {( 1)qo}- dx

4{( )q}-- &
2

this yields in the end

Io Io ](x, ) dxd- {(- )qo}- dx,
2

and the lemma follows from (4.7).
Observe that by (4.2)

(x, r) 1 q(x, t), 6 < x 1.dr

Hence, putting the results of Lemmas 4.2 and 4.3 together, and remembering that
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q(sc, 0) c if sc-< 6, we obtain the upper bound

b b
q(, t)<=C-l+ b

{1-q(rl, t)}+- Iv
b

(4.15) <=c-
l+b

b
{1 q(r/, t)}+ (1 + y)

{1- b- y(1 + b)-2q(rl, t)}
2(l+b)

for 0-< sc < 6 and : < r/-< 1. We now choose

b(1-b) 4c
O<b<l, c=8(l+b) y=--

for 0 -< < 6 and : < rt -<- 1. Then (4.15) becomes

q(, t) _--<
1

q(r/, t)-(1 b)

We distinguish two cases.
Case I. There exists a point r/1 (6, 1] and a time T1 > 0 such that

1-b
q(7,, T1)<.

8

This means that q(sc, t) must have vanished at some time To < T1.
Case II. We have

1-b
q(x,t)>- for all6<x-<l, t=>0.

8

In the first case, the solution ceases to exist at To, or possibly even before.
To prove Theorem 4.1, we may assume that the solution exists for all time and

we are necessarily in the second case. In view of the definition of q this means that

(4.16) O(x,t)<-{(1-b)(a-1)}-1/(-1) for6<x--<l, t_>--O

and so, according to (1.3) and (1.9),

(4.17) O<-vx(X,t)<-_Ktr(x,t), 6<x<-_l, t>=O

for some positive constant K.
It now remains to show that tr(x, t)--> 0 as t-> 0. From the differential equation

(4.2) for q, we see that q is decreasing in t. Therefore q(x, t) < q(x, 0) -< 1. This means
that the function #(x, t)= y(t) defined as the solution of the initial value problem

y,= _fly3, t>0,

y(0) (a-l)’/2

is a supersolution of (4.1), (4.3), and (4.4). Hence

O<tr(x,t)<(Co+2flt) -1/2, 0<x<l= t>0,=

where Co=(a 1) -t, and thus by (4.17),

[Vx(X,t)l<=K(co+2t)-1/2, 6<x<l= t>O.

Therefore

Iv(x,t)-v[=o(t-1/) as t->
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uniformly on (6, 1]. Since 0 is uniformly bounded on (3, 1] by (4.16), the proof of
Theorem 4.1 is complete.

Remark. The initial function qo,v defined by (4.6) does not belong to W1’2(0, 1)
as has been assumed throughout this paper. This assumption was made for computa-
tional reasons. However, if for some y > 0, qo,v is an initial value for which the solution
blows up in finite time, so is any function t with the properties (i) t= c for 0_<-x <- 3;
(ii) c-< (x)-< 1; and (iii) [It- qo,[[L2 sufficiently small.
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THE NONCONVEX MULTI-DIMENSIONAL RIEMANN PROBLEM FOR
HAMILTON-JACOBI EQUATIONS*

MARTINO BARDI" AND STANLEY OSHER$

Abstract. Simple inequalities are presented for the viscosity solution of a Hamilton-Jacobi equation
in N space dimension when neither the initial data nor the Hamiltonian need be convex (or concave). The
initial data are uniformly Lipschitz and can be written as the sum of a convex function in a group of variables
and a concave function in the remaining variables, therefore including the nonconvex Riemann problem.
The inequalities become equalities wherever a "maxmin" equals a "minmax" and .thus a representation
formula for this problem is then obtained, generalizing the classical Hopf’s formulas.

Key words. Hamilton-Jacobi equations, viscosity solutions, Riemann problem, Godunov’s scheme,
Hopf’s representation formulas

AMS(MOS) subject classifications. 35L99, 35L65, 65M15, 65M10

1. Introduction. We are concerned with viscosity solutions (see Crandall and Lions
[3], Crandall, Evans, and Lions [2], Lions [12]) to the following partial differential
equation:

(H-J) (t,-[-- H(Dx)=0 in RN x (0, c),

satisfying the initial data

(IC) (x, 0)= Co(X) in R
where H C(N), Dx (Ox,, , xN) is the spatial gradient of , and ro is at least
uniformly continuous. This Cauchy problem has, for any T> 0, a unique viscosity
solution o(x, t) in the space UC,(Nx [0, T]) of the continuous functions which are
uniformly continuous in x ffn uniformly in [0, T], see Ishii [10] or Crandall and
Lions [5].

We are interested in giving explicit pointwise upper and lower bounds for the
solution, providing in some cases a representation formula for , for some special
initial data but without extra assumptions on the Hamiltonian H.

Some general representation formulas for viscosity solutions of Cauchy problems
for Hamilton-Jacobi equations are due to Evans [6] and Evans and Souganidis [7].
However, they either involve an infinite number of max-min operations over n [6],
or a single max-min operation over infinite-dimensional sets of "controls" and
"strategies" [7]. Two simpler formulas solving almost everywhere (H-J)(IC), one dual
of the other, were derived by Hopf [9] for two special cases. The first one holds for
convex Hamiltonians and general (Lipschitz) initial data, and it is well known in the
theory of conservation laws in the case N- 1 (it is often called the Lax formula). It
was shown to give the viscosity solution to the problem by Lions [12], Evans [6], Bardi
and Evans [1], with different proofs and slightly different assumptions. The second

* Received by the editors January 30, 1989; accepted for publication February 6, 1990.
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Hopf’s formula is valid for general Hamiltonians and convex or concave (Lipschitz)
initial data qo, and it is

(1.1)

for qo convex, and

o(X, t)= Seuap {x" v- q*o (V)- tH(v)}

(1.2) q(x, t) inf {x. v q*o(-V) tH(v)}
vR

for Co concave, where Co* is the Legendre transform (or Fenchel conjugate) of Co, that
is

qo*(V) := sup {x. v-qo(X)} =<
xR

for qo convex, while for qo concave it is

qo*(V):=-(-qo)*(v) inf {-x. v-co(X)}_>--.
l

Osher [14] rederived for the viscosity solution of (H-J) the special case of formula
(1.1) occurring when the initial data are of Riemann type (and convex), i.e., they are
piecewise affine with one jump in the derivative across a plane. Bardi and Evans [1]
showed the connection between Osher’s formulas for convex Riemann data and Hopf’s
formulas, and proved that (1.1) and (1.2) give the viscosity solution of (H-J)(IC) in
the general case. Lions and Rochet [13] gave a different proof under slightly more
general assumptions.

We are now going to describe our main result. Let j be an integer, 0 =<j =< N, and
for any v RN set

I)-"(1)A, VB) /)A :’" (/)1,""" l.)j)@Rj, DB :---(/)j+l, VN)@N-j.

THEOREM 1. Assume H C(N), c1"W uniformly Lipschitz and convex,
qz’N-J uniformly Lipschitz and concave. Then the unique viscosity solution
UC,,(N [0, T]) of (H-J) taking on the initial data

(0 (X, 0)--- (I(XA)3t- (02(XB)

satisfies for all x N and >- 0

(1.3) sup inf G(v, x, t) -< q(x, t) <= inf sup. G(v,x,t),
DAGff I)BG[N-j I)BIN-j I)A[

where

G(v, x, t):= x. V--Cp* (VA)--cp*2(--VB)-- tH(v).

Note that the pointwise estimate (1.3) gives a representation formula for the
solution whenever the first and last terms are equal (as they are for =0). A trivial
case where this occurs is for j= N or j=0, because (1.3) reduces to Hopf’s formulas
(1.1) or (1.2). A more interesting case occurs when the Hamiltonian separates the
variables VA and vB, that is,

H(v)= H,(va)+ H2(vn).

In this case we get

q(x, t)= sup {XA" VA--q*(VA)-- tHI(VA)}+ inf {xs" vn--q*2(--v)-- tH2(vn)},
DA j DB [N--j
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which is the superposition of the solutions to the problems

got+H,(D,,go)=O, o(., O) go,

for i- 1, 2.
Next we specialize formula (1.3) to a particular class of (Riemann) initial data.

Let A, u-, u- be constants and define

u-f ifxi>0,
Ui(X):’--

u if xi<0
for i= 1,. ., N. Then take

N

(1.4) po(X) A+ Z xiui(x) A + x u(x).
i=1

These data correspond to a Riemann problem for the system of conservation laws
satisfied (formally) by the spatial gradient of ; see Remark 2.2. Let, for 1, , N,

-i :-- {s ]min (u, u-)-<_ s =< max (u, u-)),

Xi := sign (u- u-),

and reorder the indices, without loss of generality, so that

(1.5) xi=l for i=l,...,j; X,=-I fori=j+l,...,N

(0_-<j-< N). Finally set

’a :-- -1X X -j; -B :-" -j+l X.." X ’N ’’.--’AX’B"
COROLLARY 2. The viscosity solution to (H-J)(IC) with the initial data given by

(1.4) under the convention (1.5) satisfies
(1.6) A+ max min {x. v-tH(v)}<=p(x, t)<-_A+ min max {x. v-tH(v)}.

VA.- 1)BE- I)BE- I)A-

The rest of the paper is organized as follows. In 2, as motivation, we show how
formula (1.6) was first (formally) derived in connection with numerical approximation
schemes for Hamilton-Jacobi equations and for conservation laws. In 3 we give the
proofs of Theorem 1 and Corollary 2, which are quite different from the previous
derivation, and rather simple, in that they make use only of Hopf’s formulas (1.1),
(1.2) and a comparison argument.

2. A derivation of (1.6) by means of Godunov’s Halniltonians. The purpose of this
section is to motivate Corollary 2 and to explain its connection with approximation
schemes for (H-J). The rigorous proofs will be given in 3. We assume that the solutions
of (H-J) have the following properties:
(P1) The solution q(x, t) is a nondecreasing function of the initial data.
(P2) The partial derivatives q% satisfy a maximum principle at points of continuity,

i.e., for i= 1,. ., N:

min (u-, u)_-< x, _-< max (u-, u).
(P3) The speed of propagation is finite.
(P4) If b(x2,’’ ", xN, t) is a viscosity solution of

d/,+H(Vl,x2,’"", Px,) 0

for a constant vl then

((X, t) VlX -Jr- (X2,""" XN, t)

is a viscosity solution to (H-J).
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It is easy to see formally that the solution to the Cauchy problem (H-J)(IC), with
initial data given by (1.4), satisfies

(2.1) o(x, t)= tg(X-.)+a= tg()+a,
\t/

where g satisfies"

(2.2) g sr. Dcg H(Dcg

whenever D;g is continuous.
In (H-J), we let -= t, Yi xi- ’it for " fixed. (H-J) becomes

(H-J1) ,+H(Dy)-Dy=+HI(Dy)=O (defining Hi(Dye))
with the same initial data (1.4).

Thus, by (2.2), to evaluate g(’) we need only evaluate -Hl(Dy(g(y))) at y=0
for any > 0. From (P2) above we know that (Dyg)y=o lies in for > 0. Moreover,
if we integrate (H-J) from -= 0 to " At we have

o(0, At)= A-AtHl((Dyg)y=o)
(2.3) o(0)- At/(D_’o(0), D’Oo(0); O_Oo(0), D_o(0);

D-’qo(0), D- Oo(0)).

Here

(qo(+ he) o(0))
(2.4) D_’Oo(0) + =uh

+ //7, +where e={0,0,...,1,0,...}, the ith unit vector, and H(u, u2,u2; ...;
+uN, u) is determined by (2.3).

This formula can be interpreted as a numerical algorithm. Suppose we are given
a grid

xj, j,h, i= 1,..., N; j, =0, +1,...

and values of a discrete function ff ffh--.. Then for each j, we construct the
piecewise ane function which, in each of the 2 ohants centered at j, interpolates

and its N nearest neighbors, Oe, for i= 1,’’ ", N. From (P3), if

(2.5) (CFL)
At 1

max IHL,[ N1/2,
i=I,-’-,N

where O( is the same as O with each u;, u replaced by D, D, then the
solution to the initial value problem (H-J1) with the above ane initial data in the
diamond centered at j when evaluated at x x and t is independent of the values
of the initial data outside of this diamond.

Thus (2.3) (with o(0) replaced by O and (0, t) by ff+l), gives us a monotone
finite difference scheme approximating (H-J) which is in differenced form with
numerical Hamiltonian . These concepts were introduced in [4]. The scheme is
monotone, which means that the right side of (2.3) is an increasing function of all the
e,, because of propey (P1). The Nnction is called Godunov’s Hamiltonian by
analogy with the definition of Godunov’s scheme for conservation laws in one space
dimension [8]. The scheme is consistent, which means

I(ul, U1; U2, U2;" UN, UN)=HI(ul, U2," .,
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Monotonicity implies that

-(+ -. + +n Ul ,t/1 //2,t/-," t/N,t/

is a nonincreasing function of all the u- and a nondecreasing function of all the u,.
In particular, for N 1, this means for any Vl f fl"

sgn (u, (/’/1 u[)-H (Vl)] sgn (u -Vl) (Ul, u?)- (Vl,

(2.6) +sgn (V,- u]-)E/-)l(vl, U) --/"1(Vl, /’)1)]

=<0.

+But, by (P2), ]I(Ul, U?)--H (ffl) for some 1 in . Thus we have
+(2.7) l(ul, u]-) X’l min x1HI()I).

(This formula was obtained earlier in [14].) Now we proceed inductively. Suppose,
for N_-< M- 1, we have

max max min...minH(Vl,V2,...,VN)
1)j+l@-j+ VNG- VlG Vj@-’j

+ +(2.8) =< 1(Ul Ul U2, U2,’’" "’, U+N, U)
min min max max Hl(vl, v2,... VN)
vO vjOj vj+oj+ VNO

where

X/-- l, i=l,’’’,j,

Xi =-1, i=j+l," ", N.

Next we have, N M and for any v "1
+ + + ]_]rl + +(2.9) x1E/-)l(ul u; u2 u-; UM UVI)-- (Vl, I) U 2 U’ UM U/)] <0,----

using the same argument as in (2.6).
Now, for any fixed v, H(v, v u2 u, uM, uTw) is Godunov’s Hamiltonian

when the initial data for (H-J1) has a constant x derivative,

a(
(X) V

aX

Then it follows from (P4) that

() Xl (_. x3 XM),g =- v+ ’t

(where also depends on v).
By the induction hypothesis, this means we have

+ . + -. +xHI(u 2,u2,’" u, u)
+ +x1HI(I, 1, u2, ", UM, U)

(2.10) =-g(0, 0,..., 0)

XlX2 min 2... min XMHI(u1, U2"’" UM)
22 VMM

--x1HI(u1, /.2, /M)
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where the extrema is taken on at /2,’’’,/M, which depends on Vl. The vector
(vl, 2, ", t;N) e 121, where vl e 121 is arbitrary We next take min, of the expression
in (2.10). If all the X 1 or all the X -1 we have equality by (P2). Otherwise, X 1,
1 N Nj, Xi -1, j + 1 N N M, and we have the right-hand inequality in (2.8). Next we
have, for any Vj+l e j+, following the argument above:

+I(Ul Ul U2 U U
+,

(u, u, v+, u, u)
(2.11)

X+z min X+2""X min MI min Xl’’’X
vj+2j+2 v v

min XH1 (/.)1, /’)2, ", /)M)"

We next take the maxvj+ ofthe expression in (P4) which gives us the left-hand inequality
in (2.8).

We have now obtained formula (2.8) for any N; using (2.1) and (2.2) gives us
our intuitive derivation of (1.6).

Remark 2.1. We note that (2.8) validates the conjecture about Godunov’s Hamil-
tonian in 15] when the inequalities in (2.10) and (2.11) become equalities. That paper
also discusses the high-order accurate nonoscillatory numerical solution of (H-J) in
some detail. See also [16] for a further discussion of these issues.

Remark 2.2 If we take the space gradient of (H-J) and call ul qx,, U2 (4x2 etc.,
we arrive at the system of conservation laws

0
(2.12) (ui), +-x H(Ul" UN)---0, i= 1,’’’, N

with initial data:

ifxi>Oui(x, O)
uT, ifxi<O, l, N.

Thus (1.6) gives us information about the solution to this special Riemann problem
for a special system of conservation laws.

3. Proofs.
Proof of Theorem 1. Since q2 can be written as the Legendre transform of its

Legendre transform

q2(xB) inf {-xB’v-,,O*z(V)},

we will first solve (H-J) with the initial data

(3.1) qo(Vn, x)-- (.I(XA) XB "1)B

and then take the infimum as v varies in R N-j. Since the initial data q’o are convex
in x for each choice of vB, we can write Hopf’s formula for the solution q,(vB, x, t)
of (H-J) plus

q,(v, x, 0) o(V, x) for all x R.
To do this we compute the Legendre transform with respect to x of qo"

ffo*(vn, y) sup {xA yA + XB (yB + VB)--qgl(XA)+ qg*2 (1)B) }
x

f+o if yn vn,
q*l(YA)+ q*(Vn) if yB =--Vn,
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and then apply (1.1) to get

(VB, X t) sup {XA yA XB
YA R

sup G(-v, x, t).
I]

Since (vn, ",’) UCx(v x [0, T]) for all vn and (vn, x, 0) => (x, 0), a standard
comparison theorem for unbounded viscosity solutions [10], [5] gives

d/(vB, x, t) >--_ q(x, t) forall (x,t)RNx[0, T],

Then

inf sup G(v,x,t)= inf O(v,, x, t)-> p(x, t),
DBE[N-j DA E[I I)B[]N-j

which is the second inequality in (1.3).
The first inequality is proved in a similar way. We apply Hopf’s formula (1.2) to

compute the solution d/(Va, x, t) of (H-J) with the concave initial condition

cl( Va, X, 0) 2(XB) + Xa Va (VA) (X, 0).

Since

II$( VA, y, O)=

we get

d/( Va, X, t) inf G(v,x,t),
DBN-j

and, as before, we conclude by means of a comparison theorem. M
Remark 3.1. The first and the third member of (1.3) coincide with at =0, but

in general it is not clear whether they are continuous. However, they are anyway
respectively a subsolution and a supersolution of (H-J) in the generalized viscosity
sense of Ishii [11]. This follows from Proposition 2.4 in [11], because they are,
respectively, a supremum and an infimum of solutions of (H-J).

Proof of Corollary 2. We set

(I(XA) A+ Xa U(XA)
and compute the Legendre transforms

((/)A) -A + sup XA (I)A U(XA)
[l

_+ ifv>uor
-A ifui <-vi<--u

_+ ifvAfA,
-A ifvAOA;

if Vnfn,
*(--Vn)

0 if Vnn;
which substituted in (1.3) give immediately (1.6).

,)_(x,) x,,. u(x,,),

for some 1 <- _-<j,

for all 1, , j
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THE ANALYSIS OF A MODEL FOR WAVE MOTION IN A
LIQUID SEMICONDUCTOR: BOUNDARY INTERACTION

AND VARIABLE CONDUCTIVITY*

WILLIAM V. SMITH

Abstract. The theory of conducting fluids in relative motion with small conductivity is studied with a
model including the Maxwell displacement current. The model is linearized, and the interaction of waves
with a plane boundary in three space is studied for two orientations of the external magnetic field. It is
found that two families of boundary conditions preserve energy in one orientation (external field orthogonal
to the boundary), while in the other (external field parallel to the boundary) only one condition exists which
preserves energy. It is shown that generalized Fourier transforms exist, generated from the generalized
eigenfunction expansions. Further, it is shown that surface waves are not supported by this model, indicating
that their presence is unstable when relative motion of the fluid is allowed (surface waves exist in the still
fluid case). Finally, the problem of variable conductivity (decaying to zero at infinity) is studied and
steady-state and time dependent solutions are shown to exist for certain force terms.

Key words, eigenfunction expansions, energy preserving boundaries, variable conductivity, Maxwell’s
equations, magnetofluiddynamics, liquid semiconductor

AMS(MOS) subject classifications. 35L50, 76W05

1. Introduction. The theoretical modeling ofproblems in "magnetofluiddynamics"
is a rich source of interesting and unusual systems of partial differential equations and
corresponding wave motions ILL]. The problem we consider here involves waves of
finite energy in a fluid-like conducting medium which we assume to be a relatively
dense poor conductor and we treat the Maxwell displacement current as significant.
The model (like most in this area) can be said to be "physical" only in a certain range
of the parameters. For example, in the model studied here, frequency must be relatively
high but not high enough to require a particle treatment. (It may also be assumed that
permitivity is high relative to free space.) The problem we study here is also of physical
interest in a true gas where the constitutive equations (see (1.2)) are much simpler,
but we want to examine the fluid case first as, perhaps, a kind of transition state (the
theory of liquid, semiconductors is still in a rather primitive state with few settled issues
[C]). The conductivity appears in only one of the model equations explicitly (see
(1.17)). Our model, at apparent zero conductivity, does not reduce (formally) to the
uncoupled Maxwell equatoins and fluid motion equations. This is because the (finite)
conductivity is implicitly present in the equations containing E’. Mixed frame equations
of this type are useful in studying dissipative nonlinear processes since they remove
terms which are second order in time. It is this fact that makes the model useful to
consider for the undamped behavior of small amplitude waves in a rather dense poor
conductor, as this effect makes it possible to study the essentially dissipative problem
(1.17) as the bounded perturbation of a symmetric problem. Hence the solutions of
(1.17) will be like those of its associated symmetric problem modulo an exponentially
decreasing (with time) factor. Elsewhere IS1], [$2], we have already studied the MHD
fluid case (perfect conductor), and we refer the reader there for a more detailed
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exposition at various points of our treatment here. We note that while this introductory
section is mathematically informal (but rather typical of the theoretical treatments of
the subject) the following sections are completely rigorous in nature and are founded
securely on functional analysis and in particular the Hilbert space theory of differential
equations. However, at the end of this section we shall give a brief summary of the
results contained in this paper, a comparison to related problems and some comments
about the computational difficulties in discussing the differential equations.

The derivation of the problem considered here is founded on Maxwell’s equations.
The properties of the medium are assumed to be enough like those of a fluid that the
continuum approach is reasonably close to reality. We will assume that all fluid velocities
are nonrelativistic, and that acceleration is small in magnitude (compared to the velocity
of light). In order to illustrate the differences between our model and the classical case
of a perfect conductor, we will indicate the contrasting assumptions that lead to these
two models in their respective derivations.

The Maxwell equations in RMKS units are

V D Pe, V B O,

(1.1)
VxE =_m0B VxH j+OD

Ot Ot

which hold in any frame of reference, either the rest frame (with respect to the fluid)
or the laboratory frame. The constitutive equations must be used and these are (in the
laboratory frame):

1
D eoE +eoVx B-- Vx H,

(1.2)
1

B =/zoH-/zoVX D+Z V E.

Here as usual, eo is the electric permitivity (for free space), /Xo the magnetic
permeability, E the electric field, H the magnetic field, B the magnetic flux, and D
the electric flux. We assume a linear isotropic medium so that/Xo and eo are scalar
constants (this can be modified somewhatmsee 4 and 5). c is the speed of light. V
is the fluid velocity. We now assume the electric fields to be of order V x B, that is, of
the order of magnitude of the induced effects. In other words, the induced magnetic
field is much smaller than the externally applied magnetic field. From this it is easily
shown that the magnetic induction is the same in all reference frames. Of course,
because B is the same in all frames of reference does not mean the same is true for
H, but we will see that this is the case under our assumptions on V and the electric
field. Let us write H’ for the rest frame field and H the laboratory frame. By our
Newtonian assumption and the Lorentz transformation,

(1.3) H’=H- Vx(e(E+ VB)-I/c2(VxH)),

so that H H’ is valid if the magnitude of Vetx is << 1 (e/z 1/c2), or in other words,
E is approximated by V B (here we have used B =/zH). For E’ we have

(1.4) E’= E / V B.

E’ must always be considered, since to get H’= H as noted, E and V B must have
the same order of magnitude. We now assume that the period of variation of the fields
is large compared to the mean free time of the conduction electrons and that the
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Larmor frequency is small compared with the mean free time of the conduction
electrons. (In rarefied gases this may break down). This allows the assumption of a
constant conductivity cr ILL] (see 5 below). (We will also assume it is a scalar quantity
to begin with--see the remarks on Pe below.)

In the MHD approximation, the displacement current OD/Ot would be neglected
compared to J, at least when r is significant. (In a dielectric J is virtually zero.) Here
we assume that the displacement current is not trivial (in a true metal, for example,
the displacement current is essentially meaningless, except at frequencies where the
other hypotheses we use begin to break down). In Ohm’s law, Pe (the space charge)
may usually be neglected in a liquid (it must be retained in some gases--we ignore
this); hence we have

(1.S) J--o-E’-l-peV--o-(E+ Vxn)+(VoJ/c2)V.
The second term is small compared to the first (the coefficient of V in the second term
being Pe). Thus we take

J o-(E + V x B).

Now the Maxwell equations become (note that Pe is not present now)

OB
-VxE’+Vx(VxB)-ot,

OD
(1.6) V x H irE’ +--,

ot

Ohm’s law:

The fluid equations are

VoJ=O,

VoB=0,

J o’(E + V x B).

(1.7) nO___+ V pV) 0 (continuity),
Ot

(1.8)

(motion),

with the other terms on the right of the motion equation (E) depending on the
displacement current if it is considered in a fluidnin a gas E is zero (see below). Here
q, is the gravitational potential and z’ is the shear part of the mechanical stress tensor
z. From the Maxwell equations,

(1.9) J B (rE’ x B) -rB x E’

(in the perfect conductor case, we would use the Maxwell equation to get J heremsee
below (1.12)) and so the motion equation becomes

0 V+ V V) V) -VP-pV+V .’- trB x E’(1.10) p\-

(1.11) +(VoV)V =-VP pVtp+Vor’ /zHx(VH)



WAVES IN A SEMICONDUCTOR 355

and replacing -’ by its value in terms of velocity and viscosity,

(1.12)

p --+(VoV)V =-VP-pVd/+pV2H+ +p V(VoV)+#(VxH)xH,

where the second and third equations are the perfect conductor case (OD/Ot--0 and
so J V x H). We write this down because it turns out that (1.10) is correct for the
case of a gas only, while (1.12) is correct for a fluid because it includes the complete
body force (see (1.16) below). Here we have used P for pressure; and sr are,
respectively, the first and second coefficients of viscosity.

In many problems it is useful to make the assumption of infinite conductivity in
order to obtain qualitative information about physical situations, since this assumption
generally allows a much simpler mathematical formulation. An important application
of the concept of infinite conductivity is in high temperature plasma studies, such as
those associated with fusion devices. In interstellar matter, the decay of the magnetic
fields is so slow that infinite conductivity gives a good approximation. In such cases
(where infinite conductivity is assumed) the results differ from physical reality by a
damping term. When the displacement current is neglected, we can combine the two
curl Maxwell equations using Ohm’s law and the divergence equation for B to obtain

(1.13)
OB
Ot

rlV:B + V x V x B),

the so-called magnetic transport equation. Here (1/tr/z) and is called the magnetic
diffusivity by obvious analogy. For cr o we have, formally, that B becomes "frozen
into" the fluid (the transport term vanishes). The neglect of gravitational force and
viscosity together with the appropriate equation of state yields the well-known equations
of magnetohydrodynamics:

OB
-Vx(VxB),

ot

DV
PtD=-a2Vp +(V x H) x H,

(1.14)

VoB=0,

where we have used the convective derivative notation in the second and third equations.
a is the sound speed from the equation of state.

Equations (1.14) are mentioned only for comparison’s sake since the case of
interest here is when tr is relatively small. So, supposing that the displacement current
is significant compared to the conduction current, and if we note the equation for D
given above, that is,

eoE’-- V x H,D
c-

then we have
OE’ 10VxH

(1.15) e=0t V x H trE’ ’- c2- Ot

The essential assumptions made so far are that V is relatively small, external forces
(gravity) may be neglected, and dissipation from viscous effects is small. Now, using
(1.15), and the constitutive expression for D (there is some question as to the proper
form for the body force here but we take the one implied by the Abraham tensor [LL])
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and considering the motion equation with the body force term, assuming no steady D
field, and neglecting space charge effects, we have for the body force density (last
terms in the motion equation)

(1.16)

Now if the permitivity e of the medium is comparable to frequency over conductivity
(in sea water for example, at frequencies above about 200 megacycles), (or else e >> eo),
we may neglect the last term on the left side of (1.16) compared to the others. If the
magnitude of acceleration is small compared to c we can neglect the last term in (1.15)

OE’
eo V x H- rE’,

Ot

OB
-Vx(VxB)-VE’,

Ot

(1.17) DV
p--- -aVp + (V B)

Pp
O,

Dt

VoB=O, VoJ=0.

The reader will notice that formally, (1.17) reduces to (1.1) when V=0 or to (1.14)
when r .

Introducing small disturbances about a steady-state condition and neglecting the
second-order terms, we finally arrive at a form to observe in terms of wave motion
(see (2.1)). It is well known that in the MHD approximation (1.14) (/=0, or
there exist essentially three modes of propagation, namely, Alfven waves, and the slow
and fast magnetosonic waves [LL], [A], [K], etc. The Alfven waves do not involve
acoustic effects but are simply disturbances in the velocity and magnetic fields. As we
will see below, the "Alfven waves" in (1.17) degenerate in the sense that they appear
as disturbances which are like sound waves (the external field is not "frozen into" the
medium) but move more rapidly in the direction of the external field.

It has often been stated that surface wave phenomena are important in the physics
of conducting fluids. But as noted in [A], for example, and shown rigorously in [$2],
(1.14) does not support surface waves. The displacement current term is needed to
generate surface wave phenomena but as we will see, the presence of surface waves is

unstable: Whether conductivity is high (MHD case) or low (the case studied here) surface
waves do not exist when thefluid is in motion. We may say that such surface disturbances
are convected away by thefluid. At zero velocity however, a type I boundaryfor orthogonal
external fields or the boundary for horizontal external field both support surface waves.
These matters are fully explained below.

As to boundary conditions that are appropriate for the system (1.17), these may
be derived from the boundary conditions for Maxwell fields plus the appropriate
conditions on the fluid equations. We remark here that the boundary conditions
discovered in [Scl] are related to those derived here in the case where the external
magnetic field is parallel to the boundary. This might be expected since the derivation
of (1.17) is based on the Maxwell equations. In fact, the boundary conditions in this
case are (taking account of the larger number of variables) the so-called "strange"

0
Jx B+ 0-- (D x B) -- -- (E x H)=Jx

and so finally obtain



WAVES IN A SEMICONDUCTOR 357

boundary conditions of [Scl]. It is perhaps then of some surprise that no surface waves
exist in this configuration. This is the instability just mentioned.

In terms of the confinement of fusion plasmas, a number of simple conditions
have been studied. No matter the shape of the confinement device for a conducting
fluid the boundary problem may frequently be reduced to the consideration of a
half-space [J]. That is, the problem may be studied as though the medium occupies a
volume with a plane boundary, at least locally.

The boundary conditions for (1.17) with o’-0 in a half-space, which are energy
conserving, are particularly useful in the study of the dissipative problem tr > 0. These
are derived in the next section.

We have said that one of the main (negative?) results we prove is the absence of
surface waves for this model. Another is the absence of steady-state motion for low
frequencies. This is proved even for the anisotropic case (see 5). The reader may
consult [$3] and [$4] for a treatment of general systems of the type considered here.

The results given below require very complex computations involving large sym-
bolic matrices and polynomials in several variables. Nearly all of these were carried
out using a combination of certain observations about the structure of the matrices
involved and certain computer-based symbolic algebra routines constructed by the
author as well as those standard packages available from commercial vendors, most
computations being done in MAPLE and MACSYMA and a few in MATHEMATICA.
A frontal attack on the problems leads nowhere, however, and considerable pattern
recognition/reduction is required on the human side. Such techniques are nearly always
very specific to the problem and are of an ad hoc nature. Once required objects were
derived, checking was done by essentially the same methods, i.e., a combination of
human observation and machine interaction. There are several methods of computing
the large eigenprojector matrices used here. But they are based on the following facts.

Suppose A(p) is a real symmetric matrix depending on the parameter(s) p 0.
The spectrum of A(p) is real for all p. A(p) is assumed to have the property that all
its entries are linear combinations of the parameter(s) p. The positive and negative
eigenvalues of A(p) are equal in number and as continuous functions of p may be
enumerated as an ordered list (counting possible multiplicities) as

Ak(p) ->Ak-l(p)>’’" >0(=Ao(p)) ->A-I(P)>’’" ->A-k(p).

The/ks(p) have the two properties
(1) As(ap) a/X(p) for all c > 0,
(2) (-p) -_(p).

The A:(p) are roots of the minimal polynomial for A(p) which has the form

S t.w(r(P)){l 2(p) -- S,(p),2(p)-I -ft. q- S2(p)(p)}.

In case A(p) has constant rank, r(p) (=dimension of A minus the rank of A) and
c(p) are constant. (r(p)=0 or 1 depending on whether A is of full rank or not.) We
need only deal with the constant rank case in our problem. D(p), the discriminate of
S in A is a homogeneous polynomial and hence the set/3 {pID 0} is an algebraic
cone (in n space for some n). /3 is the locus of points p where one or more of the
functions A;(p) coincide (and is a set of Lebesgue measure zero). A;(p) is an analytic
function ofp on R" ]3. The orthogonal projection of C" (A is m x m and m is related
to k in the obvious way) onto the eigenspace for A;(p) is given by

V)(P)

where yj(p)={zllz-Aj(p)]=pj(p)} and the pj(p) are chosen so small that the yj(p)
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do not intersect. The Pj(p) have the properties (p # 0)
(1) Pj (p) is analytic on R" -/3,
(2) P(p)=Pj(ap) for all a>0 and pRn-,
(3) P(-p) P_j(p) for pc Rn-fl,
(4) j Pj(p)= I (the identity matrix),
(5) A(p)Pj(p) h(p)Pj(p).

Each of these facts plays a role in the actual computation of the matrices Pj(p) the
results of which are given in 3 below for a certain A(p) defined by the system of
partial differential equations studied here. The path integral for Pj(p) may be computed
in a number of ways in a given example; the Cauchy integral theorem is an obvious
method of attack. Many of the wave propagation problems of classical physics present
with symbols (A(p)) of a particularly simple and useful form (the nonzero entries are
contained in two nonintersecting submatrices each being the transpose of the other)
[Scl] but the problem we consider here is one of the interesting exceptions to that
rule. Hence the computations are more difficult and resolution of the problem requires
more basic methods, particularly since we need to extend one of the real parameters
p into the complex plane.

2. Boundary conditions. The energy-preserving boundary conditions for the case
of a perfect conductor (1.14), r=, were characterized in [$1] (see also [$2] and
[$5]). The computations are somewhat more complex for the case of (1.17), and since
they are carried out in essentially the same manner as in IS1], we will not give the
complete details. We will nevertheless construct a complete set of boundary conditions.
The divergence equations in (1.17) are contained in the other equations and so will
not be needed here. It may be expected that E is divergence free as well. In fact, by
the Lorentz transformation of E, the divergence of E’ will be related to the divergence
of V (the reader will recall that the space charge was neglected in the derivation of
(1.17)). This requires that V (E’- Vx B) =0. We will discuss this further below (see
(4.18), (4.19)).

Since there is a boundary to consider, the direction of the external magnetic field
may not be trivialized by the choice of a convenient coordinate system. The complica-
tions arising by treatment of general magnitude and direction of the external field
require a great deal of space; we will treat two special cases, namely, external fields
which are either parallel or orthogonal to the boundary plane. Oblique fields may be
considered at a later time, provided a way can be discovered to sufficiently compress
the expressions in a meaningful way.

The linearized version of (1.17) is

OB
-V x (Vx Bo)-V x E’,

Ot

OE’
eo V x H- o’E’,

Ot
(2.1)

OV -aZVp + (V x B) X -lBo,Po Ot

Op
poV V.

Ot

Here, Po is the equilibrium density, Bo (hi, h2, h3) is the external magnetic field, a
is the equilibrium speed of sound, /z is the magnetic permeability, B is the internal
magnetic field, V is the velocity field, and p is the density. If we choose units in which

l2o/Cl3 and h, x/o/x/’po numerically, (these may be nonstandard units for
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these quantities) then a change of variables in (2.1) allows us to take po, eo, a, and/x
as unity, and h or h: 1 depending on which external field we consider. We will
assume this to be the casefrom now on except where it is necessary to record the location
of the external field components, cr has a somewhat different expression, but this is
unimportant for our purposes and we still refer to it with the same notation.

We may then write (2.1) in matrix form (we have rearranged the order of the
equations in (2.1) as indicated by the definition of u below) as

Ou Ou
i Aj+ iKu,
Ot j=l Oxj

(2.2)
K diag (0, 0, 0, 0, 0, 0, 0, tr, o-,

u=(V,B,p,E)’.
The superscipt in (2.2) means transpose and i=V (this is added for later con-
venience), "diag" means the square diagonal matrix with entries as shown and the A
are given by

(2.3) A1

(2.4) A2

(2.5) A

0 0 0 0 -ha -h3 -1 0 0 0

0 0 0 0 hi 0 0 0 0 0

0 0 0 0 0 hi 0 0 0 0

0 0 0 0 0 0 0 0 0 0

-h2 hi 0 0 0 0 0 0 0 1

-h 0 h 0 0 0 0 0 -1 0

-1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -1 0 0 0 0
0 0 0 0 1 0 0 0 0 0

0 0 0 h2 0 0 0 0 0 0

0 0 0 -h 0 -h -1 0 0 0

0 0 0 0 0 h2 0 0 0 0

h2 -hi 0 0 0 0 0 0 0 -1

0 0 0 0 0 0 0 0 0 0

0 -ha h2 0 0 0 0 1 0 0

0 -1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 -1 0 0 0 0 0 0

0 0 0 h 0 0 0 0 0 0
0 0 0 0 h 0 0 0 0 0
0 0 0 -h -h2 0 --1 0 0 0

h3 0 -hi 0 0 0 0 0 1 0

0 h -h2 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
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We write Dj for -iO/Oxj and D (D1, De, D3). For the right-hand side of (2.2) (taking
K =0), we write A(D). As we noted above, we will consider the case of a half-space
where the vector Bo is given by either (0, 0, h3) or (0, h_, 0). When it is necessary to
distinguish between these two cases, we will do so by using a superscript as A3(D)
and A2(D). By n, we mean the inward unit normal vector to OG (=boundary of G),
where G is some domain in 3. From here on, G =3/ {xlx (xa, x2, x3), x3 > 0}.

DEFINITION 2.1 [LP]. A subspace ow(n) ofE is a maximal conservative boundary
space for A(D) in G if and only if " A()" 0 for all " in 5(n) and 5(n) is maximal
with respect to this property.

To proceed further, it is necessary to consider the eigenvalues of the symbol of
A(D). These are the solutions to the equation det(A(p)-AI)=O, where p=
(Pl, P2, P3)E [3\{0} (the plane wave speeds). They are given by (for A3):

(2.6)

3Ao(P) 0 (multiplicity 4),

3h+(p)=+(2p+lnl)’/ (each with multiplicity 1),

+(-(P(P3 +6lnl2) + 51 hi4) 1/2 -k- 3(p q-[ n]2)) 1/2

3/+2(p) W/

3A+/-3(p
+/-((p(p + 61hi =) + 51 n 14) 1/2 + 3(p q-I n I=)) ’/

(each with multiplicity 1 for almost all p). Here we have used the notation Inl
(p+p)/2 and in (2.7), Inl=(p+p)/2. For a2,

(2.7)
2Ao(P) 0 (multiplicity 4),

2A+(p) +(Inal 2 + 2p2) /2,

and similarly for the rest, exchanging P2 and P3, n and nl in (2.6). For future reference,
we record the following" (cf. (3.24) and also (3.33))

03A+ 27"

07" 3A+1

(2.6a) 03A+2-1 ( 27.(7.2 + 61n12) + 27.3)
07.- 23A+/-2

03/ +/-3 1 (27.(7.2+61n12) +27. )7"2 7"2 1/2 + 37"
07" 23A+/- +61nl2)+ 51?]14)

with the expressions for 2h+/-j obtained in a similar fashion. The multiplicity of the
second and third eigenvalues in (2.6) may change for p of certain direction and
magnitude (p (0, 0, +1)). This is important for the application of Lemma 2.2 below.
We will refer to ih+/-l (2.6), (2.7) as the quasi-Alfven wave speeds since the constant
speed surfaces of these waves have the same relation to the electromagnetosonic
constant speed surfaces as do Alfven waves for the MHD slow and fast magnetosonic
waves (i.e., roughly speaking, first the fast wave arrives, then the Alfven wave, and
finally the slow wave; in the direction of the external field, the Alfven wave may arrive
at the same time as either the slow or fast wave depending upon certain relationships
of the parameters (see [CH]).

It is evident from (2.6), (2.7) that A(D) is strongly propagative [Wi]. It is instructive
to compare this with the MHD case [$2]. For MHD there are (almost everywhere)
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three nonzero plane wave speeds, and they are given (using the notation above) by

3Ao-- 0,

3A+/-l +/-P3,
(2.8)

3/+/-2 +(Ipl= Inl ]pl)/,

3/=3 +(Ipl2 + Inl Ipl) /2,
and

:A+I +/-P2,
(2.9)

2A+2 +/-(Ip[2--lnl[[pl) 1/2,

2A3 +/-(Ip]2+]nl]lpl) 1/:.

Here, if p is ohogonal to Bo (=(0, 0, 1) or (0, 1, 0) in (2.8) or (2.9), respectively), then
A,2 vanish. A,2 are the Alfven and slow magnetosonic wave speeds, respectively
[CH]. It is instructive to consider the slow magnetosonic speed profile (see Fig. 1)
(the normal surface or "slowness surface" [CH], [Wi]) compared to the electromagneto-
sonic profiles of (2.1) (see Figs. 2, 3, and the grids in these figures are the same
relative size). These are just the unit level surfaces of the functions A(p) in p space--in
Figs. 2-4, the plane is the PiP2 plane, 3. From Fig. 1 we see the constant speed
(normal) surface for the slow magnetosonic wave. It is unbounded (it tends to the
direction of the Alfven wave surface (a plane) to which it is parallel at ), while that
for the slow electromagnetosonic wave (Fig. 2) is roughly inverse to that of Fig. 1; it
is bounded. The quasi-Alfven surface is caught between the slow and fast surfaces just
as for MHD (see the illustrations on page 615 of [CH] for a two-dimensional cross

FG.
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FIG. 2

FIG. 3

FIG. 4

section for MHD). In our choice of units and external field intensity, the quasi-Alfven
surface meets the fast wave surface at the external magnetic axis (vertical in all figures)
and is disjoint from the slow wave surface.

By the positive and negative eigenvectors we mean those corresponding to the
positive and negative eigenvalues, respectively. Their number depends on Bo.

LEMMA 2.2 [Scl]. Let V’(A(n)), (n), (n) denote, respectively, the null space of
A(), the subspace spanned by the positive eigenvectors ofA(), and the subspace spanned
by the negative eigenvectors ofA(n). Let j be any orthonormal base of ag’(A(n)). Let j
be any base of T(n) that is orthonormal with respect to A(), i.e., i A()j 6ij, and
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*1j be any base of () orthonormal with respect to -A() (j as for g()). Suppose
5e3’2() is the subspace of RI spanned by (, + .1 (all j)}. Then 53’2() is a maximal
conservative boundary space for A(D) and any such boundary space may be constructed
in this way.

The lemma is obvious when the eigenvalues ofA() (--A3, see (2.5)) are computed.
(Recall that (0, 0, 1).)

To classify such spaces, we proceed as in [$1] and [$5]. Consider any basis of
ff) 0, say for A3. We have :1, :2, :3 and .11, .1, .13 with AI--:I, A--:, A3-:3,
etc. Let e21, e22, e31, el, e2_2, e31 be any such fixed basis. Then we have

(2.10)

*1i--dilel_2+di2e2_2 (i= 1,2),

’13 d3e3-1,

i=cile+ci2e2 (i= 1,2),

c e l,

In order that the orthonormality conditions be satisfied, it must be that Oil Cjl + Ci2q2 ij,
and thus the matrix [ci] must be orthogonal and the same is true of [di]. The constants
d3 and Ca must have the value 1. Thus by letting C [c] and D= [d] run through
all possible such matrices, we obtain all possible orientations of the boundary spaces
associated with A3. This allows us to compute operators whose kernels identify the
boundary spaces for A (and by a similar process, for A). For the details, we refer
the reader to [$1] and [Scl]. In any case, the boundary operators obtained by this
process for A consist of two one-parameter families which can be written (here we
include the effect of the external field intensity) as

(2.11)

h3A -h 0 0 0 0 0

Gl.,X 0 0 0 1 A 0 0

0 0 0 0 0 0 1

haA 0 0 0 -1 0 0

G2,x 0 haA 0 1 0 0 0

0 0 0 0 0 0 1

10 0 0

0 0 0

0 A O"1-A 00.

0 0 0

One thing which is immediately apparent from (2.1 1) is that for orthogonal external
magnetic fields, the fluid density must vanish at the boundary, if the energy is confined
to a half space. This has been proposed in the physical literature, see [A] for example.
This fact is in contrast to the orthogonal field case in MHD, where the component of
velocity orthogonal to the boundary must vanish ([$1] or [$2]) (nothing is required
of the density) and the boundary conditions do not depend on the field intensity. GI,
couples the velocity and electric fields at the boundary while G. couples all three
fields. Neither condition requires anything from the induced field components
orthogonal to the boundary.

For the case of the parallel external field, there is but a single boundary condition
for which energy is preserved, and it does not depend on the external field intensity.
The boundary condition is

0 0 0 0 1 0 0 0 0 0

(2.12) G2--0 0 0 0 0 0 1 0 0 0.

0 0 0 0 0 0 0 0 1 0
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Once again we see that the density must vanish at the boundary. The reader should
compare (1.7) with the "strange" boundary condition of [Sc2] to see that they are the
same, modulo the density term. Again there is no condition on the velocity field, while
the magnetic and electric field components in the direction of the external field must
vanish at the boundary. The parallel field case in MHD also gives a single energy-
preserving boundary condition but there the boundary condition depends on the
external field intensity. However (see [$2]), in MHD the density and induced field
component in the direction of the external field are coupled at the boundary (h2H2 + r
0 at x3 0). Thus in the MHD case, if the density does vanish at the boundary, so also
must H2, which is reminiscent of G2. One other comparison between MHD and the
present system should be noted: the modes are uncoupled in the parallel case for
MHD (an incident slow wave generates only a slow wave, etc. [$2, Thm. 3.6], and
they are here, too.

DEFINITION 2.3. The operators A3’2 in L2(R2 [+, cl)__ with their associated
boundary spaces 53’2 are defined with domains:

D(Aa’2)={ulu, A3"2u are in and Gi,au or Gu=O if x3=0 (i= 1 or 2)}.

The proof of self-adjointness is essentially the same as in Theorem 3.1 of [Sc2]
and will not be repeated here. We note the following, which may be proved in a manner
similar to that of [Scl].

THEOREM 2.4. If u is in (A)W(A)+/-, then the D3 derivative of u lies in
L2(+, o--1) where --1 is the usual Sobolev space, u(., O) is in in the o--1/2 sense
and there exists a sequence

{u} ’(2 x +, C’) Fl C([2 x (R+\{0}), C’) Fl (A) Fl dV’(A)"

such that Uk(Xl, X2, O) is in 5 (with either orientation), uk(’, 0)- u(., 0) in 3-1/2, and
Uk--> U in graph norm.

3. Resolvent kernels. The analysis here is based on Stone’s theorem for the con-
struction of the spectral family of a self-adjoint operator A in a Hilbert space Y( with
inner product (,). Let R(A) (A- AI) -1 (the resolvent of A) and let E(A) be the (right
continuous) spectral family of A. Then for (a, b) a finite interval and for f, g in ,

((E(b)+ E(b-))f (E(a)+ E(a-))f
2

g

(3.1)

j-b dk
lim ((R(k + ie)- R(k- ie))f, g)

27ri"e-O

Using the well-known relations (* signifies adjoint operator),

R*(A) g(),
(3.2)

R(A1)- R(A2) (A1- AE)R(A1)R(A).
Using the second equation of (3.2), the integral of the right-hand side of (3.1) may be
rewritten as

(3.3) lim (R(k- ie)f, R(k- ie)g) dk(e/ r).
O

Taking f=g and using the first equation of (3.2) we have

(3.4) ((E(b)+2E(b-)) f_(E(a)+2E(a-)) f, lim e__ IR (k ie)fl 2 dk
e-0 71"
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with I’[ representing the norm in Y(. Equation (3.4) gives (2.1) upon polarization.
Therefore, we seek to compute (3.4) for A and A2. When it is not necessary to
distinguish these operators we simply write A.

We will need the Fourier transform. On 5(Rn, Cm), the space of smooth, rapidly
decreasing Cm-valued functions on Rn, the Fourier transform is defined (x y y xiyi)
as."

(3.5) nf(P) (2r)-n/2 fR" e-’XPf(x) dx

with cI) 1 ,. defined by

(3.6) (lf)(p) (nf)(_p).

is an isomorphism on 5 which extends by duality to 5’ the continuous dual of 5
and by continuity to L2(E ", C) (see [R], for example). We will employ the notation

for L2(3+, C7). Now, using Parseval’s formula in the case of (I) (3.4) may be
written (here and below, Xe is the characteristic function of the set c) as

(3.7) lim __e 13(’R3+R(/- i)f)l de
e-.0 7r

(3.8) lim 1(3XR3+R(k-i)/)(p)l dkdp.
e__0

We first wish to obtain

E
(3.9) (PaXa3R(k ie)f)(p)

in a form which can be studied as e-*0+. To this end, we need to compute the
"resolvent kernel" of R(A). This is a function R(x, y; z) such that for f in

(3.10) g(z)f(x) f g(x, y; z)f(y) dy.

The idea is to seek R(x, y; z) in the form

(3.11) (x-y;z)-F(x,y;z),

where g;(x-y; z) is a solution in ow’ of

(3.12) (A(D) zI) g(x; z) t(x)Ilolo,

and F satisfies the three conditions:

(3.13)

(3.14)

(3.15)

(A(D)-zI)F(x, y; z)=0, x, yeN3+ (differentiation on x),

al,j f(Xl, X2, O, y; z) Gi,j (x y; z)lx=o y e N3+,

F(x, y; z)f(y) dy is in for f in .
Let us define A(p) to be Ajp for all nonzero p in 3. Then it is clear from our
definition of (I) that in

(3.16) (’; z) (2"rr)-3/zo*3(A(p) zi)-1(I)3
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Taking the Fourier transform 2 (on (Xl, X2) of (3.13) and (3.14) results in a first-order
initial value problem in x3. To solve this, it is necessary to compute 2G,,j (x-
y; z)[x3=o. It is evident that we will need (x-y; Z)lx3=o explicitly. In 0’ this means
the evaluation of the integral (im (z) 0) (which may be regarded as a member of
or it may be computed in the usual way, by insertion of an appropriate exponential
factor e-P3X(o,)(p3), for example, then letting e-0)

(3.17) (2r)-2 e-iy’" f-o e-iy’P[A(n’ P3)-- Z]-I dp3’

where we have used the notation n (Pl, P2), Y’= (Yl, Y). This will be done by means
of the residue theorem through deforming the integration into the lower half plane. It
is therefore necessary to consider the integrand as being extended as a function of P3
into C; n, z are not zero.

We write r P3 -- ia. We must consider the zeros of

(3.18) det ([A(n, z)- z])

in z. These occur in the upper and lower half plane at values z+, respectively. We
consider the cases A A and A A2 separately now. The roots of det (A(p) AI) are
given by (2.6), (2.7) above.

For i-2,3 and j=0, 1,2,3 let iP+j(P) be the associated eigenprojectors on C1

of Ai(p). By the spectral theorem,

(3.19) [Ai(p)- z]-’= Y (,hy(p)- z)-’iPj(p).
j=--3

We wish to extend (in single-valued fashion) ihj(n, p3) to h(n, r) and likewise
iP(n, p3) to iP(n, ’) so that (3.19) remains valid, with all poles determined by the
coefficients (ih(n, r)-z)-1. For h+/-, iA+/-2 and A+/-3 we will make branchcuts in the z

plane (see Fig. 5) along the intervals [(-i,-i.,/(2p+p])), (i/(2p+p),i)],
[(-i,-ix/(2p+p21)), (ix/(2p2+p), i)], [(-io,-in), (in, i)], respectively, for A
and [(-io,-in/x/), (in/x/,i)], [(-io,-in/x/), (in/x/,i)], [(-io,-in),
(in, io)], respectively, for A3.

r-plane branch cuts

FIG. 5. r-plane branchcuts.

real axis
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The (r) zeros of iAj(n, r)-z in the plane are given by

2’/’+1 +(z2-(2p22+p)) 1/2,
((5za-6p22z2 +p42)/2 + 3z2- 3p22- 2p2) 1/2

27’+2 .+.

(--(54 6pz +p)1/2 _[_ 3 22 3p 2p)1/2
2,’/’+/-3 -1-

-i-- (Z2 12) 1/2

((Z4+ 6r/2Z2 + r14)l/2+3z2--312)l/2
(3.21) 3’r+2 2

3T:
(-(z4+ 6n222 + ?14)1/2 + 3 z2 3 n2) l/2

Here branchcuts are made for (3.20) (A2) on the intervals

[(-oo,-/(2p22+p2)), (/(2p+p2), oo)],

[( --3n2--(9n4--4pn2)1/2)1/2) ( (3n:z-(9n4-4pn2)1/:z)1/2-’ 4

[(-, (3n2+ (9na- 4pn2) a/2) 1/2)(3.22)

((3--(94--4p)1/,1/

((3 + (94 4p)l/)l/

respectively, and for (3.21) (A3) we make the branchcuts (see Fig. 6)

[(-m, -n), (n, )]

(3.23) [(-’-(3)/n)’ ((a)’/n’)]

It is easily verified that im (r)> 0. Using the residue theorem, we obtain for
(3.17) the expression (see Fig. 7)"

(3.24) -(2i)
j=l

where the expression c is determined by l’Hopital’s rule as the reciprocal of

0
iTj

The matrices (n,-, z) are obtained from (3.19) by substitution of for P3.
They are given here (note that in 2P2 and 2P3, al s-z, a2 SE-2Z, a3 s- 3z2,
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FIG. 6. z-plane branchcuts (center cut used only for ’3)"

Trivial contour of integration
in lower half-plane

r-plane

real axis

distance "e" apart
let e go to zero. after, computing
ntegral by
residue theorem

FIG. 7

b,= S3--Z2, b2 s213- 2z2, b3 s3-3z2, so 2h,(,zj) and in 3P2, 3P3, al- n2-[ 3"/’ -Z2,
a2 23z+ n--2z, bl zZ-3r- n, bz= 2Z-22z- nZ, the functions fj are normaliz-
ation factors)(see Figs. 8-10).

We are able to write down the resolvent kernel now. First, we note that in the
solution of (3.13), (3.14) we have

-1
d.,F n, x3 y, z)

2"a’i
e y,o ., e ’X , ,c ,P ,1VI

j=l

where the matrices iM are selected so that (3.14) is satisfied. Generally there are many
possible choices for the iMp. The idea is to select the simplest among these for each
of the boundary conditions. The M are functions of z, t, n and are bounded except
near points z where the so-called Lopatinski determinant vanishes. These (real) points
yield the speeds of any surface waves. We discuss this further in the next section. We
note that for h3 1 or h2 # 1, the development above is completely parallel except for
the explicit formulas of the cj and P.

DEFINITION. For kj 0, let /3 be the set of points in p space where any h
coincides with another ihk. It is easy to see that this is a set of measure zero in p space.
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We may now write down @3XR3+R(p, y, z) by applying (I) in x to (3.31), using
(3.11) to get

eiy33"
(27r) -3/2 e-iY’n(e-iY3P3[A3(p)- zI] -1 +j=IE (3 +P3) 3c 3(n, -3r, z))

(3.32)
+2 e-iy’n 2 3(n, 3j, z)3

j=l 3 --P3/

with a completely analogous expression for A2. Here it is helpful to note that the
functions c are not singular. For later reference we also note the facts:

(i) lim ,(p’, z): klP31, k: 1,
ziAkj(p)iO

(3.33
(ii) lim ,5 P’, z kl p3l, j.

ziAkl(p)iO

4. Eigenfunction expansions. In the computation of the spectral families of the
various operators A[ arising from the different combinations of external fields and
boundary conditions, the (first-order) singularities of the resolvent kernel give rise to
the terms of the spectral family. These singularities include the eigenvalues A but may
also include singularities of the matrices i. The singularities of the are the surface
wave speeds and may be computed directly from (3.14). This reduces to the search
for real zeros (in z) of the Lopatinski determinant [Wa]. This is defined as follows.
DEFIO 4.1 (A3). The Lopatinski determinant is the family of determinants

det [G3P, G3P, G3P]. A number s(n, z) is a zero of the Lopatinski determinant if
it is a zero for each member of the above family. Here, G is fixed to be one of the A
boundary conditions (2.11) and G3P{ is the jth column of G3P. The definition for
A is entirely similar.

THEOREM 4.2. e Lopatinski determinant has no real zeros for either m or A,
and hence neither of these supports surface waves.

The proof is rather tedious but is just a matter of finding one of each family of
determinants that has no real zeros. We give the computation for A as an example.
The matrices G2, j 1, 2, 3, respectively, are given as in Fig. 11. The Lopatinski
determinant is seen to be essentially a+ b2. This has no real zeros. In fact, we may
give (up to a nice scalar factor determined by (3.14) and (3.31)) the matrices ,
j 1, 2, 3 (respectively) as

diag (-1, a, 1, -1, a, 1, a, 1, 1, -1),

(4.1) diag (1, 1,-1, 1, 1, -1, 1, -1, a, 1),

diag (1, 1, -1, 1, 1, -1, 1, -1, a, 1),

where "a" means the entry is arbitrary. Combining this with the fact that (1.17) reduces
to the Maxwell equations when V 0, and results of [Sc2] together with the remarks
above (cf. (2.11)) we have the following corollary.

COROLLARY 4.3. epresence ofsurface waves is unstable in a liquid semiconductor
modeled by (1.17) for either parallel or orthogonal external fields.

DEFIIIO 4.4.

(4.) ,67 (,x(p)- z*)xx,(p)*3x:R(p, y, z*),

(4.3) i(P, z)= [ iOn(P, Y, z)f(y) dy,
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where f is smooth and has bounded support.
Set k=+l and

(4.4) iq’k(P, Y)= lim iq’(P, Y, z)
iAkj( p)+ iO

(4.5)
(27r)-3/2XR3\t(P)Xa-k(P3)iP(P)
x {e*YPI-M(n, hg(p)- iO, Y3) e-iy’"}-

LEMMA 4.5. Iff is smooth and has compact support, then

(4.6) if+/-j(p) lim ^(p, z)= fa q,*.j(p, y)f(y) dy
ih+/-j(p)+iO

jf
3+

defines a function which is smooth and rapidly decreasing almost everywhere.
Proof. Equations (4.2) and (4.5) show that the function on the left-hand side of

(4.3) in this case converges by the definition of M and the dominated convergence
theorem as indicated. The fact that the Fourier transform of f is smooth and rapidly
decreasing together with (4.5) gives the result.

Most of the results in this section are essentially independent of external field
direction, at least in their statements. So that the notation does not become unwieldy,
we will omit the front subscript from most expressions. The generalized Fourier
transforms are defined by (4.6). These will also be denoted by expression . Whether
the ordinary or generalized transform is meant should be clear from the context.

LEMMA 4.6.

lim __e [3X3+R(k-ie)f(p)[2 dkdp
O 7r

(4.7)

lim e__ IdXRR k ie )f( p)l dk dp.
3+ eO

There is no problem in switching the order of integration for positive e, since the
integrand is continuous in k and measurable in p and nonnegative. The proof of this
lemma is tedious but straightforward.

THEOREM 4.7.

(4.8) lim __e l3Xa+R(k-ie)f(p)]2 dk= Z x()(.,)(p)l(p)l
e-0 7/" j0

for all f in the orthogonal complement of the null space ofAi.
THEOREM 4.8. The modes ofpropagation are uncoupledfor A andfor A with type

II boundary at h . For A with type II boundary at h O, the quasi-Alfven mode is

uncoupled.
Proof of Theorem 4.7. We apply the classical elementary fact:

(4.9) lim
e f(x)

_.o 7r (k x)2 + e 2 dk X(,b)(x)f(x)

for any continuous f
For p /3, and 6 small, the sets

(4.10) A (a, b) Vl (Aj(p)- 6, A(p)+ 6)
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are pairwise disjoint. Making the appropriate substitution for f above, we have
(z*- k- ie)

(4.11) lim
1 Ia e

_,o+--- (Aj(p)_k)2+e21(Aj(p)-z*)3xRa+R(k-ie)f(p)l2 dk

from which the result follows.

Proof of Theorem 4.8. Here we must use (3.14) to obtain the equations for M as
follows:

(4.12) G(e’Y35c(-)PJ( n, -q), z)-c.iP(n, "0, z)M) 0.
j=l

Now from (4.5) it follows that one mode is uncoupled from the others when M can
be found for that j so that

(4.13) G(eiy35cj(-7"j)Pj(n,-73, z)-cP(n, "0, z)M) 0.

The result for A2 now follows from (4.1) and for A3, A ---o0,

diag (1, 1, a,-1, -1, a, a, 1, 1, -1),

(4.14) diag (1, 1,-1,-1,-1, 1, 1, 1, 1, a),

diag (1, 1, -1, -1, -1, 1, 1, 1, 1, a),

and for h 0 for

(4.15) diag (-1,-1, 1, 1, a, a,-1,-1, 1).

To check that coupling occurs for the other boundary conditions is a straightfor-
ward computation and is omitted.

In order to continue, we must define the null spaces associated with the operators
A2 and A3. These null spaces are determined, respectively, by the sums oftwo collections
of orthoprojectors given by the pseudodifferential operator kernels

1
(4.16) 2Pol =- (0, O, O, Pl, P, P3, O, O, O, O) @ (0, O, O, Pl, P2, P3, O, O, O, 0),

1
(4.17) Po2 -5 (0, O, O, O, O, O, O, Pl, P, p3) (R) (0, O, O, O, O, O, O, PlP, P3),

2Po3 m3@:zm3

2P04 2m4() 2m4,

(4.18)

(4.19)

where

(4.20) m3=(-pp2P3, p2plP3 O, O, O, O, O, PlPEP, p2p, _n2pp3)/(2Alplp31n),

(4.21) 2m4 (--p21P3 --PlP2P3, ?12pl, 0, 0, 0, 0, --plp2, PP2, O)/(2Alnlpll),

and for A

(4.22)

(4.23)

(4.24)

(4.25)

3Pol 2Pol

3P02 2P02

3m (_p2p2, p2pl O, O, O, O, O, PlP, PP], --n2p3)/(3AlgtP),

4m4 (--PP3, --PlP2P3, npl, O, O, O, O,--PlP2P3, PlP3, O)N(3AlnIpl]),
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From this we see that the usual Maxwell divergence equations continue to hold for B
and E’ for both A2 and A3. The other two auxiliary conditions are more complex,
relating E’ and V.

Defining 2Po 2Pol / _Po2/ 2P03 / 2P04 and similarly for 3Po, we obtain the following
result.

THEOREM 4.9. If g, h (I Po) Y( then

(4.26) (E(I)g, h)= I X(;tj(p)ei)(p)ff,j(p)*fj(p) dp,
j0 ]13

where E is the spectral family for A and I is any subinterval of R.
Proof. This follows from (4.9) and the polarization identity. (See Lemma 4.5 for

the notation ^.) We can define the generalized transforms now.
DEFINITION 4.10. For g 9(R3+) define

(4.27) jg(p)=,j(p)

and by Theorem 4.9 extend to all of . The adjoints of the maps j are given by

(4.28) rb’ff(x) Ia q*(p, x)f(p) dp.

This follows easily for functions in 9 by definition and the general case follows by
-,A’. TO check thatextension. The maps j yield the reduction of the unitary groups e

they are orthogonal in the sense that the range of is in the null space of j, k j,
suppose f is smooth and rapidly decreasing. Then the expression

rbjf(r) l (x, r)f(x) dx
3+

(4.29)
P

(2zr)-a/:xa\X(r3)P(r) | {e-XI- M(r) e-’’’}f(x) dx

makes sense pointwise and further (here we have assumed j, k > 0),

k*g(x) 3 k**(X, s)g(s) ds

(4.30)

(2rr) -3/2 Ju Xn_(s3)xu3\(s){eiXSI ei"’*’M*k(S)Pk(S)g(s) as

is a smooth rapidly decreasing function if g is, and if g vanishes in a neighborhood
of fl for a fixed p on a neighborhood of the set of s such that ak(S)= aj(p). If F
satisfies this condition, then g(s)= F(s)/(aj(p)-ak(S)) also satisfies the same con-
dition.

Let 91 {re 9(3, C7)[flCIsupp(f)=fg}. Fix Fl and peN3, and set g(s) as
above; g e 91. Then @k*g is smooth, rapidly decreasing, and satisfies the boundary
conditions and so is in the domain of A, and AdP*kg =@*kak(’)g. Hence @jAP*kg
@j@k*ak(" )g. But also dPjAdP*kg aj(p)@j@’g(p). Subtracting, we obtain dP;@*kF(p)=
0. Since p is arbitrary and 91 is dense, this proves the required relation.

It follows from the preceding that the maps [@ i@j] are projections on .
In a similar way, we may show the spectral representation

(4.31) e-itAf idP;*. e-ilpltidPjf.
j#o
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The theory of potential scattering in a half-space may be studied for the operators
Ai. We will not do this here. The interested reader may consult Theorems 3.8-3.10 of
[$2], where this was done in the perfect conductor case. The method is entirely similar
for the present problem. Instead, we take up the problem of when cr=tr(x), or
tr- tr(t, x) is nonzero but decays at infinity in an appropriate sense. The case of tr

that do not decay will be studied elsewhere.

5. Variable conductivity. We now wish to consider the problem of nonvanishing
conductivity which may vary in space and/or time. First we consider the spatial
variation only. We allow for possible anisotropy of the medium.

Assumption. Let or(x) be any two-tensor of dimension 3 whose components trij
(i, j 1, 2, 3) are almost everywhere uniformly bounded and satisfy the condition

(5.1) I o(x)l<0(Ixl as Ixl-  
for some e > 0.

We wish to study the operator determined by the right-hand side of (2.2) but
where B= i[tr0]. We write A(D, x)u=A(D)u+B(x)u, where A(D) is given by the
first terms on the right side of (2.2). It is easily established that A(D, x) is maximal
dissipative in L2(3, cl). We will show that steady-state solutions of

Ou
(5.2) -i--=A(D,x)u

Ot

exist in certain weighted spaces when the initial disturbance lies in the dual of the
given weighted space. The interesting concept of "spectral barrier" arises here (see
the appendix of [$3]).

We define the weighted spaces L2,,(3, C 10) as

L2,,(3, C)--{f I3 (l nt-lxl2)lf(x)12 dx < oo, f "N3 cl}.
It is noted here that the Aj satisfy the "strongly propagative" hypothesis (A is either
bounded away from zero or is identically zerosee [Wi]).

The steady-state form of (5.2) at frequency A is given by

(5.3) A(D)u + B(x)u Au f,

where f is assumed to belong to L2, with a > and u is sought in a space L2,_/3 fl > 1/2.
Note that L2,_

_
L2_ L2,. Note that B, considered as a multiplication operator, maps

L2,_/3 to L2,, if a and/3 are sufficiently close to 1/2 (we will assume they are from now
on). We will use the notation C+- {z C +imaginary part of z > 0}. Without loss of
generality, we may assume A(D) An(D) by choice ofcoordinates since we are working
in all of R3. Let P1 1-3Po, Po 3Po in L. Assume A C and operate on both sides
of (5.2) with (A(D)-AI)-1 in the sense of L. This makes sense because A(D) is
self-adjoint. From (2.9) of [We] we may conclude that PI(A(D)-AI)-1, thought of
as mapping L2,c to L2,_/3 is continuous in C +/- and has continuous extensions PI(A(D)-
AI): to the closure of C+ or C- (i.e., down to or up to the real axis), that assume
compact values as operators from L, to L,_. Po has a bounded extension to L2,_.
We may "solve" for u now when A is real as

u+/-(x, A)=(I-Po(B/A)+API(A(D)-AI)I(B/A))-I(A(D)-AI)-l f.
The Fredholm theory (see [$4], for example) now allows us to say u+/- exists (in L2,_)
when ]AI is sufficiently large. (There may be some other exceptional values of A besides
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the "small" values for which a solution fails to existmthese form a countable nowhere
dense set of linear measure zero [$4].) The difficulty for small h is that the operator
(I- Po(B/A))-I may not exist. In fact, using the explicit formula for Po given above,
it is possible to construct examples exhibiting this difficulty, u+/- exists provided h does
not belong to the set of exceptional values or to the spectrum of PoB (the spectrum
of PoB is the "spectral barrier."

For or= or(t, x), a similar technique can be employed. We quote the following
result from [$3, Thm. 4.2], adapted to the present situation.

THEOREM 5.1. Suppose B( t, x) is measurable in t, x) and B( t, x) is a continuous
map from to the set of bounded operators on L2. If [B(t,x)[<=C(l+lt[ -1- (e>0)
then for anyf(t,x) in the space L2,(, L2(R3, cl))(a >1/2) there is a solution u(t,x) of

Ou
-i----A(D,x)u+f(t,x)

Ot

in the space L2,_ (, L2([3, C lo)).
In fact, since the medium is a semiconductor, we may assume that C in the

statement of Theorem 5.1 is small. In that case, the continuity hypothesis on B may
be discarded (see Theorem 4.1 of [$3]).
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QUALITATIVE THEORY OF THE CAUCHY PROBLEM FOR A ONE-STEP
REACTION MODEL ON BOUNDED DOMAINS*

JOEL D. AVRIN?

Abstract. A system of reaction-diffusion equations on a bounded domain arising as a model of laminar
flames in a premixed reactive gas is considered. The equations couple the temperature T and the concentration
Y subject to Arrhenius kinetics. After establishing the existence of unique global strong solutions for arbitrary
nonnegative initial data in Lp, the bulk of the paper is devoted to an examination of the qualitative behavior
of solutions subject to various boundary conditions, showing in particular that both T and Y remain
bounded in most of the cases discussed.

In the no-flux case in which both T and Y satisfy zero Neumann boundary conditions, it is shown
that if the average of the initial temperature over the domain is larger than ignition temperature, then
eventually T is uniformly above ignition temperature and Y eventually decays exponentially to zero. This
situation is called complete asymptotic burning, and an example is given to show that it does not always
occur if the averaging condition is not met; if Q is the chemical heat release it is in fact shown in the case
of equal diffusion coefficients that there exist parameters Q* and Q, with Q,_<-Q* such that complete
asymptotic burning or eventual flame quenching occurs if, respectively, Q> Q* or Q < Q,. In this case
convergence to constant steady states is also established if Q > Q* or Q < Q,.

For T satisfying fixed Dirichlet boundary conditions an example of complete asymptotic burning, and
an example of flame quenching in at least portions of the domain are constructed. When Y satisfies fixed
Dirichlet boundary condtions, cases are constructed where Y is bounded away from zero in portions of the
domain if a certain parameter appearing in the Arrenius rate law is small enough.

Key words, laminar flames, boundary conditions, complete asymptotic burning, flame quenching
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1. Introduction. For the one-step reaction A-> B, let Y Y(x, t) denote the con-
centration of A and let T T(x, t) denote the temperature, where for a spatial domain
12 and time we have (x, t) 12 +. The following reaction-diffusion equations model
the dynamic interaction of T and Y subject to first-order Arrhenius kinetics:

(1.1a) Tt doA T+ QYf( T),

(1.1b) Yt dl A Y- Yf(T).

Here do, dl, and Q are positive constants, with do and dl representing the thermal
and mass diffusivities, respectively, while Q is proportional to the chemical heat release.
For positive constants B and E, f(T) is given by the usual Arrhenius rate law

1.2) f(T) {0, T T,,
B exp (-El(T- T/)), T> TI

where the nonnegative constant TI represents the ignition temperature. Here B is the
preexponential factor and E is proportional to the activation energy. For a physical
background of these equations, see Williams [22].

With f as in (1.2), the system (1.1) has appeared in a variety of contexts. For the
case 12 , traveling wave solutions have been studied as models of propagating flame
fronts. Existence of traveling wave solutions was established in [5] for T > 0 (for the
case T =0, see [13], [14], [20]). It is interesting to note that for Lewis number L= dl/do
far from one, these solutions are known to be unstable. This fact was shown by formal

* Received by the editors July 5, 1989; accepted for publication (in revised form) April 11, 1990.
? Department of Mathematics, University of North Carolina, Charlotte, North Carolina 28223.
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asymptotics in [18] and [6], and a rigorous proof has recently been found [21].
Meanwhile the solutions have been shown to be stable for L close to one [18], [6].
As traveling wave solutions are not stable in all cases, it is worthwhile to consider the
Cauchy problem for (1.1) on l-I with arbitrary initial data. Basic qualitative theory
is obtained for the Cauchy problem for wide classes of initial data in [4], [12], and
[17] with some overlap of results (see, e.g., 2-5 of [4] and 2 of [17]).

Additional qualitative theory is developed in 6 and 7 of [4], in which the
important case of ignition at one end only is treated. It is shown in 6 of [4] that if
the average of the initial temperature values at + and -o is above ignition tem-
perature, then on any ray coming from the ignition end the temperature is eventually
uniformly above ignition temperature and the concentration decays uniformly to zero.
As this ray can be continually enlarged by making large enough, a rough sense of
flame propagation is thus obtained. If the "averaging condition" on the initial tem-
perature is not met, examples of both flame propagation or flame quenching can be
constructed (see 7 of [4]).

In this paper we consider the system (1.1) when 12 is a bounded domain in ,
n _>-1, with the usual smoothness assumptions on the boundary F. Various numerical
studies exist 19] and for the steady-state problem for a porous pellet with exothermic
reaction asymptotic solutions were derived and studied in [10]. We consider here the
Cauchy problem for (1.1) with various boundary conditions and arbitrary nonnegative
initial data in LP(-) for any real p > 1. After establishing the existence and uniqueness
of global strong solutions we will examine their qualitative behavior.

Consider first the case of zero Neumann boundary conditions for both T and Y,
i.e., gT/cgu=gY/cgu=O on F, where u is the outward normal. Let TAV denote the
average of the initial temperature T(x, O)= To(x) over fl, i.e.,

1 Io To(x) dx(1.3) TAV [,-[
where ll2[ is the volume of 12. We will show that if TAV > TI then eventually T is
uniformly above ignition temperature and Y eventually decays exponentially to zero.
We will refer to this phenomenon as complete asymptotic burning. If Tar < T, we
will show that complete asymptotic burning still occurs if the initial data Yo(X) for Y
is bounded from below by a positive constant and Q is large enough. In the case where
do dl and with TAV < T we will show that eventual uniform flame quenching occurs
(i.e., T is eventually uniformly below TI) if Q is small enough. When TAv < T, do -dl,
and Yo(x) is bounded below by a positive constant we will show that there exist
positive numbers Q, and Q* with Q,_-< Q* such that complete asymptotic burning
occurs whenever Q > Q* while eventual flame quenching occurs if Q < Q,.

The assumption do =dl makes it easy for us to establish steady-state convergence
results in these cases of complete asymptotic burning or flame quenching. If TAr > T
not only does Y(t) converge uniformly to zero, but T(t) converges uniformly to the
average of To + QYo on f. If TAv < TI and we add the assumption that Yo(x) >- 3’ for
some 3’ > 0, then, as noted above, there exists a constant Q* such that Q > Q* implies
complete asymptotic burning and a constant Q, such that Q < Q, implies eventual
flame quenching; thus if Q > Q, the steady-state convergence is the same as in the
case TAv > TI. If Q < Q, we will show that there exist constants T1 and Y1 such that
T(t) and Y(t) converge to T1 and Y1, respectively; moreover, the averages of T1 + QY
and To + QYo over f are equal.

Our results for these boundary conditions closely parallel the results in [4] for
the case f R. In fact, our results here are somewhat better as we are able to show
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that T is bounded as well as Y when TAV > TI, and we obtain a uniform exponential
decay estimate for Y in that case.

Specializing to the case where TI 0 we note that unless To is zero throughout
we have that TAV > 0. Hence, whenever we have nontrivial solutions in the case T 0,
we have that TAV > T, so that regardless of all other parameters (e.g., Q) T(t) remains
bounded for all ->_ 0 and Y decays exponentially to zero. Our results in this case relate
somewhat to those in 15], in which the examples treated include the system (1.1) with
T 0 in (1.2) and Yf(T) is replaced by the more general case YPf(T) where p is a
positive integer. Marion shows that there exists a maximal attractor which attracts the
bounded sets of L2(fl), and she estimates the fractal Hausdorff dimensions of this
attractor (the attractor is compact in L2 and bounded in the closed subset of H
appropriate for the boundary conditions). These results also hold in the case of periodic
or zero Dirichlet boundary conditions, so there is also some relationship with our
results described below.

Consider next the assumptions that T satisfies a fixed Dirichlet boundary condition
and Y satisfies either a zero Neumann boundary condition or a fixed Dirichlet condition
on F. The boundary condition on T corresponds physically to the case of an exothermic
reaction in which the exterior heat source is fixed. Meanwhile the boundary conditions
for Y correspond, respectively, to the no-flux case mentioned earlier and physical
situations of which the permeable pellet as studied in [10] is a special case.

For these situations we will show that both T and Y remain bounded for all time;
moreover, if the values of T on F are uniformly above ignition temperature and Y
satisfies zero Neumann boundary conditions then complete asymptotic burning occurs.
This latter condition imposed on the boundary values of T can occur, for example,
in engines equipped with a precombustion chamber [19]. If on some nonempty open
portions of F we have that T is below T1 we will show that if Q is small enough
eventual flame quenching occurs in certain portions of fl. This last result will be
obtained regardless of the initial values of T and Y or the boundary conditions on Y.

In our final example we will allow either arbitrary fixed Dirichlet or Neumann
conditions for T, and fixed nonzero Dirichlet conditions for Y. For each choice of
initial conditions on T and Y we will show that if B is small enough then in portions
of l] Y is bounded uniformly above zero. Thus the rate at which Y burns is small
enough to allow the boundary conditions to maintain a positive level for Y in subsets
of .

These latter results will be established in 5 below. The exothermic case mentioned
earlier will be handled in 4, while the case of zero Neumann conditions for T and
Y on F will be developed in 3. We begin in 2 with some preliminary observations
and the construction of unique global strong solutions for (1.1).

2. Preliminaries and global existence. Let Bo, B1 be a pair of boundary value
operators; in particular, for u C(f), Bu =0 means that u satisfies either zero
Dirichlet or zero Neumann boundary conditions, 0, 1. The indexing will correspond
in what follows to the boundary conditions desired for T and Y, respectively. For
=0, 1 set

C

We will correspondingly write LP() and the usual Sobolev spaces W’P() in the
abbreviated form Lp and W’p.

Each of the operators doA and alia is a continuous linear map from C, to C().
It is well known that C2, is dense in Lp for 1 <p < +c and that the closure of both
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of the above operators is well defined and generates an analytic semigroup on Lp,
1 < p < /oo. These facts are also true when p 1 (see, e.g., [3] where this is shown for
a general class of second-order elliptic operators). Let Ao and A1 denote the closures
of doA and dA in L with domains D(Ao) and D(A1). It is also shown in [3] that (for

O, 1) D(Ai) CI Lp is the domain of the closure of the operator diA in Lp, 1
and Ai restricted to D(Ai)CI Lp (which we call Ai,p) equals this closure. We denote
the domains D(Ai) CI Lp by Dp(Ai); meanwhile we will denote the semigroups generated
by Ao.p and AI,p by Wo(t) and W1 (t). With BoT- B1Y--0 on F the system (1.1) then
has the corresponding integral equations

(2.1a) T(t) Wo(t) To + Q Wo(t- s) Y(s)f(T(s)) as,

(2.1b) Y(t)= W(t)Yo- W(t-s)Y(s)f(T(s)) ds

where To T(x, 0) and Yo Y(x, 0) are in Lp. We have followed the usual convention
of suppressing the dependence on x in writing (2.1).

The following existence result for BoT B1Y 0 on F follows easily by considering
the usual types of contraction maps on appropriate metric spaces defined by the
right-hand sides of (2.2), once we note that Yf(T) is a globally Lipschitz continuous
map in Y and T by l’H6pital’s rule as follows.

THEOREM 2.1. Let To and Yo be in Lp for any p (1, +oo); then there exists an
S>0 such that (2.1a), (2.1b) have unique solutions T, Y C([0, S]; LP).

COROLLARY 2.1. The mild solutions found in Theorem 2.1 are, in fact, global
solutions, i.e., T, Y e C([0, +oe); LP).

Corollary 2.1, in particular, follows easily by exploiting the globally Lipschitz
continuous properties of the nonlinearities and employing the usual contradiction
argument on the hypothesis that finite-time blowup occurs. Meanwhile, the case of
nonzero boundary conditions will be handled later in this section.

The next result establishes regularity for > 0; again the proof is straightforward,
using standard semigroup techniques and the fact that every derivative off is continuous
and bounded.

THEOREM 2.2. For each j, k>-I we have that T, Y e CJ([0, +oo); ck(fi))f-I
C([O, +oo); L").

The proof of the results above, in fact, follow directly from, or are simple
adaptations of, the corresponding existence and regularity results found in [4] and 12].

The results summarized in the next theorem hold also when 1" N (see [4, 2])
and easily follow from the maximum principle (see, e.g., [16]), (2.1a) and (1.2).

THEOREM 2.3. Let T and Y be as above. If in addition To and Yo are nonnegative,
then T(t) and Y(t) remain nonnegative for all t>0. Also, if To, Yo C(), then for all
t>0

(2.2a) Y(t)lloo --< roll ,

(2.2b) T(t)ll -< Tol[o + QII YolloUt.
We now indicate how to modify Theorems 2.1-2.3 and Corollary 2.1 to handle

cases with nonzero boundary conditions (if n 1 we do this only for Dirichlet conditions
or with the appropriate matching conditions imposed in the Neumann case). Let g
and h be measurable (e.g., continuous) functions on F such that the elliptic problem
Aw 0 in 12 with respective boundary conditions Bow-g and BlW h on F has a
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unique strong solution. Denote these solutions by Wo and wl, respectively. The corre-
sponding integral equations such that T and Y satisfy these boundary conditions are

(2.3a) T(t)= Wo(t)(To-wo)+wo+Q Wo(t-s)Y(s)f(T(s)) ds,

(2.3b) Y()= W(t)(Yo-w)+w- W(t-s)Y(s)f(T(s)) ds.

Standard regularity theory (see, e.g., [7]) allows us to select g and h smooth enough
so that wo and w are in ck(fi) for any given k -> 0. Then if Wo(t) To and Wl(t) Yo are
replaced by Wo(t)(To- wo) + wo and W(t)(Yo- w) + w, respectively, the above
existence and regularity techniques apply to (2.3) instead of (2.1) with only minor
modification. In this way we obtain the following result.

THEOREM 2.4. Given an integer k >- 2 select g and h as above such that wi ck(fi),
i= O, 1. Then for each choice of To and Yo in Lp for any p (1, +) there exist unique
global strong solutions T and Y of (1.1) with BoT=g and B Y= h on F such that T,
Y CJ((0, +o); ck())O C([0, +c); Lp) for eachj >- 1.

From the maximum principle, (1.2), and (2.3) we can modify Theorem 2.3 to
handle BoT=g and B1 Y= h in the case where Bo and B1 are Dirichlet boundary
operators on F as follows.

THEOREM 2.5. Let T and Y be as in Theorem 2.4. Then if To, Yo >- 0 then T( t),
Y(t) >= 0 for all > O. If in addition To, Yo C(), then for all > 0 and g and h as in
Theorem 2.4 with g >-_ 0 and h >-_ 0 we have that

(2.4) r(t)ll -<- Yollo+ sup h,
F

(2.5) Ilr(t)l[<=l[Tll+sup g/QBt([[tll+sup h)
3. Zero Neumann boundary conditions for T and Y. Let v denote the outward

normal on f; then we assume throughout this section that Bo B O/(Ov), i.e.,

(3.1) gT_Y_0 onF.
cgu cgu

Let TAg be as in (1.3). We first note a fairly standard fact about the Laplace operator
with zero Neumann boundary conditions.

PROPOSITION 3.1. If BoT 0 T/(Ou) 0 on F we have that

(3.2) lim Wo(t) To TAr

uniformly in x.
Proof. For Toe C() the result follows from expanding Wo(t)To in terms of the

eigenfunctions of-Ao,a. The first term in the expansion is TAg, corresponding to the
first eigenfunction 1/i121 with eigenvalue zero. The sum of the next terms decays
uniformly to zero as O(exp (-A:t)), where Aa is the first nonzero eigenvalue of-Ao,:.
For To Lp with 1 < p < +o, we note that Wo(t) conserves L-norms; this can be seen
by integrating the heat equation satisfied by Wo(t)To on both sides with respect to x,
and then applying the divergence theorem (recall that To is nonnegative and Wo(t) is
positivity preserving). Thus we can replace To in (3.2) by any T(tl) with tl > 0. But
T(tl) is cl(l)) by parabolic regularity, and thus the result holds for general
To Lp.

The next proposition asserts that Y decays uniformly to zero exponentially if the
temperature starts out uniformly above ignition temperature throughout
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PROPOSITION 3.2. Let T and Y be as in Theorem 2.2 such that (3.1) holds. Suppose
that there exists an such that To(x)>= t > T1 for all x f. Then for fl =f(a)

< roll e-3t, >- O.(3.3) Y(t)ll- ,,
If in addition Yo C(1)), then

(3.3a) Y(t)lloo --< Yollo e-’, _-> 0.

Proof. Since the integral part of (2.1a) is nonnegative for all t->_ 0, we have that
T(x, t)>= for all t-> 0 and all x f. Since f(T) is strictly increasing in T for T> 0,
we thus have that f(T(x, t))>=f(a)= for all t->_0 and all xef/. Let V(t) denote
multiplication by f(T(t)) and let U(t, s) be the fundamental solution generated by
the (time-dependent) operator A,p- V(t), i.e., U(t, s) is the unique operator-valued
function satisfying OU(t, s)/(Ot)=(Al,p- V(t))U(t, s), U(s, s)= I for every 0-<s<_- t;
we have that Y(t)= U(t, O)Yo. If U(t, s) is the fundamental solution generated by
A1,p V(t) + ill, then

(3.4) U(t, 0) roll --< roll .
Inequality (3.3) now follows since

(3.5) U( t, O)= Ut3( O) e-’.
If Yo C() we obtain (3.3a) by replacing p and eo in (3.4) and then using (3.5).

Our main result of this section follows by combining the above propositions.
THEOREM 3.1. Let T and Y be as in Theorem 2.2 such that (3.1) holds. Then if

TAr > TI we have that Y eventually decays to zero exponentially; that is, there exists a

tl > 0 and a fl > 0 such that for all >- tl
< e-(t-q)(3.6) IIY(t)ll.-IlYol[

If in addition Yo C(f), then for all >- tl

(3.6a) Y(t)l --< Y01lo e-3t-t.
Proof. Let a be a constant such that TAr > c > TI. By Proposition 3.1 there exists

a t > 0 such that ->_ t implies that (Wo(t) To)(X) >- a for all x f. Again, from (1.2)
and (2.1a) this implies that T(x, t) >= c for all >= t and all x f. If we now consider
(1.1) with initial data T(t), Y(h), the inequality (3.6) now follows from Proposition
3.2, noting that Y(t)ll -<-II Y011 since u(t, s) (as in the proof of Proposition 3.2) is
nonexpansive on Lp. If Yoe C(f) (3.6a) follows similarly, making use of (2.2a).

The next result asserts that if To, Yo are in C(Ft) then under the above conditions
T(t) (as well as Y(t)) is bounded for all t.

THEOREM 3.2. Under the conditions of Theorem 3.1 assume in addition that To and
Yo are in C(). Then there exists a constant g such that T(t)[[oo =< K for all >- O.

Proof. Let t be as in Theorem 3.1. From (2.1a) and (3.6a) we have for _-> t that

o-< T(t) Wo(t)ro+Q Wo(t-s)g(s)f(r(s))ds

+ Q Wo(t- s) Y(s)f(T(s)) as
tl

(3.7) --< roll+ QII YollooBtl + Q Y(s)llooB ds
tl

-< Toll / QII gollB t1-11- e -3(s-tl) ds
tl
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roll+ 011Yolln[, +(lift)].

Thus the result is established with K taken as the right-hand side of (3.7).
Note that Theorem 3.1 asserts that in the case where T1 =0 we have complete

asymptotic burning whenever To is nonnegative in f and positive on a subset of positive
measure in f. However, if T > 0, different results can occur depending on the value
of other parameters. We illustrate below with two examples in which eventual flame
extinction occurs in the first case for a small enough value of Q and in the second
case complete asymptotic burning occurs if Q is large enough.

PROPOSITION 3.3. Under the conditions of Theorem 2.3 with T and Y satisfying
(3.1), suppose in addition that do dl and TAr < TI then for small enough Q we have
that T(t) eventually stays below ignition temperature.

Proof. From (2. lb) and the nonnegativity of Y and f(T) we have for all ->_ 0 that

(3.8) O W(t-s)Y(s)f(T(s)) ds

Since do dl we have that Wo(t) Wl(t), hence from (2.1a) and (3.8) it follows that

(3.9) 0<= T(t) <= Wo(t)To/ Qll Yoll.
Given y such that Tav < y < Tt, by Proposition 3.1 there exists a t2 such that => t2
implies that Wo(t)To<=% Thus if Q is such that Q]I Yol]< T-)" we have from (3.9)
that T(t)< T for all => t2. Thus the proposition is established.

We next construct a case in which we can have Tar < TI but complete asymptotic
burning prevails if Q is large enough. To simplify the proof, we place some restrictions
on the initial data. In this case no restrictions are placed on the diffusion coefficients.

PROPOSITION 3.4. Under conditions (3.1) assume in addition that there exists a
constant 3’ > 0 such that Yo(x) >= 3’ for all x . Assume also that there exists a constant
a > T and a subset Eo of f such that Eo has positive measure and To(x)>= a for all
x Eo. Then if Q is large enough we have complete asymptotic burning.

Proof Select to small enough so that toBl] Yol]_-< y/2; then from (1.2), (2.1b), and
(2.2a) we have that

(3.10) Y( t) >= Wl( t) Yo- tBll Yoll W(t) Yo- ),/2

whenever 0<= t=< to. Since Wl(t) is positivity preserving we have that (Wl(t) Yo)(X) >- ),

for all x f, hence it follows from (3.10) that Y(x, t)>- ),/2 for all x f, if is small
enough.

Meanwhile, by the continuity of Wo(t) in t, there exist positive constants tl and
al > T, and a subset E1 of Eo with positive measure, such that (Wo(t)To)(X)>-al for
x E1 whenever 0 -< t_-< tl. Set/31 =f(cl); then if 0_-< t-<min {to, tl) we have that

(3.11) Wo(t-s) Y(s)f(T(s))>= Wo(t-s)[(),/2)l,]
on 1) for all s [0, t], where N, is the indicator function for E Similarly to the choice
of tl, Cl, and El, we can find positive constants t2-<_min {to, tl} and/32, and a subset
E2 of E with positive measure, such that

(3.12) Wo(t- s)[(),/2)/3,N,])(x)=>/32
whenever 0 <_- s <_- <_- t2 and x E2. Then for all [0, t2] and all x E2 we have from
(2.1a), (3.11), (3.12), and the choice of al that

(3.13) T(x, t) >- ol "31- Qfl2t.



386 JOEL D. AVRIN

Since T(x, t) is bounded below by zero on f, we see from (3.13) that by selecting
t2 and Q large enough we can arrange that

1 j T(x, t2) dx >(3.14) ]f---
Considering (1.1) with initial data T(x, t) and Y(x, t2), we then obtain complete
asymptotic burning by Theorem 3.1, which proves the proposition.

Theorem 3.1 and Propositions 3.3 and 3.4 show that TAr is a "semithreshold
parameter." We use this term to describe the fact that when TAr is above the critical
value TI, complete asymptotic burning occurs regardless of all other parameters; when
TAr is less than TI, complete asymptotic burning or eventual flame quenching occurs
depending on the other parameters, in particular, depending on Q. In fact, the next
result shows that under the above conditions there exists a closed interval [Q,, Q*]
such that if Q > Q* we are guaranteed complete asymptotic burning and if Q < Q,
we are guaranteed eventual flame quenching.

THEOREM 3.3. Under all conditions ofPropositions 3.3 and 3.4, there exists a positive
constant Q* such that for every Q > Q* complete asymptotic burning occurs and there
exists a positive constant Q, such thatfor every Q Q, eventualflame quenching occurs.

Proof. Set X-T/QY; then as in 7 of [4] we assume, for simplicity., that
do-dl- 1 and rewrite (1.1a), (1.1b) as

(3.15a) Tt Txx / (X T)f( T),

(3.15b) Xt-Xx.
Here X(O) To/ QYo=- Xo so that X(t)- etXo Thus we can rewrite (3.15a), (3.15b)
as the single equation

(3.16) T, T / e’Xo T)f( T).

Now suppose T’ solves (3.15) with Xo replaced by X, with

(3.17) X’o>- Xo.
Set T-- T’-T; then T satisfies

(3.18) T= Tx+ V(t)T+ V2(t)

where

Vl(t)=(X(t)- r)f’(q)-f(T’),
(3.19)

V2(t) e’a(X’o Xo)f( r’).

Here T+ 0(T’- T), where 0 (0, 1) is chosen so that

(3.20) f(r’)-f(T) =f’(o)( T’- T).
Let U(t, s) be the fundamental solution for the operator (.)xx+ Vl(t), then from (3.18)
we see that T satisfies

(3.21) T(t)= U(t,O)To+ U(t,s)V2(s) ds

where To T- To.
Since U(t, s) is positivity preserving and (3.17) holds, we see that T(t)=> 0 for all

_-> 0 provided T=> To. In particular, if all other parameters remain fixed, replacing
Q by Q’ in Wo with Q’-> Q implies that T’(t)>= T(t).

With all parameters fixed and do dl, let S* be the set of all Q such that eventual
flame propagation occurs and let S, be the set of all 0 such that eventual flame
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quenching occurs. Our two examples in Propositions 3.3 and 3.4 show that both sets
are nonempty. Set Q* inf S* and set Q. sup $.. Our comparison principle that we
have just shown for Q then implies the conclusions of the theorem.

The above proof is basically reproduced from parts of 7 of [4]. We have included
it here for completeness.

We now continue with the case where do =dl and show that the above results
provide a detailed picture of the large-time behavior of T and Y under this assumption.
Our next result follows easily from Theorem 3.1 and the proof of Theorem 3.3.

COROLLARY 3.1. Under the conditions of Theorem 3.1 we have that Y converges to

zero uniformly in and T converges uniformly in to the average of To+ QYo over

Proof From the proof of Theorem 3.3 we have that T+ QY exp (tA)(To+ QYo).
Hence T+ QY converges uniformly to the average of To+ QYo over [l, i.e., the constant
obtained by replacing To by To + QYo in the right-hand side of (1.3). But by Theorem
3.1, Y(t) converges uniformly to zero in t, hence T(t) converges uniformly to this
constant, and the proof of the corollary is completed.

Our final result of this section shows that, when do dl and To, Yo satisfy the
(not too restrictive) assumptions of Theorem 3.3, we have a nearly complete portrait
of the asymptotic dynamics of the model given by (1.1) if Q is not in the interval
Q,, Q*].

THEOREM 3.4. Let Q,, Q* be as in Theorem 3.3; then under the conditions of
Theorem 3.3 we have that if Q > Q*, Y converges uniformly to zero and T converges
uniformly to the average of To + QYo over . If Q < Q,, then there exists a constant

T1 <- T and a constant Y1 such that T( t) converges uniformly to T1 and Y( t) converges
uniformly to Y1. We have that the averages of TI + QY and To+ QYo over f are equal.

Proof. If Q > Q*, then the result follows by Proposition 3.4 and Corollary 3.1. If
Q < Q. we have that there exists a positive constant to such that t->_ to implies that
T(t)<= T. Hence Y(t)f(T(t))=O for t_-> to. Considering (1.1) with initial data T(to),
Y(to), we thus see that T(t) =exp (t/x)(T(to)) and Y(t) =exp (t/x)(Y(to)) for t_-> to,
and thus we can take T1 and Y1 to be the averages of T(to) and Y(to) over
respectively. That the average of T1 + QY1 over fl equals the average of To+ QYo over
II follows from the opening remarks of the proof of Corollary 3.1. This concludes the
proof of the theorem, as well as our discussion of (1.1) with boundary conditions
(3.1).

4. Dirichlet boundary conditions for T. In this section we assume that Bo is the
Dirichlet operator on F. Let g and h be nonnegative continuous functions on F which
are smooth enough so that the desired regularity of Theorem 2.4 holds. We assume
throughout this section that the following boundary conditions hold for T and Y:

(4.1a) T(x)=g(x), xF,

(4.1b) B Y(x) h(x), x F

where B is either the Dirichlet or Neumann boundary operator; in the latter case we
set h 0. Our first task is to show that T(t) is. bounded uniformly in t. Recall from
Theorem 2.5 that we already have that Y is bounded. Recall from 2 that Ao is the
closure in L of do/x on Co, and Ao,p is Ao restricted to D(Ao)fq Lp. Let A1 be the
first eigenvalue of -Ao,2. Then A1 > 0 and it is shown in [3] that there exists a constant
M such that for all u e C(fl) and all t-> 0

(4.2) Wo(t)ull <= MIIulI e-x’t.

The next result then follows easily.
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THEOREM 4.1. Let T and Y satisfy (4.1) on F under the conditions of Theorem 2.5.
In particular, assume that To and Yo are in C(12); then there exists a constant K such
that [[T(t)ll<-_K for all t>=O.

Proof From (1.2), (2.3), (2.4), and (4.2) we have that

[[T(t)ll<=llToll/supg/Q IlWo(t-s)g(s)f(r(s))llds
F

--< roll+sup g + Q MII g(sf(r(s))ll e-"’(’-s ds
F

(4.3)
=< rol[+ sup g + QMBK, e-x’(t-s) ds

F

roll+ sup g+QMBKI(1/A,)

where K1 equals the right-hand side of (2.4). The proof is thus established with K as
the right-hand side of (4.3).

THEOREM 4.2. Under the conditions of Theorem 4.1 assume, in addition, that
g(x) > TI for all x F, and that B1 is the Neumann operator; then complete asymptotic
burning occurs at a rate which is eventually exponential.

Proof As F is compact, there exists an Xo F such that g(x)>-g(xo)> TI for all
x F. Set ao g(xo); then by the maximum principle (see, e.g., [7] or [16]) Wo(X) >- ao
for all x 12. Now while Wo(t)(To-Wo) may not always be nonnegative, it goes to
zero uniformly by (4.2), thus for any el such that 0 < el < ao- TI, there exists a tl such
that t>-t implies that IlWo(t)( o-wo)llo    o Set --o-; then since Wo(t) is
positivity preserving and both Y and f(T) are nonnegative, it follows from (2.3a) that
T(x, t) > al > T1 for all x 12 and all >-t. Set /31 =f(al); then as in the proof of
Theorem 3.1 it follows that

(4.4)

for all t. This completes the proof of the theorem.
To underscore the advantage gain when T is kept above ignition temperature on

the boundary, for the last result of this section we consider cases where T is below TI
on some (not necessarily connected) open subset of F. Recall that Q is proportional
to the chemical heat release; the next theorem shows that eventually no combustion
can occur in subsets of 12 of positive measure if Q is small enough.

THEOREM 4.3. Under the conditions of Theorem 4.1 assume, in addition, that
g(x) < T1 for x in an open nonempty subset of F. Then there exists a set E of positive
measure in 12 and a tl > 0 such that T(x, t) <- TIfor allx E and >- tl ifQ is small enough.

Proof Let K1 equal the right-hand side of (2.4); then from the proof of Theorem
4.1 and the fact that Wo(t)(To-Wo) =< Wo(t)To, we have that

(4.5) T(x, t) <= (Wo(t) To)(X)+ Wo(X)+ QMBKI(1/A1)
where, as before, A1 is the first eigenvalue of-Ao,2. By the continuity of Wo(X) there
exists a set of positive measure Eo in 12 such that Wo(X) < TI for x Eo. In particular,
there exists a 3/< TI and a subset E of Eo with positive measure such that Wo(X)<-_ y
for x E. For positive e such that e < T- T, choose t such that Wo(t)Toll < e for
all _-> q; then from (4.5) we have that for all x E and all >-tl
(4.6) T(x, t) <= y+ e + QMBKI(1/A,).

As 3/+ e < T, it is now clear that if Q is small enough, T(x, t) <= TI for all x E and
all t->_ tl, thus completing the proof. [3
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We note that Theorem 4.3 holds regardless of whether B1 represents the Dirichlet
or Neumann operator, and regardless of the initial conditions To and Yo. In particular,
even if combustion occurs initially throughout f, i.e., To(x) > TI for all x f, we have
eventual flame quenching on portions of with positive measure.

5. Examples of maintained concentration levels in 1. We allow in this section for
Bo to be either the Dirichlet or Neumann operator, and set B1 to be the Dirichlet
operator. Let g and h be nonnegative continuous functions on F with enough smooth-
ness for the desired regularity in Theorem 2.4. Thus the boundary conditions assumed
in this section are"

(5.1a) BoT= g on F,

(5.1b) Y=h onF.

Let A1 be the first eigenvalue of -A1,2; then as with Ao,2 in 4, A1 > 0 and there exists
a constant M such that for all u in C(f)

(5.2) Wl(t)ullo <= MIIuII e

for all t-> 0. We now use techniques similar to those in previous sections in obtaining
the next result.

THEOREM 5.1. Under the conditions of Theorem 2.5 assume that T and Y satisfy
(5.1) on F. Then if h is strictly positive on a nonempty open subset of F, there exists a
subset E of f with positive measure and constants / > 0 and > 0 such that if the
preexponentialfactor B is small enough we have that Y(x, t) >- yfor all x E and all >-_ tl.

Proof. Let wl be as in Theorem 2.4; then by continuity there exists a subset Eo of
f with positive measure such that Wl is strictly positive on Eo. Hence there exists a
subset of Eo with positive measure and a constant Yl> 0 such that wl(x)>= yl for all
x E. Given e such that 0< e < 71, there exists by (5.2) a tl > 0such that Wl(t)wlll
if >-tl. Then from (2.3b) and (5.2) we have for all x E and t-> tl that

Y(x, t)>-(Wl(t)Yo)(x)+(Tl-e)

>=(W()go)(x)+(,/1-e)- MIIg(s)f(T(s))lle-lu-s ds

(5.3)
>-(w()Yo)(x)+(,-e)-M Ilgoll+suph B e

F

Note that (3q-e)>O and (W1(t)Yo)(X)>=O, so that if we set

(5.4) 3’=(T’-e)-BM( [IYll’+supr h)(l/A1),
then if B is small enough we have that 3’ >0 and Y(x,t)>=3/ for all xE and all
t-->_ tl, as desired. This completes the proof of the theorem.

Fixed Dirichlet boundary conditions for Y occur, for example, in the case of a
permeable pellet, as studied in [10], and in models of a combustible fluid where the
burning occurs in a thin layer at the surface of the fluid. Theorem 5.1 shows that if B
is small enough then in portions of f the rate of burning does not exceed the rate at
which the concentration is diffusing in from the boundary.
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6. Remarks. We note that the averaging condition TAV > TI imposed on the initial
temperature To in Theorem 3.1 is a reasonable one since in practice TI is a small
number while the burnt temperature is typically very large. The importance of this
condition is underscored by Proposition 3.3, in which an example of eventual flame
quenching is produced when the averaging condition is not met. TAV is in some sense
the analogue of the quantity (To(-C) + To(+))/2 considered in [4] with I)=R. Note
that in both cases imposing the condition that the respective average involving To is
above ignition temperature guarantees that eventually T(x, t)> TI and Y(x, t) 0 as
t- regardless of the values of all other parameters.

Meanwhile, we note that global existence and uniqueness results have been
established for the more general Cauchy problem in R which couples T and Y with
pressure, velocity, and density terms under certain conditions placed on these additional
terms [12], [17].

The system (1.1) is a special case of a general class of equations for which
boundedness results are already known for Dirichlet and Neumann conditions imposed
on both components (see, e.g., [8], [9], [11] and the references contained therein).
These results could have been substituted for Theorem 3.2, and for Theorem 4.1 when
both T and Y satisfy fixed Dirichlet boundary conditions. Note that Theorem 4.1
holds with mixed conditions, although the techniques in the aforementioned papers
can-probably be modified to handle this case as well. Our purpose in developing
self-contained boundedness results here has been to obtain bounds depending directly
on the special structure of (1.1) and (1.2), and to preserve a common thread of argument.
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STABILITY ANALYSIS FOR THE SLOW TRAVELING PULSE OF THE
FITZHUGH-NAGUMO SYSTEM*

GILBERTO FLORES"

Abstract. This paper is concerned with the existence and stability of the slow traveling pulse for the
FitzHugh-Nagumo system ut ux,, + u(1 u)(u a) w, wt e(u yw). This traveling wave is obtained as
a perturbation of the standing wave of the Nagumo equation u=u,,,,+u(1-u)(u-a). Its existence is
established by analyzing how the unstable manifold of the origin exits a suitable block. This geometric proof
is an alternative approach to the singular perturbation expansion proposed by Casten, Cohen, and Lagerstrom
[Quart. Appl. Math., 32 (1975), pp. 335-367], as well as to the existence proof of Hastings [SIAM J. Appl.
Math., 42 (1982), pp. 247-260].

The method also allows use of the techniques developed by Evans [Indiana Univ. Math. J., 24 (1985),
pp. 193-226] to analyze the spectrum of the variational equation around the traveling wave. It is shown that
there is exactly one unstable mode.

Key words, nerve conduction, traveling wave, linearized equation, spectrum, stability
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Introduction. The FitzHugh-Nagumo system

ut=Uxx+U(1--u)(u--a)--w,
(A)

w, (u ,w),
where 0 < a < 1/2, e ->_ 0, 3’ -> 0, is a simplified version of the model proposed by Hodgkin
and Huxley [12a, b] to describe the conduction of electrical impulses along a nerve
axon. The experimental and numerical evidence shows that the voltage travels along
the nerve with little distortion of the shape and amplitude, and at nearly constant
speed. The mathematical problem is to classify the waveforms and to determine their
stability.

This program has been carried out for the Nagumo equation ut =uxx+f(u),
f(u)=u(1-u)(u-a), which corresponds to e=0, w-=0 in (A). The equation has a
front, that is, a traveling wave q(sc), =x+ct, with q(-) 0, q(+)= 1. The speed
is c =,,/(1/2-a). Fife and McLeod [7] proved that this front is globally stable" If the
initial datum Uo(X) satisfies Uo(-)<a < Uo(+), then the corresponding solution
approaches a translate of the front. The Nagumo equation also has a solitary wave,
that is, a wave solution with a single hump and vanishing at +/-c. Its speed is c 0,
so it is a standing wave. It has been established in [9] that the standing wave is a
saddle of codimension 1, and that it is a threshold for the steady state fi 1. The status
of the problem for the FitzHugh-Nagumo system and related models will be discussed
at the end of the introduction.

In terms of a moving frame x + ct, (A) becomes

ut u- cu +f u w,
(i)

wt -cw + e(u- /w).
Traveling waves of (A) correspond to stationary solutions (B). Carpenter 1], Hastings
10], and Langer 14] have proved the existence ofa fast traveling pulse, ((u ((), w()) -(0, 0) as I1 c) with speed c(e) =,,/(1/2- a) + o(1). The construction in Carpenter [1]
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and Langer 14] is explicit: for small e > 0, the fast pulse is a perturbation of a singular
orbit formed by piecing together the front of the Nagumo equation with the graph of
w =f(u). Jones [13] has proved that this wave is stable under small perturbations. He
has shown that the continuous spectrum of the linearization of (B) around the fast
traveling wave is contained in a half-plane Re (A)<-b2, that A =0 is a simple eigen-
value, and that there are no eigenvalues with positive real part.

Using singular perturbations, Casten, Cohen, and Lagerstrom [2], have constructed
a series expansion of a slow traveling pulse with c(e)= O(x/-), the first term being
the standing wave of the Nagumo equation. Hastings [7] has proved the existence of
a pulse with (e) O(x/-). The numerical evidence for this kind of problems suggests
that slow waves are unstable.

In this work, the existence of a slow traveling wave (c(e)= O(x/-)) is proved by
the method of isolating blocks, which yields the slow wave as a perturbation of the
standing wave for the scalar equation. It is also shown that for small e > 0, the
continuous spectrum ofthe linearization of (B) around the slow wave lies in a half-plane
Re (A)<-b2, and that there is exactly one positive eigenvalue. The stability analysis
in this case is simplified by the fact that the slow pulse is a perturbation of a homoclinic
orbit, and by the convergence of the analytic functions determining the point spectrum
of the linearization of (B) at the wave to the corresponding function of the reduced
equation.

The limit of the fast pulses is a "singular orbit" consisting of heteroclinic orbits
and critical points. The behavior of the analytic functions is more complicated (see
Jones [13]).

The analogy with the scalar equation suggests that the stable manifold of the slow
pulse is a threshold for the nerve impulse: solutions below this manifold should decay,
while solutions above it should propagate and approach the fast pulse. The decay of
solutions of initial-boundary problems corresponding to small initial data has been
proved by Schoenbeck [18] and Weixi [20].

The existence of multiple pulses and infinite trans ofthe FitzHugh-Nagumo system
has been proved by Hastings [10], [11] and Carpenter [1], but there are no results
concerning their stability. The situation for the Hodgkin-Huxley equation is the same.

A little more is known about the piecewise linear model introduced by McKean
[15], where the cubic is replaced by the broken line -u+H(u-a), H being the
Heaviside step function. Rinzel and Keller [17] have proved the existence of solitary
waves and some infinite .trains. They have also made numerical studies to establish
the instability of the slow waves. The existence of multiple pulses was proved by Evans,
Fenichel, and Feroe [4]. Feroe [5] proved that the fast pulse is stable, and he has also
made numerical studies on the stability of multiple impulses [6]: the fastest is stable,
and the others are unstable. The interesting fact is that some unstable modes correspond
to growth in the amplitude, and some correspond to the spacing between the pulses.
The only analytic results in this direction are bounds on the number of unstable modes
of n pulse solutions, which were obtained by Wang [19a, b]: fast n-pulses have at
most n unstable modes, slow n-pulses have at least n and at most 2n 1 unstable modes.

1. Existence of the slow traveling wave. It will be shown that the system for traveling
wave solutions of the FitzHugh-Nagumo equation

(1) v’= cv-f(u)+ w, ’= didO,

w’ / c(u ew),
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has a homoclinic orbit for c O(x/-{), which is a perturbation of the standing wave of
the Nagumo equation.

Let M max {f’(u)" 0=< u _-< 1}; then-< M <3. Choose 3’ < 1/M (so that the origin
is the only critical point of (1)), and 6 > 0 such that M + 6 < 1/3’. We will consider
parameter values e, c in the region e _-< (M + t)c2. Since e/c <- (M + )c, the (one-
dimensional) unstable manifold of the origin for (1), denoted by U,c(:), depends
continuously on (e, c) in the region under consideration.

We use the notion of an isolating block as defined in 1 of Carpenter 1 ]" equation
(1) is the autonomous system X’= G(X), where X =(u, v, w).

DEFINITION. A set B is block for (1) if it is homeomorphic to [0, 1] and there
exist C1 functions fl f6" R R such that B 716i=lf- ([0, oo]) and (Vf, G) 0 on
f-0o

Thus a block is a set homeomorphic to a closed ball, such that the trajectories of
the flow are transversal to its boundary.

Take a block B around (0, 0) for the reduced system u’= v,v’= -f(u), with sides
parallel to the lines v +u, in such a way that the standing wave leaves/ through b-
and comes back through b- (see Fig. 1).

Similarly, we can construct blocks for u’= v,v’= -f(u)+ w, for [w[ small, around
the smallest root ul u(w) ofthe equation w =f(u) (see Fig. 2). The three-dimensional

FIG. 1. Exit set - b-( LJ b. Entrance set + b- U b.

w

w=f(u)

U

FIG. 2. Exit set B-= b- U b front and back.
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box constructed in this manner is a block for (1) because the top and bottom, being
parallel to the u, v plane, are transversal to the vector field for e > 0.

We will concentrate on the behavior of the unstable manifold U,c(:) after it
returns to B through b-. U,c(:) is normalized by the condition U,c()= a for the
first time at :=0. The asymptotic behavior of U,(:) has been analyzed by
Hastings [11]" the sets E-={(u, v, w)" u<0, v<0, v’<0, w’<0} and E/=

{(u, v, w)" u> 1, v>0, v’>0, w’>0} are invariant regions for (1). Moreover, U,(:)
enters E/(E -) if and only if u and v tend to

Let fl={(c, e)" c>0, E>=0}, ,l--{(c, ) U.() is bounded},122= {(c, e)" U,()
enters E+}, fl3 {(, e): U,c(sc) enters E-}; then 122 and 123 are disjoint open sets, and
12 121LJ 122 (-J 123. The region between the parabolas e Mc2 and e (1/y)c2 is con-
tained in 122. Let C3 be the component of 123 containing the segment (0, Co) {0}, where
Co x/(1/2-a) (see Fig. 3). It will be shown that C3 contains a portion of a parabola.
For 0< c < Co, U,(sc) returns to B through b-. For 0< c < Co and e =0, Uo,(:) leaves
B for the second time through b, and u < 0, v’< 0 at the exit point. By continuity,
the same is true for 0=< e =< eo, 0< c=< Co. The claim is that U.(:) enters E- if it leaves
B through b for c =< Co and e =< (M + B)c2. This is the content of the following lemma.

..-- .=Mc

o C

FIG. 3

LEMMA 1. Ifc <- Co, e <= (M + )c2 and U,() leaves B through b, then U,c(o)
E- for some o> O.

Proof. Assume that U,(:) leaves B (after returning through b-) for the first time
at = T(e, c), and that U.(T)e b, then u(T) <0, v(T) <0 and v’(T) <0. There are
two possibilities:

(i) w(T)>=O, in which case w’(T)=(e/c)(u(T)-’yw(T))<O, so that U,(T)e
E-.

(ii) w(T) < 0. Only the case w’(T)-> 0 needs to be considered. There are two
subcases:
(a) U,(:) leaves the region u < 0, v <0, v’< 0 for the first time at T1 > T,
and w’(:) ->_ 0 at T _<- : -< T1. In this situation, v’(T1) 0, which implies w(T1) >
0. For small > 0, the inequalities u( T1 ) < 0, v( T1 ) < 0, v’( T1 8) < 0,
and w( T1 ) > 0 hold, so that w’( T ) < 0, a contradiction.
(b) U,c(:) remains in the region u < 0, v < 0, v’ <0 as long as it exists, and
w’(:) >- 0 for T =< : < T*(e, c) T* is the largest positive time for which U,(:)
is defined). If T*< oo, then u(:)-oo, v(:)-oo as :- T*, from which it
follows that w’()=(e/c)(u()-yw())--oo as : T*, so that eventually
w’(:) < 0, a contradiction.
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If T*= c, the claim is that w() 0 as c. If this were not true, there would
exist a>0 such that w()<=-a for :->_ T, then v’()<=-a, so that v()--o and
u()-c as -c. This implies that w’()-o, a contradiction. But if w()0,
then w’()-*-o, again a contradiction.

It follows that U,c(:) must enter E- at some > T. The proof is finished.
Now let (1 /v/--) w and ac. Then (1) becomes

(2) u’=v, v’=cv-f(u)+ac, ’=a(u-yac).

When a =0, we get u’= v, v’= cv-f(u), ’=0, so that Uo,c() leaves B through b
if c<_-Co, and by continuity the same is true for a _-< x/-. By Lemma 1, U,c() enters
E- if c <-Co, a-<_ x/-, so that (e, c)3 if c _-< Co and e _-< me2.

Restrict the values of (e,c) to the region c<-Co, e<-min{(M+6)cZ, eo}, where
eo rnc. Take 0< e < eo, and define c2 x/e/(M + 6), c3 x/e/m. Since B is a block,
the exit point of U,() depends continuously on (e, c). Therefore, U,c() leaves B
through b if c3 < c < o. Since (e, c2) 12, it follows from Lemma 1 that U,() leaves
B through hi-. By continuity, there exists 6, such that x/-/x/M + 6 < g< x/-{/x/- and
U,() remains in B after returning through b-. By choosing B small enough we can
guarantee that U,e(:)-* (0, 0, 0) as -, and therefore U,e(:) is the slow traveling
pulse.

2. Stability analysis. To simplify the notation, we make the change c--c. The
system for traveling waves is

(3) u’= v, v’=-cv-f(u)+ w, w’=--e (u-yw).
c

If U (u, v, w) is the travelling wave found in the previous section, and L is the
linearization around U of

u, u + cu +f(u) w, w, cw + e(u yw),(4)
then

d2p dp

The spectrum of L, denoted by o-(L), consists of the values of I e C for which
L() I () has a bounded solution. The spectrum can be divided into two pas: the
point spectrum %(L), which consists of isolated eigenvalues of finite multiplicity,
and the essential spectrum e(L) (L %(L).

In the limit case e =0 (and c =0), the corresponding linear operator is Lo(p)=
(dp)/dx+f’(uo)p, where uo(x) is the standing wave of the Nagumo equation. The
spectrum of Lo can be computed: e(Lo)= (-, -a], and there is exactly one positive
eigenvalue (see Flores [9] and McKean and Moll [16]). It will be shown that for small
e > O, e(Le) lies in the left half-plane, and that the point spectrum has one positive
eigenvalue, so that U is a saddle of codimension 1.

The eigenvalue equation L()= I () can be written as the system

p’= q,

(5) q’= cq+[A -f’(u)]p+ r,

r,e(A+ey)--p+ r.
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If z (p, q, r), then (5) is the linear system in C3" z’= Az, where

0 1 0

A -f’(u,) -c 1

-/ c o (; + e,)/ c

System (5) is asymptotically autonomous, the asymptotic equation being given by the
matrix

0 1 0

Ao A +a -c 1

-/ c o ( + ,)/ c

Let L1 be the linearization of (4) around (0, 0, 0), that is,

dp_/dP+c- ap-r

c+ e(p /r)

then O’e(L1)= S { C" Ao() has a pure imaginary eigenvalue}.
Since

L L + ([f’(ud+a]P),

and the second term in the right-hand side is a relatively compact peurbation, it
follows that any connected component of CS is entirely the essential spectrum, or
the only spectrum in it is discrete.

The claim is that S lies in the left half-plane for small e > 0. Let

P(a,e,A) det(Ao(e,A) aI) [a2+Ca (A+a)]
A+ey e

c c

Since c(e)<0, S={A C" c(e)P(a,e,A)=O for some a=i, }. When e=0, the
equation is [a2- (A + a)]A =0, and this has solutions a i, if and only if A -a,
so that So (-,-a]. By continuity, S lies in the left half-plane for small e > 0.

Let G be the connected component of CS which contains a half-plane of the
form {A" Re (A) > b}, b < 0. From Theorem 1 and Corollary 3 of Evans [3c], A p(L)
if ]A] is large. Therefore, the only pag of the spectrum in G is p(L). Moreover, the
number of eigenvalues of Ao(A in Re (A) > 0 is constant in G. To compute this number,
note that c(e) P(a, e, A a2 + ca (A + a)][A + s ca e 0. At e 0 we get a 2

(A + a)]A 0. For A # 0 there are two eigenvaues: al(0, A) A + a, and a2(0, A)
-A + a with Re (a2(0, A)) < 0< Re (al(0, A)). By continuity there are two eigenvalues
al(e, A), a2(e, A) with Re(aE(e,A))<O<Re(al(e,A)) for small e>0. Since al+a2+
aa=(A+e)/c-c, it follows that aa(e,A)A/c. In pagicular Re (aa)Re(A/c)
-k/.

Therefore, the eigenvalues of Ao satisfy Re (aa(e, A)) < Re (a2(e, A)) < 0 <
Re (a e, A )) if e is small enough. Let X, X2, X3 be the eigenvalues ofAo corresponding
to al, a2, a3, respectively, then X1 =(1, al,-s(Cal-(A + eT))-I). System (5) has a
solution (; e, A) Xle’(’)+ o(e,(’ )e) as -. This is a candidate for being
an eigenfunction. To see if (; e, A) is bounded as +, consider the adjoint system
z*’= Bz*, where B =-A*. This system is asymptotic to z*’= Boz*, where Bo =-A.
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The eigenvalues of Bo are {1,/2,3}--{-1,-i2,-a3}. Let Y1, Y2, Y3 be the
corresponding eigenvectors. Y1 is given by

( [ ( -+c )1-1)Y1 1, (C--tl) -1 (II__C) 1+ e

The adjoint system has a solution (sc; e, A)= Y1 e/31q-O(e/31) as sc- oe. The function
D(A) q(sc; e, h). if(so; e, h), originally introduced by Evans [3a-d], containing the
information relative to the stability. Indeed, h is an eigenvalue of L if and only if
D(A) =0. To see this take {pl, 02, q3}, {1, 02, 03} as fundamental systems of z’= Az
and z*’= Bz*, respectively, such that qi Xi e,e as sc- oe, p Y ed as :- 00. Since

X2" YI=0, X3" Y=0, and p(; e, A)=Y i=1 Ci(l )(i(, 8, 1 it follows that

D(A) (,o (; e, A). h(; e, A) L c(A)q(:; e, A). q(s; e, A)--- Cl()X Y1
i=1

as :- oe so that D(A) 0 if and only if Cl(A 0, in which case o(; e, A) is bounded
as : -- oo.

There are solutions o(; h), o(:; A) corresponding to the reduced system

(6) p’=q, q’=[A-f’(uo)]p.

The function Do(A) qo(; A). 0o(; A) has roots at ho=0 and AI>0. These are the
only roots in the half-plane Re (A) _-> 0. It will be shown that D(A) 0 has exactly one
positive root for small e > 0. This is due to the fact that D (A) - Do(A as e $0, uniformly
on compact subsets of G.

Let q(:; e, A) (p(; e, h), q(:; e, A), r(:; e, h)) be the solution of (5) with
o (:; e, A) Xe% as -* -oe; then

r(:; e,A)=e(a/)er(O; s, A)+- e(X/)(e-)[(p(cr)-yr(cr)] def.
C

Since ffl( e, 4/ -- a + o(1) as e - 0, there are bounds ofthe form [q(; e, h )1 =< M ee,
_-> 0, e small, where the constants M and a are uniform for h in compact subsets of
G. Moreover, Re (h / c) - as e $ 0, uniformly for 0 _-< : =< (o and h in compact subsets
of G. From the construction of the slow wave U(), it follows that [u(:)-Uo(:)l- 0
as e $ 0, and therefore D(h)- Do(A) as e 0 uniformly on compacts subsets of G. By
Rouch6’s theorem, D(A)= 0 has exactly one root hi(e) near A1, the positive root of
Do(A) 0, and since D(A) is real for h real, it follows that Al(e)> 0.
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Abstract. This paper considers a semilinear elliptic equation which arises in a selection-migration model
in population genetics, involving two alleles A1 and A2 such that A is at an advantage over A2 in certain
subregions and at a disadvantage in others. The system is studied on all of R" and is assumed to possess
radial symmetry. Existence and asymptotic properties of solutions of the corresponding ordinary differential
equation are investigated and, by using shooting method type arguments, results are obtained on the
bifurcation of solutions from the trivial solutions corresponding to the cases where A or A2 is extinct. The
nature of the results obtained varies according to whether A or A2 has an overall advantage.
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1. Introduction. In this paper we discuss the steady-state solutions ofthe semilinear
parabolic problem

(1.1) ut(x,t)=Au+Ag(Ixl)f(u) forxing n, t>_-0

where A denotes the Laplacian, g assumes both positive and negative values on R n,
and f: [0, 1] -> R is a nonnegative concave function such that f(0) 0 =f(1).

Such problems arise in population genetics. Consider a model with two alleles
A1 and A2 corresponding to three possible genotypes" A1A1, A1A2, and A:zA2. Let
u(x, t) denote the frequency of the allele A1 at time at the point x in R n. Changes
in gene frequency are assumed to be caused only by the flow of genes and by selective
advantages for certain genotypes in certain subregions of D. Then u satisfies (1.1); the
term Au/A represents the effect of gene flow; the term g(x)f(u) with f(u)=
u(1-u)[h(1-u)+(1-h)u] for some constant h, 0<h<l, represents the effect of
natural selection where the fitness coefficients of the genotypes A1A and AA relative
to A1A1 are, respectively, 1- hg(x) and 1- g(x). The fact that g changes sign on R
corresponds to the allele A being at an advantage in some parts of R and at a
disadvantage in others. A more detailed account of this model can be found in Fleming
[31.

Since u represents a population frequency, the physically meaningful steady-state
solutions of (1.1) satisfy

(1.2)x -au=Ag(lxl)f(u) on R": 0=< u=< 1.

It is clear that (1.2)x has the trivial constant solutions u 0 and u 1 corresponding
to the extinction of one of the alleles. We are interested in the existence of nontrivial
solutions.

Nontrivial radially symmetric solutions of (1.2)x satisfy the ordinary differential
equation (ODE)

n-1
u"(r)+u’(r)+Ag(r)f(u(r))=O for r>0,

(1.3)x r

u’(0) 0, 0 < u(r) < 1 for r > 0.

* Received by the editors November 2,1988; accepted for publication (in revised form) February 21,1990.
I" Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland.
Department of Mathematics, University of Crete, Greece.
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We have already studied various aspects of (1.2)a in [2] and [7]. As in [2] and
[7] we shall assume throughout that g satisfies

(Go) g:[0,)R is locally Holder continuous and there exists ro, Ro>0 such
that g(ro) > 0 and g(r) < 0 for r > Ro.

The uniqueness of radially symmetric solutions of (1.3) is discussed by Tertikas
in [7] under the additional hypothesis thatf is concave (this occurs whenever < h < ).
In [2] equation (1.2) was studied without assuming that g is radially symmetric or
that f is concave and results on the existence and nonexistence of solutions were
obtained. These results correspond closely to what might be expected from the model.
It was shown that, if g is negative and bounded away from zero at infinity and A is
sufficiently small, then there exist no solutions of (1.2) this corresponds to the fact
that if the allele A1 suffers a significant overall disadvantage and the rate of gene flow
is sufficiently large, then A1 and A2 cannot coexist. On the other hand, if the alleles
both hold some kind of advantage in the sense that R" g dx > 0, although g is negative
at infinity, then it was shown that, when n 1, 2, solutions of (1.2) can exist no matter
how great the rate of gene flow. The purpose of this paper is to demonstrate how the
results of [2] can be considerably sharpened in the case where g is assumed to be
radially symmetric so that the problem may be attacked by using ODE methods.
Because of the radial symmetry of g we are able to replace the bare existence results
of [2] with precise descriptions of the bifurcation diagrams in the (h, u) plane for
(1.2). Properties of bifurcation diagrams for (1.2) on bounded regions have been
studied by Fleming [3] in the case of Neumann boundary conditions and by Hess and
Kato [5] in the case of Dirichlet boundary conditions. In general, it is difficult to
obtain bifurcation results for problems on unbounded regions because the linearized
problem can no longer be formulated as a problem involving compact operators and
so it is no longer obvious that the linearized problem has eigenvalues which might
correspond to bifurcation points. However, in this special case, using ODE techniques
we are able to describe how bifurcation occurs.

We now describe how the paper is organized. In 2 we prove the existence of
radially symmetric solutions of (1.2) for sufficiently large h by constructing appropriate
weak sub- and supersolutions. Similar existence theorems are proved in [2] and [7]
but the sub- and supersolutions used here are simpler than those used previously. In
order to obtain our main results an understanding of the asymptotic properties of
solutions as r - c is necessary; in 3 we prove the required asymptotic results, obtaining
conditions in terms of integrals involving g for all solutions to tend to zero at infinity.
In 4 we study (1.3)x by using the shooting method; the uniqueness results of [7]
make possible a very clear and simple description of what happens to solutions as the
initial value changes and this description is the principal tool in the proofs of our
main existence results. In addition at the end of 4 we deduce that all solutions of
(1.2)x are radially symmetric; this result is of interest as the radial symmetry of all
solutions is proved without the assumption that g is a decreasing function of r (cf.
Gidas, Ni, and Nirenberg [4]). Finally, in 5 and 6 we describe our main existence
results. In 5 we show that bifurcation occurs from the zero solution when g is bounded
away from zero at infinity and that the bifurcation diagram is as shown in Fig. 1. In
6 we consider the case where R. g dx > 0 and show that the bifurcation diagram is

as shown in Fig. 2, i.e., a nontrivial branch of solutions bifurcates from the trivial
branch u -= 1 at h 0.

2. Existence of solutions for large A. We shall prove the existence of solutions by
constructing appropriate sub- and supersolutions.
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FIG. 1. Bifurcation diagram when g < O.

u=l

FIG. 2. Bifurcation diagram when g > O.

Let D R be a domain with smooth boundary, and let D1 be a subregion of D
such that OD1 is smooth and D1 D. Let D2 D D, and let n(x) denote the outward
normal to D at x OD1. Suppose that ul and u2 are smooth subsolutions of-Au
Ag(x)f(u) on D and D2, respectively, and that on OD, ul u2 and Oul/On <=Ou2/On.
Then, if we define u by

U /’/1 on D, u u2 on D2

we say that u is a weak subsolution of-Au Ag(x)f(u) on D. Roughly speaking, u
can be regarded as the supremum of the two subsolutions ul and u2. Weak supersol-
utions are defined similarly. Such weak sub- and supersolutions are discussed by
Berestycki and Lions in [1] in the case of bounded regions with Dirichlet boundary
conditions and the existence of solutions lying between weak sub- and supersolutions
is obtained. Ni in [6] proves the existence of a solution lying between smooth sub-
and supersolutions for semilinear elliptic equations on all of R"; the solution is obtained
as the limit of solutions on bounded regions and so the proof in [6] can be adapted
to apply to the case of weak sub- and supersolutions.

LEMMA 2.1. Suppose f" [0, 1 -. R satisfies
(Fo) f(0)=f(1)=0, f(u)>0 forO<u<l, f’(0)>0, f’(1)<0.
There exists Ao> 0 such that (1.2) has arbitrarily small nontrivial radially symmetric
weak subsolutions for all A > Ao.

Proof By our assumption (Go) on g there exists an annulus or ball ) centred at

ro and a constant m > 0 such that g(Ixl)>-m for all x f. Let A1 denote the principal
eigenvalue and ql the corresponding positive radially symmetric eigenfunction such
that supa ql(X)= 1 of

-Ao=hq one, q=0 on01).

Let fl(u)=hmf(u)-hu. Then fl(0)=0, and f(O)=hmf’(O)-hl. Hence f(0)>0
provided h > h/mf’(O)= Ao, say. Thus

(2.1) z(h) sup {t [0, 1]; hmf(u) > hu for 0_<- u <- t} > 0

for any h > Ao.
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Suppose h > Ao and 0 < e < z(h). Then

A(e(Ol) -1I- Ag(lxl)f( e(01) --A 1El (41-1t- Amf( E(0 l) 0

for all x 1) and so the function

eql(X) for x e ,
_u(x)

0 for x R"-

is a weak subsolution of (1.2).
LEMMA 2.2. Let f satisfy the hypotheses of Lemma 2.1. Then there exists A > 0

such that (1.2) has radially symmetric weak supersolutions arbitrarily close to one for
all h > A1.

Proof Let 1) be an annulus or ball such that g([x[)_-<-m for x 1) where rn is a
positive constant. Now u is a solution of

(2.2) -Au hg([x[)f(u) in

if and only if v 1-u is a solution of

(2.3) -Av=A,(]x[)(v) inl), v=0 on01)

where (r)=-g(r) and f(v)=f(1-v). By Lemma 2.1 there exist arbitrarily small
subsolutions of the form eo of (2.3) and so there exist supersolutions of (2.2) of the
form 1- eql arbitrarily close to 1. Therefore a radially symmetric weak supersolution
of (1.2) is given by

1 eql(X) for x ,
(x)

1 forx R-fl

and so the proof is complete.
THEOREM 2.3. Let f satisfy the hypotheses of Lemma 2.1. Then for all A >

max {Ao, A1}, problem (1.2) has a nontrivial radially symmetric solution u such that
SUpxg" U,X (X) 1 and infxR" U (X)

Proof By Lemmas 2.1 and 2.2 we have that for each h > max {Ao, A1} there exist
weak sub- and supersolutions _u and t. By choosing e sufficiently small we can ensure
that _u < fi. Hence by Ni’s existence theorem in [6] there exists a solution to (1.2).
Moreover, since g, _u, and fi are radially symmetric, the iteration scheme of [6] will
give us a radially symmetric solution.

The proof of the second part of the theorem depends on the construction of the
weak sub- and supersolutions. In the notation of Lemma 2.1 we have that u(x)>=
7(h)ql(X for all xfl. It is clear from (2.1) that limh_z(h)=l and so
lim supa_ u(x)= 1. Similarly, in the notation of Lemma 2.2 we have that u (x)-<_
1 z(A q (x), and so lim inf uh (x) 0.

3. Asymptotic behaviour of solutions. The main objective of this section is to obtain
conditions which ensure that all solutions of (1.3) tend to zero as r- c. We also
obtain information on rates of decay by investigating the asymptotic behavior of
u’( r)/ u( r). We shall later require asymptotic results on solutions of the linearization
of (1.3) about zero. So that we may deal with (1.3) where f(u)=
u(1 u)((1 h)u + h(1 u)) and its linearization simultaneously we assume throughout
this section only that f satisfies

(F) f:[0,1]->g+, f(0)=0, f’(0)>0, O<f(u)<=u for0<u<l.
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The assumption that g(r)< 0 for r sufficiently large is essential for our results of
this section. If g is allowed to oscillate arbitrarily at , then limr_ u(r) need not
exist. For example, u(x)= (1 + eCSX)-1 satisfies the differential equation

u"(x)-[cosx+(eCSX-1)(eCS+l)-l]u(1-u)=O for x R, u’(0) =0.

First we discuss the case n 1, 2. Our main result is the following.
THEOREM 3.1. Let f satisfy (F), and let u be a solution of (1.3).
(i) Suppose n 1. Then lim U (r) 0 if and only if rg r) dr -.
(ii) Suppose n 2. Then limr_ u (r) 0 if and only if r In rg (r) dr -.
For n 2 the classical transformation

transforms (1.3)x into

s=ln r, v(s)=u(r)

Vss+ h e2Sg(eS)f(v(s))=O.

Thus we can investigate the asymptotics of (1.3) for n 1, 2 by studying the asymptotics
of solutions of

(3.1) w"(x)+G(x)f(w(x))=O for x > 0, 0<w<l

where G(x)= hg(x) when n 1, and G(x)= h e2g(e) when n 2. Clearly, G(x)< 0
for x> Ro.

Suppose w is a solution of (3.1). Since w is bounded and eventually convex, it is
easy to see that w is eventually decreasing, limx_ w’(x)= 0, and lim_, w(x) exists.

LEMMA 3.2. If o xG(x) dx =-oo, then limx_oo w(x)=0.
Proof Multiplying (3.1) by x and integrating gives

xw’(x)-Row’(Ro)-W(X)/W(Ro)+ tG(t)f(w(t)) dt=O.

Suppose that limx_ w(x)=fl>O. Then limx_f(w(x))=f(fl)>O and so
tG(t)f(w(t)) dt=-c. Hence xw’(x)-o as x- c, which is impossible as w’(x)<=O

for x > Ro. Thus lim_, w(x)= O.
LEMMA 3.3. If xG(x) dx > -, then lim_, w(x) > O.
Proof. Suppose the contrary, i.e., limx_, w(x)=0. Since f’(0)>0, there exists

a > Ro such thatf(w(- )) is a decreasing function for x > c. Integrating (3.1), we obtain

w’(X)-w’(x)+ a(t)f(w(t)) dt=O

where a<-_x<-X. Since, for t> x,f(w(t))<-f(w(x))<-_ w(x), it follows that

and so, letting x ,
w’(X) w’(x) + w(x) G( t) dt <= O,

(3.2)
w’(x)

>_ G( t) at.
w(x)

Integrating from x a to x--, we obtain

G(t) dtdx= (t-a)G(t) dt>-
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whereas

w’(x)

w(x)
dx xlirn [ln w(x)-ln w(c)] -c,

which contradicts (3.2). Hence limx_, w(x)> O.
It is clear that Theorem 3.1 follows directly from the two previous lemmas.
We now study the case n-> 3. Suppose that u is a solution of (1.3)x. Since

(r"-lu’)’ -Ar"-Ig(r)f(u),

r"-u’ is eventually increasing and so is eventually of one sign. Hence u is eventually
monotone, and so limr_, u(r) exists.

The following result, which can be proved by an argument similar to that used
in the proof of Lemma 3.2, enables us to evaluate this limit.

LEMMA 3.4. Suppose f satisfies (F) and rg(r) dr =-. Let u be a solution of
(1.3) such that limr_, u(r) =/3. Thenf()=O.

We can now give our main asymptotic result for the case n => 3.
THEOREM 3.5. Suppose n>=3 and u is a solution of (1.3)x. Then limr_ u(r)=0

when either
(i) rg (r) dr -c and f(u) u, or
(ii) limr, r2g(r) - andf:[O, 1]- R satisfies (Fo).
Proof Part (i) is immediate from Lemma 3.4.
(ii) It follows from Lemma 3.4 that either limr_, u(r)=0 or lim_ u(r)= 1.

Suppose that limr_ u(r) 1. Let v(r) r/2"-)(u(r) 1). Then v(r) < 0 for all r and

lr_2{ f(u(r)) }v"(r)+- 4Ar2g(r) -(n 1)(n-3) v =0,
u(r)- 1

i.e.,

(3.3) v"(r) +1/4q(r)r-2v O.

Since lim_, u(r) 1, lim_,f(u(r))/(u(r)- 1) =f’(1), and so lim_ q(r) > 1. If k > 1
every solution of the Euler equation

--2w"( r) +-kr w( r) 0

is oscillatory. Hence it follows from the Sturmian comparison theorem that every
solution of (3.3) is oscillatory, i.e., that v is oscillatory. This is impossible and so
limr_ u(r) 0.

Finally, in this section we investigate the asymptotic behavior of u’! u. In the next
two results we deal only with the case where n-> 2; the same results hold when n 1
and the corresponding proofs are simpler.

LEMMA 3.6. Suppose f satisfies-(F) and that g is bounded below. If u is a solution

of (1.3) such that limr_, u(r) =0, then u’(r)/u(r) is uniformly bounded for r>0.

Proof Let z(r)= u’( r)/ u( r). Then z’= u"/u-z2, and so it follows from (1.3)x that

n-1 f(u)z’+z+z+Ag(r) =0.

Hence

z’+lz2=-Ag(r)f(u) n-lz__lz2"
2 u r 2
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2Sincef(u)/u<= 1 and g(r) is bounded, there exists K > 0 such that z +z < 0 whenever
z <-K. Hence, when z <-K, z’/z2<-1/2, and so d/dz(1/z)> 1/2. Thus, if Z(Xo)<-K,
1/z is an increasing function, and so z(x)<-K for all X>Xo. Since, however,
d/dz(1/z)>1/2, 1/z must eventually become positive and this is impossible. Hence
z(x) >=-K for all x and the proof is complete.

THEOREM 3.7. Suppose f satisfies (F), g is bounded below, and g is bounded away
from zero at oo, i.e., there exist k,R0> 0 such that g(r)<-kfor r>= Ro. If u is a solution
of (1.3)x, then limr-,oo e3ru(r)=O for any < /hkf’(0).

Proof It follows from Theorems 3.1 and 3.5 that limr_. u(r) =0. Since

u" n-1 u’ f(u)
Ag(r)"

and lim,,f(u)/u=f’(O), we have that

u"(r) >= au(r) for r sufficiently large

for any constant a < Akf’(O).
It is now easy to complete the proof by using standard differential inequality

arguments.
The previous theorem shows that solutions decay exponentially when g is bounded

away from zero at infinity. The final two results in this section show that exponential
decay does not occur when Igl is small at infinity.

THEOREM 3.8. Suppose n 1, f satisfies (F), and o g(r) dr converges. If u is a
solution of (1.3)x, then limr_. u’(r)/u(r)=O.

Proof Dividing (1.3)x by u and integrating, we obtain

fo u’’ Io f(u(s))
ds + h g( s) ds O.

u u(s)
Since f(u)/u is bounded, the second integral converges and so the first integral must
converge. Hence

u’(r) io rU, . l }!ina t u(r)
+

L U(S) J
ds exists.

If o [u’(s)/u(s)]2ds converges the conclusion is obvious. Suppose
o [u’(s)/u(s)]2 ds diverges. Then there exists R > 0 such that

(3.4)
u’(r) lo [u’(s)] 2

-> ds for r>=R.
u( r) L u( s)

Let v(r) .fo [u (s)/u(s)}2 ds. Then lim,_+oo v(r) :oo. However, (3.4) irnplis tkat v’(r) >
[v(r)]2, and so d/dr(1/v)<-{ for r > R. Hence 1Iv(r) < -r=-4 + C for some constant
C and this is a contradiction.

COROLLARY 3.9. Suppose n- 2, f satisfies (F) and o rg(r) dr converges. If u is a
solution of 1.3), then limr-.o ru’(r)/ u (r) O.

Proof. By using the transformation s=ln r and v(s)= u(r), equation (1.3) can
be transformed into

where G(s)=e2g(e). Then o G(s)ds=rg(r)dr and so limr_ v(s)/v(s)=O by
Theorem 3.8. But v rut and the proof is complete.

4. The shooting method. Uniqueness of solutions of boundary value problems
plays a vital role in the development of the shooting method for the study of (1.3).
We require the following results which are proved in [7] and [8], respectively.
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THEOREM 4.1. Supposefsatisfies (Fo) ofLemma 2.1 andfis concave, i.e.,f"(u) <-O
for O<-_u<-_l.

(i) Equation (1.2)x has at most one nontrivial radially symmetric solution u such
that limlxl_ u (x) 0.

(ii) Let R > 0, k >-_ O, and let BR {x R Ixl <-- R}. Then the boundary valueproblem

-Au(x) hg(x)f(u) in BR,
(4.1)

O< u(x) < 1 in BR, tl k on OBR

has at most one radially symmetric solution.
For the remainder of this section we assume that f satisfies (Fo) and is concave.

In addition we assume that

(G1)

rg (r) dr - if n 1,

r lnr g(r) dr -oo if n 2,

lim rg(r) -oe if n _>- 3.

It follows from Theorems 3.1 and 3.5 that all solutions of (1.3)x 0 as Ix[-* provided
f satisfies (Fo) and g satisfies (Go) and (G).

Consider the initial value problem

n-1
u"(r)+u’(r)+hg(r)f(u)=O for r> 0,

(4.2)a
u’(0) 0, u(0) p where 0 < p < 1.

We denote a solution of (4.2) by u(., p, A). It follows from standard theorems on the
continuous dependence of solutions on parameters and on initial data that (p, A)
u(.,p,&) is a continuous function from [0, 1][0, ) to C[0, R] for any R>0.

Let A(&)={p (0, 1): there exists R>0 such that O<u(r,p,A)<l for O<-_r<R

and u(R, p, A) 0} and B(A) {p (0, 1): there exists R > 0 such that 0 < u(r, p, A < 1
for 0=<r<R and u(R,p,A)=l}.

It is straightforward to prove from the continuous dependence of solutions on
parameters that A(A) and B(&) are open disjoint subsets of (0, 1). Thus the following
result is obvious.

LEMMA 4.2. (i) Let p (0, 1). Then u (., p, A is a solution of (1.3) if and only if
p g A(A B(A ).

(ii) IrA(A) and B(A) are both nonempty, then there exists a solution of (1.3).
We next use the uniqueness result of Theorem 4.1(ii) to obtain further information

about A(A) and B(A).
LEMMA 4.3. (i) IfA(A), then there existsp(A), 0<p(A)_-< 1, such thatA(A)=

(0,p()).
(ii) Suppose (1.3) has a solution. Then there exists p(A), 0<p(A)<l such that

a(A) (0, p(A) ), B(A) p(A), 1 and u (., p (A), A is the solution of 1.3).
Proof If p A(A), there exists R > 0 such that 0< u(r, p, A) < 1 for 0< r < R and

u(R,p,A)=O. Assume that q<p and qA(A). Then either u(ro, q,A)= 1 for some to,
0 < ro =< R or u(r, q, A) > 0 for 0 < r_-< R. In either case there exists rl, 0 < rl < R, such
that u(rl, q, A) u(r, p, A)( k, say). Thus u(., p, A) and u(., q, A) correspond to
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distinct radially symmetric solutions of (4.1), which is impossible. Hence there exists
p(h) (0, 1) such that A(A)= (0, p(h)). Part (ii) follows from the fact that under our
hypotheses on f and g, (1.3)x has at most one solution.

We shall use the preceding result to investigate the bifurcation of solutions. To
this end let

A {h > 0: there exists a solution of (1.3) }.

It follows from straightforward continuous dependence arguments that A is an
open set. The results of 2 show that h A provided that h is sufficiently large. If
A A, by Theorem 4.1 equation (1.3) has a unique solution, which we denote by ua.
The next result shows how p(A) and ua behave as A approaches the boundary of A.

LEMMA 4.4. Suppose that tx > 0 is such that (Ix, tx + e) c A for some e > 0 but Ix : A.
Then, as h ix +,

(i) Either p(h - 1 and ux - 1 uniformly on compact subintervals of [0, ), or

(ii) p(h)-0 and ua 0 uniformly on compact subintervals of [0, o).
Proof. Since /z A, either A(/z) (0, 1) or B(/x) (0, 1). Suppose A(/x) (0, 1).

Let q (0, 1). Then q A(/z). Using continuous dependence of solutions it is easy to
show that q A(A), provided that h is sufficiently close to/x. But, if q A(A), then by
Lemma 4.3, p(h)> q. Since q can be chosen arbitrarily close to 1, it follows that
p(h)- 1 as h -/x +. By the continuous dependence of solutions on initial data ux(r)
u(r, p(h), h) 1 uniformly on compact subintervals of [0, c).

In the case where B(/z)= (0, 1) a similar argument shows that (ii) holds.
Finally in this section we make use of our previous results on the shooting method

to prove that under certain hypotheses all solutions of (1.2)x are radially symmetric.
LEMMA 4.5. (i) If A(A), then there are arbitrarily small radially symmetric

weak subsolutions of 1.2)
(ii) If B(A), then there are radially symmetric weak supersolutions of (1.2)x

which are arbitrarily close to 1 on any compact subinterval of [0, ).
Proof. If A(A) , then A(A) (0, p(h)). For all p < p(h) let R(p) denote the

first positive zero of u(r, p, h). Let

Vp(r) { UO(r, P, h fr O<--- r<---- R(P),
for r > R(p).

Clearly, Vp(r) is a radially symmetric weak subsolution of (1.2)a. Let e > 0. There exists
pl-<p(h) such that [u( r, p, h )l < e for all P<-Pl and r<=Ro. If R(p)<=Ro, clearly
Vp(r)<e for all r>0. If R(p)> Ro, then since

n-1
u"+u’=-hg(r)f(u)>O for Ro<r<R(p),

u has no local maximum turning points for Ro<r<R(p), and so u(r,p,h) is a
decreasing function on (Ro, R(p)); hence Vp(r)<e for all r>0. Hence arbitrarily
small radially symmetric weak subsolutions Vp can be obtained by making p sufficiently
small.

Part (ii) has a similar proof.
LEMMA 4.6. Suppose that (1.2) has a nonradially symmetric solution u. Then (1.2)

also has a radially symmetric solution.

Proof Assume the contrary. Then A(A)= (0, 1) or B(A)= (0, 1). Suppose A(A)=
(0, 1). Then by Lemma 4.5 there exist arbitrarily small radially symmetric subsolutions,
with compact support. It follows from the maximum principle that 0 < u(x) < 1 for all
x in R". Hence there exists a radially symmetric weak subsolution _u such that
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0 <-_u([x[)_-< u(x) for all x R". Using Ni’s results in [6], we have that the iteration
starting from the radially symmetric subsolution _u converges to a radially symmetric
solution lying below the (super) solution u. This is a contradiction, and so the proof
is complete. A similar contradiction arises if B(A)= (0, 1).

THEOREM 4.7. Suppose f satisfies (Fo) and is concave and g satisfies (G1). Then
every solution of (1.2)x is radially symmetric.

Proof. Suppose u is a nonradially symmetric solution of (1.2)x. Then there exists
a radially symmetric solution of (1.2)h, and so by Lemma 4.3 A(A) and B(A) are
nonempty. Hence by Lemma 4.5 there exist radially symmetric weak sub- and supersol-
utions _u and such that _u _-< u -< tT. Ni’s results in [6] imply the existence of radially
symmetric solutions Ul and u such that _u_-< Ul -< u_-< u_<- ft. Since u is nonradially
symmetric, Ul u and u2 u, and so Ul # u2. But this is impossible because of Theorem
4.1, and so every solution of (1.2)x is radially symmetric.

5. The case , g(x) dx < 0. In this section we shall discuss the equation

(5.1) -Au=hg([xl)u(1-u)(h(1-u)+(1-h)u) onR"’0<u<l

where < h <32-. Then f(u) u(1 u)(h(1 u)+(1 h)u) satisfies (Fo) and is concave.
We shall assume throughout the section that g satisfies (G1). Thus the results of 4
apply to equation (5.1)x.

We first show that (1.3) has no solutions when h is sufficiently small.
LEMMA 5.1. If-c<_R g(x) dx < O, then there exists ho> 0 such that

IVul= aN >- o g(x)f(u)u dx
R

for all u H (R) such that 0 <- u <- 1 and R, gu2 dx > O.
Proof. Choose R > Ro such that B g dx < 0 where B {x R" Ixl-< R}, It is

proved in [2] that there exists hi> 0 such that

f
for all u Hi(B) such that B gu2 dx > O.

Let K =sup ({g(x)[" x B} and M=sup (f(u)/u" O-<_ u <-_ 1}. Let u HI(R") such
that 0- u 1 and R, gU

2 dx > O. Then gu2 dx > 0 and so

Ivl d > Ivl dx >
R B

>= (KM)-x f g(x)f(u)u dx

>- (I(M)-’X Io g(x)f(u)u dx.

THEOREM 5.2. Suppose --O<--R, g(x) dx<O, ho is as in Lemma 5.1, and h <ho.
Then there does not exist a solution of (5.1)x.

Proof. Assume the contrary, that (5.1)x has a solution u. Then by Lemma 4.3,
A(A) is nonempty, and so there exists pc(0, 1) and R>0 such that O<u(r,p,h)<l
for re(O,R) and u(R,p,h)=O. Define v by v( r) u( r, p, h for 0-< r<_-R and v(r) =0
for r>R. Clearly, 0-<_v<l and veHI(R’). We now show that R, gV2dx>O. Let
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w v2/f(v). Since v is bounded away from 1, w L2(R"). Moreover,

7w= v/fZ(v)[Zf(v)-vf’(v)]Vv,
and so w HI(R "). Since v satisfies

(5.2) -Av Ag(r)f(v) on B {x e R’" Ixl--< R},
multiplying by w and integrating, we obtain

v(x) O on0B

f v/f(v)[2f(v)-vf’(v)]lVvl dx>O

as f(v)= v(1-v)(h(1-v)+(1-h)v). Hence R gv2 dx>O. Therefore by Lemma 5.1

I IVvIZdx>=AIR
However, multiplying (5.2) by v and integrating gives

In. lVvl2 dx=A In. g(x)f(v) vdx,

and this is a contradiction.
The previous theorem shows that A is bounded away from zero. The following

results show that bifurcation from the zero solution occurs at points on the boundary
of A.

THEOREM 5.3. Suppose --O<--_R. g(x) dx <0. Suppose l A but (l, Iz + e)c Afor
some e > O. Then

(i) u - 0 as h tx +,
(ii) /z is an eigenvalue for the linear problem

(5.3) -Au=Ag(r)f’(O)u forxinR", lim u(x)=0

and there exists a corresponding nonnegative radially symmetric eigenfunction.
Proof (i). Suppose the contrary. Then by Lemma 4.4 ux - 1 uniformly on compact

subintervals of [0, c) as A-/x/. Choose R> Ro such that lxl_<R g(x)dx <0. Now
u ux satisfies

(r"-’u’)’ Ar"-’g(r)f(u)+ =0 forr>0.
1-u 1-u

Integrating from 0 to R, we obtain

(5.4)
R"-lu’(R) J’R s’-l[u’(s)]2 Io Sn-lg(s)f(u(s))

ds=O"
1-u(g) o (1-u(i5 ds+h

1-u(s)

Since limr_ u(r)- 0 and u"(r)> 0 at any critical point of u when r > R0, it follows
that u’(R)<-O. Hence by (5.4)

’n s,-lg(s)f(u(s))
ds>O.

o 1-u(s)

As A-/z +, ua-l and so f(ua(s))/(1-u;(s))--f’(1)uniformly on [0, R]. Hence
f’(1) on s"-Ig(s) ds <-0, and this is a contradiction.
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(ii) Suppose Ak-/z +. Let Uk denote ux and let rk denote the point where Uk

attains its maximum value. Since Uk is decreasing on [Ro, oo), rk <- Ro. Let Ok Ilk/Uk(l’k).
Then

Hence

(rn-lv’k)’+Akrn-lg(r)[f(Uk)/Uk]Vk=O for r>0, v(0) =0.

(5.5) rn-lv’k(r) --Ak s" lg(s) f(Uk)
Vk ds.

L Uk

Let R > Ro. It follows from (5.5) that {Vk} is a bounded, equicontinuous sequence
of functions on [0, R]. By considering the integral equation satisfied by Vk and letting
k-oo, it is straightforward to show that v’(0)=0 and that v must satisfy -Av
Ag(r)f’(O)v on [0, R]. Using a standard diagonalization procedure we can find a
subsequence {Vk} converging to v on [0, ) such that v satisfies -Av Ag(r)f’(O)v on
[0, o). Since Vk >= 0 for all k, v-> 0. As Vk attains the value one at some point of [0, Ro)
for all k, v0. Finally, as g satisfies (G1), it follows from the results of 3 that
limr_ v(r) 0.

By placing further restrictions on g we can ensure that bifurcation occurs from
the zero solution at only a single point.

LEMMA 5.4. Suppose that g is bounded below and that g is bounded awayfrom zero
as r- o. If tx and are eigenvalues of (5.3) corresponding to positive eigenfunctions u
and v, then tx ’.

Proof. We may suppose without loss of generality that /x _-< 9. Multiplying the
u-equation by u and integrating, we obtain

(5.6) rn-lu’(r)u(r) sn-l(Ilt)2 ds+ Ixf’(O) sn-lg(s)u :z ds=O.

Multiplying the v-equation by u2/v and integrating we obtain

rn_ (r)
[u(r)]2 ,_lv

2uu

v(r)
s

v v2
as

(5.7)

+ f’(o) s"-Ig(s)u ds =0.

By Lemma 3.6, u’/u and v’/v are bounded, and by Theorem 3.7, u, v, u’, v’ decay
exponentially. Hence letting r oo and then combining appropriate multiples of (5.6)
and (5.7), we obtain

’ s"-(u’)- ds-tx sn_lv
2uu’ u2v
v v2

ds =0,

n-1 v tx )( u’): + lz u’ ds O.

Hence v =/x and the proof is complete.
It follows from the preceding results that the boundary of A must coincide with

the unique eigenvalue of (5.3) corresponding to a positive eigenfunction. Thus we have
Theorem 5.5.
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THEOREM 5.5. Suppose that g is bounded below, and that g is bounded away from
zero as r-. Then there exists/Xo>0 such that for problem (5.1), A=(/Xo, o) and
u0 as h tx-.

6. Bifurcation from u 1. We again discuss (5.1)x with the assumption that

< h < (so that f is concave). We restrict attention to the cases n- 1, 2. We shall
assume that g satisfies

lim r2g(r)=-c when n 1,

(Ge)
lim r2(ln r)2g(r)=- when n 2.

Clearly, (Ge) implies (G1), and so, if g satisfies (G2), equation (5.1)x has at most
one solution u, and u must be radially symmetric and limr+ u(r)= O.

We shall also assume that g satisfies

(G3) f g(Ixl) dx > O.
R

Hypotheses (G2) and (G3) are satisfied by functions g which have the following
asymptotic behavior as r :

g(r)----r wherel<a<2 whenn=l,

g(r)--- -r-2(ln r) where 1 < a < 2 when n 2.

We shall prove results only for the case n 2; identical results with somewhat simpler
proofs hold when n 1. Our main result (Theorem 6.4) shows that bifurcation occurs
from the branch of trivial solutions u 1 when A 0.

It is shown in [2] that, if g satisfies (G3), then (5.1)a has subsolution with compact
support for all A > 0 and that, if g satisfies (G2), then (5.1)a has a supersolution which
is identically equal to 1 on a big interval of the form [0, R] for all A > 0. Thus we have
the following result.

LEMMA 6.1. Suppose g satisfies (G2) and (G3). Then equation (5.1) has a unique
solution ua for all A > O.

We now investigate the behavior of ua as A - 0. The following identity enables us
to exclude the possiblity that ua - 0.

LEMMA 6.2. Suppose g satisfies (G2) and (G3). If u is a solution of (5.1)a then

ior f’(u) dr+ rg(r) dr=O.

Proof Since u is a solution of (5.1), we have

Hence

(ru’)’/f(u) + hrg(r) 0 for r > 0.

(6.1)
ru

f(u) io ( io+ s f’(u) ds+ A sg(s) ds=O.

By Corollary 3.9, limr_ ru’/u=O, and so limr_,o ru’/f(u)=O. Since 0 rg(r) dr con-
verges, the required identity follows by letting r in (6.1).

COROLLARY 6.3. Suppose g satisfies (G2) and (G3). Let u be a solution of (5.1)a.
Then max {u(r)" r>0}>_-tr where o-=inf{u (0, 1)’f’(u) =0}.
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Proof. Assume the contrary. Then u(r)< o-, and so f’(u(r))> 0 for all r> 0. This
is clearly impossible because of Lemma 6.2.

THEOREM 6.4. Suppose g satisfies (G2) and (G3). Suppose 1k "-’> 0 and Uk UAk. Then
Uk -- 1 uniformly on compact subintervals of [0, ).

Proof Because of the continuous dependence of u(., p, h) on p and h it suffices
to prove that limk_ Uk(0)= 1. Assume the contrary. Then there exist /[0, 1) and
subsequences which we again denote by /k and Uk such that limk_, Uk(0 I.

Suppose 0. It follows from continuous dependence arguments that Uk converges
uniformly to zero on [0, Ro], and so, since Uk is decreasing on [Ro, c), that Uk converges
uniformly to zero on R. This is impossible because of Corollary 6.3.

Suppose 0 < < 1. Since

(6.2) (ru,)’= Akrg(r)f(Uk) for r>0, u,(0)=0

it follows that

(6.3) Uk(r)=Uk(O)+Ak sin g(s)f(uk(S))ds for r> 0.

Since limk Ak o S In (r/s)g(s)f(Uk(S)) ds 0 for all r, 0-< r -< R, letting kc in (6.3),
we have that Uk converges uniformly to on [0, R]. Hence

(6.4) lim rg(r)f(u) dr= rg(r)f(l) dr>O.

However, integrating (6.2) from zero to infinity and using Corollary 3.9, shows that

o rg(r)f(uk) dr=O for all k, and this is a contradiction.
Hence limk_ Uk(O)= 1 and the proof is complete.
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ON THE REPRESENTATION OF STOKES FLOWS*

WERNER KRATZ

Abstract. In this paper representations of Stokes flows in dimensions 2 and 3, which reduce the Stokes
equations to the Laplace equation for an auxiliary function, are given. While it is known that two- and
three-dimensional Stokes flows may be reduced to biharmonic problems, the representations here are new.
The main result of this paper reads as follows: Given a domain G R3, which is star-shaped with respect
to the origin, and functions 5" G- R3, p" G- R, then and p represent a Stokes flow with velocity field
and pressure p in G (i.e., A grad p and div 0 in G) if and only if z and p are of the form

5() ()-1/2{div (). : + curl ()), p() - div (),
where is a harmonic function (i.e., A 0) in G.

Key words. Stokes flows, Stokes equations, harmonic functions

AMS(MOS) subject classifications. 76D07, 35Q10, 31A10

1. Introduction. In this paper we derive formulae for the velocity field z and the
pressure p of two- and three-dimensional Stokes flows, which represent f and p via a
certain (uniquely determined) auxiliary harmonic function . For dimension 2 our
Theorem 1 extends a result of [3, Thm. 1 and Lemma 2], where z and p of a Stokes
flow are expressed by two holomorphic functions provided the corresponding domain
G

___
R2 is simply connected. Our two-dimensional representation formula here is valid

for any domain G R2, and, moreover, we can express the auxiliary function z explicitly
in terms of z and p. Besides the result in [3] there are well-known reductions of the
Stokes problem in dimensions 2 and 3 to biharmonic problems (see, e.g., [1], [9], and
[6]).

The main result of this paper is a representation theorem (Theorem 2 below) for
three-dimensional Stokes flows. This theorem is quite similar to the two-dimensional
Theorem 1, and its essential part reads as follows. Given a domain G_ 3, which is
star-shaped with respect to the origin, and given functions 3" G-+ [3, p. G-+ , then
z3 and p represent a Stokes flow in G, i.e.,

Az grad p, div 3 0 in G,

if and only if there exists a harmonic function 6 (i.e., A6 0) in G such that

3(;) (;)- 1/2{div (;). + x curl (;)},
p() - div (g) for g G.

Moreover, 3 is uniquely determined by z3 and p, and we give an explicit formula
expressing g in terms of z3 and p (see Theorem 2 below). In the case of so-called
potential.flows (i.e., 3 grad 4 with Ab 0) our representation formula becomes trivial,
i.e., z3 z3 (since div 3- 0, curl z3- 0 in that case). Moreover, it may be interesting to
ask whether the auxiliary harmonic function has any "concrete" physical interpreta-
tion with respect to the Stokes flow.

Let us shortly summarize the setup of this paper. In 2 we state our results on
two- and three-dimensional Stokes equations (Theorems 1 and 2). Some auxiliary

* Received by the editors October 25, 1989; accepted for publication (in revised form) April 2, 1990.

" Abteilung Mathematik, UniversitS.t Ulm, Albert-Einstein-Allee 11, D-7900 Ulm, Federal Republic of
Germany.
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formulae from the vector analysis are given in 3. Section 4 is devoted to the proof
of the two-dimensional result. The main result, i.e., the three-dimensional Theorem 2,
is shown in 5, where we also discuss the assumption on the domain (i.e., star-shaped
with respect to the origin) in detail. But it remains an open question whether Theorem
2 can be extended to more general domains (e.g., simply connected domains).

Finally, we want to point out that these representation formulae can serve as the
basis of numerical algorithms (see [3] for such an algorithm in dimension two via
conformal mappings) to solve Stokes boundary value problems. In view of our results
these problems reduce to solving Laplace’s equation A3=0 with "suitably adapted"
boundary conditions.

2. Main results. To formulate our results we need some notation and notions. We
will use the usual inner product in R2 or E3 and vector product in R3. The differential
operators grad, div, and A denote the gradient, divergence, and Laplacian of scalar
functions, respectively, vector fields in E2 or E3. While curl is defined as usual for
vector fields in E3, we introduce the following additional notation in E2.

curl g: for a vector field g in N"Ox Oy

+/-a := and := for Y e 2,
--OX

Moreover, we need the following definition.
DEFINITION 1. Let G_ Rn be a domain. A function 6" G-n is called
(i) harmonic in G, if 6 C2(G) and if A3()- 0 for G; and it is called a
(ii) Stokes function in G, if 6 C2(G) and if there exists a (pressure-) function

p G with p C1(G) and

(1) A5() grad p(Y), div () 0 for 6 G.

Remark 1. Obviously, for a given Stokes function the corresponding pressure p
is unique up to an additive constant. Next, every function that is harmonic in a domain
G belongs to C(G), even every continuous solution q of Aq= h if h Co(G).
Moreover, by a result of Weyl [10], every Stokes function 3 in a domain G is in
C(G), and a corresponding pressure-function p is harmonic in G, since Ap=
div {grad p} div {A3} 0 by (1). For this reason, we will not discuss ditterentiability
conditions from now on.

THEOREM 1. Let G
_
2 be a domain. A function " G-2 is a Stokes function

with corresponding pressure p in G, if and only if there exists a harmonic function in
G such that

3(Y) (Y)-1/2{div (Y). Y + yz curl (Y)},
(2)

p(Y) -2 div (Y) for G;

this harmonic function is unique, and we have

(3) () 3(Y)-1/4(p() - +/- curl 3()} for Y G.

This theorem is a quite statisfactory completion of [3, Thm. 1], where G was
assumed to be simply connected. But our main objective here is the following rep-
resentation theorem in the most interesting dimension 3, where no such result seems
to exist. The assumption on the domain G is not as satisfactory as in dimension 2
above. We have to assume that G is star-shaped with respect to the origin, i.e., tY G
for all [0, 1 whenever Y G.
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THEOREM 2. Assume that G
_
3 is a star-shaped domain with respect to the origin.

Then a function " G-3 is a Stokes function with corresponding pressure p in G, ifand
only if there exists a harmonic function in G such that

() () -{div (). + x curl (:)},
(4)

p(:) - div () for G;

this harmonic function is unique, and we have

(5) () 3() -1/4{p() - curl 3()} + x grad b() for G,

where the function qb is harmonic in G and given by

l for(6) b() - t4 curl (t) dt for G.

We will prove this theorem in 5, in particular the assumption on G (i.e.,
star-shaped with respect to the origin) will be discussed there in detail.

Remark 2. Of course, two-dimensional Stokes functions -() are also Stokes
functions in dimension 3 (with Uz vz 0) by setting the third component w-= 0. But
in that case the three-dimensional representation formula (4) above does not reduce
to the corresponding two-dimensional formula (2) (e.g., we have the factor in (4)
instead of 1/2 in (2)). Moreover, it is not clear at all, how the representation (2) can be
derived from formula (4) (or vice versa) in the case of two-dimensional flows.

3. Auxiliary formulae from the vector analysis. For the proofs of Theorems 1 and
2 we need several formulae from the vector analysis, which are, at least partly, well
known (see, e.g., [8, 124, p. 384]). These formulae can be verified directly, and we
assume, of course, the existence and/or continuity of the partial derivatives involved.

LEMMA 1. Let " G- n, qb G , G
_. Then

(7) curl {b(Y). Y} grad b(Y) Y+/- for n 2;

(8) curl {Y- curl 6(Y)}=[A6(Y)-grad {div 6(Y)}]. Y--2curl 6(Y) forn=2;

div {th(Y) Y}= 2th(Y) + Y" grad ch(Y)forn 2, respectively,
(9)

div {b(:) Y} 3th(Y) + Y" grad b (:) for n 3;

(10) curl {b(:). Y}=-Ygrad b(Y) forn =3;

(11) A{b(Y).Y}=2gradb(Y)+Ab(Y).Y forn=2orn=3;

curl {grad q5 (Y)} 0 for n 2 or n 3,
(12)

div {curl ()} 0, div { grad ()} 0 forn=3;

div{ curl ()} . A() . grad {div ()} for n 2, respectively,
(13)

div {curl ())=. A()-. grad {div ()} forn=3;

A{Y- curl g(2)} +/- curl {Ag(Y)}--2Ag(Y)

+ 2 grad {div g(Y)} for n 2, respectively,
(14)

A{ x curl t3()} x curl {A()}- 2A3()

+ 2 grad {div f(2)} for n 3;
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(15) curl {curl ()} grad {div ()}-A5() for n 3;

(16) A{:. curl 3(:)} . curl {A3()} for n 3;

(17)
curl { curl 6()} x grad {div ()}-grad {Y. curl ()}

-curl (Y) x A6(y) for n 3;

(18)

(19)

A{y x grad b(:)} Y x grad {Ab(Y)} for n 3;

curl {:xgrad b(;)}= Ab(Y). Y-grad {b(Y)+Y. grad b(:)} forn=3.
4. Derivation and proof of the two-dimensional theorem. Using essentially the

formulae of Lemma 1 for dimension 2 we can now derive Theorem 1.

Proof of Theorem 1. (i) First, assume that g is harmonic in G and that and p
are given by (2). Then the representation (2) and the formulae (9), (11), (13), and (14)
(with g instead of 3 and b div g) yield:

div =div g-1/2{2 div g+. grad (div t)-, grad (div g)}--- 0,

A -1/2{2 grad (div ) + 2 grad (div g)} grad p in (3.

Hence, 3 is a Stokes function with corresponding pressure p =-2 div 3 in G
according to Definition 1.

(ii) Now, assume that f is a Stokes function with corresponding pressure p and
that is given by (3). Then the formulae (1), (7)-(9), and (11)-(14) (use also that
Ap 0 by Remark 1) show that

A= A-{2 grad p + Ap. -+/- curl (A)

+ 2A3- 2 grad (div )} 0,

div div 3 1/4{2p + . grad p . A +. grad (div )} 1/2p,

" curl = +/-{curl -1/4[(grad p-Af+grad (div 3)). :+/-+2 curl 3]}

1/2 +/- curl ,
v v +1/4{-2 div g. -2+/- curl g},

which is (3). This completes the proof of Theorem 1 up to the uniqueness of 3, which
is a consequence of the following proposition.

PROPOSITION 1. Assume that 1 and 2 are harmonic in G such that

,(;) -1/2{div/1())" ) "-;_1_ curl

(;)-{aiv (;) g+; curl 52(:)} for Y G.

Then there exists a with

6,(:f) 2(Y) cry for Y G.

Proof Consider 6 61 32, so that 6 1/2{div 3. + +/- curl 3} and A6 0. Then
the formulae (2) and (13) yield that curl 6= -curl 5, i.e., curl 6-=0, and grad (div
(use A3-=0 again). Hence, curl f-=0 and div 6-= 2a in G, and it follows that
5 1/2{div 5. + +/- curl 5} a for G.

Remark 3. Since div (aY)= 2a it follows that 5 is uniquely determined by (2)
when 3 and p are given; and this constant a is just the free additive constant in the
pressure p (compare Remark 1) for a given Stokes function

5. Derivation and proof of the three-dimensional theorem. The main Theorem 2 of
this paper follows from Propositions 2-4, and Lemma 2 below.
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PROPOSITION 2. Let (5

_
R be a domain, and assume that and p are given by

(4), where is harmonic in G. Then is a Stokes function with corresponding pressure p
in G.

Proof The representation (4) and the formulae (9), (11), (13), and (14) (with
instead of 3 and b div 3) yield:

div 3= div -1/2{3 div + Y. grad (div g)-Y. grad (div g)}---0,
At5 -1/2{2 grad (div ) + 2 grad (div )} grad p.

Remark 4. For fixed Y,o 3 we have obviously that

() := () -,{div g(). (- Yo) + (-o) x curl ()}
is also a Stokes function in G with corresponding pressure

p() := - div (Y), whenever is harmonic in G.

The next proposition deals with the question whether a given Stokes function can be
represented by (4) with a harmonic g.

PROPOSITION 3. Assume that is a Stokes function with corresponding pressure p
in a domain G

_
3. Then the representation formula (4) holds with a function , which

is harmonic in G, if and only if this function satisfies (5), where 4’ is harmonic in G
such that

(20) 44(Y) + Y" grad 4() +Y" curl (Y) 0 for G.

SUPPLEMENT. Assume that formula (4) holds with a function , which is harmonic
in G. Then, it follows that formula (5) holds for the function
(21) 4(Y) := -Y" curl g(),
and this ch is harmonic in G and satisfies (20).

Proof First, it follows from Definition (1) and (12) that

(22) curl {A5()} 0 for Y G.

(i) Assume that (5) holds with a function 4, which is harmonic and which satisfies
(20). Then the formulae (5), (11), (14), (18), (22) and (1) (observe that Ab=0 and
that Ap div (grad p)= 0 by (1)) yield

Ag= A-1/4{2 grad p + 2 grad p} 0.

Hence, g is harmonic in G. Moreover, by (1), (9), (13), (12), and (10), (17), (19), (20)
we obtain that

div =-p,
curl g= curl 5--]{- x grad p + grad {Y. curl

+ curl 5 + x grad p} grad {b +. grad b}

curl + 3 grad b.
By putting these identities into (5), it follows that

-{div . + : x curl }
3 1/4{ pY Y curl 3} + Y x grad

1/2{- pY+Y x curl t3 + 3Y x grad b}

=,
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and

p =- div ; i.e., (4) holds.

(ii) Now, assume that (4) holds with a harmonic function , and define 4’(Y) :=

-2" curl () for G according to (21). Then b is harmonic in G by (16). By (4),
(10), (17), and (21) (observe that A=0) we get div =-]p, and

curl 3 curl -1/2{- x grad (div ) + grad (div )
curl f + 12 grad tk },

thus

(23) curl curl + 3 grad

Putting these formulae for div and curl 3 into (4) yields

=/5+1/2{--34p+ curl +3x grad b}

=/5- 1/4{p- x curl/5} + x grad b;

i.e., (5) holds. Finally, the definition of 4 by (21) and formula (23) imply that

4b +. grad b---. curl/+. {curl/- curl

=-1/4. curl

i.e., (20) holds. This completes the proof of Proposition 3 and of the supplement. 7-]

The next lemma shows that any Stokes function can be represented by (4),
where the auxiliary harmonic function 3 is given by (5) and (6). But for this lemma
it is crucial to assume that the domain G is star-shaped with respect to the origin (and
this assumption of Theorem 2 is needed only for this lemma).

LEMMA 2. Assume that G
_
R is a domain which is star-shaped with respect to the

origin, and that a function " G--> 3 satisfies C3(G) and (22), i.e., curl {A()} --- 0.Then thefunction qb() given by (6) is harmonic in G and satisfies the differential equation
(o).

Proof. Consider the function h():= :. curl 3(). Then h is harmonic in G by
(16) and (22). Just because G is star-shaped with respect to the origin the function
is well defined by (6), and it follows that

t3 1
a(;)=a h(t) at =--4 t(ah)(t) clt=O.

Hence, d is harmonic in G; and partial integration yields

1 :. 4(grad h)(t) dt t4
d

x. grad 4()=- 4
(h(t)) dt

4

1 .. curl ()) -4b() for ) e G.
4

Thus, (20) holds. I-]

The uniqueness of 3 (compare Proposition 1 and Remark 3) in Theorem 2 is a
consequence of the following proposition.
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PROPOSITION 4. Let G 3 be a domain with 0 , and assume that 1 and 2 are
harmonic functions in G such that

J, (9) {div ,(9) ) + ) x curl ,())}
(24)

2(Y) -1/2{div 52(Y) Y + Y x curl t52(Y)} for G.

Then there exists a with

(25) ,(:) t32(Y) a: for G.

Proof Proposition 2 and equation (24) yield 0= grad {div l-div t32}, thus

div (31 32) 3a in G for some a .
Then the function 3o(): 31()-32()-a satisfies (observe that divY=3,

curl Y 0)"

(26) div 0() 0, mo( 0, o() .__1x curl 3o() for G.

Setting q(Y):= . curl 3o(), we obtain from (26), (16), and (17) the formulae

(27) A(Y) 0, 4q(Y) +. grad () 0, grad () -4 curl 3o().

Since 0 G we have that U(0) G for some e>0. We consider the function f(t) :=
p(tY) on [0, 1] for a fixed U(0). Formulae (27) imply that f(0) =0 and 4f(t)+
tf’(t) 0 on [0, 1]. Hence, f(t) 0 on [0, 1], in particular 0(:) =f(1) 0; and it follows

__1from (17) and (26) that curl fo(Y) curl { curl fo(Y)} -1/2 curl fo(:). Therefore,
curl 3o() and then also 3o() are identically zero in U(0). Since fo is harmonic in
G, it follows that 3o() 0 for all : G by [2, Chap. X, Thm. IV], i.e., (25) holds. [2

Remark 5. (i) Without the assumption 0 G the foregoing proof shows that

1() () a+ 3o() for G,(25’)

where

*Jo(;) -29 x grad @(;) with 4,(9) 9" curl Jo()),

and where the function q()) satisfies

(28) hO()) 0 and 40(2) + 9" grad p(2) 0 for 9 e G;

i.e., @(2) is harmonic in G with @(2)= r-4(O, qg), where (r, O, p) denote the usual
spherical coordinates of 9. Any (separated) spherical harmonic of degree -4 satisfies
(28). This discussion describes in general (i.e., if 0 G) the exact freedom in the
representationformula (4). To prove this assume that q e C(G) satisfies (28); and define

3o(9) := -9 x grad ,(2).

Then we have (use (19))

h3o(Y) 0, div 3o(Y) 0, curl o(Y) -- grad q,(Y);

thus,

o() 1/2{div o() :+ : x curl 5o()} 0

(compare formula (4) with 3--0, p--0, and = ,3o). In particular, the function g in
(4) is not uniquely determined by 3 and p if 0 G.
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(ii) The question whether Theorem 2 does not hold for more general domains is,
by the preceding results, equivalent with the problem whether the differential equation
(20) has a harmonic solution 4 in G for any given function 3 C3(G) that satisfies
(22). In case that G is star-shaped with respect to the origin, Lemma 2 above answers
this question affirmatively, and it even gives an explicit formula for (which is unique
in this case by Proposition 4), i.e., (6). But the question concerning more general domains
remains open. Concerning the solvability of (20) we have besides Lemma 2 only the
following local result (where e is certainly not the best possible).

PROPOSITION 5. Given )03, G:= UR(,O) {o 31l-ol < R} with R > O, and
a function C3(G) that satisfies (22). Then there exists a function , which is harmonic
and which satisfies the differential equation (20) in G’= U(Yo) with e := R/8e.

Proof Let y := I ol->- R, since otherwise 0 G and then the assertion follows from
Lemma 2 (even with e R). Now there exists an orthogonal matrix U such that

Uro

For given functions and consider the functions

(29) h(;) := 41-( U2 + 2o) curl 3( U2 + o), (2) := ( U2 + 2o).
Then A@(2)=(A)(U2+2o), since U is orthogonal, and grad@(2)=
(grad )( U2 + o) U (where grad is a row-vector).

By (16) and (22) the function . curl 3() is harmonic in G, thus

(30) h(2) is harmonic in UR(0);
and our assertion is now equivalent with the existence of a function satisfying

R
,() is harmonicin U(0), e =m>0, y>=R, with

(31) 8e

4() +. grad () + yG() + h() 0 for I1 < e.

We construct () 0(r, O, o) by expansion with respect to spherical harmonics, where
(r, O, o) denote the spherical coordinates of , i.e., x r cos o sin O, y r sin o sin O,
z r cos O. By Y(O, o), -n -<_ k <= n, we denote a complete, orthonormal system of
spherical harmonics of degree n; more precisely:

Ynk(O, qg):=CnkCOS(kq)pkn(cosO) for 0_-< k_-< n,

Y.,-k(O, q) := Ck sin (kq)Pk.(cos ) for 1 _-< k_-< n,
where

pk(t):=2,.n.. (1-t2)k/2 -- -1)

denote the Legendre functions (see [4, Chap. IV]) and where

’2n + 1 (-- k)!} 1/2

c":=l. (n+k)!
Then we have

(32)
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by [5, Lemmas 8 and 14]. The recursion

dntpk.(t)+(1-- t2)- Pk.(t)=(n+ k)pk._l(t)

[4, p. 171] and Or/Oz=cos O, Oq/Oz=O, O0/Oz=-sin O/r yield the formula

(33) Oz
{r gnk}-- (n + k)(n k) rn-1Yn-l,k for I/I -< n 1

n-1

=0 fork=+n, n>=O.

Since h(Y) is harmonic in UR(0) by (30) it can be expanded with respect to spherical
harmonics (see [7] or [2]), i.e.,

(34) h(Y)= 2 b.kr"Y.g(O,o) forlYl=r<R,
n=0 k=-n

where the coefficients satisfy bnk--O(p-n) as n- for all p < R. Hence, for any fixed
0<p<Rwehave

(35) Ib.kl <-- cp-" for Ikl--< n, n -> 0 with a constant c c(p) > O.

Now we construct q via the setting

q(Y) Y a.gr"Y.g(O, q).
n=0 k=-n

Then q is automatically harmonic in U (0), provided we can show appropriate estimates
of the coefficients. Now, by (33),

40(Y) + Y. grad q(Y) +

Y. {(4+ n)a.k+ ya.ka.+l,k}r"Y.k(O, q)
n=0 k=-n

with

2n+3 }1/2Ognk :’- (n + l + k)(n + l k)
2n+l

Comparing coefficients, we find the differential equation (31) for q is equivalent with

(36) (4+ n)a.k + ya.ka.+l.k + b.k 0 for Ikl =< n, n >= 0.

These equations are fulfilled if we define the ank by

(37)

1
a.+l.k-- {--b.k--(4+n)a.k} for-n<=k<--n, n>--O,

")tank

-1 -1
b.. a. b. for n -> O.a..

4+ n 4+ n

We show recursively that

(38)
n k} 1/2

(4+ n)la.,+(,,_k) N (8/p)"c ..
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holds for 0-<_ k =< n, n _-> 0. This is clear for n 0, and for k 0, n _-> 0. For 1-< k _-< n + 1
it follows inductively from (35), (37), and (38) that

4+n+l{2n+l 1 }1/2(4+n+l)[a,,+l,,,+l_k[<__
y 2n+3 k(2n+2-k)

cp 1 +8"
\(k_ 1)

--C" p-n-l{ rig-1 (2n+l)(4+n+l)2} 1/2

k! (2n +3)(n + 1)

nk-1

k!
(observe that y _-> R > 0).

Now, (38) yields

<--c(8e/p)".[a"’l<--c(g/P)
4+n-

This estimate and (32) show that the series defining q() converges absolutely (even
after termwise differentiation by (33) and by corresponding formulae for the partial
derivatives with respect to x and y) for I < R/8e, and this completes the proof. V

Acknowledgment. The author records his thanks to the referees for several very
helpful comments.
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ISOLATED SINGULARITIES OF p-HARMONIC
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Abstract. A classification theorem for isolated singularities of p-harmonic functions is given
and a precise asymptotic representation near the singularity is obtained. The approach is based on
using the theory of quasiregular mappings to linearize the p-Laplacian by means of a hodographic
transformation.
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1. Introduction and statements of results. Let be a domain in Rn n > 2
T/T71,pand fix p E (1 ). A real function u defined in g/is called p-harmonic if u e loc (2)

and

(1.1) /IVu[p-2<Vu, V>dx 0

for all WI,p() with compact support contained in gl; that is, u is a weak solution
of the p-Laplace equation

(1.2) div([Vu[p-.Vu) O.

.l,a where a a(p,n) e (0, 1]. Indeed, inIt is well known [DB], ILl that u e "loc,

dimension two (n 2) we have that

(1.3) /.k,a T/l/-k+2,q

where the integer k > 1 and the exponent a E (0, 1] are determined by the equation

k +a 7+ + 1 + + )2p-1 p-i (p-1

The integrability exponent q is any number such that

2
l<_q< <2.

2-a-

Moreover, for p 2 the regularity class in (1.3) is optimal. See [IM] for these results.
To prove (1.3) we use complex analysis (quasiregular mappings) to linearize the p-
Laplacian by means of a hodograph transformation [BI], [IM], [Ar].
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The purpose of this paper is to apply the ideas of [IM] to the study of isolated
singularities of p-harmonic functions in two dimensions.

Let us begin by reviewing some known results. We will assume that u is a singular
p-harmonic function; that is, u is p-harmonic in (Bn) Bn\{0} {x e Rn, 0 < Ixl <
1}. An example is given by

Ixl(p-)/(p-) ifp n

if n.
(1.4) ul(x)=

log p=

The function u satisfies

(1.5) div(IVul IP-2Vul cSo

in the sense of distributions, where c c(p, n) is an appropriate constant. A classical
result of Serrin IS] states that if 1 < p

_
n and u is a nonnegative singular p-harmonic

function, then there exists a constant cl > 0 such that

1 u

Cl Ul

Moreover, u satisfies (1.5) for a certain c.
Kichenassamy and Veron [KV] extended Serrin’s result to cover the case u/u1 E

L, in which case they proved the existence of a number , E R such that

(1.6) (i) u-9,ul L,
(ii) IV(u-’yul)l o

(iii) div(IVulp-2Vu)
as x O, and

A general question is whether these results, conveniently modified, continue to
hold when ul is replaced by an anisotropic singularity v; that is, v is p-harmonic in
Rn \{0} of the form:

(x)(1.7) v(x) Ix[w - < O.

Veron IV] has shown the existence of plenty of anisotropic singularities in n-dimensions,
where this general problem is posed.

In the plane all solutions of the form (1.6), now called quasiradial are known. For
N 1, 2,... there exists a real analytic 2r-periodic function Og with (I)N(0) 1 (a
normalization) and a number #N (#g decreasing to -c as N T ) such that

(1.8)

is a singular p-harmonic function. Assuming p 2, we find Ol(a) =- 1 and #1
(p- 2)/(p- 1) so that u coincides with the "fundamental solution" in (1.4). While
ttl > 0 for p > 2 (case of bounded singularities)

p- (z + v/p 3p + z)(1.9) #2 3(p 1) < 0

for all p. These facts follow easily from the results of 5. See also [KV].
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We can think of UN as a nonlinear analogue of Re(z-N). Our main result, Theo-
rem 1, is a nonlinear version of the Laurent series development for harmonic functions.

THEOREM 1. Let u be a singular p-harmonic function in (B2)’ such that 0 is not
a removable singularity and for some < (p- 2)/(p- 1) we have

(1.10) lu(:)l _< lxl’ .fo," I:1 < 1/2.

Then there exists N > 1 (N is the largest integer such that < tN) and a constant
/N 0 such that

(i.ii)

for m 1, 2,.... Here Cm are constants, 6N > 0 and the inequality holds for 0 < Ixl <
(.).
Remark. If u satisfies (1.10) for some/ > (p- 2)/(p- 1) we will see in 6 that 0

is a removable singularity. Thus, we are in the situation treated in detail in [IM].
Note that IDvug(x)l IxIN -m. The theorem is relevant because 6N > 0. The

estimate (1.11) is an extension of (1.6-ii).
In 2 we will compute the explicit values of g and 6N. It turns out that

(I.12)

N "" 5N < 0 for N _> 3,-- (Y 0 for
N 2, p > 2,

#N N=I, 1 <p<2,

Y "-(g 1 for N 1, p > 2.

We can now integrate (1.10) to obtain the following.
THEOREM 2. In the situation of Theorem 1, in a small ball centered at O, we

have:
IfN>_3,

(1.13) In(x) "NUN(X)I Cll,,+,

if N 2, p > 2 orN l, 1<p<2,

1
(1.14) lu(x)--/NUN(X)I <_ Clog

1’x’-7’

and ifN 1, p > 2, limx_0 u(x) u(O) exists, u-Tiui is Lipschitz in a neighborhood
of 0 and

(1.15) lu(x)- u(O)-/lu(x)l Cll.

When p > 2 we may have bounded singularities corresponding to the case of
nonnegative/ in (1.10). Theorem 2 says in this case that u- "lul is Lipschitz, that
is, u is "as good as ul" in terms of smoothness. This is an extension of Serrin and
Kichenassamy-Veron results when p > n 2. It would be very interesting to see
whether some version of (1.15) holds in the case p > n > 3.

The next corollary answers the two-dimensional case of a question posed by Veron
in [V].
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COROLLARY 1.
some N 1,2,...

With the hypothesis of Theorem 1, if u is unbounded at zero, for

(1.16) x--.01im ixlttN NPN

and if u is bounded at zero, limx-0 u(x) u(O) exists, p > 2, and

u(0))(1.17) lim "yl.
-o Ixl(-)/(-)

This article is organized as follows. In 2 we linearize the p-Laplacian in the
hodograph plane following [IM]. Next in 3 we find a series expansion of the solutions
of the linearized p-Laplacian and use it to obtain several estimates. In 4 we study
how to recover p-harmonic functions from their "hodograph transforms." This is used
in 5 to construct the family UN in (1.8) and find the #N’S. The details of the proofs
of Theorems 1 and 2 are presented in 6. Finally, in 7 we present an application of
Theorem 2 to a problem of uniqueness.

2. The hodograph transformation. Let u (B2) R be a p-harmonic
function. The complex gradient of u, f Ou/Oz, is

f 1/2(ux,--iUy)

and it is a fundamental fact that f is a K-quasiregular inapping in (B2)p, where

K=max p-l,p_l
See [IM], [M].

It follows from the existence theorem for the Beltrami equation [A, Chap. 5] and
the chain rule for the complex dilatation [A, p. 9] that there exists gl R2 R2

K-quasiconformal fixing 0, 1, and and an analytic function h defined on g((B2))
(itself a punctured neighborhood of 0) such that

(2.1) f(z) (h o g)(z)

for z (B2)’.
LEMMA 1. Suppose h has a pole of order N at O, N >_ 1. Then there exists a

neighborhood of zero U B2 and g U --, U K-quasiconformal, satisfying g(O) O,
such that

f(z) (g(z))-g

Ior z e u, u\{0}.
In other words, near the singularity we may assume h() (-g.
Proof. This is an exercise in complex analysis. The function has a zero of order

N at 0. So it has an N-rooth l, which is invertible in a neighborhood of 0. It is easily
checked that h o l-(() (-N and g o g.

T/T71,2As it is shown in [BI] and [IM], f e loc ((B2)’) and (1.2) translates into
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Therefore, in a neighborhood of 0, g satisfies

Oz

We now apply the hodograph transformation; i.e., we set H the inverse of g, z
g(g(z)), g(g()) and g(0) 0. We then obtain [IM] the following linear
equation for H"

1 Y

This equation is similar, but different from (17) in [IM]. The exponent of/ has
the opposite sign. This introduces some technical complications in the next section.

We shall call H the hodograph transform of u.

3. Series expansion for H(). We look for solutions of (2.3) in W,(U). Any
such solution is a quasiregular mapping and is in C(U). Write

where

ak(r) - H(r, O)e-i(k+g)OdO.

We have that ak E C[0, 5) g C(0, 5) for some 5 > 0. Given re, (2.3) becomes

(3.1) 2rHr -ipHo + (p- 2)ie2iNOo.

Compute Hr, Ho, and substitute in (3.1) to get

(3.2) 2ra(r) p(k + g)ak(r) (p- 2)(k N)(r)

for k 0, 1, 2,.... Proceed as in [IM] to obtain

(3.3) r(ra)’ -pgra + (Y2 k2)(p- 1)ak O.

For k Z the solutions of (3.3) are

ak(r) Ara: +
where

(3.4)
pN +/- v/4k2(p- 1)+ N2(p- 2) 2

and A-, A- are arbitrary complex numbers. Note that A+ and A- are even functions
of k, - < -, 0, and pN.

If Ikl > N, A- < 0 forcing A- 0 in this case. Furthermore, from (3.2) we
obtain A 0 and

(3.5) A+k =ekAk, k 0,1,2,...,

A-k e-A- k O, 1,2,...,N- 1,
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where

+ p(N+k)-2A
(’) (- )( N)

(.) + - ,
P

for k N,

and is not defined. Finally, H(0) 0 implies that A 0. We have the following
variant of Theorem 2 in [IM], proved in exactly the same way.

THEOREM 3. Suppose H E W1,2(B2) is a solution of (2.3) satisfying H(O) O.
Then

(3.8)

where A and ek are given by (3.4), (3.6), and (3.7), Ao, ...,AN_I are arbitrary
complex numbers, and A, A+,... are arbitrary complex numbers satisfying

Moreover, the series (3.8) is convergent in W,2(B2). Conversely any series expansion
like (3.8) with coefficients satisfying (3.9) gives a W,2(B2) solution of (2.3) vanishing
at the origin.

Remarks. 1. Theorem 3 remains true if we replace B2 by another ball BR(0) for
any R > 0 since (2.3) is invariant under A, A > 0.

2. A computation gives, for k : N,

+ A-N-k(.o)
A -N+k

+Thus for k > N, ]ea] < 1. Since Ak k as k --, c it follows that (3.9) is equivalent
to H E W,2(B-).

3. It will be useful to rearrange the exponents in increasing order. We obtain

(3.11)

4. Inverting the hodograph transform. We will now study the possibility
of reversing the process

(4.1) u --o f g H.

Let us start with a quasiconformal solution of (2.3) such that H(0) 0. By inverting
H in a neighborhood of zero we obtain g and f g-N. Since f is real, f is an
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exact complex differential. Therefore, in any given simply connected region, we can
find a function u with complex gradient f which will be p-harmonic. Since we allow
singularities at zero, our domain is not simply connected and we have to be a little
careful.

From the invertibility of H we deduce the invertibility of the leading term in the
expansion (3.8). The building block in (3.8)is

-1- -=h -i(k-N)O )(1=

which is itself a quasiregular mapping. By using (3.10) and the argument principle it
follows that H is invertible only when k N- 1. Thus, if N > 1 we must have
(4.)
d_ : 0 or dv_ dv_2 A d+o d+N_2 O, A_ 0

and

(4.4) IA- + e-Al+ [Ao+ + eo Ao > 0

whenN-1. We set forN>l

eiO }r 7v-+Hg_(r,O) {Av_
and

Ho(r, O) (A + eft)eirJ + (A+o + e+o +o )eier+o
Let us call aN and g the first and second powers of r in the expansion (3.8). Observe
that

aN "+N-I’ N AV in the + case,
if N>2

aN )r_l, Y r-2, in the case, and

Ao + eA O, a -,1 ,o+,
if N 1

A- + eA O, a "+o "+
In any case, we always have

(4.5) ID’H(r, O) D’HN- (r, O)l _< CmrN-m,

where I1 m _> 0, r _< 5(m) and Cm is a constant.
Denote by gY- the inverse of HN-1 and set

fN-1 (gN-1) -N.

Since H is close to HN-1 near zero, we expect g to be close to gN-1 and f to be close
to fN- near zero. The next lemma corroborates this suspicion and provides us with
the main estimate needed in the proof of Theorem 1.

LEMMA 2. Let m be a nonnegative integer. There exists 5(m) > 0 and a
constant Cm such that

(4.6) y ID"f(z) DfN-(z)l <_ C,IzI-(N/u)-’+(u/=u)-
br 0 < Iz] <
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Proof. The proof of this lemma is somewhat long and it will be divided into a
series of steps:

Step 1 (Estimates for H and HN-1). There exists p p(m) > 0 and constants
C > 0 and Cm such that

O) (1/C)l,l’ < H() _< c1,I-Io,,,,
(ii) (1/C)l12aN -2 _< JH() IHI -IH4I < Cll"-,
(iii) 11=- IDH()l <-

for I1 < P. Moreover, HN-1 satisfies the same estimates.
Proof. It follows immediately from Corollary 1 in [IM].
Step 2 (Estimates for g and gg-). There exist 5 (m) > 0 and constants

C > 0 and Cm such that

(i) Izl,/- <_ Ig()l < Cll/",
(ii) CIzI-.+./ < J(z)- Igl . -IgI < cI=I-+./,
(ii) :ii-,, IDg(z)I <_ c,I=I--’+/

for I=I -< . Mo=or gN- tifi the ,ne timt.
Proof. The estimation of higher derivatives of an inverse function is done with

device introduced in [IM, Lemma i] that we shall use below (Steps 4 and 5). As
stated, Step 2 follows from CoroIlry 2 in [IM].

Step 3 (Estimates for f and LN-). There exists (m) > 0 and constants
C > 0 and Cm such that

(i) I=I-N/ < IL(=)I < CI=I-N/,
(ii) II=- IDL(=)I < c’II-N/>-"

for 0 < Iz < 5. Moreover, fN- satisfies the same estimates.

Prod. Since L - (i) is clear and (ii) follows by induction.
Step 4 (Estimate or g- gN-). For Izl (m) nd constant C, we hv

’ ID"g(z) D’gN-(z)l <_ c.,Izl-’+/+(z/)-I,.,l=m

Proof. Given a positive integer s, let H denote one of the partials

OsH OsH

where i+j s. Any expression of the form HI Hs2 Hk, where s +82+.. "+Sk s,
will be called a monomial of type (s, k). The set of all finite linear combinations of
monomials of type (s, k) is denoted P(s, k) or Pg(s, k) if we want to emphasize the
dependence on H. According to Lemma 1 in JIM] if ]Pl m _> 1, there exists
pv E P(4m- 3, 3m- 2) such that

Dvg(H()) (JH())-2mp()

and

(4.8) DgN-(HN-()) (JHN_I ())l-2mp_l ().
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Put z H(). We have

IDvg(z) DVgN_l(z)l <_ IDg(H()) DgN_I(HN_I())I
+ ID’gN-(HN-())- DgN_(H())I
I+II.

Estimate of I:

III < (JH()JHN ())-2m[(JHN ())2m-l(p()_ p ())-i -i HN-I

+ p, () 2m- ()1]H-I (JH_I ()- jm-1

To estimate PVH()-- PUHN- () note that

iHsH Hs () s: s (k-1)a+/N-.HN-HN- HN-1 ()I < Cll

for all monomials of type (s, k). Therefore

IP() P" ()I < Cll(3m-3)+-m+3HN-I

and

(4.10) IPv_ ()1-< Cll (3m-2)a-am+3.

Now using Step 1, (4.9), and (4.10) we obtain

Estimate of II:

IIII IDgN-(H()) D’gN_I (H() +

Since ]N > ON and I1 is small, the mean value theorem gives

ID ’gN_ + I1

By Step 2,

for [1 m + 1. Thus

IDgN-(z)l _< Clzl-(+)+l/

(4.12)

From (4.11), (4.12), and another application of Step 2 we obtain the estimate in Step 4.
Step 5 (Estimate for f- fN-). This is the final step in which we will prove

(4.6).
Proof. Let us begin by observing that Du(g-g) is a linear combination of terms

of the form

(4.13) g-N-kPg(m,k),
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where k 1, 2,..., m and Pg(m,k) is an element of Pg(m,k). Thus, it suffices to
establish (4.6) for the difference of corresponding terms of the form (4.13). Writing

k))(ggg-1)-N-k [gg-1

+

and using
IPg(m, k) Pgv-1 (m, k)[ <_ Cmlzl-m+(k/av)+(v/a)-and

IgN+k ,N+k ((N+k) +(g/( )--1

we can easily finish the proof.

5. Quasiradial singular p-harmonic functions. Consider first the case N
2. Then HN-1 (r, ) is quasiradial; i.e.,

(5.1) HN-1 (r, O) )N-1 (0)

and so is its inverse gN-1, and fg-1. Indeed,

fiN-1 (8, Ot) ON-1 (0t,)8-N/ON

In (5.1) and (5.2) )N-1 and N-1 are certain nontrivial real analytic functions of
period 2r.

LEMMA 3A. IfN >_ 2 and OlN )V-1 the function fN- is the complex gradient
of a p-harmonic function VN with an isolated singularity at zero. Moreover, VN is
quasiradial and there exists a constant "YN such that

where

is as in (1.8) and #N (--N/aN)+ 1.

Proof. Write fY- P- iq. It is enough to check that

pdx+qdy=O,

which follows since p and q are homogeneous functions of degree --N/aN -1.
From the expression of g it is clear that it decreases to -c as N .
LEMMA 3B. IfN >_ 2 and OlN "-1 the function fN- is the complex gradient

of a p-harmonic function )N in a punctured neighborhood of zero. Moreover )N i8
quasiradial and there exists a constant N 8uch that

where
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and fAN -N + > (- )+/(- ).
Proof. Again it is easy to check that --N/og --1. Therefore the existence of

N follows as in Lemma 3A. From (3.4) we have

+1=
-2

+1
p + V/4(1 )2 + (p_ 2).

-2 (p- 2)+> +1>. [3
p+lP-21 p-1

Remark. We will see in 6 that N are indeed p-harmonic in a neigborhood of
zero. These functions are considered also in [Ar] and in [Kv].

We now consider the case iV 1. The previous argument does not work since we
may have A- 1. It is convenient to distinguish whether 1 < p < 2 or p > 2.

Case 1 < p < 2. For certain a, 6 R we may write

(.3) Ho(r, 0) aeierp- + ieir.

If a 0, then Ho() i, for 6 C and it is not hard to see that f0 (go) -1 is not
the complex gradient of a function in a neighborhood of zero.

If a 0, we redefine

(5.4) Ho(r, O) aeierP-1

and check easily that Ho is the hodograph transform of a multiple of

where 1 (P 2)/(p 1).
Case p > 2. In this case we write

H0(r, O) iaeier + eierP-for certain a,/ R. If a 0, H0 is the hodograph transform of a multiple of u and
if a 0, we redefine

(5.6) Ho(r, o) io,

which is not the hodograph transform of any function in a neighborhood of zero.
LEMMA 4. Let N 1. Then Ho (redefined according to (5.4) and (5.6)) is the

hodograph transform of a p-harmonic function if and only ifH is the hodograph trans-
form of a p-harmonic function in a neighborhood of zero.

Proof. It is enough to show that f-f0 is the gradient of a function in a punctured
neighborhood of zero. From Lemma 2 we have

If- foldlz[ <_ C(-+)/.

Since ]1 ,0+ or 3 A+, it follows that > 1. Therefore

(p- )dx+(q- )dy=O.po qo
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From Lemma 4 we conclude that if H is the hodograph transform of some u, we
must have

(5.7) If 1 < p < 2, ReA - 0, and

if p>2, ImAm- =0 and ReAo+-0.

In particular al p- 1 and we also have #1 (-1/al) + 1.

6. Proof of Theorems 1 and 2. Let u be a singular p-harmonic function in
(B2) satisfying (1.10).

LEMMA 5. For 0 < Ixl < 1/2 we have

IV (x)l < Clxl,

Proof. If a ball of radius 2R, B2R C (B2) Cacciopoli’s inequality gives

BR

Fix x, Ixl < 1/2. For y e Bl=l/2(x we have lu(y)l <_ Clyl, Ixl/2 <_ lYl <- 31x]/2 and

( Cl l =ClxlZ- ,_,(6.1) IVulpdx <_
B(II/4) ()

The lemma now follows from (6.1) and the L-estimate for Vu ([DB], ILl)"

sup IVul C( f IVulPdx)
BI=I/4(z)

Let f 1/2 (ux- iuy) and write f h o gl as in (2.1). From Lemma 5 and the
HSlder continuity of quasiconformM mappings ([LV], [A]) we infer that h has a pole
at 0 of order N > 0.

If N 0, f is indeed quasiregular in a neighborhood of the origin. Thus u is
smooth at 0 and the singularity is removable.

Consider now the case where N >_ 2 and aN A+N_2 Applying Lemma 2 for
m 0 and Lemma 3B, we obtain

[VU NVftN] Co[x[#N-l+((N/cN)-l).

Therefore we have
IVu(x)l _< Cl l

Since #g > (P- 2)+/(p- 1) > (p- 2)/p, it follows that

1<5
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for small 5 > 0. Let now 6 Co(Ix < 5),

By HSlder’s inequality and the integrability of IVul in Ixl < 5 the first integral tends
to zero as e ---, 0. Transform the second integral using the divergence theorem,

Iwl-(Vu, re) dx x iVul_
0

<lxl<e I= "-r C dX"

Thus

IVulp-2(Vu, V} dx <_ C6(P-1)(FN-1)II(IIo
<

which tends to zero as e -- 0 since PN > (P 2)+/(p 1) >_ (p 2)/(p 1). Therefore
u is indeed p-harmonic in a neigborhood of zero, and the singularity is again removable.

Thus N _> 1 of N >_ 2 and OY ,’r_ for a true singularity.
From Lemma 1 we write f g-g in a neighborhood of zero, g quasiconformal

satisfying g(0) 0 and apply the results of 3, 4, and 5. From Lemma 2 we obtain

(6.2) E ID,u ,.)/NDr’UNI Cmlxl-(g/’)-’/((/)-)

for m nonnegative integer. Set

N5N 1>0
CN

and we have proved (1.11).
Combining Lemma 5 and the estimates in Step 3 of the proof of Lemma 2 we see

that

Therefore

N
(6.3) _< 1 #N.

N

Indeed, N is the largest integer such that (6.3) holds. If > (p-2)/(p-1), N
must be zero and so 0 is a removable singularity of u. This justifies the remark after
Theorem 1 and finishes its proof.

To prove Theorem 2 all we have to do is to integrate (6.2) when m 0. From
the definitions of 5N, #g, aN, N, and (3.4) we can easily check (1.12).

Write (6.2) for m 0,

(6.4) IVu(x)- yVug(x)l Clxl"-+.

In particular,

(6.5) IVu(x)l Clxl-.
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We now integrate (6.5). Let s be a small positive number and Ixl < s,

8

since N 0.
If #N < 0, (6.6) implies

(6.7) lu(x)l Clxl

for small Ixl. On the other hand, if N > 0 (Case N 1, p > 2) we obtain

(6.8) lu(:)l _< c.

Similarly we integrate (6.4) to get

(6.9) (x)u(x) (x) u 1 +u 1 <_ C / ty--l+6g dt

for Ix] < . We will consider several cases:

(a) N >_ 3. Since #N + g < 0, (1.13) follows from (6.9).
(b) N 2, p > 2 and N 1, 1 < p < 2. Again (1.14) follows from (6.9).
(c) N 1, p > 2. Since #N + N 1, (6.4) implies that u- 71u is Lipschitz across

the origin. Thus (1.15) follows easily.

7. Remark on a uniqueness problem. Suppose u 6 W,P-(Bn) and u is
p-harmonic.in the following "ultra-weak" sense: (1.1) is required to hold only for test
functions 6 C(Bn). Does it follow that u is in WI,p(Bn) (and so that u is a
classical p-harmonic function)?

Theorem 1 allows us to answer a particular case of this question in two dimensions.
THEOREM 4. Suppose u is p-harmonic in (B2) B2 -(0}, Vu 6 LP-(B2) and

(7.1) /[Vulp-2(Vu, V)dx 0

B

for all e C (B2). Then u is p-harmonic in B2.
First we need the following lemma.
LEMMA 6. Let u be a p-harmonic function in (B2) such that Vu L(B2) for

some e > O. Then, there exists > 0 and a constant C such that

(7,2) lu(x)l Clxl-]or Ixl < 1/2.
Proof. Set f Ou/Oz as in 2 and write f hog as in (2.1). Since gl is

K-quasiconformal, where K max {p-,/(p-)}, there exists Sp > 0 such that

(7.3) (Jgl (x))+p dx < .



438 JUAN J. MANFREDI

Here Jgl is the Jacobian of gl and (7.3) follows from the higher integrability of Jaco-
bians of quasiconformal mappings [LV].

Let / > 0 be a small number such that gl({w Iwl < /}) is contained in
{x "lxl < 1/2}, and set q 1 +6p, r (1 +6p)/6p, s e6p/(1 +6p), and t 6p/(1 +6p).
Then

I()1 I()1; ()-()
1<7

< Ih(w)lsrJtr__ (w)dw

A/B/.

To estimate A we change variables and use f E Le(B2),

Ih o gl(x)l dx <

Similarly, after changing variables and using (7.3)

B Jg: (g(x)) Jg (x) dx

f [Jg (x)] I+p dx <

Therefore h is a holomorphic function in a punctured neighborhood of zero satisfying

(7.4)

For Iwl < r//2 the subharmonicity of Ihl/(+) gives

ih(w)l/(+5,) < 4 ffrlwl -1<11/
Ih(rl)l/(1+) drl.

Thus [h(w)l _< Clwl for some u > 0 and Iwl < /2. Since gl is HSlder continuous, it
follows that

IW()I I(x)l < Clxl--for some A > 0 and Ixl < 1/2. Upon integration we obtain the estimate (7.2).
Proof of Theorem 4. From (7.1) and the divergence theorem we obtain

lim / [Vulp-20u
-o r da O.

If u is singular p-harmonic, from (1.11) we deduce

Vu(x) Vug()+ 0(Ixl.-/)
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for some constant "N 0 and N >_ 1. It follows then that

CgUNIVulP-2 Or + o((,-)(-)++).

Since
OUN CE(#N_l)(p_l)+IVUNIP-2 Or

and ")’N : 0, C : 0 we must have (#N --1) (p--1)+1 > 0. Therefore #N > (p--2)/(p--1),
which is impossible. Thus we have arrived at a contradiction if we assume that u is
singular p-harmonic. So it must be that u is p-harmonic in B2. I-i

Acknowledgments. This paper was completed while the author was visiting
the Department of Mathematics at Northwestern University. The author wishes to
thank the members of this Department for the pleasant mathematical atmosphere
they offered him. Especial thanks are due to Emmanuele DiBenedetto for enlightening
conversations about p-harmonic functions and for suggesting the question treated in

7.
The author would like also to thank the referee who pointed out the need for

Lemma 3B and Lemma 6.

REFERENCES

[A] L. AHLFORS, Lectures on Quasiconformal Mappings, Wadsworth & Brooks, Belmont, CA,
1987.

[Ar] G. AIONSSON, Representation of a p-harmonic function near a critical point in the plane,
LinkSping University, Sweden, preprint LiTh-MAT-R-88-06.

[BI] B. BOJARSKI AND W. IWANIEC, p-harmonic functions and quasiregular mappings, preprint,
Universitt Bonn, Bonn, FRG.

E. DIBENEDETTO, Cl+a-local regularity of weak solutions of degenerate elliptic equations,
Nonlinear Anal., Theory, Methods, Appl., 7 (1983), pp. 827-850.

[IM] T. IWANIEC AND J. MANFREDI, Regularity of p-harmonic functions in the plane, Rev. Mat.
Iberoamericana, 5 (1989), pp. 1-19.

S. KICHENASSAMY AND L. VEI:tON, Singular solutions of the p-Laplace equation, Math. Ann.,
273 1986), pp. 599-615.

ILl J. LEWIS, Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ.
Math. J., 32 (1983), pp. 849-858.

[LV] O. LENTO AND K. VIRTANEN, Quasiconformal Mappings in the Plane, Springer-Verlag,
Berlin, 1973.

[M] J. MANFREDI, p-harmonic functions on the plane, Proc. Amer. Math. Soc., 103(2) (1988),
pp. 473-479.

[S] J. SEl:tl:tIS, Local behaviour of solutions of quasilinear equations, Acta Math., 111 (1964),
247-302.

IV] L. VEI:tON, Singularities of some quasilinear equations, in Nonlinear Equations and their
Equilibrium States, W. N. Ni, L. Peletier, and J. Serrin, eds., Math. $ci. Res. Inst. Publ.,
Springer, Berlin, 1988.

[DB]

[KV]



SIAM J. MATH. ANAL.
Vol. 22, No. 2, pp. 440-462, March 1991

1991 Society for Industrial and Applied Mathematics
010

APPROXIMATION OF SOLUTIONS OF SINGULAR SECOND-ORDER
BOUNDARY VALUE PROBLEMS*

A. M. FINKS-, JUAN A. GATICA:, GASTON E. HERNANDEZ, AND PAUL WALTMAN

Abstract. The boundary value problems

n-1

(P) x
y"+y’+f(x,y)=O,

and

y’(0) y(1) 0,

y"+f(x,y)=O,

(P2) oy(O) fly’(1) O,

3,y(1) +/y’(1) 0

with the function f(x, y) satisfying conditions that allow for singularities to be present are studied with the
view of obtaining general existence, uniqueness, and approximation of positive solutions. Furthermore, the
behavior of solutions near x is described for the special case f(x, y) a(x)y-p.

Key words, singular nonlinear boundary value problems, radially symmetric solutions of nonlinear
elliptic partial differential equations, order reversing operators, sequence of iterates, existence and uniqueness

(P1)

AMS(MOS) subject classifications, primary 34B15; secondary 34A45, 35J65

1. Introduction. This paper deals with the existence, uniqueness, and approxima-
tion of solutions of boundary value problems of the following types"

n-1
y"+ y’+f(x,y)=O,

and

y’(0) y(1) 0,

y"+f(x,y)=O,

(P2) ay(O)-fly’(1) =0,

yy(1)+6y’(1)=O.

In both problems it is desired to include the case when f(x, y) is singular at y 0;
the conditions that are imposed on f are such that the special case f(x, y) a(x)y-p,
p > O, a(x) continuous is included in the results and the behavior of the solution of
(P1) in this special case is completely described for x near 1, i.e., near the point where
the singularity occurs.

The paper is organized as follows. Section 2 deals with transforming these problems
into fixed-point problems by using the appropriate Green’s function integral operaor
and showing the equivalence of the problems. Once this is done the monotonicity
introduced by the singularity in the dependent variable is used to determine a region
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bounded between the graphs of two functions constructed iteratively where the graph
of any solution must lie provided that certain initial inequalities hold; furthermore, it
is shown that under slightly more restrictive conditions there can exist at most one
solution.

Section 3 is devoted to finding a general approximation scheme, by regularizing
the problems and showing that the conditions required in 2 hold for the regularized
problems. A general uniqueness result is obtained and general conditions are found
that imply the existence of solutions to the problems and also some of their regularity
properties.

Section 4 is devoted exclusively to the discussion of the special case f(x, y)=
a(x)y-p for problem (P1). The behavior of solutions when x is near 1 is described.

Section 5 simply shows how the approximation method used in the previous
sections works for some specific examples. We describe the method used to compute
the iterations and show graphs of the approximations for various specific examples.

The existence of positive solutions to (P) belonging to C1([0, 1]) fq C2((0, 1)) was
dealt with in [5] while those to (P2), in the same class of functions, were studied in
[4]: uniqueness results were given in both papers. An iterative procedure to approximate
some positive solutions to (P) when f(x, y) a(x)y-p, 0 < p <_- 1, was described in [6].

Problem (P1) comes from the study of existence of positive radially symmetric
solutions to

Au+f(x, u) =0 in

u l0f 0,

where is the open unit ball centered at the origin in Rn; this partial differential
equation with f(x, u) a (x)u -p, in more general domains but without radial symmetry,
was studied in [13]. Problems with similar singularities were studied in [2].

Problem (P2) is a generalized Emden-Fowler equation and has been extensively
studied; [9] provides an excellent survey of the literature concerning Emden-Fowler
equations. Equations with similar types of singularities were studied in [1], [3], [9],
and [10].

2. Equivalent integral equation. In what follows it will be assumed, depending on
the problem being considered, that the function f satisfies some of the following
hypotheses:

H1 f:[0, 1)x (0,) (0, ) is continuous.
H f:(0, 1)x (0,) (0, ) is continuous.
H2 f(x, y) is strictly decreasing in y for x (0, 1), and integrable over [0, 1]

for each fixed y > 0.
H3 c,/3, y, are nonnegative and p yfl + ay +a > O.

Note that none of these hypotheses implies the existence of a singularity.
It can be easily verified that the Green’s function for the problem

n-1
y"+ y’=0, y’(0) y(1) 0,

X

is the function G: (0, 1 x (0, 1 ] [0, ) given by

1
._1(t2_

(1) G(x, t)=
n-2 -1),

1
n_l(x2_

n_2
-1),

O<x_--<t--<_l,

O<t--<x--<_l,
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if n > 2 and

-t In (t), 0<x_--< t=< 1,
(2) G(x, t)=

-t In (x), 0< t<-_x <- 1,

if n 2. It is clear that in either case G(x, t) > 0 if (x, t) (0, 1) (0, 1).
The Green’s function for

(3)

assuming that p > 0, is given by

0,

ay(O) fly’(O) =0,

yy(1)+6y’(1)=O,

1
(y+6 yx)(C]+at) 0<t<x<l,

G(x, t)=
p

1
(fl+cex)(y+6 "yt) 0 <x <t <1,

P

and if H3 is satisfied then G(x, t)>0 for (x, t) (0, 1) (0, 1).
In what follows it will often be. necessary to have that positive solutions of (P1)

or (P2) are also solutions of the integral equation"

(4) y(x) G(x, t)f( t, y( t)) dt.

This may follow from the particular assumptions of the cases considered.
Before entering a detailed discussion of the particular results obtained, it will be

convenient to establish a general principle which is the basis for what is to come. To
avoid introducing excessive notation, X will stand for the space of real-valued con-
tinuous functions defined on [0, 1], with supremum norm, K will be the cone, in X,
of nonnegative functions, -<_ will denote the order induced in X by K, and D will be
either the set

(5) D {b K: :!0 > 0 such that b(x) _-> 0(1 x), x [0, 1 ]},

when discussing (P1), or the set

D {b K: :i0 > 0 such that b(x) => go(x), x [0, 1]},(6)

where

go(X)={Ox, O<-x<-1/2,
0(l-x), 1/2x:<1,

when discussing (P2). T will denote the Green’s function operator

Io(7) T6(x) G(x, t)f(t, c/)(t)) at

considered over its "natural domain," i.e., the set of all functions in K for which this
formula defines a continuous, function on [0, 1 ]. Note that iff satisfies H2 and if b is
in the natural domain of T, then any function >_-b is also in the natural domain of
T. If f is sufficiently well behaved, then D is contained in the natural domain of T
and the restriction of T to D is easily seen to be such that T:D- D; see [5].
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It is important to note, however, that under very mild conditions any positive
solution of (P1) or (P2) is a solution of the corresponding version of (4).

LEMMA 2.1. If HI and H2 hold, any positive solution of (P) is also a solution of
(4). If H, H2 and H3 hold, any positive solution of (P2) is also a solution of (4).

Proof If H and H2 hold and b :[0, 1] [0, oo) is a solution of (P1), then

(x’-’(x))’= -x’-lf(x, (x)), x (0, 1),

and ’(0) (1) =0. Thus, if x e (0, 1],

x-’(xl -f(,( a,

1 o’(xl x_ f(,(

and, integrating again:

(x) (0) f(u, (u)) du dt

f(u, (u)) dt du.

The cases n 2 and n > 2 must be discussed separately. If n 2,

4(x- (o f(u, (u u

(ln (x)-ln (u))uf(u, (u)) du

=-ln (x) uf(u, (u)) du + u In (ug(u, (u)) du

and, in particular,

This implies that

b(1)- b(0) -b(0) u In (u)f(u, c(u)) du.

t]U In (u)lf(u qb(u)) < oodu

and the Green’s function operator T may be applied to 4, obtaining

Td(x) ln (x)f(, d(t)) dr- ln ()f(t, 4(t)) dr.

This implies that T4 (1) 0 and

(r4,’(x =-- f(, 4,( ,
X

x- Io(r4,"(x= f(, 4)( d-f(x, x (0, 1),
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so that

(Tb)"(x) _1 (Tb)’(x)-f(x, 6(x)),
x

which in turn implies that

(x( T6)’(x))’ -f(x, 6(x)) (x’(x))’,

Since T(1)= (1)= 0, it must be the case that

and so

x(T)’(x) x6’(x), x (0, 1),

x (0, 1),

x (0, 1).

b < T2b < T3b < Tq.

It follows by induction that b -< T"b <= Tb for all n ->_ 1 and that the subsequences
{ T",},o, { T"+,}=o are monotone increasing and monotone decreasing, respec-
tively. Furthermore,

(8) T2"+lth -> T2"qb, n >= O.

The monotone convergence theorem coupled with Dini’s theorem imply that both
subsequences are uniformly convergent on [0, 1], so that qo, ql exist and, by (8),

qo=< q’l.

and hence

(Tqb)’(x)=6’(x), x (0, 1).

Since Tb(0)= b(0), the conclusion is that

T6(x)=qb(x), x [0, 1].

The case n > 2 follows in identical fashion, the only difference being that

-"+1 dt-
1 x_n+2

-n+2
-u-.+2]

If H, H2, and H hold, the discussion is simpler since then for any q in the
domain of the Green’s function operator:

(T)"(x) -f(x, (x)), x 6 (0, 1).

THEOREM 2.2. Iffsatisfies HI or H, H2 (and H3 if considering (P2)), and if there
exists b K such that Tqb, T2qb are defined and either Tqb <- qb, T2dp <= dp or Tqb >= b,
T2b >= qb, then the sequence ofiterates { T"b}=o is defined, the subsequences { T2nb}-o,
{ T2"+th}.__o are monotone and uniformly convergent, with limits

qo lim Tznp, 1 lim T"+4.

Furthermore, if the function yf(x, y) is strictly monotone for each x, then qo q’l.
Proof Consider the case when Tb _-> b and TZb => t; the proof for the other case

is analogous.
Since T is decreasing, it follows that

b <= T2b <= Tqb
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It is immediate that Tqo ql and Tqq qo. By definition of T it is the case that
whenever is in the domain of T, then, in the case of problem (P1),

(Tqg)’(x) f(t, p(t)) dt, 0<x 1,

(T)’(O) O,

and for problem (P) an easy computation shows that

(r"(x -f(x, (x, x (o, .
To prove that o when yf(x, y) is strictly increasing, recall that oN and,

to proceed by contradiction, it is assumed that there exists x e (0, 1) such that Oo(x) <
(x.

Define :[0, 1]N by

(x o(x(x-(x(xl

and observe that if the problem is (P) then (0)= (1)=0; if the problem is (P)
then it is the case that

,(0 ’,(0) 0, =0, ,
(+’( 0,

and therefore, using the fact that p + + > 0, it follows again that re(O)=
( =0.

Also,

o.,’(x) 4,o(X)g,’;(x)- q,;(x) q,,(x),

,o’(x) 4,;(x) 4,1(x) + 4,o(X) 4,1’(x) 4,’d((x)g,,(x)

x(O, 1),

and recalling that o TI, qq T$o, for (P1):

(Tqo)’(x)-f(x, qo(X))]w’(x) qo(X) [ (n
x

1)

(Ttp,)’(x)-f(x,-6,(x)[ (n-)x

(n-l)

Thus, in this case"

(n-)
Ito(X)lJi(X) I]to(X)f(x I]to(X)) - It)(X)l]tl(X + I]tl(X)f(x Itl(X))

X

[q,o(X)q,i(x) q,(x),,(x)]+ q,,(x)f(x, q,(x))- q,o(x)f(x, q,o(X)).

and the right-hand side is of one sign on (0, 1). This is impossible since w(O) w(1) O.
For (P2), the discussion is even simpler since then

w’(x) q,(x)f(x, q,(x))-qo(x)f(x, qo(X)),

so w’ is of one sign on (0, 1) and w(O)= w(1)- O.

n-1
w’(x)+w(x)=qq(x)f(x, tp,(x))-o(x)f(x, tOo(X)), x6(O, 1),
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It should be pointed out that the convergence of the sequence of iterates to the
solution of the integral equation in the case thatf(x, y) a(x)y-p with p (0, 1) follows
from a result in [12].

3. A general allroximation result. This section is devoted to finding a large class
of functions f for which it is easy to implement an iterative scheme to approximate
the solutions of (P1) or (P_). The first step is to show that in many cases these problems
have unique solutions; the following result generalizes the uniqueness criteria found
in [3] and in [4].

THEOREM 3.1. If HI and H2 hold, then (P1) has at most one positive solution. If
H’I, H2, and H hold, then (P2) has at most one positive solution.

Proofi The monotonicity of the operator precludes the existence of two ordered
solutions. If the problem has at least two distinct solutions bl, b2, it must be the case
that there exist a, b [0, 1], a < b, such that one of the solutions, say 1, is strictly
greater than the other solution, 2, over [a, b]. Define o [0, 1]-* by

,,,(x) 6,(x)- 6(x).
It is the case that to(x)>O if x[a, b]; the claim is that to(x)=>O for x[O, 1]

for, if this were not the case, ca must have a point of minimum in [0, 1], say Xo, with
,O(Xo) < 0.

The discussion now must be separated for the two problems. For problem (P1),
since to(l) 0, it must be the ease that Xo [0, 1); if Xo (0, 1) then to(Xo) < O, to’(Xo) O,
to"(Xo) --> 0. But

to"(Xo) =f(xo, 2(Xo))-f(xo, ,(Xo)) < 0,

which is a contradiction. Thus the minimum must occur at x 0 so there must exist
e > 0 such that if x [0, e), then 1(x) < 2(x), and

to’(x) (x) (x) (f(t, 2(t)) -f(t, el(t))) dt < 0,

which contradicts the fact that the minimum of to occurs at x 0.
For problem (P2), we reason in the same way to eliminate the possibility of

Xo e (0, 1). If the minimum occurs at x 0, then to must be negative in a neighborhood
[0, 6) of 0, and from the boundary conditions it follows that if fl 0 then to(0) 0, so
it may be assumed, in this case, that fl > 0, obtaining:

’(0) 6(0)- 6(0)= (6,(0)- 6(0))= o(0)

and

w’(x) 0’(0) to"( t) dt (f( t, 2(t)) -f(t, el(t))) dt < O,

so it follows that to’(x) <- o2’(0) (a/fl)to(O) < 0 on [0, 6), contradicting the fact that
to has its minimum at x 0. Finally, if the minimum occurs at x 1, to must be negative
in some neighborhood (1- e, 1] of 1. For x (1- e, 1 ],

o’( o’(x o"( a (f(,(-f(,( <o,

so that to’(x)> to’(1) on (l-e, 1). If 6=0 then the boundary conditions imply that
to(l) 0, so it must be the case that 6 0. In this situation to’(1) -(2,/6)to(l) > 0
and to’(x)> 0 in (1- e, 1), contradicting the fact that x- 1 is a minimum for to.



SINGULAR BOUNDARY VALUE PROBLEMS 447

For the rest ofthis section the focus will be the study ofhow good an approximation
to the positive solution of (P1) or (P2) is the positive solution of the new problem

n-1
y"+ y’+f(x,y+e)=O,

(p,) x

y’(0) =y(1) =0,

or

(P2)

respectively, for e > 0 and small.

y"+f(x,y+e)=O,

,y(o)-ty’(o) =o,
yy(1)+6y’(1)=O,

Denoting f (x, y) f(x, y + e and

it is clear that iff satisfies H1 then f is continuous on [0, 1) x[0, oo), iff satisfies H,
then f is continuous on (0, 1)x [0, oe), and in both cases T is defined on all of K
and is monotone decreasing there iff satisfies H, and iff is continuous thenf satisfies
appropriate integrability conditions (see [5]) for the problems to have solutions. Thus,
problems (P) and (P) have a unique positive solution, denoted by b and ifyf(x, y)

T0}k=lis (strictly) monotone in y, then by Theorem 2.2 the sequence of iterates {
converges uniformly to b, having in addition that the subsequence of even iterates
is monotone decreasing and the subsequence of odd iterates is monotone increasing.
It should be noted at this point that if f(x, y)= a(x)y-p. 0<p_-< 1, and if a(x) is
continuous in its required domain, then yf (x, y) is strictly increasing in y for all e > 0,
and therefore the convergence of the iterates of T0 to 4 is assured in this particular
case.

THEOREM 3.2. If 0</x <e, then O<-c,(x)-ch(x)<e-i, x[0, 1].
Proof Let to(x)=(ch(x)+e)-(cb,(x)+lx). It will be shown that to(x)>=O on

[0, 1].
Consider first problem (P1). Define

f(x, ,(x) + Ix)-f(x, (x) + e)
h(x)

(6 (x) + )- (G(x) +)
when to(x)# O, and h(x)= 0 otherwise. Then h(x)>= O, x [0, 1], and to satisfies

n-1
,o"(x)+,,,’(x) h(x)oo(x) O.

X

It follows that to cannot have an interior negative minimum (it would have to be
the case.that Xo e (0, 1), to(Xo) < O, to’(Xo) O, to"(Xo) ->-- O, but then to"(Xo) h(xo)to(Xo) <
0, a contradiction). If x =0 is a point of minimum, then to must be negative in a
neighborhood [0, e) of 0, and proceeding as in the proof ofTheorem 3.1, a contradiction
results; the same argument as in the proof of Theorem 3.1 also shows that x 1 cannot
be the point of minimum for to. Thus, in the case of problem (P) it must be the case
that to(x)>= 0 for x [0, 1]. The argument for (P2) follows the same line of reasoning
as in the proof of Theorem 3.1 to show that to(x)>-0 for x e [0, 1].
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Thus we have that if 0 </x < e, then

.(x)+_<- (x)+ , xe[O, 1],

and therefore

,(x) G(x, t)f(t, ,(t) +/x) dt >- G(x, t)f(t, (t)+e)=qb(x),

concluding that

o_-< ,,(x)- (x) _-< e .
THEOREM 3.3.
(I) Iff satisfies HI and H2 then lim_.o exists uniformly on [0, 1] and 49 is

a positive solution of (P1) belonging to CI([0, 1))f’] C2((0, 1)).
(II) Iffsatisfies H, H2 and Ha holds, then lim_.o exists uniformly on [0, 1

and c is a positive solution of (P2) in:

(a) C([O, 1]) f3 C2((0, 1)) /ffl 6 =0,
(b) cl([o, 1))71C2((0, 1)) /fa --0,
(C) cl((0, 1]) f-) C2((0, 1)) ify=O,
(d) C([0, 1))f3 C((0, 1)) if a 0 and 0,
(e) C((0, 1]) fq C((0, 1)) ifyO and6O,
(f) CI([0, 1])fq C2((0, 1)) if , , , 6 are all positive.
Proof The existence of lim_o uniformly on [0, 1] is an immediate con-

sequence of Theorem 2.2, which also implies that if 0</z < e then =< , and

+x < +e.
(I) For each e > O, it is the case that

b’(x) f(t, c(t)+ e) dt, x (0, 1],

’(o) =0.

Let r/> O, r/< 1 and consider {b}>o on the interval [0, l- r/]. Since -<. if

O</x <e, it follows that fixing any e>O, b(x) >_- b(x)>O on [0, l-r/] and thus it is
immediate that

lim 4,’(x)= &’(x)
e-’>O

exists uniformly on [0, l- r/]. This implies that b CI([0, 1)), 4’(0)=0, and the same
line of reasoning implies that C2((0, 1)) with

n-1
"(x) ’(x)-f(x, (x)), x (0, 1).

X

Since (1) 0, (I) follows.
(II) The existence of the uniform limit lim_,o ,(x) (x) on [0, 1] implies that

if 0 < r/< 1/2, then

limf(x, (x)+ e)=f(x, (x))
e-->O

uniformly on [r/, l- r/], and b(x)> 0 for xe [r/, l- r/].
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Thus

f(u, b(u)) dudt=lim f(u, qb(u)+e) dudt
rl

e->O
rl rl

lim- b du dt
e--’>O

=lim- (b’ (t) b’ (r/)) dt
e->0

lim [th (1 r/)- b(r/)- b’(r/)(1-2,/)].
e->0

Since b converges uniformly on [0, 1], this implies that lim_,o b’(r/) exists. This,
together with the fact that ch(x)=-f(x, cb(x)+e), x[0,1], and therefore
lim_,ob(x) exists uniformly on compact subsets of (0, 1), implies that {b’}>o
converges uniformly on compact subsets of (0, 1) to a differentiable function with
derivative -f(x, oh(x)) on It/, 1- r/]. From this it follows that 4’ is twice ditterentiable
on r/, 1- r/] and that

"(x) -f(x, th(x)), x [r/, l- r/].

Thus e C([0, 1]) f’) C2((0, 1)) and is a positive solution of

y"+f(x,y)=O.

Now the validity of II(a) is obvious.
To prove II(b) it suffices to observe that since

io ix-y (fl+at)f(t, qb(t)+e) dt+a (y+6-yt)f(t, dp(t)+e) dt
P

if a =0 then b’(0) 0 for all e >0 and again by restricting attention to intervals of
the form [0, 1-r/] where 0< r/< 1, it becomes apparent that {b’}>o converges uni-
formly in this interval, and this in turn implies that b C1([0, 1))f-)C2((0, 1)) and
4,’(o) =0.

The argument for II(c) is entirely similar.
To prove II(d), observe that it cannot be the case, for any e >0, that b(0)=0

since this would imply that b’(0)= 0 and then, since

4,’(0= (,+-,f(,(t+ t,

it would have to be the case that 3’ 6 0, and this contradicts the assumption that
p > 0. Thus, it must be the case that 4(0) > 0 for all e > 0, and hence 4(0) > 0, implying
that the convergence off(x, 4(x)+ e) is uniform on compact subsets of[0, 1), yielding
the desired result.

The proof of II(e) is analogous to that of II(d), and II(f) follows from II(d) and
II(e).

Observation. Theorem 2.3 is a generalization of the existence results in [5], [6],
and [11]. It also provides a good tool to approximate the solution of (P1) or (P2).

4. The case f(x,y)=a(x)y-p. This section is devoted to understanding the
behavior near x 1, that is to say, near the singularity, of the positive solution of (P1)
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in the special case when f(x, y)= a(x)y-p, p >0. Thus, the focus is on the positive
solution b of

n-1
y"+ y’ + a(x)y-p O,

(9) x

y’(0) y(1) 0,

with the aim of understanding its behavior near x 1.
For the rest of this section it will be necessary to assume that a’[0, 1] [0, ) is

continuous and that a(x) > 0 if x [0, 1).
THEOREM 4.1. Let 49 be the solution of (9).

(I) If 0 < p < 1, there exist positive real numbers 0 < A < B such that

A(1 x) -< b(x) _-< B(1 x), x [0, 1 ].

(II) Ifp > 1, there exist positive real numbers 0< A < B such that

A(1-x)<-dp(x)<-_B(1-x) 2/p+l, x[0, 1].

If in addition a(1) > O, then there exist positive real numbers A < B such that

A(1-x)2/P+l<-_d)(x)<=B(1-x)2/P+l x[0, 1]

(III) Ifp 1, then given q > there exist positive real numbers A < B such that

-Axlnx<-_dp(x)<-B(1-x) 2/q+l, x[0,1].

Iffurthermore, 1o a(x)/ (1 -x) dx < c, then there exist positive real numbers A < B
such that

-Ax In x <= ok(x) <= -Bx In (x), x e [1/2, 1 ].

Proof (I) It will first be established that, defining O(x) 1 x for x e [0, 1 ], there
exist constants 0 < C < D such that

Cq(x) <= Tiff(x) <-_ D(x), x [0, 1].

To see this, it is necessary to separate the discussion into two cases, namely, n 2
and n > 2.

If n 2, the integral operator is defined by

Tq(x) =-ln (x) ta(t)(O(t)) -p dr- ln (t)a(t)(q(t)) -p dt.

The continuity of a(x) implies that q belongs to the domain of T, and fuhermore,
it is clear that if x e [0, 1),

T(x) In (X)
ta( t)( 1 t) -p dt

1
In t)a( t)(1 t) -p dt,

(x) 1 -x 1 -x

and it is obvious that T(x)/(x) > 0 when x e [0, 1]. Fuhermore, by l’H6pital’s rule:

lim.[ In (t)a(t)(1- l) -p dr_lira x In (x)a(x)
x 1-x (l-x)

But

x In (x) In (x)+ 1
lim lim 0,
x-l (l-x)p x-, p(1-x)p-1
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so that

lim 1 tin t)a( t)(1- t) -p dt

Furthermore,

In (x) 1
lim lim 1,
xol 1 x xol X

so, since lo ta(t)(1 t) -p dt > 0,

r(x)
lim ta (t) 1 )-P dt > 0,
x (x)

and it follows that Td// can be considered as a continuous, strictly positive, function
on [0, 1], and so there must exist 0 < C < D such that

c <_ T(x) <_ D,
(x)

from which the assertion follows when n 2.
If n > 2, then the integral operator is:

T(x)=I[ Ion -2
(x2-"- 1) t"-la(t)(@(t))-p dt

+ t-l(t- 1)a(t)((t))- dt

and again is in the domain of T, with T(x)> 0 if x e [0, 1). But

T(x)_ (x 1) t"-la(t)(1- t) -p dt
(x) n -2 x

-1)a(t)(1-t)-Pdt
1-x

1 [ (1-x"-Z)
n 2 LZ(iZ) -’a(t)(1- t) -p dt

+ t( t-)a(t)( t)- a

t-a(t)(l_t)-pdt
--2 X

n-

+ t(1- a(t)(1-t)-d
1-x

and, again by l’H6pital’s rule"

r(x t_lim a(t)(1 t)- dt <,
x (xl

and the existence of the positive numbers C and D is established in the same way as
before.
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Thus, in either case,

C(x) <= T(x) <- Dd/(x), x e [0, 1].

For A > O, observe that

T(AO)= A-PTO,

and setting qo= AO, it follows that if D/Ap+t<- 1 then Tqo-< q,o. Furthermore,

Tq,o ,X P Tq, >= C, Pq,,

and it follows that

so that

T2qo_<_ C-Pt (p)2 TI]I C-PA (p)2Dd/,

T2o <= C-PA p2_ 1)DOo.
Thus, choosing A large enough so as to have

D
< 1 and C-PDA(p/-1) < 1,/p+l

which is possible since 0< p < 1, it becomes the case that

Tqo <- qo and T2qo--< qo.
This implies that the sequence of even iterates is monotone increasing and so, by

Theorem 1.2, they converge to the solution 4 of (9). This yields (I).
(II) The first thing to be shown is the existence of B> 0 such that

ch(x)<-_B(1-x) 2/p+l, x[0, 1].

To do this, for e > 0 let 4 be the solution to

n-1
y"+ y’+a(x)(y+e)-P=O,

X

y’(0) y(1) 0,

and for A> 1 define X(x)--Adp(O)(1-x)2/(p+l). Recall that b(0)> b(0) by Theorem
2.2, so that X(0)> b(0).

Define to(x)=x(x)-ch(x) and observe that to(0) > 0, to(l) 0. It will be shown,
by contradiction, that to(x)->0 for x [0, 1]. If this were not the case, there would
exist Xo (0, 1) such that to(Xo) < 0, to’(Xo) 0, and to’(Xo) => 0. But

2
X’(X) Ath(0)(1 --X) (1-p)/(p+I)

p+l

X"(x) =2(1 -p Ab(0)( 1 x) -(2p/(p+I))

(p+l)

and the fact that to’(Xo)= 0 implies that

x’(Xo)= 4’
SO

2
6,(o)

p+l
Ath(O)(1 --Xo) (1-p)/(p+I),
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and this implies that

th,,(Xo) _n-l( 2

Xo p+ 1
a(xo);(0)( Xo)’-/+’1

((Xo) + )v"/

Thus

w"(Xo)
2(p- 1)A(0)

(p + 1)2 (1 Xo) -(2p/(p+I))

a(xo)2(n 1) A(O)(l_xo)(l_p)/(l+p) +((x)+e)p(p + 1)Xo

2A(O)(1-Xo)-(:ZP/(P+l))[pp-1 (n-l)+ (1- Xo) +
p+l +1 Xo

2(p-1)-- )2 Ac(O)(1-Xo)
-(2p/(p+l))+

(e(Xo))v(p+l

where Ila[I SUpxto,,] a(x).
Since 0< X(Xo)< (Xo), it follows that

a(xo)
((Xo)+ )"

,o"(Xo) _-<
2(p- 1(p + 1)- he (0)(1 Xo) -(2p/(p+I)) +

h p (th (0))p (1 Xo)(2p/(p+l))

l Xo)-(2p/(p+l)) [ ;"(6(0))v 2(P- 1 (O)A ](p+l)

Hence, if A is chosen so that

;.((o))"
2(p- 1)
(p + ) (0)X,

i.e., so that

Ilall(p/l)
2(p- 1)((0))p+l

< ,. p+l
it follows that w"(Xo)< 0, which is a contradiction. Since the selection of A does not
depend on e, we have shown that for B sufficiently large

(x)<-B(1-x)2/p+1, xe[0, 1], e>0

and since (x) lim_,o (x), x [0, 1], the inequality

dp(x)<- B(1-x) 2/p+’ x[O, 1],

has been shown.
To complete the proof of the first part of (II), it suffices to observe that if e > 0,

then if n > 2 and x [0, 1),

6(x) 1

1 -x n -2

1-x-2 Ifx;_-5(iZ-x) t’-la(t)(dp(t)+ e)-P dt

t(1- t’-2)a(t))(qb(t)+ e)-P dt
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and so

and hence

dp(x)_ l [l+x+’’’+xn-3 fo1 -x n-2 x-2
t"-la(t)(dp(t)+ e)-p dt

t(1- t’-2)a(t)((t)+ e)-p at
1-x

6(x)
lim
xl 1-x

tn-la(t)((t)+e)-Pdt>O,

and thus, fixing e > 0, there exists A > 0 such that

(x) => A, xe [0, 1].
1-x

Thus, (x)>-_A(1-x), xe[O, 1], and since (x)_-< (x), xe[O, 1], we have that

A( 1 x) -<_ (x) -<_ B(1 x) 2/p+l,
if n>2.

If n =2 and xe (0, 1),

(x)_ ln(x)
ta(t)((t)+e)-p dt-

1

1 -x 1-x 1 -x

and

xe[0, 1],

In (t)a(t)(dp(t)+ e) -p dt

(x)
lim
x->l 1-x o

)-Pta(t)(dp(t)+e dt>O,

and the same argument given above applies.
If it is known in addition that a(1) > 0, then the proof of the existence of A such

that

A(1-x)2/p+l<-_dp(x), x[0, 1]

goes as follows.
Define d/(X) (1-- X) 2/p+l. The fact that there exists B>0 such that

qb(x) <-_ B(p(x), x [0, 1 ],

implies that is in the domain of the integral operator T, and that

B-PTd/(x) <- (x), x e [0, 1].

Now, for x e (0, 1), if n > 2,

Tq x l [1-x 2 fo t"-a(t)(1 t) -2p/p+)) dt
4,(x) n 2 x"-2(1 x) 2/p+’

1 fx" .-2) -(2p/( dt],+
(1--X) 2/p+l t(1- a(t)(1- t) p+l))

so that

Td/(x)
tp(x) n -2__[(1--X)(P-1)/(P+I)(I +x+" "+xn-3) fO n-1 a -(2p/(p+l))

x,,_2 (t)(1- t) dt

+(l_x)2/p+l t(1--t)(P-1)/(P+l)(l+t+’" .+tn-a)a(t)dt
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Now observe that, by l’H6pital’s rule:

lim lx t(1- t)(-P)/(l+p)(1 + + + tn-3)a( t) dt
x- (1 -x)2/+

lim
X(1--x)(P-1)/(P+)(1 +...nt-Xn-3)a(x)

lim

(2/p + 1)(1 x)(-P)/(I+P)
(p + 1)xa(x)(1 +... + xn-3)

(n-2)(p+l)a(1)
2

and that if o t"-a(t)(1-t) -2p/p+I)) dt <oe, then

lim
(1--x)(p-1)/(P+l)(1 +....q..xn-3) fO,-,1 X

-2 t"-la(t)(1- t) -(2p/(p+)) dt =0,

and if the integral diverges, then by using l’H6pital’s rule again, it follows that

xn--
lim o t"-la(t)(1-t) -(2p/(+p)) dr_lim_ a(x)(1-x) -(2p/(p+I)) a(1)
x-l (X-- 1) (1-p)/(p+I) x-l -((1 -p)/(p+ 1))(1 --X) -(2p/(p+I)) p-- 1"

Thus, if a(1)>O, it is the case that lim_l (Tq(x)/q(x))>O, and it follows that
there exists D > 0 for which

Tq(X)
>

6(x)

so that Td/(x) >= Dq(x).
Combining this with the fact that B-PT(x,) < t(X), X E [0, 1], the result follows

if n>2.
If n 2, then

Tq(x) ln(x) Ioq(x) (l-x)2/p+
ta(t)(1- t) -(2p/(p+)) dt

(l__x)2/p+l tin (t)a(t)(1-t) -(2p/(p+I)) dt

and hence, since

lim ’ In (t)a(t)(1 t) -p/I+p) dt__ lim -x In (x)a(x)(1 x) -p/p+)

x--, (l--x)2/p+I x-l --(2/p+ 1)(l--x) -(1-p)/(p+I)

x In (x)a(x)
lim
,-,l(2/p+l)(1-x)

and since lim (ln (x)/(1-x)) =-1, we get that

lim -lx In (t)a(t)(1- t) -(2p/(I+p)) dt p+ 1
x (1 _X)2/p+l -a(1).

Similar computations show that

lim ta(t)(1 t) -(/(p+ dt 0
xl (1 -x)2/v+
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or

x-,1 (1 -x)2/p+l ta(t)(1 t) -(2p/(p+I)) dt
1-p

and in either case the result now follows in the same way as for n > 2.
Proof of (III). Let A > 1, b, the solution

n-1

(9) x
y’+a(x)(y+e)-l=O,

y’(0) y(1) 0,

and define x’[O, 1][0, ), to’[O, 1]-, by

X(x) A4(O)(1--X) 2/q+l,
and

x[O, 1]

ca(x) X(x)- 6(x), x [0, 1].
Since b(O)=> b(O)>O, it follows that a(Xo)> O, and it is obvious that ca(l) =0.

and

and therefore

so that

,o"(Xo)
2h(q 1)b(O)

(q+l)2

2Ab(0)(n 1)
(q+ 1)Xo

2Ab (0)
(1 Xo) -(q/(q+’)) [ q 1

q+l q+l

2Ab (0)
(1 Xo) -(2q/(q+’)) q 1

q+l q+l

(1- Xo)-(2q/(q+,))[ Ilall
;(o)

(1- Xo)-(2,/(,,+,) [ Ilall
6(0)

,O(Xo) < o, ,o’(Xo) o, ,o"(Xo) _-> o.

X’(x) -2hb(0)
q+l

X"(x)
2h(q-1)
(q+l)

th(O)(1-x)

2A
b’(Xo) b(O)(1-Xo) (1-q)/(l+q)

q+l

b(xo) _2(n 1)Ab(O)
(1 --Xo) (l-q)/(l+q) a(xo)

xo(q+ 1) 6(Xo)+e’

(1 + Xo) -(2q/(q+l))

(1 Xo) (1-q)/(l+q) a(Xo)
(Xo)+
n-1

(1-Xo) ] +
Xo J 6 (Xo)

+
,4, (0)(1 Xo)/+’

2hth(O)(q(q+l)2-1) (1 Xo) (2(1-q)/(l+q))]_l
2h(q- 1)4(0)](q+l)2

Now

It will be proved, by contradiction, that o(x) >= 0 for all x [0, 1 ]. If this were not true,
there would exist Xo (0, 1) such that
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and therefore, if A is chosen so that

Ilall 2A(q- 1)th(O)
(q+l)2

and

lim
the(x) 11 t"-’ a(t)

xl --X In (x) o 6(t) + e
dt>O.

Thus, there must exist A>0 such that ck(x)>=-Ax In (x), x [1/2, 1] and therefore

49(x) >- -Ax In (x), x[1/2, 1].

If n 2, and x [1/2, 1),

dp(x) =1 f ta(t)
-xln(x) XJo 4(t)+e

and the same argument applies.

1 f In (t)a(t)
dt+ dt,

x In (x) J 4,(t)+e

For the proof of the last statement of (III), assume that

(x)
< oo.

1-x

Under this hypothesis it has been shown in [5] that the unique solution b of (9) is
such that there exists 0 > 0 for which

O(1-x)<=6(x),

Define q, [0, 1 - [0, oo) by

q(x) 1/2 In (2),

q,(x) =-x In (x),

Consider first the case n 2. If x [1/2, 1),

dp(x_) 1 [ ta( t)
at+

@(x) XJo 6(t)

x [0, 1].

x[0,k],
x[1/2,1].

1 [ In (t)a(t)
x In (x) J, 6(t)

dt

(q+ 1)211all
2(q- 1)(6(0))2’

then oo"(Xo)< 0, and this is a contradiction. Since the selection of A does not depend
on e, it follows that

dpe(x)=B(1-x) (2/(q+1)), xG[O, 1],

and this implies that

b(x) =< B(1 --X) (2/(q+l))
X 6 [0, 1]

To prove the other side of the inequality, recall that N 4, e > 0. Pick e > 0 and
observe that if n > 2 and x e [, 1), then

1 [-xln(x) n -x"-Zx ln (x)
t,_ a( t)

dt
(t)+e

t( 1 "-2) a(t)
at

xlnx (t)+e
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and

But

lim 1 (t In (t)a(t)/qb(t)) at: lim
(-x In (x)a(x)/(x))

x-,1 x In (x) x-,1 1 + In (x)

-In (x) 1/x
lim lim
x-l (x) x-l J’o (t/x)(a(t)/qb(t)) dt

o (ta(t)/(t)) dt’

and the conclusion is that

lim
a(1)(x)= ta( t)

at +
(x) (t) J’lo ta( t)/( t)) at’

and hence the function b/q can be defined to be continuous and positive on [0, 1],

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.00 0.25 0.50 0.75 1.00

X 0.0000 O. 1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 O.9000 1.0000

1:1 0 0.5386 0.5332 0.5171 0.4901 0.4524 0.4040 0.3447 0.2747 0.1939 0.1023 0.0000

Pl 0.2788 0.2761 0.2681 0.2548 0.2358 0.2114 0.1813 0.1455 0.1037 0.0555 0.0000

Fi 2 0.2994 0.2966 0.2879 0.2735 0.2532 0.2269 0.1947 0.1562 0.1113 0.0505 0.0000

F1 3 0.2971 0.2942 0.2857 0.2713 0.2512 0.2252 0.1931 0.1550 0.1104 0.0591 0.0000

FI 4 0.2974 0.2946 0.2859 0.2716 0.2514 0.2254 0.1933 0.1551 0.1105 0.0591 0.0000

F1 5 0.2973 0.2945 0.2859 0.2715 0.2514 0.2253 0.1933 0.1551 0.1105 0.0591 0.0000
Fi 6 0.2973 0.2945 0.2859 0.2715 0.2514 0.2253 0.1933 0.1551 0.1105 0.0591 0.0000

FIG.
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SO there exist positive real numbers A < B such that

A _-< (x) _< B, x [1/2 1 ],
(x)

and therefore -Ax In x <- rk(x) <- -Bx In x, x e [1/2, 1].
If n > 2, the argument is entirely similar, the change being in the Green’s function,

but the fact that
1--x

lim 1
-x In (x)

is all that is needed to carry out the required computations.
Observation. Similar results for the case p > 1, but with a somewhat more restrictive

assumption on the function a(x), have been recently obtained in [7].

5. Numerical examples. Four figures will be presented that correspond to the
graphs of several iterates of T(0), where T is the operator arising from

y,,+ 1
)_p-y +(y+ e =0,

x

y’(0) y(1) 0.

0.1

X 0.0000 O. 1000 O.2000 0.3000 0.4000 0.5000 O.8000 O.7000 O.8000 0.9000 1.0000

Fi 0 0.6958 0.8887 0.6878 0,6330 0.5843 0.5217 0.4452 0.3548 0.2504 0.1322 0.0000

IR 0.2711 0.2685 0.2606 0.2476 0.2292 0.2055 0.1783 0.1415 0.1009 0.0540 0.0000

FI 2 0.3005 0.2977 0,2890 0.2745 0.2541 0.2278 0.1954 0.1568 0,1117 0,0598 0.0000

F1 3 0.2971 0.2943 0.2857 0.2714 0.2512 0.2252 0.1932 0.1550 0.1105 0.0591 0.0000

FI 4 0.2975 0.2947 0.2861 0.2717 0.2515 0.2255 0.1934 0.1552 0.1106 0.0592 0.0000

Fi 5 0.2975 0.2946 0.2860 0.2717 0.2515 0.2265 0.1934 0.1552 0.1106 0.0592 0.0000

FI 6 0.2975 0.2946 0.2860 0.2717 0.2515 0.2255 0.1934 0.1552 0.1106 0.0592 0.0000

FIG. 2

0.0
0.00 0.25 0.50 0.75 1.00
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These iterations were computed using a parallel program running on an Encore
Multimax computer with 10 processors. Although parallel programs are not essential
for these computations, we have larger problems in mind for the future.

The program uses Simpson’s rule with 100 points in the interval [0, 1], and it is
very easy to add more points to the subdivision. Two arrrays are used (both are shared
memory), one of them to store the past iteration and one to store the current iteration.
Each processor works one point at a time, computing the integral corresponding to
that point. The shared memory allows all processors to access the values of the previous
iteration.

Figure 1 corresponds to p 1/9, e 10-3, and the table that follows corresponds
to the values of Ti(0) evaluated at the indicated points of [0, 1], 1,. ., 7, where,
for convenience, Ti(O) has been denoted as F1 (i- 1). Figure 2 corresponds to p 1/9,

0.0
0.00 0.25 0.50 0.75 1.00

X 0,0000 0.1000 0.2000

FI 0 2.5000 2.4750 2.4000

Fi O. 2096 0.2078 0.2023

I=1 2 0.4709 0,4667 0.4540

I=1 3 0.3607 0.3575 0,3478

FI 4 0.3939 0.3904 0.3799

FI 5 0.3826 0,3792 0.3689

FI 6 0.3863 0.3829 0.3725

I=1 7 0.3851 0.3817 0.3713

R 8 0.3866 0.3821 0.3717

FI 9 0.3854 0.3819 0.3716

R 10 O.3854 O.3820 O.3716

0.3000 0.4000 0.5000 0.6000 0.7000

2.2750 2.1000 1.8750 1.6000 1.2750

0.1929 0.1798 0.1626 0.1411 0.1150

O.4328 O.4028 O.3638 O.3152 O,2663

0.3316 0.3087 0.2788 0.2416 0.1966

0.3622 0.3371 0.3045 0.2638 0.2146

O.3517 O.3274 O.2957 O.2563 O.2084

0.3551 0.3306 0.2986 0.2587 0.2106

0.3540 0.3295 0.2976 0.2579 0.2098

0.3544 0.3299 0.2979 0.2582 0.2100

0.3543 0.3298 0.2978 0.2581 0.2099

0.3543 0.3298 0.2979 0.2581 0.2100

0.8000 0.9000 1.0000

0.9000 0.4750 0.0000

0.0838 0.0463 0.0000

0.1860 0.1024 0.0000

0.1427 0.0788 0.0000

0.1659 0.0858 0.0000

0.1514 0.0834 0.0000

O. 1528 O. 0842 O.0000

0.1524 0.0839 0.0000

0.1525 0.0840 0.0000

0.1525 0.0840 0.0000

O. 1625 O.0840 O.0000
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0.25 0.50 0.75 1.00

X 0.0000 O.1000 0.2000 0,3000 0.4000 0.5000 0.6000 0.7000 0,8000 0,9000 1.0000

i:] 0 5.3861 5.3322 5.1706 4.9013 4.5243 4.0396 3,4471 2.7469 1.9390 1.0234 0.0000

I:1 0.1624 0.1609 0.1566 0.1494 0.1392 0.1259 0.1093 0.0891 0.0649 0.0359 0.0000

FI 2 0,5140 0.5094 0.4956 0.4725 0.4398 0.3972 0,3441 0.2799 0.2033 0.1120 0.0800

FI 3 0.3506 0.3475 0.3381 0.3224 0.3001 0.2711 0.2349 0.1911 0.1388 0.0765 0.0000

F] 4 0.3982 0.3947 0.3840 0.3661 0,3408 0.3078 0.2668 0.2170 0.1576 0.0869 0.0000

I:15 0.3817 0.3783 0.3681 0.3509 0.3267 0.2951 0.2557 0.2080 0.1511 0.0833 0.0000

FI 6 0,3871 0.3837 0.3733 0.3559 0.3313 0.2992 0.2593 0.2110 0.1532 0.0945 0.0000

F’I 7 0.3853 0.3819 0.3716 0.3542 0.3297 0.2978 0.2581 0.2100 0.1525 0.0841 0.0000

FI 8 0.3869 0.3826 0.3721 0.3648 0.3303 0.2983 0.2586 0,2103 0,1628 0,0842 0,0000

F1 9 O.3857 O.3823 O.3719 O.3646 O.3301 O.2982 O.2584 O.2102 O,1527 O.0841 O.0000

I:110 0,3868 0.3823 0.3720 0.3647 0.3302 0,2982 0.2684 0.2102 0.1527 0.0842 0.0000

FIG. 4

e 10-4 and the same number of iterates, while Figs. 3 and 4 correspond to p 1/2 and
e 10-3, e 10-4, respectively, and the number of iterates shown is 11.

Acknowledgment. The authors thank Juan C. Gatica for writing the program that
computes and graphs the iterates found in the figures.
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SOME SINGULAR NONLINEAR BOUNDARY VALUE PROBLEMS*

JOHN V. BAXLEY

Abstract. Two-point boundary value problems associated with the (possibly) singular nonlinear ordinary
differential equation y" + g(x, y’) +f(x, y) 0, a <= x =< b, are considered. The goal is to obtain rather general
existence and uniqueness theorems for positive solutions. In the case of general separated linear boundary
conditions, the results allow f(x, y) to be singular as y 0 and at the endpoints, with significant nonlinearity
in both f and g. For the special condition y’(a) =0, the results also allow g to be singular as x- a+. In this
way, the case g(x, y’) ((N- 1)/x)y’, which arises when seeking radial solutions ofV2y =f(x, y), is included.
The results extend previous theorems of Taliaferro and more recent theorems of Gatica, Waltman, et al.

Key words, singular boundary value problems, existence and uniqueness

AMS(MOS) subject classifications. 34B15, 35J65

1. Introduction. Two-point boundary value problems associated with the second-
order equation

(1.1) y" F(x, y, y’), a < x < b,

can be singular in a variety of ways: a and/or b may be infinite, F may be unbounded
near some Xo a, b], or F may be unbounded near some particular value of y (or y’).
This last possibility does not occur in linear problems and is the source of some added
excitement in nonlinear problems.

Problems on infinite intervals have been studied by Granas et al. [8], Erbe and
Schmitt [5], Berestycki, Lions, and Peletier (e.g., [4]), and by Baxley [1] and will not
be considered here. Problems on finite intervals in which the singularity is caused by
F being unbounded near a particular value of y have been studied by Luning and
Perry [9], Nachman and Callegari [11], Taliaferro [13], Gatica, Oliker, and Waltman
[7], and Baxley [2]. Recently, Gatica, Hernandez, and Waltman [6] have considered
a finite interval problem which has singularities arising from F becoming infinite as
x- a and also as y 0. We should also note that the problem considered by Erbe and
Schmitt [5] on 0 < x < is singular at x 0.

It should be realized that a singularity of (1.1) at some finite value of y (or y’)
may only be bluffing: a solution of an associated boundary value problem might not
come close enough to the singular value to be affected. Here are two such examples.
A problem involving heat and mass transfer in a porous catalyst leads to the problem

y/3(1-y) ]y"=cyexp
l+fl(1-y)

0<x<l,

y’(0) 0, y(1) 1,

where a, /3, y are positive constants. The apparent singularity at y 1 + 1//3 is only
an idle threat because the solution actually satisfies y(x) <- 1 on 0_-<x-< 1. Similar
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behavior is encountered in this problem involving diffusion in a chemical catalytic
converter:

1y,, (y,)2, 0 < x < 1,
y-2

y(0) A, y(1) B,

where B < A < 2. The apparent singularity at y 2 does no real harm because the
solution satisfies B<=y(x)<=A on 0=<x -< 1. These two examples from the engineering
literature are discussed by Na [10] and Baxley [3]. The second example can actually
be integrated by elementary methods after dividing by y’.

In almost all of the articles referenced above, attention has been confined to
problems where F(x, y, y’) is independent of y’, or at worst linear in y’. Motivation
has come from interest in the problem

(1.2) y"+ a(x)y-p O, 0 < x < 1,

where p > 0 and a(x)> 0 and continuous on [0, 1], and the problem

N-1
(1.3) y"+y’+a(x)y-P=O, 0<x<l,

where again p > 0 and a(x)> 0 on [0, 1], which is encountered in the search (see, e.g.,
[4]) for radial solutions of elliptic partial differential equations in RN which have the
form

V:Zu+ a(r)u-p =0,

where r [xl is the radial coordinate and corresponds to the variable x in (1.3).
To facilitate comparison of our results, we state the existence and uniqueness

theorems of Taliaferro 13]. He studied the equation (1.2) with the boundary conditions

(1.4) y(0) =0, y(1) =0,

and proved that the problem (1.2), (1.4) has a positive solution b 6 C[0, 1] f’l C2(0, 1)
if and only if

(1.5) x(1 x)a(x) dx <,
in which case such a positive solution is unique. Furthermore,

lim b’(x)(respectively, lim b’(x))x0 x-l-

exists if and only if
1/2 a(X)xp dx respectively, )’’-7 dxo 1/2( 1-x

is finite. Note that for existence of a continuous solution, the value ofp > 0 is otherwise
unrestricted, but in order to have b’(x) continuous at one of the endpoints, either p
must not be too large, or a(x) must tend to zero rather rapidly as x approaches that
endpoint. In particular, (1.2), (1.4) has a positive solution b C1[0, 1] f’) C2(0, 1) if
and only if

a x----L-) dx <(1.6)
(s(x))p
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where s(x) x for 0 <- x -< 1/2 and s(x) 1 x for 1/2 < x <- 1. Gatica, Oliker, and Waltman
[7] extended the part of the above result regarding the existence of a C1[0, 1] solution
in two ways" they replaced (1.2) by the more general equation

(1.7) y"+f(x,y)=O,

where f: (0, 1) (0, c)- (0, c) continuously and f(x, y) is nonincreasing in y for fixed
x (0, 1), and they dealt with the more general two-point boundary conditions

(1.8) aoy(O) aly’(O) O, boy(l) + by’(1) O,
where ao, a, b->0 and aobo+abo+aob>O. Assuming that f(x,y)+o as y0+

uniformly on compact subsets of (0, 1), and that

(1.9) f(x, Os(x)) dx < oo

for each 0 > 0, then Gatica, Oliker, and Waltman [7] prove existence of a positive
solution b e C[0, 1]f’l C2(0, 1) of (1.7), (1.8). They also provide a uniqueness theorem
generalizing the corresponding statement of Taliaferro. Note that forf(x, y) a(x)/yp,
(1.9) holds if and only if (1.6) holds.

In contrast to the shooting method used by Taliaferro, Gatica, Oliker, and Waltman
[7] proved first an interesting fixed point theorem for decreasing maps on a Banach
space and then applied it to the boundary value problem.

In [6], Gatica, Hernandez, and Waltman continued to exploit their fixed point
theorem and attacked the more difficult problem (1.3) with the boundary conditions

(1.10) y’(O) =0, y(1) =0.

Replacing a(x)y-p with f: [0, 1) x (0, oo) - (0, c) continuous (note the half-open inter-
val), they assume f is decreasing in y for each x, lof(X y)dx <o for each y>0,
f(x, y) +o as y - 0+ and f(x, y) - 0 as y - +, both limits being uniform on compact
subsets of (0, 1), and finally that of(X, 0(l-x))dx < o for each 0>0. They then
prove existence of a positive solution th C[0, 1If) C2(0, 1) of (1.3), (1.10), and again
provide a uniqueness theorem.

In this paper, we shall unify and extend these results in a two-stage procedure.
Throughout, we assume our equation has the form

(1.11) y"+ g(x, y’)+f(x, y)-0, a <x < b,
and we first study the problem (1.11) with the boundary conditions

(1.12) aoy(a)- aly’(a) A, boy(b)+ bly’(b) B,
where ao, al, bo, bl, A, B->0 and aobo+ albo+ aobl >0. We extend the basic result of
Taliaferro regarding the sufficiency of the condition (1.5) or (1.6) for existence to the
equation (1.11) in which significant nonlinearity is allowed in the term g(x, y’), but
no singularity. The result in [7] is also a special case. Our theorem does not require
that the problem be either singular or nonlinear; after all, we would not expect
nonsingular or linear problems to be worse than singular or nonlinear ones. We also
include a uniqueness theorem which improves the one in [7].

Finally, we consider the problem studied in [6]. Modeling (1.3), we allow g(x, y’)
in (1.11) to be singular at x a. Our theorem allows, for example,

g(x,z)=-
(x-a)q’

where p >_-1 and q > 0. We allow boundary conditions of the form

(1.13) y’(a) =0, boy(b)+ bly’(b)= B,
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where bl, B_-> 0 and bo> 0. Again we provide significant extensions of the existence
and uniqueness theorems in [6].

Our strategy is to construct a sequence of problems which appproximate (1.11),
(1.12), which are not singular, but which "converge" to the singular problem. We
apply a previous result [3] to obtain existence of a positive solution b, of the nth
approximating problem and use a priori estimates to justify application of Ascoli’s
theorem.

The approximating problems are constructed in 2; 3 contains basic information
on qualitative behavior and a priori bounds for the approximating solutions. Existence
and uniqueness for the problem (1.11), (1.12) with g(x, y’) nonsingular appear in 4
and 5, while the results for g(x, y’) singular as x - a- appear in 6.

This effort was motivated by the desire to understand the underlying differences
in the problems studied in [6], [7] by Waltman and his colleagues, who very kindly
placed preprints of their work at my disposal.

2. Basic assumptions and approximating problems. The context for our study of
the problem (1.11), (1.12) will allow singular behavior as x a+, as x b-, and as
y 0+, and we shall seek positive solutions of (1.11), (1.12). From the perspective of
the singularity at y 0, a solution b(x) may keep its distance from zero and thereby
render the singularity powerless, or the solution may approach zero as x- a+ or as
x - b-, thus giving the singularity at y 0 opportunity to cause havoc. If (1.11), (1.12)
has a positive solution b(x) which is bounded away from zero as x- a+ (respectively,
x b-), we shall say that the singularity at y 0 is irrelevant at the endpoint x a
(respectively, x b).

Here are our basic assumptions regarding the differential equation (1.11):

(HF1) f:(a,b)x(O,c)-,(O,c) is continuous;

(HF2) f(x, y) is nonincreasing in y for each fixed x E (a, b);

(HG1) g:[a, b] x (-c, o) (-, ) is continuous;

(HG2) zg(x, z) >= 0 for all (x, z) E [a, b] x (-c, );

If, in (1.12), bo>0, put I =[a, b); if bo=0 (Neumann data), put I=[a, b].

(HG3) g satisfies a uniform Lipschitz condition in z on each compact subset
S c I x (-, ). That is, given such a set S, there exists K > 0 such that

Ig(x, Z2) g(x, Zl)l =< Klz2- Zll

(HG4)

whenever (x, z2), (x, zl)E S;

If a --0 and bo> O, then g(x, z) O(Z2), as z +c,uniformly for x E [a, b];

(HG5) If bo 0, then g(x, z) O(z log z) as z - +oo, uniformly for x [a, b].

These conditions allow singular behavior off(x, y) near both endpoints of (a, b)
and as y 0/. The term g(x, y’) allows significant nonlinearity in y’, but essentially no
singularity; later we will allow g(x, z) to be singular as x a+.

Our strategy for finding a solution of (1.11), (1.12) is to construct a sequence of
approximate problems to which we can apply a previous existence theorem and then
use Ascoli’s theorem on the corresponding sequence of solutions.

We will encounter a technical problem in the course of our work which is easily
dispatched if f(x, y) satisfies the following more restrictive condition than (HF1).

(HF0) f:(a, b] x (0,) (0, c) is continuous.
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Our work will be facilitated if we keep this possibility in mind. We do this from
the outset at follows. Define, for integers n > 2/(b- a),

h.(x)

n2(x- a) for a <_- x < a +-,
n

n2(b-x)

n2(x-a)
h*.(x)

n

1 1
for a+-<-x<-_b --,

1
for b --< x <- b,

n

1
for a<-_x<a+ -,

n

1
for a+-<-x<-b.

n

So h, (x), h,* (x) are continuous (piecewise linear) functions on a =< x =< b. We shall use
these functions to approximate f(x, y) by bounded, continuous functions on [a, b] x
(-c, ). If f(x, y) satisfies the more restrictive condition (HF0), we put

f,(x, y) min [h*,(x),f(x, y)] for (x, y) (a, b] (0, c);

if f satisfies (HF1) but not (HF0), we put

f,(x,y)=min[h,(x),f(x,y)] for (x,y)(a,b)x(O,).

In either case, f,,(x, y) has a unique continuous extension to [a, b] x (0, ), and since
f(x, y) is nonincreasing in y, then we may define

f, (x, 0) lim f, (x, y) for a -< x =< b
y.0

and then extend f,,(x, y) to [a, b] (-c, c) by

f.(x, y) --f.(x, 0) if y < 0.

It is clear that now

f, :[ a, b] (-, az) - (0, ) is continuous

and fn (x, y) is nonincreasing in y for each fixed x [a, b]. It is important to note also
that f, =<f+l -<f

For each integer n > 2/(b- a), we view

(ODE(n)) y"+ g(x, y’) +f,(x, y) O

as an approximation for (1.11). The existence ofa solution b, C[a, b ofthe boundary
value problem consisting of (ODE(n)) and the boundary conditions (1.12) follows
from existence theorems in [3]. In the case that bo=0, then necessarily aobl > 0 and
existence follows from (HG5) and Theorem 2.1 of [3]. To conclude existence in case
bo > 0, we first change variables, replacing x by a + b x, to get the transformed problem

y"+g(a+b-x,-y’)+f,(a+b-x,y)=O, a<x<b,

boy(a)-by’(a)=B, aoy(b)+ay’(b)=A.

Note that zg(a+b-x,-z)<=O. If boa>0, existence is a simple consequence of
Theorem 2.1 of [3]. If bo>0 and a,=0, then boao>0 and existence follows from
(HG4) and Theorem 2.2 of [3].
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Before collecting some qualitative information about the graphs of these solutions
Cn(x), we state the following consequence of the maximum principle.

LEMMA 2.1. Let Tn(y) y"+ g(x, y’) +fn(x, y). Suppose that T(x) >- O, Ttp(x) <-

0, and (x) > $(x) for x [c, die I. Ifb q is not constant on [c, d], then qb q cannot
attain its maximum on c, d] at an interior point of c, d]. This maximum can only occur
at c with ’(c)< b’(c) or at d with d’(d) d/’(d).

Proof. We use the standard procedure. Since T(x) >-_ O, TO(x) <-_ 0 on [c, d],
then u q satisfies

u"+a(x)u’+b(x)u>=O,

where

and

c<-x<-cl,

g(x, ’(x)) g(x, Ifi’(x))
a(x)= 6’(x)-4’(x)

0

if ’(x) th’(x),

if ’(x)= ’(x).

[.(x, (x))-A(x, (x))
b(x) ="

(x)- (x)

By (HG3), a(x) is bounded on [c, d] and sincefn (x, y) is continuous and nonincreasing
in y, then b(x) is continuous and nonpositive on [c, d]. The maximum principle [12,
pp. 6-7] therefore applies to complete the proof.

3. Approximating solutions: Behavior and estimates. We now describe qualitatively
the graphs of .(x).

LEMMA 3.1. (X) has at most one critical point in (a, b).
(a) If such a critical point c, (a, b) exists, then aobo > 0 and b has an absolute

maximum on a, b] at c,,

’(x)<O, (x)>(B-bl’(b))/bo for c<x<b,
’(x)>0, n(x)>-(alqb;(a)+A)/ao for a<=x<c,.

(b) If qb, has no critical point in (a, b), then qb, attains an absolute maximum on
In, b at exactly one endpoint c, and either

c=b, no>0, ’(x)>0, ,(x)>-(al’(a)+A)/ao for a<-x<b,
or

c,=a, bo>O, 4(x)<O, d,(x)>(B-b14);(b))/bo for a<x<b.

Proof If ’.(c) =0 for c (a, b), then since (HG1), (HG2) imply g(x, 0)=0, for
a _-< x <-b, it follows from (HF1) that

:(c)=-f.(c,.(c))<o

and thus c gives a strict local maximum. Clearly, at most one such c, can exist. If such
a c. exists, then it certainly gives an absolute maximum and ’(x)>0 on (a, c) and
’(x) < 0 on (c, b). If no such critical point in (a, b) exists, then ’(x) has the same
sign throughout (a, b). Suppose that c > a. By (HG2), we then have

(x) -g(x, ;(x))-f,(x, ,(x)) < 0 for a < x < c.,

and ,(x) is concave down on (a, c). Thus ’(x) is decreasing on [a, cn] with

’(a) > 0. The boundary condition at x a gives aoCn (a) al’(a) + A. If al 0,
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then ao> 0 by hypothesis; if al > 0, then

aockn(a) alb’,(a) + A _> alb’,(a) > 0

forces ao > 0. Thus for a -<_ x -<_ cn,

bn (x) _-> bn(a) (alb’(a) + A)/ao.
Suppose now that c < b and focus attention on (c,, b). It can no longer be concluded
that b’,’(x) is negative and b, may not be concave down on (c, b). (This loss of
concavity is the root of technical difficulties with which (HF0) or some other alternative
will assist later.) To show that bo> 0, suppose that bo =0, bl> 0. Then the constant
function 4(x)= bn(c,) satisfies Tn(ck)=fn(x, 4)=> 0. We shall show that b(x)=> b(x)
on [cn, b], which contradicts the fact that c, gives a strict maximum for 4 (x). Assuming
that b(x)-> b(x) is false, we may suppose that b-b attains a positive maximum at
some point Xo c,, hi. Clearly, Xo cn since (b- bn) (c)= 0, and certainly b- b is
not constant on (c., hi. Choose c (c,, Xo) so that th- b. > 0 on [c, xo]. Since bl(b-
b,)’(b) =-B_-<0, then surely (b- bn)’(Xo)_-<0, contradicting Lemma 2.1. Thus bo>0
and the boundary condition at x=b gives 4,(x)> d,(b)=(B-blCk’,(b))/bo for c <
x < b, completing the proof.

Note that if the maximum of 4n on [a, b] occurs at c < b, we do not conclude
that b’, (b) < 0, in contrast to the fact that b’, (a) > 0 if c > a. The possibility that
b’,(b) 0 even though c < b will be dealt with later.

LEMMA 3.2. b(x)<-qbn+l(x) for a<-x<=b and integers n>-2/(b-a).
Proof Suppose on the contrary that for some n, the function 4,- 4,+1 attains a

positive maximum at some point Xo a, b]. Since 4,- b,/l satisfies

(3.1) aoy(a)-aly’(a)=O, boy(b)+bly’(b)=O,

and ao + bo > 0, then b, b,/l is not constant on a, b ]. Note that Xo b implies bo 0
and thus ! [a, b]. Clearly, there exists an interval [c, d] c [a, b] with Xo [c, d] and
th. th,+ is positive and nonconstant on [c, d]. Since T(b) 0 andf, (x, y) <=f,+(x, y)
implies T,(bn+l)-<T,+l(b,+l)=0, then Lemma 2.1 shows that xo=a and (b,-
bn+l)’(Xo) <0 or Xo b and (bn-b,+l)’(Xo)>0. Each of these is impossible because
b, b+l satisfies (3.1).

We now obtain estimates on the derivatives b’, which will be central in allowing
the use of Ascoli’s theorem later.

LEMMA 3.3. Suppose c, < b and n > 2/(b a). If Xl (a, b), Xl >- c, then

I’.(x)l_-<l’.(x,)l/2 f(s, ck,(s)) ds forxl<-X<b.

Proof With xl as described, choose and fix x e (xl, b). Then choose d so that
14’,(x)[ assumes its maximum on [x,x] at d. By Lemma 3.1, 4’,(s) < 0 on [x,x] and
(HG2) implies that

ck:(s)=-g(s, ck’,(s))-f,(s, ,(s))_-> -f,(s, ,(s)), xl <-s<-x.

Multiplying by th’,(s) and integrating over Ix1, d], we obtain

;x[.(d)12<= Ib;(Xl)l-2 b’,,(s)f.(s, b.(s)) ds.

Since =-’.(d) is the maximum value of on Ix1, d], there follows

14’.(d)l=<-14’.(x1)l=/NI4’.(d)l f,(s, dp,(s)) ds.

The desired result is obtained after division by 14’.(d)}.
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LEMMA 3.4. Suppose cn > a.
(i) If al>O, then O<-ch’,(x)<aodn(cn)/al,for a<-x<-cn.
(ii) If al=O, bo>0, and xae (a, b), x2<-cn, then there exist positive numbers KI,

Zl, independent of n, so that

O<=dp(x)<-2exp(2Kldpn(c.)) Zl+n(X2)+2 f(s, dpn(s)) ds

for a < x <- x2.
(iii) If bo 0 and x a, b), then there exist positive numbers K2, z2, independent

of n, so that

Ix f(s, dp.(s)) ds
log log 4’,,(x) =< log log z+ K(b-a)+’

z: log z2

for a <XX2

Proof If al > 0, the boundary condition at x a gives 4’.(a) <_- ao4. (a)/al and
(i) follows from the facts that 4.(a)< 4.(c.) and 4. is concave down on (a, c.). We
pass to (ii) and so may use (HG4). Thus there exist positive constants K, Zl so that

g(x, Z) K1z2 for Z g

Arguing by contradiction, suppose that there exists Xo e (a, x2) for which

b’,(Xo) > 2 exp (2Klb,(c,)) zl + b’,(x2) + 2 f(s, ch,(s)) ds

Then we may choose x e (Xo, x2) so that

6’.(x) M Zl + 6’.(x9 + 2 f(s, 6.(s)) ds

and b’,(x)> M for Xo<-_x <Xl. The differential equation then gives

6’.’(x) =-g(x, 6’.(x))-f.(x, 6.(x))>-_-I(6’.(x))-f(x, 6.(x))
for Xo<-X<-_x. Dividing by (b’,(x))2 and integrating over [Xo, x], where Xo<X<-Xl,
we get

1 1 [of(S, 6.(s)) ds
>- -K,(x-xo)-’ 26’. (Xo) 6’.(x) (6’.(x))

since 4’,(x) is the minimum value of b’, on [Xo, x]. Then

Ix6’.(x) > 2 f(s, 6.(s)) ds

implies

Thus

1 1 [ I,of(S, Chn(s))ds]<-- 1- =KI(X-Xo)+
24’. (x) 4’. (x) b’. (x)

6’. (Xo)(3.2) 24 tn(x) " x0 ( x x
KIn(Xo)(X--Xo)"II- 1’

4) ’(Xo)

Integrating (3.2) over [Xo, Xl] and then using (3.2) again for the value x x produces

1
2(th,(Xl) b,(xo)) ->-- 11 log (KlCh’,(Xo)(xl-xo)+ 1)
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and

which leads to

[ 4".(Xo) ]2KI,,(c.) e log
L2-(-iJ

6(Xo) =< 2M exp

a contradiction.
To prove (iii), we may use (HG5). So there exists z2> 0, K2> 0 such that

g(x, z) <= Kzz log z for z >= z2.

We may surely assume that z2> B/bl ’,(b). If ’,(x)-< z2 on (a, x2), there is nothing
to prove. Otherwise there exists xl (a, x2) such that ’,(x)= z2 and ’,(x)> z2 for
a -< x < xl. Then

",(s)>--K2’.(s) log(’.(s))-f(s, 6,(s)), a<s<---x,.
After dividing by ’, log ’, and integrating from x to Xl, we obtain the desired
conclusion.

4. Existence. We are now ready to formulate and prove our main result giving
sufficient conditions for the existence of a solution of problem (1.11), (1.12). As
might be expected, these conditions are less demanding if the singularity at y 0 is
irrelevant at one or both endpoints. Since we intend to construct our solution using
Ascoli’s theorem as the limit ofthe subsequence ofthe solutions {,} ofthe approximat-
ing problems, we look to Lemmas 3.1 and 3.2 for guidance. Let N be the smallest
integer larger than 2/(b a) and suppose n _-> N. If A + al > 0, then Lemma 3.1 implies
that ,(a)> 0; from Lemma 3.2, it follows that (a) will also be positive and thus
the singularity at y 0 will be irrelevant at x a. The other endpoint is more trouble-
some, because Lemma 3.1 does not guarantee that ’,(b) will be negative if c, < b. If
B > 0, then certainly ,(b)> 0 and the singularity at y 0 is also irrelevant at x b.
We immediately give simple conditions which force ’,(b)< 0 when c, < b. This can
be accomplished via either the function g(x, y’) or the function f(x, y). Here is the
condition on g"

(HG6) There exists 6>0 so that g(x, z)= O([z]) as z-0-, uniformly for x
[b-S,b].

LEMMA 4.1. Suppose c, < b and either that f satisfies the stronger condition (HF0)
or that g satisfies (HG6). Then ’,(b) <0.

Proof By Lemma 3.1, , attains its minimum on It,, b] at b where ’,(b)=< 0.
Assuming that f satisfies (HF0) and ’,(b) 0, then

",(b)=-f,(b,,(b))<O,

which is clearly impossible. Thus ’,(b) <0. If g(x, z) satisfies (HG6) and ’,(b) =0,
then we may assume that c,<b-6 and that there exists a constant k so that
Ig(x, th’,(x)) _--< klb’,(x) for x [b 8, b). Thus

(x)+kdp;(x)<=qb".,(x)+g(x, ’,,(x))=-f(x, .(x)) < 0, b-S<=x<b.

Multiplying by exp (kx) and integrating, we get

exp (kb)’,,(b) < exp (k(b 6)) ’.(b 6) < 0,

a contradiction. Thus ’.(b) < 0.
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If the hypotheses of Lemma 4.1 are satisfied, then Lemma 3.1 implies that the
singularity at y 0 will be irrelevant at x b if B 0, b > 0. In order to get a solution
of (1.11), (1.12) which is sufficiently smooth at an endpoint of [a, b], we shall need
to impose certain integrability conditions on f(x, y) near that endpoint. Let m be the
midpoint of [a, b]. Here are the various conditions:

(al) f(x, O(x-a)) dx<c for 0>0,

(a2) f(x, y) dx < oo for y > O,

(a3) (x-a)f(x,y) dx<oe for y>0,

(bl) f(x, O(b-x)) dx<oe for 0>0,

(b2) f(x,y) dx<oo for y>0,

(b3) (b-x)f(x,y) dx<oe for y>0.

We say that f(x, y) satisfies the strong integrability condition at x a if f(x, y)
satisfies (a2) in case A + a > 0, and f(x, y) satisfies (al) in case A + a =0. Similarly,
f(x, y) satisfies the strong integrability condition at x b iff(x, 3’) satisfies (b2) in the
case where B+bl>0, and f(x,y) satisfies (bl) in the case where B+bl=0; we also
require that f(x, y) satisfy HF0 if B =0, b0> 0, and g(x, z) fails to satisfy (HG6). These
are essentially the conditions used by Taliaferro in [13] and later in [7] in the case
that g(x, z) -= 0.

To allow for the possibility that a solution’s derivative is unbounded near a
Dirichlet endpoint, we also consider "weak" integrability conditions analogous to
those of Taliaferro 13]. We say that f(x, y) satisfies the weak integrability condition
at x b iff(x, y) satisfies (b3). Similarly, f(x, 3’) satisfies the weak integrability condi-
tion at x a iff(x, y) satisfies (a3) when g(x, z) O(z) as z - +oo; otherwise, we must
strengthen this condition to (a2). Since the weak conditions will only be considered
at Dirichlet endpoints, it is clear that the weak condition at x- a is no weaker than
the strong condition if A> 0 and g(x, z) is not O(z) for large . We leave open the
question of whether or not this strengthened condition is necessary.

For the purpose of easy reference and hopefully to make the proof transparent,
we begin with several simple lemmas.

LEMMA 4.2. If f(x, y) satisfies the strong integrability condition at x a, then
f(x, chn (x)) is integrable over the interval a, m]. Iff(x, y) satisfies the strong integrability
condition at x b, then f(x, qbn x) is integrable over the interval m, b].

Proof IfA + a > 0, then Lemma 3.1 implies that there exists y > 0 so that th, (x) _-> y
on [a, m]; thus by (HF2), f(x, dp,(x))<-_f(x,y) on [a,m]. If A+al--0, Lemma 3.1
implies that b’,(a) > 0 and so there exists 0 > 0 for which b,(x) _-> O(x a) on [a, m],
so by (HF2) again, f(x, bn (x)) <-f(x, O(x- a)). The second statement follows similarly,
but Lemma 4.1 must also be used.

LEMMA 4.3. If f(x, y) satisfies the weak integrability condition at x a, then
f(s, y) ds is integrable over the interval a <- x <- mfor eachfixed y > O. Iff(x, y) satisfies
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the weak integrability condition at x b, then f s, y) ds is integrable over the interval
m <-_ x <- b for each fixed y > O.

Proof. Fubini’s theorem gives

f(s ,y) ds dx (s a)f(s, y) ds,

implying that the first statement. The second statement is similar.
These integrability statements will be used in tandem with the next lemma to

obtain equicontinuity.
LEMMA 4.4. If h (x) is integrable over some interval c, d ], then given e O, there

exists 6 > 0 so that c <- x X2 d and x2 X implies Ih(x)l dx < .
Proof. This statement is the well-known fact from real analysis about absolute

continuity of integrals.
Here are some intuitive remarks about our general strategy. To fix ideas, consider

the case that c, lies strictly between a and b. We want to use Lemma 3.3 to get uniform
bounds on 4)’, to the right of c,. If Lemma 4.2 applies, we expect uniform bounds up
to b and we would like to integrate to get uniform bounds on th,(c,); alternatively,
we expect to integrate using Lemma 4.3 to get uniform bounds on th(c,). Then we
want to use the estimates in Lemma 3.4 to obtain bounds to the left of c,. But we have
problems to overcome: if the c, could accumulate at a and the strong integrability
condition fails at a, the bound of Lemma 3.3 would fail us near c,. Without an a priori
bound on th,(c,), the first two estimates in Lemma 3.4 are useless. Also, if the c, could
accumulate at b, the estimates of Lemma 3.4(ii) and (iii) would fail us near c,. So an
important part of the main proof is to show that the c, cannot accumulate at a weak
endpoint and the prevention of such accumulation at a is the technical problem to
which we earlier referred. The extra assumptioa on g(x, z) will be used via the following
lemma.

LEMMA 4.5. Suppose c,> a and g(x, z) O(z) as z-. +c. Ifx2 (a, b) andx2 <- c,,
then there exist constants Zl and K1 so that

qb’,,(x)<=exp (Kl(b-a)) Z1-’-t)tn(X2)-" f(s, d,,(s)) ds

for a ( x ( x2

Proof By hypothesis, there exist Zl and K1 so that g(x, z) <- KlZ for z=> Zl. If
4’,(x)<-z+4’,(x2) for a<=x<=xz, there is nothing to prove. Otherwise, there exists

xl (a, x2) such that 4’,(xl) Zl + 4’,(x2). Then

tttn(S)di-Kl/)tn(S)>= --fn(S, tn(S)) for a<s<x1,

and integration over [x, x] leads quickly to the conclusion.
It will be convenient to have the following trivial extension of the usual Ascoli

theorem.
LEMMA 4.6. Suppose that {g,} is an equicontinuous sequence offunctions on a finite

interval [c, d] and there exists a point Xo in [c, d] for which {g,(xo)} is bounded. Then
{g,} contains a uniformly convergent subsequence on [c, d].

Proof The hypotheses imply that {g,} is uniformly bounded on c, d] so Ascoli’s
theorem applies.

Here is our main theorem.
THEOREM 4.1. Suppose that f, g satisfy (HF1)-(HF2) and (HG1)-(HGS). At each

endpoint of a, b], suppose either that f(x, y) satisfies the strong integrability condition,
or that the boundary condition at that endpoint is a Dirichlet condition andf x, y) satisfies
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the weak integrability condition. Let J denote the interval obtained by removing from
a, b any endpoint at which f(x, y) fails to satisfy the strong integrability condition. Then
the boundary value problem (1.11), (1.12) has at least one solution b
C-(a, b) CI(j) C[a, b]. Moreover, irA/ ao-O, then oh’ satisfies the inequality

(4.1) Ib’(x)l_<-2 f(s, oh(s)) ds<+oo for a<-_x<b.

Proof. We shall show that some subsequence of {bn} satisfies the hypotheses of
Lemma 4.6 and that the corresponding subsequence of {b’} is uniformly bounded on
each compact subset of J, and then use a slight modification of the familiar diagonaliz-
ation argument with Ascoli’s theorem. Because the argument differs if the point cn
where the maximum of bn occurs is an endpoint, we shall arrange our proof to deal
conveniently with these special cases first. So we begin with the case that cn- b for
infinitely many values of n _-> N and temporarily focus attention on these values of n.

Suppose bo> 0. Then the boundary condition at x-b guarantees that bn(b) -<

B bo. If al > 0, then {b’} is uniformly bounded on [a, b] by Lemma 3.4(i) and hence
{bn} is equicontinuous on [a, hi. So we pass to the case that a1-0. Here the concavity
of bn on [a, b] implies that

(4.2) d’n(m)(m a) < ’n(X) dx dn(m)- dn(a) <-;-
Oo

so Lemma 3.4(ii) applies (with X2 m) to give constants Ca and C2 so that

(4.3) 49’,(x) <- C1+ C2 f(s, 4)n(s)) ds <- Cl + C2 f(s, 4)N(S)) ds

for a < x _-< m. Thus, using Lemma 4.2 if needed, we conclude from the concavity that
{b’,} is uniformly bounded on each compact subset of J. To show the equicontinuity
of {bn} on [a, hi, let e > 0 be given. Define

h(x) C + C2 s, ds fora<x_-<m

and

B
h(x) for m < x _-< b.

(m-a)bo

By Lemma 4.3, h(x) is integrable over [a, b]. Let 6 > 0 be the number given by Lemma
4.4 (with e replaced by e/2 and It, d] replaced by [a, b]). We show that a<-x <x2=< b
and x2- x < 6 implies

(4.4) I.(x2)- .(x)l < .
If 4n (b) 4n (a) < e, there is nothing to prove. Otherwise, choose an (a, b) so that
Chn(an)=Chn(a)+e/2. Then if x>=a,, (4.2) and (4.3) imply Ck’n(X)<-h(x) on [x,x2]
and integration gives (4.4) with e replaced by e/2. For xa < an, (4.4) follows immediately
from the triangle inequality. If bo 0, then ao> 0 and b > 0. Thus from the boundary
conditions, {4n(a)} is bounded by A/ao and {4’,(b)} is bounded by B/bl. Also the
strong integrability condition is satisfied at x b. Iff(x, y) satisfies (a2), then Lemma
3.4(iii) applies (with x2 replaced by b) to give a uniform bound for {4’,} on [a, b] and
equicontinuity of {4n} on [a, b] is immediate. Otherwise, Lemma 4.5 may be applied
to give (4.3) again and the argument in the case bo> 0 may be repeated. So we have
the desired subsequence if cn b for infinitely many n.
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We now pass to the case that cn a for infinitely many n. First suppose that a > 0.
Then -A! al < b’(a)<-0 and the strong integrability condition is satisfied at x a. The
bound for ’, of Lemma 3.3 may now be used for h(x) with Lemmas 4.3 and 4.4 to
show that {n} is equicontinuous on [a, b]. If x=b is a Dirichlet endpoint, then
{,(b)} is bounded and we are done; otherwise the strong integrability condition is
also satisfied at x= b, Lemma 3.3 gives a uniform bound on {’} on [a, hi, and at
least one of the boundary conditions then gives a bound on {,} at the corresponding
endpoint. Next suppose that al 0. Then ,(a) A/ao for every n of interest, providing
a uniform bound for {n} on [a, b]. With an eye to using Lemma 3.3, we shall show
that if X E (a, b), then {tn(X1)} is bounded. Choose Xo as the midpoint of [a, x1].
Applying Lemma 3.3 (with the roles of x and xl interchanged), we easily conclude that

’(x) =< ’,(x,) +2 f(s, CN(S)) ds for Xo =< x _-< x

If {tn(Xl)} was unbounded below, integration from Xo to X would force {,(Xo)} to
be unbounded, contradicting the uniform bound on [a, hi. To show the equicontinuity
of{n} on [a, b], choose e > 0. If ,(b) ,(a) < e, there is nothing to prove. Otherwise,
choose Xl so that CN(x)=A/ao-e/3 and bn so that ,,(b,,)<,,(b)+e. With this
choice of Xl, let

h(x)=rn(Xl)nt- f s, ds for xl <x<b.

Then Lemma 3.3 shows that h(x) is a bound for ’,(x) on [x, b,], and Lemmas 4.3
and 4.4 may be used as before to finish the proof. So now we have the desired
subsequence in the case that c, a for infinitely many n.

If neither of the earlier cases hold, then there exists M > N for which c, E (a, b)
for all n _-> M. It is necessary to know shortly that the sequence {c,} is bounded away
from any weak endpoint, for n >_-M. If b is a weak endpoint, then

.(c.)--n(b)>M(cM)--M(b)=--Q for n>M.

Choose b, (c,, b) so that ,(b,) b,(b) + Q/2. Integrating the bound of Lemma 3.3
(with xl replaced by c,), we find that

--Q< Cn(c,)- ,(b,) =< 2 f s, dsdx,
2

a clear contradiction of Lemma 4.4 if {c,} is not bounded away from x b.
Suppose a is a weak endpoint. Iff(x, y) satisfies (a2), then the estimate of Lemma

3.3 (with x c,) may be integrated to show that ,(c,) is bounded and then the
estimate of Lemma 3.4(ii) may be used (with x2 c,) and integrated to contradict
Lemma 4.4 if c, is not bounded away from x a; otherwise we may integrate the
estimate of Lemma 4.5 and again contradict Lemma 4.4 if c, is not bounded away
from x a.

If b is a strong endpoint, then Lemma 3.3 (with xl c,) implies that {’,(b)} is
bounded; here we use either that a is a strong endpoint or that {c,} is bounded away
from a. Since c, < b, Lemma 3.1 forces bo> O. Whether or not b is a strong endpoint,
the boundary condition at x b then gives a bound on {,(b)} and integration of the
estimate of Lemma 3.3 (with x c,) over [c,, b] produces a bound on {,(c,)} for
n _-> M. The uniform boundedness of {’,} on each compact subset of J now follows
from Lemma 3.3 and either Lemma 3.4(i) or (ii) or Lemma 4.5.
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To establish the equicontinuity of bn on [a, b], let e > 0 be given. It suffices to
show that on each of [a, c,] and It,, b], there exists 6 > 0 so that

16, (x2)- 6,(Xl)l < e/2

whenever Ix2-x[ < 8. The argument is similar in each case. To illustrate, consider the
interval [a, c,]. If

there is nothing to prove. Otherwise, choose a, a, c, so that b, (a,) b, (a) + e/4.
Depending on the integrability hypothesis satisfied at x a, either the estimate of
Lemma 3.4(i) or (ii) or that of Lemma 4.5 may be integrated and Lemma 4.4 used to
show that there exists 6 > 0 for which

dp,(Xz) Cn(xl) < e/4

whenever x2-xl < 6 on [a,, c,], and the desired conclusion follows.
We thus conclude in all cases that there exists a subsequence of { b,} which satisfies

the hypotheses of Lemma 4.6 and for which {b’,} is uniformly bounded on each
compact subset of J. To apply Ascoli’s theorem to {4’,}, we need to know that {b’}
is equicontinuous on each compact subinterval J of J. Since {b’,} is uniformly bounded
on J and g(x, z) is continuous, {g(x, b’,(x))} is uniformly bounded on J. Using the
differential equation, there then exists a constant C so that

[b’,’(x)[ < C +f(x, 49(x)) for x J.
Using Lemmas 4.2 and 4.4, we may integrate this estimate to show that {b’,} is
equicontinuous on J1. The usual diagonalization argument now produces a further
subsequence of {4,} which converges uniformly on [a, b] and for which {4’,,} converges
uniformly on each compact subset of J. It is easy to see that the limit function 4
satisfies all the desired properties, finally completing the proof.

5. Uniqueness. If bo 0 in (1.12), then we encounter added technical problems in
establishing uniqueness. So we begin with the case where bo> 0.

TiqzOgZM 5.1. Suppose that f satisfies (HF1)-(HF2) and that g satisfies (HG1),
(HG3), and suppose that g(x, z) is nondecreasing in z for each x [a, hi. If bo> O, then
the boundary value problem (1.11), (1.12) has at most one positive solution.

Proof Assume that (1.11), (1.12) has two distinct solutions b, q and let u b .
We may suppose that u has a positive maximum at some x0 e [a, b]. Since u satisfies
the boundary conditions

(5.1) aou(a)-au’(a)=O, bou(b)+bau’(b)=O,

then u cannot be a positive constant on [a, b]. The argument of Lemma 2.1 may be
repeated to show that Xo is not an interior point of [a, b]. Since bo > 0, the second of
the conditions (5.1) shows that the positive maximum cannot occur at b. Thus Xo a

and from the first of conditions (5.1), we see that necessarily ao=0 and u’(a) =0. It
is easy to see that u(x)>-0 on [a, b]. Otherwise, -u would have a positive maximum
on (a, b] and this is impossible by the same argument just used to show that u cannot
have a positive maximum on (a, hi. Then u’(x)<=O on [a, b] since otherwise we see
that u has a positive maximum on (a, b]. Since g(x, z) is nondecreasing in z, (HF2)
implies

u"(x) g(x, b’(x)) g(x, qb’(x)) +f(x, @(x)) f(x, d,b(x)) >= 0
on (a, b), forcing u to be constant on [a, hi, which is impossible.
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In our proof above, we used the assumption that bo> 0 to rule out a maximum
at b. If bo 0, we need some further hypothesis. Here are several possibilities, any one
of which suffices:

(5.2) f(x, y) satisfies (HF0),

(5.3) g(x,z)--o,

(5.4) liminf[f(x,y)-f(x,y)]>O, 0<y<y.

Ti-izOZM 5.2. Suppose f(x, y) satisfies (HF1)-(HF2), g(x, z) satisfies (HG1),
(HG3), and also g(x, z) is nondecreasing in z for each x [a, hi. If bo=O and any one

of (5.2), (5.3), (5.4) is satisfied, then the boundary value problem (1.11), (1.12) has at
most one solution.

Proof The proof of Theorem 5.1 may be used if we can rule out a positive
maximum for u at b. Assuming u has a positive maximum at b, the second condition
in (5.1) now implies that u’(b) =0. If (5.2) holds, the maximum principle applies as
in the proof of Lemma 2.1 to show that u’(b)> 0, a contradiction. If (5.3) holds, we
may assume that u(x) > 0 and nonconstant on some interval [c, b] where a < c < b. Then

u"(x) =f(x, q(x)) -f(x, oh(x)) >= 0 for c <- x <= b,

and since u’(x) must be positive somewhere in (c, b), we get u’(b)> 0, a contradiction.
Finally if (5.4) is true, it is easy to see that u"(x)> 0 in some neighborhood of b and
we again reach the contradiction that u’(b)> O.

It seems likely that without some additional hypothesis, Theorem 5.1 does not
remain true in the case that bo 0.

6. Existence and uniqueness with g(x, y’) singular. We now turn attention to the
problem (1.11), (1.13), allowing g(x, z) to be singular at x a. We continue to assume
that f satisfies (HF1)-(HF2), but relax the hypotheses (HG1)-(HG3) to the following.
(HGI*) g:(a,b](-,O]-(-,O] is continuous.
(HG2*) g(x, 0) =0, for all x (a, b].
(HG3*) g satisfies a uniform Lipschitz condition in z on each compact set Sc

(a, b) x (-c, 0].
TIZORZM 6.1. Suppose f, g satisfy (HF1)-(HF2), (HGI*)-(HG3*), and that f

satisfies the strong integrability condition at x a. Suppose thatf(x, y) satisfies the strong
integrability condition at x b and let J a, hi, or that b is a Dirichlet endpoint and
f x, y) satisfies the weak integrability condition at b and let J a, b ). Then the boundary
value problem (1.11), (1.13) has at least one positive solution c C(J)fq C2(a, b).

Proof For each integer n > 1/(b-a), consider the boundary value problem

y"+(x,y’)+f(x,y)=O, a+l/n<x<b,

(BVP(n)) y’(a+ l/n)- 0,

boy(b)+by’(b)=B,

where (x, y)=--g(x,-y), for y > 0, (x, y)=-g(x, y), for y-<0. We apply Theorem
4.1 with A=0, aa=l, bo>0 to conclude the existence of a solution b,
C2(a+ l/n, b)fq C([a + I/n, b]fqJ)VI C[a+ 1/n, b] of (BVP(n)) for which

(6.1) I4,’,,(x)l_-< 2 f(s, b.(s)) ds < o
+l/n
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for a + 1/ n _--< x _-< b. Using the facts that th ’ (a + 1 / n) 0, th’,+l(a + 1 / n) < 0 and repeat-
ing the argument of Lemma 3.2, it is easy to see that b, (x) _-< b,+l(x) for a + 1/n -<_ x <- b.
Let N be the smallest integer larger than 1/(b- a) and put

bo(X)={bN(/); a + l/ N <- x <-- b,
chN(a l/N), a<-x<a+l/N.

Since 4, is decreasing on [a + 1/n, b], it follows that

4,(x) -> bo(X) for a + 1/n <= x _-< b, n _-> N,

and (HF2) implies

(6.2) I,’.(x)l-<_ 2 f(s, bo(S)) ds<,
1

a+-<x<b.
n

Thus we have a uniform bound for { b’,} on compact subsets ofJ f’) (a, b and integration
of (6.2) produces a uniform bound for {thn} on [a, hi. Using Ascoli’s theorem and the
usual diagonalization argument, we complete the proof to get a solution b of the
differential equation on (a, b which satisfies the boundary condition at x b. It remains
to show that b’(a)=0. We may let n--> in (6.2) to get

[b’(x)[ _-< 2 f(s, bo(S)) ds < c, a < x < b.

It follows that limx_a th’(x) =0. Since b is monotone on (a, b] and bounded, then
b(a)--limx_a+ b(x) exists, and the mean value theorem shows that b’(a) =0.

The following uniqueness theorem is proved using the same argument as we used
in Theorem 5.1.

THEOREM 6.2. Suppose that f satisfies (HF1)-(HF2) and that g satisfies (HGI*),
(HG3*), and suppose that g(x, z) is nondecreasing in z for each x (a, b]. Then the
boundary value problem (1.11), (1.13) has at most one positive solution.

Acknowledgments. The author is indebted to Paul Waltman and the hospitality of
his colleagues, at Emory.
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INVERSION OF DISCONTINUITIES FOR THE SCHRIDINGER
EQUATION IN THREE DIMENSIONS*
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Abstract. This work deals with the inverse scattering problem for the Schr6dinger operator in three
dimensions. The following problem is studied: If the inverse scattering problem is solved approximately by
using the linearizing Born approximation, what information about the true potential is obtained if the
scatterer is not necessarily weak? It is shown that in a certain sense, the leading singularities of the potential
are recovered exactly. More accurately, under certain a priori smoothness assumptions of the scattering
potential, the difference of the potential and the one obtained by using the Born approximation is in a
smoother class of functions. Especially, for bounded potentials the approximation agrees with the true
potential up to a Lipschitz continuous function. For the a priori scale of function spaces we have chosen
the Zygmund classes equipped with a suitable weight at infinity.

Key words. Schridinger equation, Born approximation, inverse scattering

AMS(MOS) subject classifications. 35R30, 35J10, 81C05

Introduction. One of the most straightforward and widely used methods of
approaching the multidimensional inverse scattering problems on various fields of
physics is to use the Born approximation to linearize the typically nonlinear problem.
The popularity of this approach is no doubt in the relative ease at which linear inverse
problems are treated, both theoretically and numerically, as compared to nonlinear
ones, where there are few standard methods available. Naturally, the problems then
lie in the validation of the linearizing approximation. The general philosophy is that
for weak potentials, or scatterers in general, the scattered field is well approximated
by the Born approximation. Application to inverse scattering problems contains in
principle a more difficult problem: Given a scattering amplitude of other scattering
data, how do we decide whether the unknown scatterer is weak enough to justify the
linearized scheme? This work is intended to contribute to this problem in the special
case of three-dimensional inverse scattering of the Schr6dinger equation. Explicitly,
we ask the following question: Given the far field amplitude of the scattering solution
of the Schr6dinger equation, what information of the potential is retrieved if we blindly
apply the Born inversion scheme to this data? The main result of the work is that,
roughly, the Born inversion yields the singularities of the original potential exactly,
up to a certain degree of smoothness. Similar results have been known for some time
in other scattering configurations. One ofthe pioneering works that should be mentioned
here is the important article by Beylkin [4], followed by a number of other works. The
basic ideas of this work, however, come closer to those of 14]. In fact, it is not difficult
to see that the results of [14] can be directly translated to the language of (one-
dimensional) quantum scattering.

The plan of the present article is" In 1 we discuss the background of the linearized
inversion scheme and prove the main result (Theorem 1.8) of the work. In 2 we show
that in some cases it is possible to improve the general results of 1. Especially, the
calculus developed in 1 is applied to show that the linearized inversion scheme is
sufficient for inverting discontinuities of a bounded potential: The true potential is
shown to differ from the approximation by a Lipschitz continuous function. There are
two appendices. Appendix A is a quick reference on the results concerning certain

* Received by the editors July 17, 1989; accepted for publication (in revised form) April 2, 1990.
? Department of Mathematics, University of Helsinki, Hallituskatu 15, 00100 Helsinki, Finland.
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function spaces which are used in the work. Finally, some of the most technical proofs
are collected in Appendix B.

1. Asymptotic expansion of the linearized equations. To fix the notations, we will
review some basic definitions and facts from the scattering theory of the Schr6dinger
equation in R3. The general reference on quantum scattering theory is, e.g., [9]. Let q
be a real valued potential in R appearing in the Schr6dinger operator

(1.1) H--A+q(x).

Since the aim of this work is mainly to establish certain general ideas, we will avoid
extra complications, at the cost of some generality, by assuming that the potential has
no (infinite) singularities. More precisely, let w be a weight function

w(x)-(l/lx[2).
The general assumption in this work is

(1.2) wq L

for some 6 > , abbreviated as q e L. In most of this work, the assumption about the
rate of decay at infinity could be released. Our choice of 6 is made to gain some
notational convenience (see Remark 1.10 below). Later, we will study the smoothing
properties of certain operators, so we need a scale of function spaces generalizing (1.2)
to measure the degree of smoothness in q. For s > 0 we define the weighted Zygmund
space A; by the condition

(1.3) fA if wfAs,
where again > , and A denotes the classical Zygmund space with smoothness index
s. In Appendix A, we have collected the definitions of the Zygmund spaces and some
other closely related function spaces that will be used in this work. Also, some important
results that would take us too far off the main topic are left to this Appendix. The
useful property of the spaces As, and the reason why we have chosen to work with
these spaces, is that they are obtained via interpolation from the simple spaces C k,
the space of k times continuously differentiable functions. More precisely, we will
prove in Appendix A the following interpolation property.

THEOREM 1.1. Let ko and k be integers, 0<- ko < kl. Further, let O< 0 < 1 and
s (1 O) ko + Okl. Then, for any e > O,

As+ c Cko, Ck,]o As,
with continuous embeddings.

In the sequel, we will also need the weighted L2 spaces L2, 6 6 R, defined as

The following fundamental result of the stationary scattering theory, usually referred
to as the limiting absorption principle, can be found in [1], [9].

PROPOSITION 1.2. Assume that the potential q satisfies (1.2). Thenfor all k > 0 there
exist the limits

(1.4) lim (H-(k2 +/- ie))-l=: +(k)
e-0+

in the uniform operator topology from L to L_ as 6 > 1/2. Moreover, for large k,
C

(1.5) II(k)ll _-<.
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Although not explicitly stated, the estimate (1.5) follows from the a priori estimate
(A.2’) of reference [1] (see also [11], [13]).

It should be noted that in [1], the conditions on the potential q are less restrictive
than (1.2). From (1.4) it is evident that the operators +(k) and Z-(k) are adjoint, i.e.,

(+(k))* -(k).

The family of generalized eigenfunctions +/- of the Schr/Sdinger operator H with
outgoing (+) and incoming (-) radiation condition at infinity are now defined as

(1.6) d/+/-(x, k, O)=bo(x, k, O)-+/-(k)(qqo)(x, k, O),

where k > 0, 0 is a unit vector, i.e., 0 S, and o is the incident plane wave,

Oo(X, k, O)= ekx.

It is well known that the wave functions satisfy the Lippmann-Schwinger equation

(1.7)
O(x, k, 0)= e ikO’x 1 fR eiklx-Yt

-4 Ix-yl
q(y) (y, k, o)dy

o(X, k, O)-(k)q(x, k, 0).

Asymptotically, if+ admit the expansion

+(x, , o e (, , o+ o

as Ixl tends to infinity, and x/Ixl. The scattering amplitude A is obtained as

(1.8) A(k, , O)= R e-k’Yq(y)O+(y k, O) dy.

In [7], an estimate of the decay rate of the residual term is given in terms of the decay
rate of the potential at infinity (see also [8]). For reasons of purely technical nature,
we define the wave functions (x, k, 0) for negative values of k also by extending
the Lippmann-Schwinger equation (1.7) to negative k’s. Then

(1.9) O+(x,-k, 0)= +(x, k, 0)= -(x, k,-0).

Hence we can also extend (1.8) to negative values of k, and

(1.10) A(-k, , O)= A(k, x O)= A(-k, -0, -).

The latter equality is simply the well-known reciprocity relation. The classical inverse
scattering problem is to reconstruct the potential q from the knowledge of the far field
data A(k, , 0), when k, x and 0 are restricted to some given set.

To state the linearized inverse scattering equations in a compact form, we introduce
the cylinders Mo R x S and M Mo x S, S being the surface of the unit ball, and
the measures o and on Mo and M, respectively, as

do k, 0’) k dkl 0 0’ dO’,
4

1
d k, 0’, O) --:- dO do k, 0’).

4.a"

Here, dO and dO’ denote the usual Lebesgue measure on S2. Since the spaces Mo and
M will be treated as the Fourier spaces of R3, we will define the equivalent of the
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usual inverse Fourier transform on Mo and M. If q’Mo C is a smooth, rapidly
decreasing function (with respect to k(0 0’)), henceforth denoted as q S(Mo), we set

Moq(X) e-’(-’)"q(k, 0’) do(k, 0’), x e R3.

Obviously, ffo maps S(Mo) to S(R3). Similarly, we define ’S(M) S(R3) by

0’, O) a (k, 0’, 0).

Let uo be the coordinate mapping Mo R given as

(1.11) uo(k, 0’)= k(O-O’),

where 0 is considered as a fixed parameter. If we write : k(0-0’), then k and 0’
are obtained back as

0.  e0,
(1.12)

k
20. :

0’= 0-2(0. :),

where sc/[sc[. It is a simple matter to check that the measures/Zo and/x are chosen
to be compatible with the coordinate mapping Uo in the sense that if q e S(R3), then

IMo
Especially, for q as above,

O72--1..[e Mo (O blO ./] ( UO ,.--1

the usual inverse Fourier transform in 113
By duality, the operators o and are extended to the spaces of tempered

distributions S’(Mo) and S’(M), i.e., if q e S(113) and T S’(M), then

(T, )a3-- (T, ;-lq(k(O-O’)))M.

Before the next definition, which is central in the whole work, some comments are in
order. The measures o and/x as well as their compatibility with the change ofvariables
(1.11), (1.12) has been found by several authors (see, e.g., [10] and references therein).
An interesting generalization of the measure in M has been given recently in [5].

DEFINITION 1.3. The linearized inverse scattering equations or inverse Born
approximations of q are defined as

4o(X) o(A(k, 0’, O))(x), t(x) (A(k, 0’, O))(x)

interpreted in the sense of distributions, where A is given as in (1.8).
The distribution to is considered as an approximate solution to the inverse

scattering problem when A(k, 0’, O) is known with 0 fixed. Similarly, in t it is assumed
that the data consist of the whole of A(k, 0’, 0).

Note that by using (1.10), we can write the definitions of o and as

1 k2 0,12 -,o-o’). (qo(x)=32, dk 10- e A(k, 0’, O)+A(k,-O,-O’)),
S

1 k2(X) 647r4 Re dk
2xS2

dO dO’lO-O’l e-’k(-’)XA(k, 0’, 0)).
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These representations show that in the Definition 1.3 we use only physical data, and
moreover, t is real.

The above definitions are by no means new. Heuristically, they can be arrived at
in a number of different ways (cf. [15]). One very straightforward approach is to note
that if the scattering potential q is weak, we have approximately

O+(x, k, O) e’k’x + O(q) e’kx,
and consequently

A(k, 0’, O) .Rf3 e’k(O-O’’Xq(x) dx q(k(O- 0’)).

Hence a natural candidate to approximate a weak potential q is, with an appropriate
choice of variables, the inverse Fourier transform of A, which is the contents of
Definition 1.3.

The objective of this work is to establish certain connections between the approxi-
mate solutions given above and the true potential q. We start with a simple uniqueness
result. While the result in itself is not very deep, as it turns out, the formulation of the
proof contains a key observation of the later discussion.

PROPOSITION 1.4. For potentials q satisfying (1.2) with 3 > , the knowledge of
with 0 restricted to a one-dimensional semicircle, defines q uniquely.

Proof. Writing the definition of t0 together with formula (1.8) for the scattering
amplitude A we get

e-’k(-’XA(k, 0’, O) do(k, 0’)

do(k, 0’) dy e-k(-’)’(-Y)q(y)v(y, k, 0),

where v(y, k, O)= e-k’Y@+(y, k, 0). After the change of variables (1.12), we have

I’ e (d dy q(y)v y,
2- 0

(1.13) 4o(X)= ,
Hence, the Fourier transform of t0 is simply

gl() dyei#’yq(y)v y, 2" O’ 0

q(,)+figdye"’Yq(y)(v(Y, 2[O 0) 1).
Note that by assumption (1.2), q is in L and thus q is continuous. By (1.7) and
Proposition 1.2 we get for 8 > 1/2

C
I1- 111 _--II+(k)(q4,o)]] _= Ilqll .

Thus, as . 0 approaches zero, we have

fi3 dyeiYq(y)(v(y,,lO, O)-1) --<[[qllL2 v 2}s.10 0 -1
L_,

-< c q 12{ 01
--> 0.
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But the data {q(sC)[ 0=0}, when 0 runs through a semicircle, is enough for the
complete recovery of q.

It is not hard to see that the above theorem is simply a restatement ofthe well-known
fact that the high-frequency limit of the scattering amplitude determines the potential
uniquely (see, e.g., [13]). In fact, the band limited data {A(k, 0’,
determines t0 only in the so-called Ewald spheres MOI<=M} that touch the
plane :. 0--0 only at the origin, no matter how large M is. The important point,
however, is (1.13). If we momentarily forget the q dependence of the function v, (1.13)
says that t0 is obtained from q by applying a pseudoditterential operator with the
amplitude v(y, 1:1/2. 0, 0) on q. Also, from the proof of Proposition 1.4, it is evident
that the principal part of this symbol is 1. In the discussion that follows, we will use
this observation.

From now on, we will state all the results for only. Most of the results remain
valid for 0, too. The approximation is chosen to make some formulas more symmetric.

In the sequel, the following notation will be used. Let Y{(k) denote the operator

Y{(k)qg(x)=
3Rf Iq(x)l/2G-(x- y)q(Y)/2(Y) dy,

+where G is the kernel of the operator o (k), i.e.,

;(x)
e iklxl

and in the commonly used way, q(y)l/2__ sign q(y) Iq(y)l /2. It is known by Proposition
1.2 that Y{(k) is a continuous mapping in L2 with the norm estimate

C
IIX(k)ll--Ikl

for large Ikl. Moreover, Y{’(k) is a Hilbert-Schmidt operator, since its kernel, also
denoted by Y{, satisfies

/2 ]q(x)]]q(y)l
dxdyIIC(k)ll.s-- IX(x’ 2)12 dxdy =-- Ix-yl

Ilql[ denoting the Rollnik norm of q. Further, let o(k) be the operator

o(k)f(x)=lq(x)l ’/2 Is e’k’f(O) dO,

and similarly, (k) defined as

(k)f(x) Iq(x)l 1/ fs d/+(x, k, O)f(O) dO,

both defined for square integrable functions on S. The following theorem is similar
to Theorem 1.2(ii) in [13].

THEOREM 1.5. The operators o(k) and (k) are continuous operatorsfrom L2(S2)
to L2(R3) with norm bounded by C/Ikl as Ikl is large,

Theorem 1.5 is a straightforward consequence of the following lemma, which is
a version of the well-known optical theorem. For completeness, we include a simple
proof of it, following the lines of [12].
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LEMMA 1.6. Assume that q is a potential satisfying (1.2) and f belongs to S(R3).
Then the function v +(k)f solves the nonhomogenous Schr6dinger equation

(1.14) (-A+q-k2)v=f

with the outgoing radiation condition at infinity, i.e.,

v(x, k)=
4,n.lx Af(k, )+ h(x, k), h(x, k)= o

Furthermore, for the far-field pattern A(k, ) we have

fs 4rIaIAz(k, )12 d -Im v(x, k)f(x) dx.

Proof Equation (1.14) follows trivially from the definition of v. To verify the
asymptotic behavior of this solution at infinity, we employ the resolvent equation

+ (k),+(k) (k)-o(k)q+

proved in [1]. Since f e S(R3), we then have, by the estimates given in [7],

+(k)f(x) (k)(f- q+(k)f)(x)

-4lx 3e-ik’Y(f(y)--q(y)+(k)f(y)) dy+o

since +(k)f is bounded. Hence, v has the claimed asymptotic form at infinity.
Let p be a smooth cutoff function on [0, ), i.e., 0N p N 1, p(r)= 1 as 0N r< 1

and p(r) =0 as r2. We set p,(r) p(r/n), for integers n. By multiplying (1.14) with
v(x)p,(xl), integrating over, R and taking imaginary pas, we get

Im ,x= ,x.

As n tends to infinity, the left-hand side converges to Jf(x)v(x, k) dx. To get the desired
limit for the right-hand side, we integrate by pas to get

Im fa -Av(x, k)p(ixl)v(x) dx

Im [ . Vv(x, k)(lxl)(x, k) dx

Im fa (. Vv(x, k)-ikv(x, k))p(xi)v(x, k) dx + k fa (Ixi)l(x, k)]2 dx.

Since v satisfies the Sommerfeld radiation condition (see [7] and references therein),
the first term tends to zero, whereas the second term is

k
I&(k,) d O(r) dr+ o(1)k O(Ixl)lv(x, k)l dx

(4)2
R3

k/(4) [ I&(k, )1 dx(o(2)- 0(1)) + o(1),
s

yielding the claim.
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To obtain the result in Theorem 1.5, let ..q(k) denote the linear mapping that
takes the inhomogeneity f to the corresponding scattering amplitude, i.e.,

Mq(k) :f(x) - Af(k, ).
By Lemma 1.6, we have

<67 <67- La,

so the operator q(k) extends continuously to the space L. From the proof of Lemma
1.6 we can also read off the integral kernel of the operator M(k). Indeed, for k 0,

+(, , -g( ,
the last equality following from (1.9). By a density argument, this holds for all f L.
Thus, if we denote by q(k)"L(S)L(R3) the transpose of q(k), and by
Q" L(S) L(S) the operator Qf()=f(-), we obtain

with the norm estimate as claimed. The negative values of k are treated in the same
way. Similarly,

Oo(k) Iql ’/ao(k)’O.
Later we will use the notation

o(k) Qo(k)q’/=Oo(k) sign q" L(R3) L(S).
Consider next the Lippmann-Schwinger equation (1.6), which after n iterations gives

O+= (S(k)q)Oo+(S(k)q)"+’O+.
j=0

Substituting this expression into the integral (1.14) defining the scattering amplitude
A(k, 0’, 0) we get

A(k, O, O)= e-’ yq(y)(o (k)q)Oo(Y, k, 0) ay
j=0 JR

+ e-’"Yq(y)((k)q)+’O+(y, k, O)

or, interpreting A as an operator from L(S) to itself with each k 0 fixed, we get

A oOo+$o{+O.
j=0

For brevity, the k dependence of the operators is suppressed. Hence, with some abuse
of notation, we can write

--1 n+l(.5) E $oYCOo+OoC
j=0
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Above, oY{’Jo and ()0ffLrn+l(I) denote the kernels of the corresponding operators, and
o% acts on this function of k, 0, and 0’. The following lemma gives estimates of the
smoothness of the various terms in (1.15).

LEMMh 1.7. Assume that q belongs to AS with 6 > and s > O. (In the case s 0
we assume that q is in the class L.) Then, for j>= 1, oo27o and poY are
in the Sobolev space H for all < s +j-1/2.

Proof We start with the elementary case when wq is bounded. By using the
change of variables (1.14), we get with 0_-< <j-1/2.

(1.16)

)\2. 0’
0-2(. 0):, 0 dO

oY{’o( 1 O-2(g" 0), 0)\2s. 0’

2

dO d

d

=47r dl(k, 0’, 0)(1 d-ik(O-O’)12)tlpo’{JdPo(k, 0’, 0)l2
M

C f_oodlglg2(1-l-]k,]2)t fs dot ff dO]Jo’{JtPo(k, Or, 0)] 2.
S

Hence, it suffices to find an appropriately strongly converging bound for the Hilbert-
Schmidt norm of the operator oYUo, as Ikl grows. But the class of Hilbert-Schmidt
operators is a norm ideal, so by Proposition 1.5 and remarks before it we have the
estimate

<
C

for large ]k[. Especially, the integral (1.16) converges.
Next, assume that wq belongs to Ck with k > 0 an integer. Then, by the particular

form of the weight function w,

(1.17) wlOqlt for O_-<lal_-< k.

-oYUo is in H for t< k+j- it is obviously sucient to proveTo show that M
that D"o2Uo which obviously equals to ((k(O-O’))o2{o) belongs to
H’, when t<k- and 0llj. By writing o2Uo(k, 0’, O) explicitly as

Y{= dXl dx2"’’
G(Xl-X2)q(x2)... G(xj-xj+l)q(xj+l) eik’

it is not hard to see that by successive integrations by pas we have

(k(O-O’))oY{o(k, 0’, O)

Z (--i)llfa dXl"’’Ia dXj+le-i"x’O%q(xl)
l+...+aj+l

G(xI-X2)...Gk(Xj-xj+I)D%+tq(xj+I) eik’%+.
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By defining the operators o, and Y{, by the formulas

o,=f(x)-[Oq(x)[/ fs e’gxf(o) dO,

Yg=,(x)- f [O=q(x)[a/2G-(x- y)(Otq(y))/aq(y) dy,

we can write the above formula as

(k(O-O’))oY{Jo(k, 0’, 0)= Y
(--i)lalOtl+...+aj+l=a

The same reasoning as in the first step, together with (1.17), now gives an appropriate
estimate for the Hilbert-Schmidt norm of this operator and hence for the Sobolev norm

Consider now the general case wqAs, s>0. Denote by F+I the multilinear
mapping defined as

Fj+l(w,ql, wq2," ", wqj+l)(X)

"--fM dl(k’O" O) e-ik(-’)X fR dXl fR dX2"’’ fR
e-ik"X’ql(xl)G-(xl--x2)q2(x2)’’" G-(xj-xj+l)qj+l(xj+l)e’k/’.

This mapping is, by the same argument as above, a continuous mapping
j+l

Wj+l" H Ck "-)

i=1

for all integers k >_-0 and reals tk < k+j-1/2. Assume that 0< s +j e for some
e > 0. We shall choose integers ko and kl so that 0_-< ko < s < kl, and a parameter
satisfying 0 < 6 < min (e, s ko). Further, let 0 be an interpolation parameter, 0 < 0 < 1,
with the property that (1-O)ko+Okl=S-6. Since 6<e, we then have
k,+j-1/2-(e-6)<k,+j-1/2, where n=0,1. By the choice of 0, (1-O)to+Otl=t.
Hence, invoking the multilinear complex interpolation theorem (see, e.g., [3]), we get
for (wql, wq2,..., wqj/l) 17[ A the estimate

IlF+l(wql, wq2,’", wqs+l)ll,’ IlF+l(Wql, wq2,"’, wqs+,)IItH’O,H"o
j+l j+l

<= c c II w q,
i=1 i=1

The last inequality follows from Theorem 1.1. Choosing ql q2 qj+l =q we get
the desired result.

Finally, we have to establish the smoothness estimate for the residual term
oY("+l. Obviously, as s =0, the same argument as in the first step above applies to
this term too, so we have oY{"+l e H for < n +1/2. The case s > 0 can now be treated
by writing

N
072--1 n+l(I

j=n+2

and choosing N large enough, say N =< n + [s] + 1. [3

Now consider the first term in expansion (1.16). We have

o0o0o o e’k(-’ Yq(y) dy (x)= q(x).

Hence, we have proved the following asymptotic series expansion for .
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THEOREM 1.8. Let q satisfy the assumption of the previous lemma. The linearized
approximation t of q admits the asymptotic expansion

t q + M)OY’J0,
j=l

where the asymptotic equivalence is to be understood in the sense of
1

gt q Po?]{Jo Ht, < s + n +-.
j=l 2

The importance of this result is, of course, in the fact that we are able to analyse how
the singularities of q affect the degree of singularity of 4. The first nonlinear term
ql(x) MOffr0(X) in the above expansion will be studied separately in the next
section. It will be proved, among other things, that ql belongs to the space A if the
true potential q is in L for > . The proof is based on the explicit form of the term
ql. However, it is possible, by using the mapping properties of the operators discussed
in this section, to establish a counterpart of this result to the higher-order terms, too.
In the following theorem we use the notation

q ;oy[(I)o.
THEOREM 1.9. If t > and q L then qj belongs to the Lipschitz class Lipl for

j > 2 and q2 belongs to Lips A for all s, 0 < s < 1.

Proof. For Xl, x2 in R we have

q2(x1)- q2(x2) =167r3
(e-ik(o-o’).x, e-ik(o-o,).x2)

1 f’ k2 dk((ex, oJ(’)O ex,)L2(S2)--(ex2 )oJ(o ex2)l(s%
16"rr d-

-(,, 4)o(I)o,):(:)+ (:, )o(I)o:) :()).
Here, % e L(S) and E 0 e e (L(S))3, the space of vector-valued L
functions. The inner products in these spaces are both denoted by (., )(s. Because
[IEx,-Ell(s= [[ex,-exll(s)and Ilexll(s)=4m we obtain the estimate

]q2(xl)- q2(x2)[ 1 f k2 dkllex,_ %l[L(S:)[[o[ol["

But according to Theorem 1.5 and Proposition 1.2,

C

and on the other hand,

2 f= (1-e’k’(x’-xg) dO
ds

8r(1 -jo(lk(Xl x)l).
Thus, by denoting r Ix- xl, we need an estimate for the integral

Io k ( sinkr /)-

I+M+2 1-
kr ]

dk.
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We split this integral into two parts and estimate the first as

Ik(sinkr/ f’k2

1/r 1 + kj+2
1-

kr ]
dk <-

1/rl+ kj+2
dk <- Crj-1.

For the remaining part of the integral we get for j > 2

j’l/rk2(sinkr1/21- dk<=r f/rk31.j
o l+kj+2 kr / 1+ r-+2dk<=Cr’

proving the first claim in the theorem. For j 2 we get

r
k4

dk <- Cr log <= Cr
o 1+

for 0< s < 1. Hence the proof is complete if we can show that q L. But this is
obvious, since

k2

q (x)l c
1 + j+2 (11 e, =s=) + Ex s=)) dk <-_ C < oo.

Remark 1.10. It is not hard to see that the argument of Lemma 1.7 holds for
potentials with the asymptotic behavior q(x)= (Ixl --) at infinity. Also, Theorem
1.5 remains valid (see [12]]). Only the asymptotic behaviour of the solution $/ as x
goes to infinity should be interpreted in the L2(S2) sense, causing some notational
changes in the above analysis.

2. Analysis of the first nonlinear term. In this section it is shown that the smoothness
estimates obtained in the previous section are not the best possible. Since the terms
in the asymptotic expansion of t contain only the potential and simple, analytically
known functions, we can try to write them in a more explicit form to refine the analysis
of the degree of smoothness. We shall carry out this kind of analysis for the first
nonlinear term here.

THEOREM 2.1. The first nonlinear term admits the integral representation

1 1 f x-y 2

ql(X) ’;v]()ff{(I)(X)= --- Ji Ix- yl
q(y) dy

The proof of this result is a straightforward calculation, and we postpone it to
Appendix B.

To estimate the smoothness of ql we will prove the following result.
LEMMA 2.2. For > 1 the operators

u(x) f (x-y)
[X" yl

u(y) dy, j 1, 2, 3,

map L(R3) to A.
Proof. We will employ the Riesz transform R, Rieszpotential I, and Besselpotential

Js defined as

Isf(x) 7-1(l[s)(X),
Jf(x) -1((1 +
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Here f is the Fourier transform of the function f It is well known that J" A
is an isomorphism for all real values of s and o- (see [16] and [18]). On the other
hand, the Riesz transforms are bounded operators in As. Observing that (xj/Ixl3)
c/]l2 for some constant c, we see that in fact

Tf RjI_,.

Thus we have to show only that I-1 maps L to A1. To do so, let q be a compactly
supposed C function in R3, ()= 1 in some neighborhood of the origin, and let

ml(
() 1(

Iff Lc L2, we have f L2 and, consequently, m,f e L’ implying especially that m
defines a continuous operator

Tin, :f ff-l(mlf), Tml" Lo L.
On the other hand, since

(D2T,f)()=we see that Djrmlf L aS well, so that

T,’LA
continuously. It remains to prove that m2 also defines a continuous mapping,

rm2"f -l(m2f), Tin2" L6 A

In fact, a slightly stronger result can be obtained, namely

Tm:A"A+
for all real values of s. Since L A as is shown in Appendix A, this is clearly more
than enough. But since J maps As+l to As, it remains to be shown that

I1
(l-())f()

A
CIIfll

But this follows from the Mikhlin type of multiplier theorem (Theorem A3 in Appendix
A).

By the pointwise multiplier theorem (Proposition A2) we obtain immediately an
estimate of smoothness for ql that is clearly better than the one obtained from Lemma
1.7.

COROLLARY 2.3. If the potential q satisfies wq L, then

qlHtA

for all t, 0 < < 1.
Finally, we combine the results from Theorems 1.8 and 1.9 with Corollary 2.3.
THEOREM 2.4. For potentials belonging to the space L,

for every s, 0 < s < 1.

Proof Since

q-A

q_= qj+qr,,,
j=l
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where q is in the Sobolev space Hn+(1/2)-’, the claim follows from the Sobolev
embedding theorem, if we choose n large enough. [3

Appendix A. We start this Appendix by defining some classical, "constructive"
function spaces. Let k be an integer, k->0. By Ck= Ck(R3) we denote the classical
HSlder space of k times continuously differentiable fucntions, endowed with the norm

Ilfllc-sup E ID=f(x)l.
il<__k

There are several candidates to extend the definition above to noninteger values by
using various moduli of continuity. A useful scale of function spaces is obtained in
the following way" Let s--k + t, where k is an integer, 0 <-k < s and 0 < t-< 1. Then f
belongs to the classical Zygmund space As, if

]Df(x + h)-2D’f(y)+ Df(x h)l
]]f[IAs: ][f]]L-f" sup <.

In general, the symmetric difference cannot be replaced by a simple difference in the
above definition. However, when 0< s < 1, we have As= Lips with equivalent norms,
where the Lipschitz class Lips, 0< s-<_ 1 is characterized by the condition

[f(x+h)-f(x)[
]lfll Lip :--Ilfll/sup < oo.

It turns out that for s 1, the space A is strictly larger than Lip. Similarly, for integer
values of s, the space A is strictly larger than the corresponding Htilder space CL
Next, we want to extend the definition of A for values s =< 0. Similarly to the usual
Sobolev space scale, this is accomplished through Fourier analysis. We define first a
smooth dyadic partition of unity in the following way: Let and o be C functions
in R3, 0<qg, q9o =< 1 such that supp -{11/2_-< 1:1_-<2} and supp o- {:111_-< 1}. Further-
more, assume that the functions are scaled so that

o(s)=1 for allscR3,
k=0

where q(sc) q(2-sc), k-1,2, 3,. .. Now, by definition, a function f belongs to
the Besov space Bp,q Bp,q(R3), 0 < p, q <= and -< s < o, if

k__O 2ks ,- qgky Lp
q < 3.

(If q =, the sum is to be replaced by the supremum.) It can be shown that the
definition of the Besov spaces is independent of the specific choice of the resolution
of unity {}--o (see [3], [17], [18].) The important tool for us is the following.

PROPOSITION A1. For s > O,

B, A

with equivalent norms.
Therefore, we can define A B. for all s, -< s < o. It should be noted that

o othe space B. is strictly larger than L. The inclusion L c B, is simple to verify.
If f L, then

(49k )[I L :g f =< v f c f
the constant C being independent of k.
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Especially, it follows that for 6 > 0,

Lc Loo c A.
The Besov spaces are known to have several multiplication properties. The follow-

ing ones are used in 2.
PROPOSITION A2. (a) Let 0 <- < s. Then, for everyf H and h As, hf H, and

hfll.’--< CIIhllAllfll,’.
(b) For s > 0 the space A is a multiplication algebra, i.e., if h,f As, then hf A

with the estimate

hf A --<-- C h A f A

Part (a) of the above proposition is a special case of Theorem 2.4.2 of [18]; part
(b) follows from Theorem 2.8.3 of the same work. One important property of the Besov
spaces is that the Mikhlin-H6rmander type of Fourier multiplier theorem is valid. The
following proposition is, again, a special case of the more general result proved in
18, Thm. 2.3.7].

PROPOSITION A3. Assume that m is a C function in 113 satisfyingfor some integer
N large enough the estimate

IDm(:)l <_- C,(1 / I1=) -/=, 0<11<= N.

Then, forf6 As, -oo < s < oo, there is a constant C > 0 depending only on the constants

Ca such that for all f As,
II-(mf)ll -< CIIflIA.

Finally, we close this Appendix by proving Theorem 1.1.

Proofof Theorem 1.1. It is well known (see [17, p. 201]) that the Zygmund spaces
are obtained from the HSlder spaces by the real interpolation method as

(C ko, ck,)o,oo=As, s=(1-O)ko+Okl.

On the other hand, by the extremal property of the real interpolation method,

ck, Ckl) 0,1 ck, ck’]o (ck, ck’) O,oo"

Therefore, to obtain the claim, it suffices to prove the following embedding result: If
A c Ao, then

(ao, a) v,oo = (ao, al)

where 0 < 0 < r/< 1. But this follows relatively easily by using the standard K-functional
techniques. By definition,

K(t, a)= inf (llaollao +
ao-t-a

for a ao + a e Ao + A. But since Ao+A c Ao, we get K (t, a) _<- a I1o. Therefore,
applying the O,l-functional to K (t, a),

dt dt -o dt
dPo,a(K(" a))= t-K(t, a)--[ _-<sup t-nK(t, a) t’---+ Ilallao

t>=o

C1I n,oo(K( a))+ C=llallAo <= C[lall(Ao,Al),,.
The last inequality follows from the fact that (Ao, A1)n,oo is an intermediate space, i.e.,
(Ao, A1)n,oo Ao+ A1 C Ao. l-I

Appendix B. In this section we derive the expression for ql as given in the Theorem
2.1. We start with two rather technical but straightforward lemmas.
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LEMMA B1. For x, y R3, k R, we have

fs f 0. (0-0’) eik"Y=(4vr)2(jo(klx[)jo(klyl)-, fijl(klxl)jl(k]y[)).dO e ikO dO’
3s

Here, jo and jl are the spherical Bessel functions of orders zero and 1, and --x/Ixl,
-y/lyl.

Proof. Start with the 0’ integral,

I(0, k, y) fs2 dO’ O" 0 0’) e ik’’y

Using the expansion of the exponential function in spherical harmonics,

e ikO’’y e ilkllylO’(signkp) 47r Y ,
1=0 m=--l

ii,(Ikyl) Y?(sign k)3) ??(0’),

and choosing the coordinates with the 3 axis is parallel to 0 so that

( 1 )1-O’O’=l-cos(O,O’)= 4,/- Y( O’) --- YI( O’)

we get by the orthogonality of the spherical harmonics

( )I(0, k, y) (4)3/2 jo(lkyl) Y(sign k fi) -j(Ikyl) Y(sign k)

4r(jo(Ikyl) sign k

Invoking the spherical harmonics expansion once more, this time choosing the 3 axis
parallel to sign k 33,

Is dO e-ik’’I(k, O, y)

(4"n’) 5/2 E E
/=0 m=-/

.l.j,(Ikxl) Y’(-sign k ;)

Y’(O) jo(lkyl) Y(o) i-jl(lkyl) Yl(O) dO

(4)2(jo(Ikxl)Jo(Ikyl) ; j,(lkxl)j,(lkyl)),

which yields the claim, since the products of the Bessel functions are even
functions. [q

To deal with the k-integral we prove the following result.
LEMMA B2. For a, fl, and y positive, we have the following formulas for the

distributional Fourier transforms of the products of Bessel functions:

(a(++y)+(-fl- y)eikjo(flk)jo( yk) dk 2fl-
( +/3 ) ( 13 + y)),
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and similarly

e’kjl(flk)jl( yk) dk

((,+-v)+(,--v)+(,+-v)+(,-+v)2/33,

1 1

1
(min (fl, a + y)+sign (y-)min (fl, y])))

Here, is the delta distribution and 0 is che Heaviside function.
Proo By the explicit formula

sin 1
jo( e it e-"),

2it

the first identity is immediate. Similarly, by the formula

[sin cos t)jl(t) \
we obtain for the second term

cos flk cos ,/k
1 1

jl(k)jl(yk) flyk2 -- sin flk cos yk---- sin yk cos k

+ sin elk sin yk
flTk2

We will integrate this expression term by term. The first term gives the 8-terms appearing
in the claim. To evaluate the second term we write

f.leik fosin flk cos 2’k dk 2 cos ak sin flk cos 3,k dk

fo1 /o1-sinflkcos(a+7)kdk+ -sinflkcos(a-7)kdk

The last equality follows from [6, p. 414].
The integral of the third term equals that of the second with the roles of fl and

3’ interchanged. Finally, to integrate the fourth term, we write

f_oleik Io1- sin flk sin 7k dk 2 cos ak sin flk sin yk dk

foal Io1-sinflksin(a+y)kdk+sign(y-a) -sinflksinly-alkdk

7rmin (/3, a + y)+sign (y-a) min (/3,
2 2

by [6, p. 414]. The proof of the lemma is thus complete.
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Now we are ready to prove Theorem 2.1. Let q S(R3). By the distributional
definition of ff, we have

(Y(d’ q)= IM dtx(k, 0’, O)oY{do(k, 0’, O)-’p(k(O-O’))

f,w dla,(k, O’, O).-lqg(k(O-O’)) fR3 dxe-ik"Xq(x)
eiklx-Yl

d.v 4rlx-Yl
q(y) e’ y

It is not hard to see, by using the mapping properties of o (k), that we can use the
Fubini theorem in the above integral to get

(oXo, o> dx q(x) dy q(y) Ix Zy 1

e-ikO"x eiklx-y[ eikO’y.

p(k(O-O’))

To obtain the claimed result, we have to prove that for x y,

1 f dtz(k, 0’, O);-aqg(k(O 0’)) e-kO’ eik[x-y[ e ikO" y

4zr

_1__ dz (z)lx-y[
(x-z). (y-z)

327r JR Ix- zlly-xl
By Lemma B1, we get

f dlx(k, 0’, O),.-lq(k(O-O’)) e-ikO’’x e iklx-yl e ikO’y

4,rr JM
1 k iklx-yl

16,n.3 !irn dk dz (z) e (jo(klz- y[)jo(klz-x 1)

-(-y) (-x)ja(klz- yl)j(klz-xl)).

Further, by Lemma A2 with a [x-y[, Iz-y[ and 3’ [z-x[, the above integral
equals to I1 + I2, where

1 fR p(z)
11 dz

327r2 Iz-y[[z-xl

{(1 + (-y). (-x))((lx-yl/lz-yl/lz-xl)
/ (Ix-yl-lz-yl-lz-x[))/(1-(-y). (-x))
(8(Ix y[- [z y] + [z x[) + 8(Ix y[ + ]z y[- [z x[))},

and the remaining part contains the less singular terms, i.e.,

1 II dz
(p(z) (-y)" (-x)12 16",r-----7 [z Yl z xl

{ 1

I-Yl (O(Iz-yl-lx-yl-lz-xl)/O(lz-yl-llx-yl-lz-xll))

1

+lz-/I (O(Iz-xl-lx-yl-lz-yl)+O(lz-xl-IIx-yl-lz-yll))
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1
(min (Iz Yl, x Yl + z

Iz-yllz-xl

+sign (Iz-xl-lx- yl) min (Iz- yl, IIx- yl-lz-xll))}.
First we show that the first integral I1 vanishes. To get an interpretation for the
one-dimensional delta distributions appearing in the first integral I1, we use the prolate
spheroidal coordinates with loci at x and y. If ]x-yl 2a > 0, we choose the new
coordinates (, ’, w) as

2a: [x z] + [y z], 1 -< : <
2a" Ix z[- [y z[, 1 -< sr <_- 1,

w angle around, the axis passing through x and y, 0 w 2.

The Jacobian of the change of variables z =(z, z2, z3) (, , w) is

0(Z1, Z2, Z3)
0(, , )

(see [2, p. 105]). Finally, denoting a= 1().() and by u the coordinate
transform z u(, , w), we have

I d d do u(, , w)
64

(+(( +)+( )) + _((1-) + (1 + ))),

where the identity 6(at) 6(t)/a is used. From this representation we deduce that, in
fact, I 0, because by a simple geometrical argument a+ 0 when 1, and a_ 0
when 1. To simplify the I integral, note that [z yl N ]z xl + ]x yl and l]y xl-
Iz-xl] z-yl and similarly with x and y interchanged, so I2 reduces simply to

1
dzq(z)I2= 32r2

1 1 1
Iz-yl/lz-x [z-yllz-x[

1 f dz
32"tr2 Jl3

(Iz-yl +lz-xl-lx-yl))
(z-’’f)" _(z_-x)

ix- y].[z-y[21z-xl

The proof of Theorem 2.1 is thus complete.
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TWO-DIMENSIONAL STATIONARY PHASE APPROXIMATION:
STATIONARY POINT AT A CORNER*

J. P. McCLURE AND R. WONGt

Abstract. Asymptotic expansions are derived for the double integral

flog(x,y) exp(iNf(x,y))dxdy,

as N- +, where f(x, y) has a stationary point at a corner of the boundary of D. Two different methods
are given, one for the case of local extrema and one for saddlepoints. In the case of saddlepoints, our

method allows the boundary of D to be tangent to a level curve of f.

Key words, stationary phase approximation, asymptotic expansion, double integral, stationary point at
a corner

AMS(MOS) subject classification, primary 41A60

1. Introduction. Consider the double integral

(1.1) I(N): I fog(x,y) exp(iNf(x,y))dxdy,

where D is a bounded domain, f and g are real-valued C-functions in D, and N is
a large positive parameter. By a stationary point (Xo, Yo) off, we mean a point at which
the gradient of f vanishes, i.e., fx(xo, Yo)=fy(Xo, Yo)=0. A stationary point is said to
be nondegenerate if the Hessian matrix of f is nonsingular, i.e.,

(1.2) detf"(xo,Yo)=-(fxxfyy-f2y)(Xo, Yo)O.
If (Xo, yo) is the only stationary point off in D, if it is nondegenerate, and if it lies in
the interior of D, then it is well known that

(1.3) I(N)--- g(xo, Yo) exp (iNf(xo, yo))]det f"(Xo, yo)l-1/2(
as N, where o- is equal to i, -i, or 1 depending on whether (Xo, Yo) is a local
minimum, local maximum, or saddlepoint, respectively; see, for example, [2, eq. 18]
or [11, Chap. VIII].

If the stationary point (Xo, Yo) is nondegenerate and lies on the boundary of D,
and if the boundary curve is smooth near this point, then it is also known that I(N)
is asymptotic to half of the above approximation, i.e.,

(1.4) I(N)--- g(xo, Yo) exp (iNf(xo, Yo))ldet f"(Xo, yo)l--1/2(---r
as N o; see [6, p. 22] or 11, p. 442]. However, in the case where the stationary point
(Xo, Yo) is a saddlepoint (i.e., (f2y-f,,fyy)(Xo, Yo) > 0), the level set f(x, y) =f(xo, Yo),
near (Xo, Yo), can be shown to consist of a pair of smooth curves intersecting at (Xo, Yo).
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The validity of (1.4) requires the additional assumption that the boundary curve
h(x, y)-0 not be tangent to either of these curves at (Xo, yo). This condition can be
expressed analytically by

(1.5) {hxfyy+ hy(-fxy+x/fxy-fxxfyy)}(xo, yo) # O.

(This reduces to the more familiar condition (hZxfyy + hyfxx)(Xo,2 Y0) 0 given in [6,
p. 23], when fxy(Xo, Yo) 0.)

If the nondegenerate stationary point (x0, Yo) occurs at a corner, i.e., at a point
on the boundary where the tangent line has a jump, then there is no result that can
claim any generality. The problem of deriving an asymptotic formula for the integral
(1.1) in this case has been known for some time, and is explicitly mentioned in [1,
p. 88]. (For a discussion of corners that are not stationary points, see [2], [5], and
[6].) The purpose of this paper is to provide a solution to this problem, and our
discussion will be divided into two separate cases. In one case, the corner point (Xo, Yo)
is a local extremum of the phase function f(x, y); and in the other case, (Xo, Yo) is a
saddlepoint. The methods that we use in these two cases are quite different. In the
first case, our method consists of a reduction of the double integral (1.1) to a one-
dimensional Fourier transform and an application of a Taylor-type expansion of the
Dirac g-function. This approach is motivated by a method of Jones and Kline [6] as
elaborated in [12]. In the second case, we make repeated use of Green’s theorem and
follow with an application of a result due to Erd61yi [4] concerning the stationary
phase method in the presence of a logarithmic singularity. From our discussion below,
it will become apparent that our method works even when the boundary curve is
smooth at the stationary point but condition (1.5) fails to hold.

2. Local extremum at a corner. For convenience, we shall assume that the corner
point (Xo, Yo) is at the origin, i.e., Xo Yo 0, and that near this point the domain D
is bounded by two smooth curves intersecting only at (0, 0). We will represent these
curves by h(x, y) 0 and k(x, y) 0, where h and k are C-functions with nonvanishing
gradients. Since these two curves intersect with a positive angle at (0, 0), i.e., they are
not tangent to each other there, the gradients (h, hy) and (k,, ky) are linearly indepen-
dent at (0, 0). Without loss of generality, it can be assumed that these gradients point
into D for (x, y) near (0, 0). By using a partition of unity [10, pp. 147, 246] or a
neutralizer [11, p. 427], we can always isolate the stationary point (0, 0) from other
critical points by multiplying g by a C-function with compact support, which may
be taken arbitrarily small. Thus we may assume that g vanishes C-smoothly off an
arbitrarily small neighborhood of (0, 0). The situation is as depicted in Fig. 1.

In the integral (1.1), we now make the change of variables

(2.1) s=h(x,y), t=k(x,y).

Since (h, hy) and (kx, ky) are linearly independent at (0, 0),

(2.2)
O(s,t)
O(x,y)

hxky hyk,= A(x, y)

does not vanish at (x, y)= (0, 0). Consequently, the transformation (2.1) is invertible
near (0, 0). By shrinking the support of g if necessary, we may assume without loss
of generality that this transformation is invertible, with nonzero Jacobian, on supp(g).
Thus

(2.3) I(N)=flol gl(s, t) exp (iNfl(s, t)) ds dr,



502 J. P. McCLURE AND R. WONG

(0,0)
k (x,y)=O

FIG. 1. Domain D.

where

g(x,y)
(2.4) f,(s, t)=f(x, y), gl(S, t)

and D1 is the image of D (see Fig. 2). Simple computation shows that fl(0, 0)=f(0, 0)
and (0, 0) is a stationary point of f(s, t). Furthermore, near (0, 0) we have

(2.5) f(s, t)=f(0, O)+1/2(as2+2st+ yt2)+

where

(2.6) a= ky-2 kxky+ k
Ox2 Ox Oy Oy2

hyky + 02f hkx) + 02f (hxky + hykx),(2.7) /3 kOx2 OY Ox Oy

a2f(2.8) y
Ox

hy 20x Oy
hxhy

OY2 hx

all derivatives being evaluated at (0, 0). Here we have also used the fact that the
first-order paial derivatives of f(x, y) vanish at (0, 0).

Supp.(g)

FIG. 2. Domain D
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Our next step is to eliminate the cross-product term st in the Maclaurin expansion
(2.5). To do this, we make. the second change of variables:

(2.9) u= s+ fl- and v= t.

It is easily verified that

OlS
2 + 2fist + ]It2 lu2 + [.ib l) 2,

where A a and /x (ay- /32)/ a, and that the Jacobian of the transformation is 1.
The integral I(N) in (2.3) now becomes

(2.10) I(N)=II d/(u,v) exp(iNch(u,v))dudv,

where

(2.11)
A 2 /z 2th(u, v)=f(0,0)+
2
u +2 v +’’’

(2.12) d/(u, v)= g,(s, t).

The domain D2 is as shown in Fig. 3.
We will apply the argument in [12] to the integral in (2.10). Before proceeding,

we first observe that the nature of the stationary point (0, 0) of f(x, y) is preserved
under the transformations (2.1) and (2.9). That is, if (0, 0) is a local extremum of
f(x, y) then (0, 0) is a local extremum of b(u, v), and if (0, 0) is a saddlepoint of
f(x, y) then (0, 0) is a saddlepoint of b(u, v). To demonstrate this, we let

02f e2f 02f(2.13) a (0, O) b (0, 0), c (0, O)
OX2 OX Oy Oy2

Simple computation yields

(2.14) ay-/32= (ac- b2)( kxhy- kyhx)2,

b
k, + a2 k(2.15) a a ky

a

s=O V -T U

D

t=O, v=O

FIG. 3. Domain D2.
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where all derivatives are evaluated at (0, 0). It is now evident that the signs of ay-2
and a, and hence those of A and/x in (2.11), are determined by the signs of ac-bE

and a. If, say, (0, 0) is a local maximum off(x, y), then ac-b2>O and a <0. Hence,
aT f12 > 0 and a < 0. Consequently, A and/x are both negative, or equivalently, (0, 0)
is a local maximum of b(u, v).

The argument in [12] first expresses the integral (2.10) in the form of a one-
dimensional Fourier transform, using the method of resolution of double integrals [3,
pp. 298-300]. Let rn and M denote the infimum and supremum, respectively, of
ok(u, v)-f(O, 0) in D2. Then

(2.16)
M

I(N) eivf’ eiVth(t) dt,

where

(u’v)
do"(2.17) h( t)

x/ch2,., + d,b2,

and F is the curve defined by

(2.18) F= {(u, v) D2: 6(u, v)-f(O, 0)= t},

o" being the arclength of F.
Assume for the moment that (0, 0) is a local minimum of f(x, y). Then (0, 0) is a

local minimum of b(u, v), in which case both A and/z are positive. Put

(2.19) u cos r/, v sin r/.

Clearly

A 2+_ v2,(2.20) sC=2u 2

(2.21)
O(u, v) 1

o(, n) 4X-d"
In terms of the polar coordinates (:, r/), the line integral becomes

(:,n)
d,’,(2.22) h(t)

IX7(:+ F)I

where

1
(2.23) + F(, rl)= 6(u, v)-f(O, 0), (, rl)= ,rv--- l,(u, v),

va/x

(2.24) r’ {(:, n)e D3: + F(, r/) t},

and do.’ denotes the length of F’. The domain D is shown in Fig. 4.
From (2.11), (2.19), and (2.23), it is easily seen that F(:, r/)=O(:3/2) and

Fe(:, r/) O(:1/2). Hence, by shrinking the support of if necessary, we may assume
without loss of generality that 1 + F > 0. The implicit function theorem then ensures
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FIG. 4. Domain D3.

that the equation t= :+ F(:, r/) has a unique C-solution sc,(r/). Consequently, we
may write explicitly

dcr’
/[1 + F(t, n)]2+[Fn(, n)]2

1+ F(,, n)

and the line integral in (2.22) becomes

where =tan-[(/)/1]. We will show next that h(t) has an asymptotic
expansion of the form

(2.26) h(t)ao+atl/+at+ as t0+.
To prove (2.26), we obsee that in terms of generalized functions, the line integral

(2.22) can be expressed as

h( =((--,,where is the distribution concentrated on the curve F’; see [12, eqs. (3.5), (3.6)].
Thus the result of Lemma 2 in [12] applies immediately. Since F’ lies inside domain
D (Fig. 4), the upper limit2 in equation (4.6) of[ 12] is replaced by . Consequently,

(.7 h(
(-

where the remainder satisfies

(2.28) R+(t) O(t+)/) as 0+;

of. [12, eq. (4.8)]. Since f and g are C-functions, so are and . Using (2.19), we
can then write for any p 1

(, )(, )= c()/+o(W)
=0

as 0+, where c() is a polynomial in cos and sin , and the O-symbol is
independent of . From this it follows that each term in the series of (2.27) has an
asymptotic expansion, as 0+, of the form oat/. By rearranging the terms
appropriately the desired result (2.26) is obtained.
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In (2.10) it is tempting to make a nonlinear change of variables so that the phase
function b(u, v) becomes a sum of two squares. This would eliminate the use of the
complicated expansion (2.27), and render the analysis much simpler; see [11, Chap.
VIII, 3, 6]. However, under this change of variable, the boundary curve v=(a/)u
of the domain D2 would no longer be a straight line, and consequently D would not
be of the rectangular shape shown in Fig. 4.

The coefficients as in the expansion (2.26) can be calculated explicitly. The leading
two are given by

1
(2.29) ao - I]/00T/1

al-V- qqo cos 7 + o sin

(2.30) - oo 3o cos n + 3 cos n sin n

+ 3 12 COS sin + o sin d,

where o=O+/Ou Ov and a similar definition holds for , all paial derivatives
being evaluated at (0, 0).

The asymptotic expansion of the integral in (2.16) will now follow from the theory
for one-dimensional Fourier transforms. First, since in the present case (0, 0) is a local
minimum of (u, v), the lower limit m in (2.16) is zero. Second, since if(u, v) vanishes
outside the suppo of and the suppo of can be taken to be of any shape and
arbitrarily small, the function h(t) vanishes identically at the upper limit M. From
(2.25), it is also evident that h(t) is a C-function for 0< < M. Therefore, upon
termwise integration in the sense of Abel summability (see [9] or 11, p. 199]), we obtain

(2.31) I(N) enf’)[e=/2 a a=/4F() al e= aa
--+N e N3/a + +.

as N+.
The above analysis also works for the case when both A and in (2.11) are

negative, i.e., in the case when (0, 0) is a local maximum for f(x, y). The final result is

where

(2.33)

al* A4- tlO

(2.34)

1
ao* qoor/,

cos r + Ol sin r

1 [ ( 2 ) 3/2 (__)(+)+- tPoo b3o cos + 324

+3 cos sin

+ o3 sin d;

cf. (2.29) and (2.30).

1/2

cos2 rt sin r/
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In terms of the original data f, g, h, and k, the leading term approximation in
both (2.31) and (2.32) is

(2.35) I(N)--ef(’)
g(0, 0) -1( )x/ac_ b21kxhy kyhxl2

tan 0l--2

where a, b, and c are given in (2.13) and a, /3, and 3’ are given in (2.6)-(2.8). The
partial derivatives in (2.35) are all evaluated at (0, 0).

It is tempting to use the same method for the case of a saddlepoint at a corner,
but it breaks down when one of the boundary curves h(x, y) 0 or k(x, y) 0 is tangent
to the level curve f(x, y) 0. To see this, we observe that the above procedure applies
up to (2.16). Since the transformations (2.1) and (2.9) preserve the nature of the
stationary point, if (0, 0) is a saddlepoint off(x, y) then (0, 0) is also a saddlepoint of
b(u, v), and consequently and/x have opposite signs. Suppose that A > 0 and/x < 0.
Then the natural change of variable corresponding to (2.19) is

u (2sc) 1/2
cosh r/ sin;ff,’/: v (2) ’/2

(-/x /2.

The boundary curve v (a/)u of the domain D2 is now mapped into the curve

(2.36) r/= r/, r/1 tanh-1 ().
Suppose that the curve h(x, y)=0 is tangent to the level curve f(x, y)=0 at (0, 0).
Then (1.5) does not hold (with Xo--Y0 0). In terms of the quantities a,/3, and y, this
means that ), is zero, which in turn implies a//3 x/)t/-/x, or equivalently,
in (2.36). As a consequence, the arguments for the results corresponding to (2.26)-(2.28)
are no longer valid. In particular, for the analogue of F(:, rt) as defined in (2.23), the
estimate F(:, r/)= O(3/2), as :- 0+, fails if 7 .

Example. As a simple illustration, we consider the example in which

(2.37) f(x, y) (x2 + xy + y2)(1 -1/2x), g(x, y) cos (x + y),

and D is the domain bounded by the circles (x- 1)+y2= 1 and x2+ (y- 1)2= 1. It is
easily verified that f(x, y) has only two stationary points located at (0, 0) and (, -).
Hence, inside and on the boundary of D, (0, 0) is the only stationary point of f(x, y)
and is a local minimum. Let h(x, y)= xZ-2x +y and k(x, y)= x2-2y+ y2. Simple
calculations give

(2.38) a=2, b=l, c=2,

(2.39) a=8, /3=4, y=8.

From (2.35) it follows that

(2.40) g(x, y) e ’uz(x’y) dx dy--.48x/ gD

as N.

3. Saddleloint at a corner: Transformation to canonical forms. As in 2, we again
assume that the corner point is at (0, 0). By Theorem 4.1 in [7, p. 10], we may assume
that the functions f, g, h, and k are extended to C-functions in some neighborhood,
say U of the origin. Although no actual use of the values of these extensions will be
made outside the original domain D, the existence of these extensions will be a
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convenience in our discussion. By shrinking the support of g, we may further assume
that the support of g is contained in U. For definiteness, we also assume that for points
in D we have h(x, y) >-_ 0 and k(x, y) >- O, and that the angle of the corner of D at (0, 0)
is between 0 and 7r. The case of angles between 7r and 2r can be included by adding
copies of the cases considered here. An illustration of the situation is depicted in
Fig. 5.

Since (0, 0) is a stationary point of f(x, y), the initial terms in the Maclaurin
expansion off(x, y) are

where

f(x, y) foo +f20x2 +flxy +fo2Y2 +’" ",

1 oi+Jf (o, o)fJ i! j! OX Oy

Without loss of generality, we may take foo 0, as it contributes only a factor exp { iNfoo}
to the integral I(N) in (1.1) (cf. (2.31)). Since it is always possible to eliminate the
cross-product term xy by a linear change of variable, we may without loss of generality
assume that

(3.1) f(x, y) =f2ox2 +fo2y2 + O[(x2+ y2) 3/2]

as (x, y)--> (0, 0).
The origin being a saddlepoint, the coefficients fo and fo2 have opposite signs.

Hence, near (0, 0), the level set, f(x, y) 0 consists of two smooth curves intersecting
at and only at (0, 0); for a rigorous analysis, see the explanation following (3.9). We
shall refer to these curves as the critical curves of f(x, y). Also, we will assume that
the following condition holds:

(c) Within the neighborhood U, each of the curves h(x, y) 0 and k(x, y) -0
meets the level set f(x, y)-0 only at the point (0, 0).

As indicated in 1, previous treatments of a saddlepoint on a smooth boundary requires
condition (1.5) to hold, i.e., that the critical curves off not be tangent to the boundary
of D at (0, 0). Our condition (C) is much weaker; it allows the critical curves off to
meet the boundary of D tangentially, but rules out only situations in which a critical
curve intersects the boundary infinitely often in the neighborhood U.

U

h (x, y)=O

Supp.(g

k (x,y)=O

FIG. 5. Neighborhood U.
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Since f2o and fo2 have opposite signs, we may assume without loss of generality
that f2o> 0 and fo2 < 0. Define functions P and Q by

1
P(x, y)=-[f(x, O)+ yfy(x, O)-f2ox2] if x0,

(3.2)
1

P(0, y)= Yfxxy(O, 0),

1
Q(x,y)=,2[f(x,y)-f(x, O)-yfy(X, 0)-foy2] if y#0,

(3.3) ’1
xQ(x, 0)= fyy( 0)-fo.

By using l’HSpital’s rule, it is readily verified that each of P and Q is infinitely
differentiable in U, and that P(0, 0)= Q(0, 0)= 0. It is also easily checked that

(3.4) f(x,y)=feox2+x2p(x,y)+fo2y2+yQ(x,y).

We now make the change of variables

(3.5) s=x[f20+P(x,y)] 1/2 t=y[-fo2-Q(x,y)] 1/2

Clearly this transformation is infinitely ditterentiable in U, and from (3.4) we have

(3.6) f(x,y)=s2-t.
Simple computation gives

O(s, t)
x/-f2ofo2.(3.7)

O(x, y) (o,o)

By shrinking the neighborhood U in Fig. 5 if necessary, we may assume that the
Jacobian O(s, t)/O(x, y) is positive in U, and that the transformation (3.5) is one-to-one
there. In terms of the variables s and t, the integral I(N) in (1.1) becomes

(3.8) I(N) f [ gl(S, t)exp (iN(s- t)) ds dt,
.I dD

where D1 is the image of D and

O(x,y)
o(3.9) gl(s, t)-- g(x, y)
O(s, t)

Let U denote the image of U, and put h(s, t)= h(x, y) and k(s, t)= k(x, y). Parts of
the curves h(s, t)=0 and k(s, t)-0 determine the boundary of D near (0, 0). For
points (s, t) in D1, we have h1($ t)->0 and kl(S, t)>-O. In view of (3.6), the set in U1
corresponding to the level set f(x, y) 0 is determined by s- 2 0. Consequently, as
claimed earlier, f(x, y)- 0 determines, within U, two smooth curves intersecting non-
tangentially at and only at (0, 0). Since the transformation (3.5) is one-to-one in U,
condition (C) implies that the curves hi (S, t) 0 and k (s, t) 0 intersect each other,
and the lines s + =0, at and only at (0, 0) inside U.

To derive the asymptotic expansion of the integral (3.8), we make one further
simple, linear change of variables"

(3.10) u=s-t, v=s+t
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(-I,i)

H (u,v)=O; u=O (v)

uK (u,v):O; v:@(

Supp. (G)

(-i,-l) (,-I)

FIG. 6. Neighborhood U2.

so that

(3.11) I(N)=If G(u,v) eiN"Vdudv,

where D2 is the image of D1 and

(3.12) a(u,v)=gl(S,t)
O(s,t) 1=- g,(s, t).

Let U2 denote the image of U1, and put H(u, v) h (s, t) and K (u, v) kl (s, t). For
(u, v)E D2, we have H(u, v)>-O and K(u, v)>=O.

By hypothesis, the gradients of h(x, y) and k(x, y) are both nonvanishing in U.
Hence, in view of the nonsingularity of the transformations (3.5) and (3.10), each of
the functions H(u, v) and K (u, v) has a nonvanishing gradient in U2. As a consequence,
locally within U, the equations H(u, v)= 0 and K(u, v)= 0 either determine v as a
smooth function of u, say v= b(u), or u as a function of v, say u O(v). We assume
that U2 is sufficiently small so that each of the curves H(u, v)=0 and K(u, v)=0 has
such a representation globally within U2. We also assume that U2 is contained in the
square with vertices at (+1, +1); see Fig. 6. The integral (3.11) can then be written as
a sum of not more than four terms, each of which is of one of the following forms:

(3.13) + G(u, v) e iNuv dv du,
o

(3.14) G(u, v) e’ du dv,

(3.15) G(u, v) eN du dv.
o

Note that the integral in (3.14) can be converted to that in (3.13). Thus our problem
is solved if we can derive asymptotic expansions for the integrals in (3.13) and (3.15).

4. Saddlepoint at a corner: Derivation of expansions. We first consider the integral
in (3.13), which we will rewrite as

il 4,(u)

(4.1) II(N) Go(u, v) e avau.
dO

Recall that the function b(u) corresponds to a part of the boundary of D2 determined
either by H(u, v)=0 or K(u, v)=0, and that it is a C-function with b(0) =0 and
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[4(u){ < 1 for 0 <- u _-< 1. In view of (3.10), the curves corresponding to the critical curves
of the original phase function f(x, y) are determined by u 0 and v 0. By condition
(C) in 3, we have th(u) 0 if u 0. The function Go(u, v) is infinitely differentiable
and has compact support inside the square with vertices at (+1, +1).

Define

(4.2)

Hol)=l [Go(U, v)-Go(u, 0)],

H(oZ)=l-[Go(u, 0)- Go(0, 0)],

and put Ho (H(o), H(o2)). It is easily verified that

(4.3)

(4.4)

Go(u, v)= Go(0, 0) + (v, u)" Ho,

V" (Ho eiNuv)--(V Ho) eiN"+ iN[(v, u)" Ho] e iN".

Inserting (4.3) and (4.4) into (4.1), we obtain

II(N) Go(0, 0) e ’N’’ dv du
,dO

V (Ho dv du
iN

fo f’/’(u)+ (V. Ho) eiN’’ dv du.
N "do

The first integral on the right can be written as

(4.6)
1 I _1 [eiNU+(u) 1] du.
iN 30 u

In view of the fact that Go(u, v), and hence also Hol)(u, v), vanishes on the line u 1,
we readily verify by using Green’s theorem that the second integral on the right-hand
side of (4.5) is equal to

H(o(u, O) du+ H(o(u, d(u)) e4( du

H(o)(u, 6(u)) ei"6(u)cl,’(u) du,

which in turn is equal to

1
[Go(U, 0) Go(0, 01] du

U

(4.7)
ll

+ Go(t/, 0) Go(0 0)] e iNu4’(u) du
U

1

6(u)
[Go(u, 4)(u))-Go(u, 0)] eiNu4’(’)’(U) du.
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Combining the integral in (4.6) with the first two integrals in (4.7) gives

I,(N) =-7 Go(u, O)-[eiNU’(U)-u 1] du

(4.8)
iN b(u) [Go(u, dp(u))-Go(u, 0)] eiN"4"(’)dp’(u) du

Gl(U, v) ein’’ dv du,

where Gl(u, v)= 7. Ho. Note that the last integral on the right-hand side of (4.8) has
exactly the same form as the integral II(N) in (4.1), except that it is now multiplied
by a factor 1/N. Thus we may repeat the above procedure with Go(u, v) replaced by
Gl(u, v). Each time we perform this procedure, we produce a factor 1/N in the new
"remainder term." Therefore, it suffices to consider just the two one-dimensional
integrals in (4.8). To the first integral in (4.8), we apply an integration by parts. The
result is

(4.9)

II(N) (log u)Go(u, O)[dp(u)+u)’(u)] e iNu4’(u) du

iN
(log u) O----(u, O) e du+i-- (log u) O----(u, O) du

iN b(u)
[Go(u, ch(u))-Go(u, 0)]th’(u) e’’(’) du

Io Io’(’)N
GI(u, v) e iNuv dv du.

Note that the third integral in (4.9) is independent of N; hence it is simply a coefficient
of 1/N in the final expansion of II(N). Here a comment is in order. Recall that the
function Go(u, v) may involve an arbitrary C-function used in isolating (0, 0) from
other critical points. Thus it may seem strange that the coefficient

Io OGo
u, O) du(log u) 0---U-

of 1/N in (4.9) depends on the values of G0(u, v) on the whole interval [0, 1]. However,
since 11(N) is only part of the original integral I(N) in (1.1), there are contributions
from other parts of I(N) that in many cases will cancel this term in (4.9); see 6 for
a discussion of a complete case.

We now examine the three one-dimensional integrals in (4.9) which involve N.
Observe that the first two are of the form

(4.10) A(N)= (log u)g(u) e iNh(u) du,

to which we can apply the following result of Erd61yi [4], as corrected by McKenna [8].
Let g(u) be an M times .continuously differentiable function in [0, c), which

vanishes in some neighborhood of c; let h(u) be differentiable and

(4.11) h’(u) u-lhl(U),
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where p _-> 1, and hi(u) is positive and M times continuously ditterentiable for0_-< u < c.
Introduce a variable w defined by

(4.12) w=h(u)-h(O)
and put wl =[h(c)-h(O)] 1/. Equation (4.12) can be inverted to give an expression
of the form

(4.13) u=w
hl(O

+R(w

where R(0)=0, and R(w) is M times continuously differentiable in [0, wl). Define
functions ko(w) and kl(w) by

du
(4.14) ko(w)= g(u)

dw’

(4.15) kl(W) ko(w) log
hi(0)

+ R(w)

THEOREM (Erd61yi [4], McKenna [8]). With the above conditions,

(4.16)
A(N)=e’Nh() F

n=o n!p p

exp i( n + 1 )Tr/2p)AnN-("+I)/p + o(N-M/p)
as N oo, where

(4.17) A,=k(o")(o)l[q(n+l)-logN+i-]+k")(O),P P

being the logarithmic derivative of the Gamma function.
In our application to the integrals in (4.9), we have h(u)= HOb(u) with b(O) =0.

We will assume

(4.18) b(u)-- UO--I()I(U),
where p is an integer, p_->2, and bl(0) 0. This assumption is slightly stronger than
condition (C); specifically, (C) would allow b(u)= e-1/ucbl(u), but (4.18) does not.
We will first consider the case b(u) positive in a neighborhood of the origin. By
shrinking the support of Go(u, v), we may assume without loss of generality that

h’(u) qb(u) + u6’(u) u-l[pbl(u) + u6(u)]
is positive in an interval [0, c) for some c-< 1 so that the hypothesis of the above
theorem for the phase function h(u) is satisfied.

Since h(u)= uch(u) in our case, coupling (4.12) and (4.18) gives

(4.19) w-- U[(I(U)] l/p,
from which we can compute dw/du and obtain

du p[ff)l(U)] 1-(1/O)

(4.20)
dw pck u + uck u

A straightforward calculation then yields

(4.21)
du -1/o

d-- (0) [bl(0)]

du 2b(0)
(4.22)

dw
(0)= 1+/.P[I(0)]
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From (4.19), we also have

1
(4.23) log u log w--log bl(U).

P

Thus the function R(w) in (4.13) satisfies

log
h(O)

+ R(w) --0 log 4

In the case of the first integral in (4.9), the amplitude function g(u) in (4.10) is
given by

g(u)= Go(u, O)[c/)(u)+ udp’(u)].

Hence, in view of (4.18), the functions ko(w) and kl(W) in (4.14) and (4.15) are given
by

du
ko(w) Go(u, O)u’-l[p6(u)+u6(u)]

dw’

1
kl(W)------ ko(w)log I])I(U ).

p

Clearly, these functions vanish at least to order p- 1. Elementary computation yields

kg-’(O) p! 0o(0, 0),

p!p ago
(0, 0),kg()

[,(o)]’/ o---
k,_.)(O _1 ko._.)(O log b.(O).

P

ko(O _1 ko(O)log bl(O)- ko"-’(O)
P [4,,(0)],,+,/

The above theorem of Erd61yi and McKenna then gives

(4.24)

(log u)Go(u. O)[c(u)+u4.’(u)] due iNu4,(

(ao log N+ bo)N- +(a log N+ bl)N--(a/P)+ o(N--(a/")),

where

(4.25)

ao Go(0, 0),
P

bo

1

p!p2 r (P + 1) exp (iTr(p + 1)/2p)ko)(O),
P

1
p!psF

p+l

p ) exp (i’rr(p+ l)/2p){k(oO)(O)[iP(P+ l) "n’l }2
+ i + pkP)(O)
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In exactly the same manner, we have

1 I,. OGo iNub(u)

(4.26) iN
(log u) 0---(u, 0) e du

(c log N+ d)N-l-l/’+ o(N-l-/’),
where

Cl =--- F exp(i,n.(p+l)/2p)[c,(O)]-l/’OG---9-(O,O)
(4.27)

P Ou

d c 0 +
2

For the penultimate integral on the right-hand side of (4.9), we need only the
usual version of the stationary phase approximation [4, Thm. 3], and the result is

i (u) [Go(u, (u))-Go(u, 0)]’(u) e( du

(4.28) - F exp (-i(o 1)/(20)) (0, 0)’(0)

[1(0)]-1/ON-1-(1/o)+ o(N-l-(1/o)).
(Note that p2.) If p>2, then ’(0)=0 and hence the terms in (4.28) are of
asymptotically smaller order than the terms in (4.26). A combination of (4.9), (4.24),
(4.26), and (4.28) gives

(4.29) I(N)(a log N+)N-1 + (T log N+8I)N-I-(1/+
where

(4.30) al Go(0, 0),
P

(4.31) fl=-/Go(0,0) (1)+i-log4(0) -i (log u)---u (u, O) du.

The coefficients / and can be expressed in terms of the coecients a, b, Cl, and
d given in (4.25) and (4.27). More precisely, we have 1 =--a--Cl, 1 =-hi-Cl, if

0 > 2, and

= -b-c--r exp(-i(o-1)/(20))(0, O)’(O)[(O)]-/

if 0=2.
g. Se dafis. Recall that the integral II(N) in (4.1) is only one of those in

(4.13)-(4.15) that must be considered for the original problem. We now examine a
number of simple variations of the computations leading to (4.29). First, note that by
taking complex conjugates we have

((u)(5.)
(-N)

o
Go(U, v) e-’ av au

(a log N+)N-+( log N+ g)N--(/+
where a bar- denotes the complex conjugate.
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Next, we consider the case in which b(u) is negative for 0<u-<l. As in (4.18),
we again write b(u)= uP-lbl(U). Then bl(u) is negative and I(u)l---(u). The
integral corresponding to (4.1) is now

I:z(N) Go(u, v) e iN’v dv du
(u)

(5.2)

=fo [ G(u’-v) e-iNUV dvdu"
o

From (5.1) it follows that

(5.3) I2(N)(a2logN+2)N-l+(y2logN+82)N--(/)+
as N , where

(5.4) a2=--Go(O,O),
P

OGo(5.5) = Go(0, 0) (1)- i-log [(0)1 + (log u) (u, 0) du.
P o Ou

Explicit formulas can also be given for the coecients and :.
If the domain of integration is bounded by the v-axis, the line v 1, and a smooth

curve u 0(v), where O(v) is positive, then the integral corresponding to (4.1) is

(5.6) I3(N) Go(u, v) e auav.

We assume, as in (4.18), that 0(v)= vO-O(v), where p is an integer greater than or
equal to 2. Interchanging the variables u and v gives

I3(N) G(u, v) ei’ dv du,

where G(u, v)= Go(v, u). By (4.29), we have

(5.7) I3(N) (a3 log NW3)N- + (T3 log NW3)N--(/P)W
where 3 iGo(O, O)/p and _

OGo(5.8) =-!ao(0,0 (+ log0(0 -i

Similarly, if O(v)< 0 for 0< v N 1, then by (5.3)

(5.9) h(N)= Go(u, v) e dudv(41og N+4)N-+
o(vl

where 4 -iGo(O, 0)/0 and

(5.10) 4 Go(0,0)[(1)-i ] Iot OGo=p -log[01(0)l +i (logv)(0, v) dv.

There are many other possibilities of this type. However, we will consider just
one more; the reader can easily derive corresponding results for other types. For this
case, we suppose we have the domain ofintegration in the second quadrant; specifically,
we consider the integral

(5.) (N) Go(U, v) e’ dvdu,
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where the function (u) b (- u) is positive for 0 < u _-< 1 and of the form (u)
u’-l,l(u) with p=>2; cf. (4.18). Changing variables by replacing u by -u, we get

Io’[ (u)15(N) Go(-U, v) e-iN’’ dv du.
dO

From (5.1) it follows that

(5.12) Is(N) (as log N+5)N-1 +...,
where as =-/Go(0, O)/p and

(5.13) ,= Go(0, 0)[(1)- ] I OGo
P -log (0) -i - (log lul) (u, o) du.

Finally, we consider integrals of the form (3.15). Specifically, we consider the
integral

(5.14) I(N) Go(u, v) e dudv,

where Go has compact suppo inside the square with veices at ( 1, 1). Clearly, we
may write

I6(g) Ii(N) + h(N),

where I(N) and I3(N) are the integrals given in (4.1) and (5.6), respectively, with
&(u) u and O(v) v. Thus, in both cases, we have p 2, and &l(U) 1 and 01(v) 1.
By (4.29) and (5.7) we obtain

(5.15) I6(N) (a6 log N+6)N-+
where a6 iGo(O, 0) and

[ e] So, rooo
ou

($.16) =-iOo(O,O)@(1)+i -i (log )L(> O) +-- (O> .
In exactly the same manner, we may write

(5.17) IT(N) Go(u, v) e dv du h(g)+ h(N),
--1

where h(N) and h(N) are the integrals given in (5.11) and (5.9), respectively, with
(u) =-u and O(v)=-v. Coupling (5.9) and (5.12) gives

(5.18) I7(g) (7 log N+7)N-+
where 7 -iGo(O, 0) and

(5.19) 7=iGo(0,0)(1)-i +i (logw)kOv -O(-w,O) dw.

It is interesting to observe that by adding (5.15) and (5.18) we have

1 01 [ I 0a0(5.20) Go(u, v) e dv du Go(O, 0)-i (log lul) (u, o) du

as N. Carrying out calculations analogous to (5.15) and (5.18) for the other two
quadrants, and adding, gives

(5.21) Go(u, v) e dudv Go(O, 0)
--1
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as Noo. Note that (0, 0) is a saddlepoint of the phase function in (5.21) and lies in
the interior of the support of Go. Hence (5.21) follows directly from (1.3). However,
(5.20) does not follow from (1.4), although (0, 0) is a boundary saddlepoint. This is
due to the fact that the boundary curve v 0 in (5.20) is tangent to, and in fact coincides
with, a level curve of the phase function at (0, 0).

6. The final solution. From the above discussion, it is evident that the solution to
our original problem depends on many factors. In this section we consider only a
particular case, in which we derive the first term of the asymptotic expansion.

First we recall that the functions b(u) and O(v) in (4.1) and (5.6) are determined
implicitly by the equations H(u, v)=0 and K(u, v)=0, which represent parts of the
boundary of D2 in a neighborhood of (0, 0) (see Fig. 6). If these boundary curves are
tangent to a coordinate axis, i.e., if the parameter p in (4.18) is greater than 2, then
determining b(0) or 0(0) will require higher-order implicit differentiation. Although
this can be done for any specific example, it is difficult to give a formula for the general
case. We will therefore make some simplifying assumptions. More precisely, we assume
that after the transformations in (3.5) and (3.10), the domain D2 is as depicted in Fig.
7, where 0< b(u)<l for 0<u<-l, b’(0) b(0)> 0, -1 < 0(v)<0 for 0<v<=l, and
0’(0) 0(0)< 0. In this case, the value of p for both b and 0 is 2. Since b and 0 are
defined implicitly by H(u, v) 0 and K (u, v) 0, respectively, we have

H.(O, O) K(O, O)
(6.1) 1(0) 01(0

H(0, 0)’ K(0, 0)"

The integral (3.11) can be written as

(6.2) IfDG(U,v) eiN"Vdudv=I6(N)-Ii(N)+I4(N),

where I(N) is given by (4.1), I4(N) by (5.9), and I6(N) by (5.14), with Go(u, v)=
G(u, v) in all cases. A combination of (4.29), (5.9), and (5.15) gives

(6.3) G(u, v) eN" du dv G(O, 0)[r-/log 4(0)-/log 10(0)1]
2ND

as N-oe, where 4(0) and 0(0) are given in (6.1). Note that the terms involving
integrals in (4.31), (5.10), and (5.16) all cancel out in the calculation of (6.3), confirming
a remark made in 4 following (4.9). Now, from 3, we recall that

(6.4) G(0, 0)= 1/2g,(0, 0)= 1/2g(0, O)/x/-f2ofo2.

K (u, v)=O
u:e(v)

V

H (u,v):O;
v:,#(u)

__j---supp. (G)

FIG. 7



STATIONARY PHASE APPROXIMATION 519

Using (6.1), (3.10), and (3.5), we also find

-4ZLSo h (0, 0)+ h (0, 0)
(6.5) )1(0)-- x/--fo2 hx(O 0) +v/f20 hy(O, O)

kx(O, o)+ k (O, O)
(6.6) 0,(0) _v/-Zfo2 k,(0, 0) +2o ky(0, 0)"

Substituting (6.4)-(6.6) in (6.3), we obtain the leading term of an asymptotic expansion
of the original integral I(N) in terms of the original data f, g, h, and k.

The case where the boundary of D is smooth at the saddlepoint (0, 0), but not
tangent to a critical curve of the phase function f(x, y), can be recovered from the
result above. In the notation of 5, a typical case of this would give

(6.7) I(N)-- I6(N) + I:z(N)+ I4(N),

where I2(N), I4(N), and I6(N) are given, respectively, by (5.2), (5.9), and (5.14), with
Go(u, v)= G(u, v) in all three cases. Since the boundary is not tangent to a critical
curve of f(x, y), the value of p for both b and 0 is again 2. The condition that the
boundary of D be smooth at (0, 0), i.e., have a tangent at that point, can be expressed
in terms of bl and 01 as

(6.8) 1(0) 01(0) -1

Noting that log Ibl(0)l =-log 101(0)1 it follows from (5.3), (5.9), and (5.15) that

(6.9) I(N)--- g(0, O)[-fzofo2] -1/

as N , in agreement with (1.4).
From the above discussion, it is now evident that our method is applicable when

the boundary curve is smooth in a neighborhood of the saddlepoint and is tangent to
a critical curve off For example, if in the uv-coordinates the boundary is smooth with
a horizontal tangent at (0, 0), then the integral can be expressed in the form I6(N)-
11(N) + I(N) I(N). The functions 4 in 11 (N) and I(N) may be different, but both
will have 4’(0) 0; or equivalently, p > 2. We emphasize that the result in such a case
will be different from (6.9).

7. An example. As an illustration of the above calculation, we work out the first
two terms in the asymptotic expansion of the integral

(7.1) I(N) exp (iN cosh x cos y) dy dx,

which we will write in the form

(7.2) I(N)--eiNfIDeiNf(x’Y)dxdy
where D is the triangle with vertices at (0, 0), (1,-1), and (1, 1), and

X
2 2

(7.3) f(x, y) cosh x cos y 1 Y + O[(x +y)]
2 2

as (x, y) - (0, 0). Clearly, f(x, y) has one and only one stationary point inside and on
the boundary of D; it occurs at (0, 0) and is a saddlepoint. Note that (0, 0) is also a
corner point of the domain D. By using a partition of unity (or neutralizers), we can
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isolate it from the other two corner points (1,-1) and (1, 1). Since the contribution
from a corner point that is not a critical point of the phase function is O(N-2) (see,
e.g., [2]), we can rewrite (7.2) as

(7.4) I(N)=eirqlf g(x,y) eirUf(x’y)dxdy+O(N-2),
D

where g(x, y) is a C-function that is equal to 1 in a neighborhood of the origin and
vanishes identically outside a disk with radius less than 1. From (7.3) it is clear that
fo 1/2 and fo2 =-. The functions P and Q in (3.2) and (3.3) are, in the present case,
given by

I X21 X
21 -. .P(x, y) ---5 cosh x- 1 -1- O(x4)

Q(x,y)= coshx(cosy-1)+ =-(2[)+4
Note that in this example P(x, y) is independent of y. Define

p(x, y)= + P(x, y) --+--+ O(X4)
(7.5)

---+ O{(x+ }q(x, y) -Q(x, y) +
4 4

so that the transformation (3.5) becomes

(7. s xp(x, , = q(x, y.
Upon making the transformations (7.6) and (3.10), we have

where D is the image of D and

o(x, o(s,
G(u,v)=g(x,y)

o(s, o(u, v"
From (7.5), (7.6), and (3.12), it follows that

(7.a (0, 0 g(0, 0 .
Now we consider the boundary of D near the corner (0, 0), which is determined

by the two curves

(7.9) H(u, v) x + y=O, K(u, v) x- y =O,

where H(u, v) and K (u, v) denote, respectively, the transforms of the functions x + y
and x-y in terms of the variables u and v. From (7.9) and (3.10), we have

(u, v=(x+-(x,+,,

(7.o
(, v=(x,+,+(x,+y,,

-(x,-,,

(u, v=(x-y+(x,-,.
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Simple computation from (7.5) and (7.6) gives

x(O, o) y,(O, o) , x,(O, o) y(O, o) o.(7.11)

Hence

(7.12)

(7.13)

H,(0, 0)=0, H(0, 0)=,
K,(0, 0) =, K(0, 0) 0.

By the implicit function theorem, there exists b u such that v b u satisfies H u, v)
0 near (0, 0). Furthermore,

H,(u,v)
(7.14) b’(u)

H,(u, v) v=(u)’
and, in particular, b’(0)=0. This means that the boundary curve H(u, v)=0 is tangent
to the u-axis at (0, 0). Similarly, there exists O(v) such that u O(v) satisfies K(u, v) =0
near (0, 0), with

(7.15) O’(v)

and 0’(0) 0.

K,(u,v)
I,:,(u, v) u=O(v)

To apply our results, we need to determine a value of p for each of the boundary
curves v= b(u) and u= O(v) so that 4(u)= uP-lchl(u) and 0(v)= vP-lOl(v), and the
values of thl(0) and 01(0). (The value of p need not be the same for th and 0.) Now,
b"(u) can be computed from (7.14). Using (7.12) and the fact that b’(0)=0, we find

1
(7.16) "(0) - Huu(0, 0).

To evaluate Hu,(O, 0), we begin with the first equation in (7.10). From (3.10) we obtain

(7.17) H.,(u, l)) (Xss "[-Yss) --1/2(Xst--Yts) +1/4(Xtt-b Ytt).

Differentiating the equations in (7.6) gives

1 pxs + xps, 0 pxt + xpt,

0 PXss + 2xsp + xp,

0 pxt + ptxs + xps + xp,

0 px, + 2xp, + xp,,
(7.18)

0 qy + yq, 1 qy, + yqt,

0 qys + 2qy +yq,

0 qys, + qtYs + qYt + Yqt,

0 qy, + 2y,q, + yq,.

Since (x, y) (0, O) corresponds to (s, t) (0, 0), and since p(O, O) q(O, O) 1/x/, we
have from (7.11)

x -4ps. x. -2pt. x. O.
(7.19)

y O, y -2qs, Ytt -4qt,
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where it is understood that all derivatives are evaluated at (0, 0). From (7.11), we also
have ps=pxxs+pyys=.,/px at (0,0). Hence it follows from (7.5) that ps(0, 0)=
,px(0, 0)=0. Similarly, we find p,(0, 0)=0. (The argument for the latter case is
actually simpler, since p is independent of y in this example.) By the same reasoning,
we have qs q,x + qyy / qx and qs(O, 0) q(0, 0) 0. Similarly, qt(O, O) O. A
combination of (7.16), (7.17), and (7.19) gives

1
(7.20) b"(0) =- H,u (0, 0)= 0.

Our next step is to find b3)(0), which can be computed from (7.14). The full expression
is very complicated; however, since b’(0)= b"(0)= 0, we have from (7.12) and (7.20)
the relatively simple equation

1
(7.21) )(3)(0) =- Hu,, (0, 0).

Differentiating (7.17), we obtain

(7.22) H,,,(u, V)--(Xsss-t-Ysss)--(Xsst-[-Ysst)-t-(Xstt-]-Ystt)--(Xttt-l-Yttt)
on account of (3.10). To evaluate the partial derivatives on the right-hand side, we
turn to the equations in (7.18). First, from the third equation in (7.18), we have

px +3pxs + 3pXs + xps O.

Since (x, y) (0, 0) corresponds to (s, t) (0, 0), and since all the second-order partial
derivatives in (7.19) vanish at (0, 0), the last equation yields

(7.23) x(0, 0) -6p(0, 0).

Now, ps p,,x2 + 2p,yXy + pyyy2 + p,xs +pyy. In view of the fact that p is independent
of y, and again by the vanishing at (0, 0) of all the second-order partial derivatives in
(7.19), this gives

1
(7.24) p(0, 0)= 2p,(0, 0)- 6,f"

The last equality follows from (7.5). Coupling (7.23) and (7.24), we obtain

1
(7.25) xs(0, 0): ,,/.

Similar computations, beginning with (7:18) and using analogues of (7.24), yield

Xss O, Xst O, Xtt O,

1(7.26)
ys 0, Yst=-,,/, y, 0,

where all derivatives are again evaluated at (0, 0). Returning to (7.21), we have from
(7.22), (7.25), and (7.26)

(7.27) 43)(0) -J.
Hence it follows that for the boundary curve H(u, v)= x + y 0 we have

(7.28) p, :4, ()1(0) --4-
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In the same manner, beginning with (7.15), we find that for the boundary curve
K(u, v) x-y =0, we have 0’(0) 0"(0) =0 and 03)(0) -. Consequently, we again
have

(7.29) pK =4, 01(0)-- --4,

Note that 43(0) and 03(0) negative implies that both b(u) and O(v) are negative
for sufficiently small positive u and v. Consequently, (5.3), (5.9), and (5.15) apply,
with the integral (7.1) taken in the form

I(N) 12(N) + 16(N) + 14(N).

Using these equations and (7.8), we obtain

(7.30) I(N)
2 N - +

2 -as N- c, where y -q(1) is the Euler constant.
The above example may seem to be too complicated for illustration purposes,

and simpler examples could have been given instead. However, we find that this
example is rather realistic, and demonstrates the fact that our method indeed works
in practical situations. It also illustrates well the computations involved in our pro-
cedure, particularly in cases where parameter p is greater than 2.
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ON THE ASYMPTOTIC BEHAVIOR OF THE COEFFICIENTS OF
ASYMPTOTIC POWER SERIES AND ITS RELEVANCE
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Abstract. This paper discusses the relevance of the asymptotic behavior of the coefficients of asymptotic
power series for the study of Stokes phenomena. By way of illustration a connection problem is considered
in the theory of linear difference equations.
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Introduction. In this paper we extend and apply ideas of Malgrange [10] and
Ramis [12] concerning the connection between Stokes phenomena, in a wider sense,
and formal power series. We start with an illustrative example.

Let y be an analytic function on the Riemann surface of log z, with the following
properties.

(i) y admits an asymptotic expansion of the form _,n__oYnZ as z- in the
sector S: -7r/2 < arg z < 57r/2.

(ii) y(z) y(z e2=i) c e -z, c C*.
The second property implies that the asymptotic behavior of y changes abruptly as
arg z becomes larger than 57r/2 or less than -7r/2. Such a change in asymptotic
behavior will be called a Stokes phenomenon.

Now consider the function h defined by

1 fo e-t
dt, 0 < arg z < 2h(z)

t- z

h is a Cauchy-Heine transform of e (cf. [12]). By deformation of the path of
integration it may be continued analytically to the Riemann surface of log z. With the
aid of residue calculus we readily verify that

(0.1) h(z)- h(z e2"rri) e -z.
Moreover, h admits the asymptotic expansion 7-1 hnz-n as z m, z S, where

(0.2) hn
1 ttn_e- dt, n.

27ri

From (ii) and (0.1) we conclude that

y(z e2i) ch(z e2"a’i) y(z) ch(z).

Thus it turns out that y ch is a single-valued analytic function, admitting an asymptotic
expansion of the form n__o anZ as z , z S, where

(0.3) an Yn chn.

* Received by the editors January 19, 1989; accepted for publication (in revised form) February 14, 1990.
? University of Groningen, Institute of Econometrics, P.O. Box 800, 9700AV, Groningen, the Nether-

lands.
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This implies that y-ch is holomorphic at and, consequently, Yn__o a,,z-" is a
convergent power series. From (0.2) and (0.3) it now follows that

c -27ri lim Y"
(n- 1)!"

Apparently, the constant c, which plays a central role in the Stokes phenomenon
occurring in this example, is intimately related to the asymptotic behavior of the
coefficients y,. It is this relationship that forms the subject of this paper.

We shall consider the following situation. Suppose we are given a number of
sectors S, v {1,..., N}, which cover a neighborhood of o and a corresponding
number offunctions y with the following propeies" y is analytic in S and represented
asymptotically by a series of the form ,o f,z-" (independent of v) as z , z S,

{1,..., N}. Moreover, assume that

(0.4) y+l(z)-y(z) c;;(z), z S S+1, v {1,..., N},
j=l

where SN+I e2=is1, YN+I(Z) Yl( z e-=), c C, and the belong to a ceain class
of analytic functions. We shall establish a relation between the complex numbers cf
and the asymptotic behavior of , for n . In some applications this relation may
be exploited to "compute" at least pan of the numbers c; from the coefficients , (cf.
[9] and Remark 2 herein).

If the y represent (sectorial models of) a resurgent function, our results could
be derived from the work of Ecalle (cf. [4]). For the present purpose, however, this
assumption is not needed and we shall establish the relation mentioned above in a
more direct manner.

The argument is essentially the same as the one we used in [9]. It is based on the
Propositions 1.1-1.3 herein. Proposition 1.1 concerns the propeies of Cauchy-Heine
transforms of functions like the ; in (0.4). Proposition 1.2 enables us to construct,
from the Cauchy-Heine transforms of the ;, analytic functions H with the same
propeies as the y and only differing from they, by a convergent power series in
1/z. The coefficients ofthe asymptotic expansion H ofthe H are given by the expression

H, =-2i =1=1 c j(t)t"- dt, yc S.

Under ceain conditions, like those mentioned in Proposition 1.3, the saddle-point
method may be applied to the integral

f ;(t)t"- at

to obtain its asymptotic behavior for n-. The main result is stated in Theorem 1.4.
In 2 this result is applied to a connection problem in the theory of homogeneous
linear difference equations.

1. The general argument. Let C denote the Riemann surface of log z. Let zo C,
a, fl e N, a < ft. By S(a, fl) we denote the sector

S(,)={zeC" a <arg z<}
and by S(zo, a, ) the set

(1.1) S(zo, a, ) {z e C" a < arg (z- Zo) < , Izl > Izol},
This will also be called a sector.
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If S is a sector of the form S S(zo, a,/3), then _S will denote the sector S(zo, a,
fl +2r).

Let S S(Zo, a, ), S’= S(zl, a’, ’) with a < a’</3’ </3. We shall write

S’(C)S

whenever Z E S and S’c S(zo, a’,/3’).
Let / Y=o h,z-n be a formal power series in z-1, S a sector of the type (1.1),

and h a function on S. We say that h is represented asymptotically by h as z oo in
S, and write

h(z)’- Y.h.z-", z-ooinS
n=O

if, for every S’ (C) S and every N E N,
N--1

RN(h; z)==- h(z)- E h,z-" O(z-N),
n=O

Z- OO, Z G S’.

Any function q which is analytic in a sector S and represented asymptotically by
zero (i.e., the series with coefficients equal to zero) as z- o in S, may be written as
the difference of two determinations of its Cauchy-Heine transform. The following
proposition, due to Ramis, is concerned with the asymptotic properties of this Cauchy-
Heine transform.

PROPOSITION 1.1 (cf. 12, Prop. 4.2]). Let o and fl be real numbers such that a < fl,
Zo S(a, fl), and let # be an analytic function on S S(zo, a, fl ). Suppose there exist

positive numbers M,, n N, such that

(1.2) sup [z"q(z)[ < M,, n e N.
zS

Then the function h defined by

h(z) z___ f o(____) d, z S(zo, 19 19+27r)
2rri (- z)

where y is a half line in S from Zo to with direction (R), has the following properties"
(i) h can be continued analytically to ,
(ii) h(z)- h(z e2i) (z) for all z S,
(iii) h is represented asymptotically by

z--,

as z in . Moreover, for every S’ there exists a positive constant Cs, such that

sup [z"R.(h; z)[ Cs,mn+l, n.
zS’

Proof Let us suppose that S is a convex set, i.e., /3-7r/2 <arg Zo< a + 7r/2. In
that case every half line from Zo to oe with direction O e (a,/3) lies in S. If y has
direction O, h is obviously analytic in S(zo, O, (R)+27r). The analytic continuation to
_S is obtained by varying O. Part (ii) follows immediately from Cauchy’s theorem.

Now let St--S(z1, ol’,[3’)(C)8. Then there is a number e(0, r/2) such that
a + e < arg (z Zo) </3 + 2zr e for all z S’. Let z S’ and choose (R) E (a,/3) in such
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a way that O + e < arg (z- Zo)< O + 27r- e. Let Yo be the half line from Zo to with
direction (R). For all " Yo the following inequality holds:

(1.3) I" zl > z Zol sine > zl \(1 Zo s) sin e.
Z1

It is easily seen that

f
z"R,,(h; z)=z__ | ,,-1 d,

2"tri J,o z

With (1.2) and (1.3) it follows that

]z"en(h" z)]< 1-
27r sin e

Hence

1 (1-2r sin e

Z1 Yo

suplz"R,,(h;z)l< M.+I
zS’

and this proves (iii).
If S is not convex the above argument must be adapted in an obvious manner.
PROPOSITION 1.2 (cf. [10], [12]). Let N. Let a, , u{1,...,N}, be real

numbers such that a <= O+ < fly +1 if < N and aN aN+ a +2 < fin
,+1 fll+2. Let z S(a+l, fl) and S S(z, a+l, fl), 1,. ., N.

Suppose that, for every { 1, , N}, we are given an analytic function on S
with the property that (z) 0 as z in S. Let

h(z)= f (d, z S(z O 0+2) 6{1 N}
2i r. if(if-z)

where y is a half line in S from z to with direction 0 and let

--1 N

H(z)= h(z)+ h(ze2i) ifu{2,...,N},
=1 =
N N

Ha(z)= h(ze2i) and HN+,(z)= h(z).
=1 =1

efunctions H have the following properties"
(i) For every u {1,. , N+ 1} there exists a S(a,) such that Z+l 1 e2i

and H is analytic on S S(, a, ).
(ii) H+,(z) H(z) (z) for all z S S,+,, {1,. ., N}, and HN+,(z)

H(z e-=i) for all z e2 $1.
(iii) H admits an asymptotic power series expansion H independent of , as z

in S.
Moreover, ifH, 1,. ., N+ 1, arefunctions with the same properties, then there

exists a function h, holomorphic at , such that

-H=h foatt{,...,N}.

Proof From Proposition 1.1(i) we deduce that H is analytic in

u-1 N

S(z,,a,+,,,+2) S(z,,a+,-2,,) ifu{2,...,N},
=1 =

sup
O(,/3)
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in

and in

N

tq S(z,, a,+-27r,/3) if v 1,
=1

N

S(ZIx, O/x+l, 3Ix -+’27r) if v N+ 1,
/=1

and this set contains a sector of the form S(, a,/3) for a suitable choice of . Part
(ii) follows immediately from Proposition 1.1(ii) by observing that

H+i(z)- H.(z) h(z)- h(z e2=i) for all u {1,. ., N}.

Furthermore, Proposition 1.1 (iii) implies that H(z)---n=o H,z-, as z in S, where

1
(1.4) H,=

2i=_,
Now suppose that , u= 1,..., N+ 1, are functions with the propeies (i)-(iii)
mentioned, in Proposition 1.2. Then there exist z S(a, ) such that both H and
H are analytic on S S(z, a,) and we have

v+l(Z)-v(z)=Hv+l(Z)-Hv(z), z.nS+l, v(1,...,N}

and

/-)N+I(Z)-/-)l(g e-2i) HN+I(Z)- HI(Z e-2=i), g SN+
It follows that

/-v+l nv+l IIv nv for all v {1,. , N}

and, moreover,

/rN+l (g) HN+I(Z) --/-]rl( g e--=i) HI(Z e-2"i).
Hence the function h--H1- H1 can be continued analytically to a reduced neighbor-
hood of . Furthermore, property (iii) implies that h admits an asymptotic power
series expansion in z-1 as z--> in a neighborhood of o and, consequently, h is
analytic in a full neighborhood of

The next proposition concerns the asymptotic behavior of integrals of the type

,(z)z" dz,
,/

where 3’ is a half line and q is an analytic function with the property that q(z)---0 as
z - oo in some sector S containing 3’. The conditions (iii)-(v) below are purely technical
and have been chosen in such a way that the result follows by a straightforward
application of the saddle-point method. They might be relaxed or replaced by other
conditions. We have merely tried to define a class of functions for which this method
works.

PROPOSITION 1.3 (cf. [2, Thm. 7, Remark 6]). Let a and fl be real numbers such
that a < fl, Zo S(a, fl ), and let q, be an analytic function on S S(zo, a, fl with the
property that

(i) exp p(z)-O as z->o in S.
Let g S x -> C be defined by

g(z, n)= O(z)+ n log z.
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Suppose there exists no t such that for all n >= no the following conditions hold:
(ii) The equation Og/Oz =0 has a solution sn S such that the half line ynfrom Zo

to o through s is contained in S. Moreover, s, as n o.
(iii) There exists a number 6) (0, /2) such that

2 O2g (s, n) < Oarg- s,
Oz

(Og/Oz)(s,, n) as n.and, furthermore, s,
(iv) ere exist positive numbers eo and K such that

zg(z,n) g(z,n)

g Iz- s,[ < ols, I.
(v) Let a,=arg (s,-zo)-args,. ere exists a positive number el, a function

nl (0, e 1) , a bounded function gl (0, e 1) x (- 1, O) , and a function g2 (0, e 1) x
(0,) such that, for all e(0, e), exp g2(e, ") (0, ), an<for all nnl(e),

Re{g(s,(l+rei".),n)-g(s,(1-eei.),n)}gl(e, r)

if (-11 Zo/s, 1, e), whereas

Re{g(s.(l+rei".),n)-g(s.(l+eei.),n)}g2(e, r)

if (, ).
Furthermore, let f be a bounded analytic function on S and suppose there exists a

positive number e such that
(vi) SUpz.)lf(z)-l[O if n, where I,(e) denotes the segment between

s,(1 e e ’-) and s,(1 + e e-).
Let

and

q(z)=f(z) exp q(z),

q(z)z" dzJ"
2ri

where y is a half line in S from Zo to o. Then we have

L 2rsOZg(s, n) s, expg(s,,n)(l+o(1)), n,0

where arg {s(Og/ozZ)(s,, n)}-/ (-m 0).
Proof We shall closely follow the proof of Theorem 7 in [2]. Let n no. Due to

(i), (ii) and the propeies of f we may replace y by y,. Let e >0. We begin by
considering the integrand on the segment I, (e). We put

g
(z, n)

g
(s, n) h(z).

Oz Oz2

From (iv) we deduce that

h(z) K
O2g

(s, n) fZ dC f d
Oz

+ K h(C)
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provided Iz-s.l<eolS.I. With the aid of Gronwall’s generalized inequality (cf. [5,
p. 36]) we find

h(z)<-_K
Z S

Sn

where/ is a positive constant, provided [z-s,[ < eols,[. Hence it follows that, for all
e (0, Co),

Og
(1.5) oz(Z,n)=(z-s,)(s, n)(l+eO(1))

OZ2

(1.6)
1 )2

02g
g(z,n)-g(s, n)=:(z-& (s. n)(l+eO(1)),. OZ2

[r[<=e.

(s,,n)(l+eO(1))

uniformly on In(e). Here O(1) is uniformly bounded in e.
We introduce a new variable w by means of

(1.7) 1/2w2= g(sn, n)-g(s,(l +7"ei,), n),

Due to (1.6) we have

W
2 7,2 e2i%, 2 02g

S
OZ2

and we remove the ambiguity in the definition of w by demanding that

(1.8) w 7"e
2 Og (sn n) (1 + eO(1))--Sn
OZ2

where the square root has its principal value. Equations (1.7) and (1.5) imply that

dw i Og 2 e2i%
02g

"7-(sn(l+re "),n)=-snr (s, n)(l+eO(1))W --Sn e
Oa2Oz

Consequently,

dw e Og
(s n) (1 + eO(1))(1.9)

dr --Sn
OZ2

Let w+ correspond to r +e. From (1.8) it follows that

( O2g )1/2(1.10) w+=+eei% -sZ,(s, n) (l+eO(1)).
OZ2

From (1.7), (1.9), (1.10), and condition (vi) of Proposition 1.3 we deduce that
sn(l+eei’")

((Z)Z dz
Sn(1--eein)

Sn ei% exp g(s,, n) e- dw(1 + o(1))

Og (s n) s exp g(s, n) e-/ dw(1 + o(1))(1 + eO(1))

Using (1.10) and condition (iii) and noting that lim a =0, we conclude that, for
every e O,

lim e- dw .
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Hence

q(z)z" dz 2rs] (s, n)
27ri a sn(1--ee i’’) OZ2

a

(exp g(s., n)(1 + o(1))(1 + eO(1)),

where arg {sZ,(oZg/OzZ)(s,, n)} -1/2 (-Tr, 0).
Next we consider the integral

n(l+eein)
,(z)z" clz.

From (1.7), condition (v), and the properties off we deduce that, for n => nl(e),

IJ2(e)l <-- c s exp g(s,, n)-- w+ exp g(e, ’) d"

NC1 sexp g(s, n)- w+

where C and C1 are positive constants. In view of (1.10) and condition (iii) this implies
that

J(e) s,2 OZ202g (Sn, n) s, exp g(s,, n)o(1), n

and the same propey holds for the integral over the segment between Zo and s,(1-
e e.). Combining the above estimates we find

( Og )-/L 2s(s, n) s, expg(s, n)(l+eO(1))(l+o(1)), n.02
Since this is true for every sufficiently small e the result follows.
Tzoz 1.4. Let N. Let , , u6 {1,..., N}, be real numbers such that

+ < + ifu < N and au u+ +2<u u+a +2. Let
S(a, ) and S S(, , ), u 1,. ., N, Su+ e=S. Suppose that, for each
u {1,..., N}, we are given an analytic function y on S, admitting an asymptotic
expansion =o yz-" as z in S, independent of u. Let

y+(z) y(z e-=), z S+,

and

(z) y+(z) y(z), z s s+, {, ., N}.

Suppose that for every u {1,..., N} there exists a sector S S+, a positive
integer re(u), and, for every j {1,. ., re(u)}, analytic functions f and ff on ,
satisfying the conditions of Proposition 1.3, and a complex number c such that

m()

(z) E c;f;() exp 6y(z), s.
j=l

Let g(z, n) (z)+ n log z, let s" denote its saddle point, and let

M (n) 2(s2’) Og (s’ n) s’ exp g(s’ n)02

je{1,...,m()}, e{1,...,g},
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where arg {(s,’J)2(o2g/oz2)(s,"j, n)} -1/2 E (---/r, 0). Then there exists a convergent power
series ,=o h,z- such that

N m(v)

(1.11) fi,=h,- E E cy{M;(n-1)(l+o(1))}, n-o.
u=l j=l

Proof There exists z E S S+1 such that S S+1 contains the sector S
S(z, a+l, fl). As y and Y+I admit the same asymptotic expansion, it follows that

q(z)=y+l(z)-y(z)--.O asz-*inS, uE{1,...,N}.

Obviously, the functions y possess the properties (i)-(iii) mentioned in Proposition 1.2.
According to Proposition 1.2 there exists a function h, holomorphic at , such

that y h +H for all v E {1,..., N}. Let Y,--o h,z-" be the power series expansion
of h. With (1.4) we find

f, h, (0v(g)g n-1 dz
=1 2ri

N re(v)

h, y X c-2-
j ff(z) exp t;(z)gn-I dz, n E N,

=1 j=l 2ri

where y is a half line g, uE{1,..., N}.
The proof is completed by application of Proposition 1.3 to each term of the sum

in the right-hand side of the above identity.
Remark 1. If the y as well as the functions ff exp qf are solutions of some

homogeneous linear functional equation, the numbers c play a role similar to the
Stokes multipliers in the theory of linear differential equations.

Remark 2. If one of the functions M in (1.11) dominates the rest for n -, the
corresponding coefficient c may be determined from the asymptotic behavior of )3,.

Remark 3. Propositions 1.1 and 1.2 may also be used to obtain estimates of the
growth of the remainder terms R,(y ;z) as n. This will be illustrated by the
application to linear difference equations in the next section.

Example. The nonlinear differential equation

(1 12)
dy a by3 C*dz-zz+y+ a,

possesses three formal solutions of the form Y,---1 )9,z-". The coefficients ), can be
determined from the recursive relations

-2fi,+z+(n+4)n+l+b 2 ;m,m2m3 =0, n>---l,
mi<=n

ml+ rrl2+ m3
(1.13)

(fi_l)2 ___1 1

b’ Yo

and

(1.14)
.+2+(n+l).+l+b , YmlYm2Ym3 O, n => 1,

m+m2+m3

Y-1 Yo-- Yl =0, y2=--a.

Let denote one of the formal solutions and let S be a sector of aperture less than
r. It is a well-known fact that there exists a solution of (1.12), analytic in S and
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represented asymptotically by 33 as z- in $, uniformly on S (cf. [13]). Suppose that
Yl and Y2 are two solutions with these properties. Obviously,

d b
(1.15) d--- (Yl- Y2) Yl Yz+- (YI + YlY2 + y22)(Yl- Yz).

Let )--"n___l )g and suppose the coefficients 33 satisfy (1.13). Then we have

3
(1.16) y+yiy+y=--(z-z)+h(z),
where h is a bounded analytic function on S, admitting an asymptotic expansion as
zo in S. Inserting (1.16) into (1.15) we obtain

d---(yl-y)= -2+z - h(z) (Yl-Y2)

and this implies that

Yl--Y2--ce-ZZg3( 1-+ 0 ()) z in S,

where c is a complex number. Hence it follows that (1.12) has a unique solution y-,
analytic in a left half plane and represented asymptotically by the series Y,---1 33z-"
as z in this half plane. Moreover, it is easily seen that y- may be continued
analytically to a sector of the form S(Zl, -37r/2, 37r/2), with Zl e C, without a change
in asymptotic behavior.

Fuhermore, we have

y-(z)-y-(ze2=)=c-e-2Zz3 (1+ O ()), c-EC,

as z - in S(-3/2+ e, -/2- e) for any e (0, /2). Applying Theorem 1.4 we find

c- -2i lim 2n+3f
(n+2)l"

In a similar manner it is shown that (1.12) possesses a unique solution y+ analytic
in S(z,-/2, 5/2) for some zeC and represented asymptotically by the series
,=-1 y,z determined by (1.14), as z in this sector. Moreover, it turns out that

Y+(z)-y+(ze)=c+ eZ(l+O()), c+C,

as z in S(-/2+ e, /2- e) for any e (0, /2). Application of Theorem 1.4 now
yields the relation

c+= 2i lim (-1)"-lY".. (n-1)t
2. An application to linear difference equations. We consider the mth-order

homogeneous linear difference equation

(2.1) E aj(z)y(z+j)=O,
j=0

where aj C{z-1}, j 1,. -, rn (or, equivalently, a system of rn first-order difference
equations). The "generic" case is when the characteristic equation of (2.1) has rn
distinct roots. This case has been treated in [8]. Here we shall deal with a more singular
class of equations.
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Under certain conditions, (2.1) possesses m linearly independent formal solutions
of the form

(2.2) 3(z)- f(z)z’j exp (djz log z +/xjz), j 1, , m,

where h(z) Y’,,=o h,z-n with ho 1, p C, dj Q and C for all j {1,. ., m}
(cf. [3], [11]).

We put

P,-P=Po, di-d.=do, and /x,-/x=/Xo, i,j{1,...,m}

and we assume that, for all i, j {1,..., m} such that i#j and do 0,

(2.3) Re/xo 0.

For merely technical reasons we further assume that

(2.4) Im/xo {0, -doff} mod 27r if #j, i,j {1,. ., m}

but this condition can easily be removed. For all i, j {1,..., m} such that ij we
shall denote by no the integer determined by

0 < Im/x0 + 2n07r < 2r
(2.5)

0 < Im/xo + (2no + do)Tr < 27r

Let $1," ", $7 be sectors of the following form:

if do <_- 0,

if do > O.

S S(R e-i(/2) --’17", O) S2 ei(r/2)S1 S S4 eirs

S ei(3"rr/E)Sl and S6 S7 e2is,
where R>0. If R is chosen sufficiently large, equation (2.1) possesses, for each
j {1, , m} and , { 1, 3, 4, 6, 7}, a unique solution yf, represented asymptotically
by y; as z oo, uniformly on

u-l-1 r+<arg(z-Re(/3-s/’i) <- r if,e{1 4,7},
3 3

(.
1 _-< arg ( R e(’/3-1/2)ri) < if , {3, 6}

for every e (0, /2) (cf. [6, Thm. 2.4.5]; note that this is a stronger statement than
yfi as z m in S). Moreover, we have

(2.7) y 7 y 6 6
Y PY Y PY

where p and p. are periodic functions of period 1 with the propey that

(2.8) lim p(z)= lim p(z) 0, je{1,...,m}.
Imz Imz-

Fuhermore, for each j e {1 m}, equation (2 1) possesses a unique solution y
analytic in $2 and represented asymptotically by as z in $2, such that

Y Y PijY Y PoY
i=l i=l

and p are periodic functions of period 1 with the following propeies"where po
2

P 0 P o 0 if d > 0 or d 0 and Re o 0,

(2.9) limxmz- pO(z) exp {-2(n0 1)iz} and limxmz p(z) exp {-2noiz}
exist for all i, j 6 {1,. , m} such that # j.
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Similarly, for each j { 1, , m}, there exists a unique solution yj, analytic in $5 and
represented asymptotically by 3 as z oo in $5, such that

4 4 4 6
Yj Yj Yj YjPoYi , PijYi

i=1 i=1

where p and pj are periodic functions of period 1 with the following properties"

p p =- O if dj < O or dj O and Re lxij <-_ O,

(2.10) lim Imzcx3 p(z) exp {-2nij’rriz} and limimz--.- pSij(z) exp {-2(nij 1)Triz}

exist for all i, j { 1,. , m} such that j.

Now let

h;(z) y;(z)z-PJ exp (-djz log z- Izjz), j {1,’’., m}, , {1,..., 7}.

Obviously, h; is represented asymptotically by hj as z o in S for all j { 1, , rn}
and all , {1,..., 7}. Moreover, if u {1, 3, 4, 6, 7}, the asymptotic expansion is uni-
formly valid on (2.6) for every 6 (0, 7r/2). The uniqueness of hf implies that

(2.11) h](z)=h)(ze-2) forallj{1,...,m}.

Furthermore, we have, for all j { 1, , m} and , { 1, , 6},

(2.12) h;+l(z)- hy(z) p(z)h(z)zP’J exp (d,jz log z + izoz ).
i=1

For all i, j{1,..., m} and all {1,..., 6} we define an integer n and complex
numbers cij and/x0 as follows"

(2.13)

Imax{ n7/: Imzoclim p(z) exp(-2nTriz)exists}
n= |min n7: lim p(z) exp(-2niz)exists

/
0 otherwise,

{0 ifpO,(2.14) c limpo(z) exp (-2nz)
(2.15) ij ij + 2nijiz.

Fuhermore, we define analytic functions f and by

(2.16) f(z) o if C=0
(c)-,pij(z) exp (-2nijiz)h(z)

(2.17)

Obviously,

otherwise,

(2.18)
qj(z) cjf(z)z" exp (diz log z +/x jz),

i, je{1,...,m}, e{1,...,6}.

In order to check whether the conditions of Theorem 1.4 are satisfied, we will first
study the properties of the function g" S -* C defined by

g(z,n)=dzlogz+p,z=(n+p) logz,

if u e {2, 3, 4} and Po 0,

if , 6 { 1, 5, 6} and p 0,

otherwise,

o(z) p(z)h(z)zO, exp (doz log z +/x0z).
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where d ,/. C, pC, and S is one of the sectors St, 0 Sv+l, v{1,..., 6}. From
(2.18), (2.3), (2.7)-(2.10), and the definitions (2.13)-(2.15) we conclude that the
following cases need to be considered:

1. d =0, p =0,/ 2mri, m, S $3,
2. d =0, p =0,/ =-2m,a’i, m N, S= $6,
3. d 0, Re/ < 0, Im/ < 0, S $1 f
4. d 0, Re/. < 0, Im/ > 0, S $2 f $3,
5. d=0, Re/>0, Im/>0, S=S4f’)Ss,
6. d 0, Re/z > 0, Im/z < 0, S $5 f $6,
7. d < 0, Im/z < 0, S S f $2,
8. d<0, Im/>0, S=SS3,
9. d>0, Im/+dr>0, S=S4f’)Ss,

10. d>0, Im/+dr<0, S=SsfS6.
In the first six cases, Og/Oz =0 has a unique solution s, given by

n+p
(2.19) s. -.

Hence

(2.20) arg sn arg (1 + o(1)),

Furthermore, we have

(2.21)
Og

(s, n) tx
Oz n+p

oZg (s, n) -n p,022

(2.22) z(z,n) (z,n) =-2
Oz Oz2

Let S’ S. In each of the cases 1-6 there exists a positive number 6 such that

cos (arg z + arg/x) < -7--7, for all z S’.

This implies that, for all z S’,

Re g(z, n) = -6lzl + (n + Re p) log Izl- Im p arg z.

Hence we easily deduce the existence of positive constants As, and Cs, such that

(2.23) sup lexp g(z, n)] < Cs,As,n .
zS’

Now consider the cases 7-10. There d # 0 and the saddle point sn is a solution
of the equation

(2.24) s,, log s,, +-+ 1
d

Let h be the inverse of the function z-)z log z (cf. [9, Ex. III], [4, 3.6]). It has the
following asymptotic behavior:

(2.25) h(z)= (1 +o(1)),
log z
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From (2.24) we deduce

(2.26)
sn=exp--1 h

d

n+p
logh -n+Pexp +1

d d

With (2.25) it follows that

n
(2.27) s. (1 + o(1)), n- o.

d log n

Equating the imaginary parts on both sides of (2.24), we get

Re/X+l +Resn args,+Imsn log[sl +
d d d

With (2.27) we find

n ( Im/x) (1 + o(1)),ImS.-d(logn) args,+
d

Hence

(2.28) Ims.=
d-(1 n)2 Im/z(1 + (1))’ nc

[,2(-og n)
(Im br + dTr)(1 + o(1)),

ifd <0,

no ifd > 0.

Furthermore, we have

oZg(s, n)=
d n+p d2 { n+p

(2.29) log h \-OZ2 S S. n + p d

and hence

2O2g(sn n) n(1 + o(1)) n - c.(2.30) s.
OZ2

We easily verify that

(2.31)
-103g(z,n)lO2g(z,n--7

2(n+p)-dz
n+p-dz

and the expression on the right-hand side is obviously uniformly bounded on the half
plane -d Re z > 0 and thus on S, provided n _-> no, where no is some sufficiently large
number.

Let $’ S. In each of the cases considered this implies the existence of a positive
number 6 such that

d cos arg z < -6 for all z S’.

Let 0 < e < 6. Then there exists a positive constant C such that

leap g(z, n)l < C exp (-lzl log Izl)lzi", z
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The expression to the right of the inequality sign attains its maximum as Iz[ h(ne/e)/e
and the maximum value is equal to

exp -2n+- h h
e

In view of (2.25) it follows that there exist positive constants As, and Cs, such that

(2.32) supers, lexp g(z, n) < Cs,As,
log n

With the aid of (2.19), (2.21), (2.26), and (2.29) we can derive an explicit expression
for the function M "M- C given by

) -1/2

(2.33) M(n) 2rs2.
02g

(s. n) s exp g(s n)

2where arg (Sn(oZg/ogZ)(Sn, tl))-l/ZG (--’rr, 0), in each of the cases considered above.
With (2.30) we find

[n+p\,+o+

(-27r( n + p)}-’/z exp (- n O { ] if d O,

-27rn)-/Zexp{(n+p)x(n)--l} (1 + o(1)), n-oo, ifd

where x(n)=log h((n+p)/d exp (/x/d + 1)). Let us define a function Ma,’CC by

(2.34)

-27riMa,, s)

r(s)(-)

’F(s) exp
log

ifd =0,

h(-s/d exp (l/d+ 1))
-d log h -exp + 1

ifd 0.

Using Stirling’s formula and the properties of the function h, we readily verify that

(2.35) -M(n-1)=Md.,(n+p)(l+o(1)), n-o.

Now let v { 1, , 6}, v Sv (3 S+I, and let ; be a sector of the following form:

g" S(:,( )r+6, v-1 ) if u { 1, 4},
3

3 ’ if e{2, 5},

S=S L, -1 +,- ife{3,6},

where e (0, /2). Let i, je{1,..., m} such that c0, and let

g(z,n)=dzlogz+z+(n+O)logz zeS, heN.

From (2.19)-(2.22) and (2.27)-(2.31) we deduce that conditions (ii)-(iv) of Proposition
1.3 are satisfied, provided is chosen suciently small. We readily verify that condition
(v) holds as well (with
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Next, we consider the function f defined by (2.16). The asymptotic properties
of h’ imply that

(2.36) lim h(z)= 1 uniformly on S.
Furthermore, from (2.14) and the fact that p is analytic on either a lower or an upper
half plane it follows that

(2.37) Ip(z) exp (-2nTriz)- cl <-_ K exp (-27rllm z[), z

where K is a positive constant. From (2.36) and (2.37) it is obvious that fff is bounded
on S. Moreover, with the aid of (2.20) it is easily seen that, in the case that dij =0,
f satisfies condition (vi) of Proposition 1.3. Now suppose that ,6 {1, 2, 4, 5} and
d0 0. Formulas (2.4) and (2.28) imply that IIm s,l as n, where s, denotes
the saddle point of g(z, n). With (2.36) and (2.37) it follows that, also in this case,
condition (vi) of Proposition 1.3 is fulfilled.

Apparently, all conditions of Theorem 1.4 are satisfied. Applying this theorem
and using (2.33) and (2.35), we obtain the following result.

THEOREM 2.1. For each j{1,..., m} there exists a convergent power series

nO hjnZ-n such that

6

h=h+ E E co{Md,.,,(n+Po)(l+o(1))}, n,
i=1 =1

where c and Md,,,, are defined by (2.14) and (2.34), respectively.
With the aid of Propositions 1.1 and 1.2 we are able to estimate the growth of the

remainder terms R(h z) for n , j {1,. ., m}. Let { 1,. , 6}. S S+ is a
sector of the form S(z, , fl). We begin by considering the functions h defined by

fr () d, i,j{1 m}, {1,...(2.38) ho(z)=2 (-z 6},

where y is a half line in S S+ from z to and is defined by (2.17).
PROPOSITION 2.2. Let i,j {1,. ., m}, {1,..., 6}. efunction h defined by

(2.38) is analytic in S S+I and represented asymptotically by

,=o 2i
’() d z

as z in S S+I. Moreover, for every S’ S S+I there exist positive constants

As, and Cs, such that, for all n

Cs,A,n if d 0,
(2.39) sup IzR,(h; z)l

zS’ [ Cs,A,(n/log n)" if dij O.

Proof The first two statements follow immediately from Proposition 1.1 and the
propenies of . Now let S’ S S+. We can choose a sector S" S S+, of the
form S"= S({, &,) such that S’ $". Let be a half line in S" from { to and

2i if(if- z)

As h-h is holomorphic at , it is obviously sufficient to prove (2.39) for h o instead
of h. Using (2.18), (2.23), and (2.32) and noting that, due to (2.16), (2.36), and (2.37),
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f is bounded on S", we conclude that there exist positive numbers As,, and Cs,, such
that, for all n t,

Cs,,A,,nV if d0. 0,
sup lz,q o( z)l <=
zS,, [ Cs,,a,,(n/(log n))" if do O.

The result now follows by application of Proposition 1.1.
THZORZM 2.3 (cf. also [7]). Let j {1,. , m},

there exist positive constants As, and Cs, such that

suplz"R,(h; z)[< G,a,n, n
zS’

Moreover, if the numbers c defined by (2.14) vanish for all { 1,. ., m} such that
do 0 and all { 1, , 6}, then there exist positive constants Cs, and As, such that

s’ log n

Proo Using (2.11), (2.12), and the definitions (2.17) and (2.38), and applying
Proposition 1.2, we conclude that there exists a function h, holomorphic at m, such that

h(z) h(z)+ 2 h(z)+ h"(zo e)
i=1 =1 =

Thus the statements ofthe theorem are seen to be an immediate corollary of Proposition
2.2.

To conclude this section we shall apply the above results to the second-order
difference equation

{(z++(+ +l(+-{( ++(++(++t(+ +( 0,

where , , % e C, e C* (this is a paicular case ofthe class of equations considered
in [1]). This equation possesses two formal solutions fi and fi of the form

(z) (z)z-- exp {-2z log z + (2 + log )z},

hz-with =1 j=l 2. Thuswehavewhere h(z) 2 =o o

p=2-=-Ol, d=2=-d, =-(2+log)=-.

Assumption (2.4) is equivalent to

arg 0 mod 2.
We shall choose arg (0, 2). With (2.5) it follows that n n 0. Hence, by (2.9)
the following limits exist:

lim pl(Z) exp 2iz and lira
Imz-- Imz

From these and other considerations, based on the paicular form of the equation, it
can be deduced that the periodic functions p,p,p and PI must be of the following
form:

c exp 2iz + (exp 2iy -exp 2i) exp 4iz,(.40 PI(z)
(1 exp 2i(z-a))(1-exp 2i(z-b))

(2.41) p(z) (1 +p(z))- exp 2i(-)- 1,
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(2.42)

pl(Z) --pzZ1(z)

-c21 + c2 exp 27ri(z- y)
1 + { c31 exp (-2-n-ia) exp (-2crib) } exp 2 7riz + exp 2ri(y + 2z)’

where a and b denote the roots of the polynomial z+ az+/3, and 11, c1, and c3a
are defined by (2.14). From (2.7), (2.9), and (2.10) it is seen that c’a =0 for u {1, 2, 4, 5}
and c1 0 for v {3, 4, 5, 6}. According to Theorem 2.1 there exists a convergent power
series Y,=o h,z- such that

ft,,, h,,, + c311Mo,3,,(n)(1 + o(1)) + ClMo,,6,,(n)(1 + o(1))

(2.43) +ClM_z.,,(n+a-2y)(l+o(1)
+c,M_2,,,,(n+a-2y)(l+o(1)), noo.

From (2.40)-(2.42) we deduce, with (2.13) that n31 --n6
1 1, nl -1, nl=0 and

hence, with (2.15), that
6 2,a-i, /xl 2 + log cr 27ri, /x 2 + logtl --L/ 11

Using (2.34), we find

"nMMo,v?,(n) (-1, o,,,(n) F(n)(-27ri)

As the dominating terms in (2.43) are the ones with coefficients c311 and c6 we conclude
that

h" 2. (27ri) 2+1c311+ c611 -lim
--. (2n-1)!

12n+,(2rri) 2n+2CI- CI lim
(2n)!

If c1 0, then, by (2.41), PI -= exp 2ri(y or) 1 and, in view of (2.8), this implies
c161 =0 and y-a 7/. In that case (2.42) becomes

-c221 + c1 exp 27ri(z- a)pl(Z) --pzl(Z’)
(1 -exp 2"rri(z- a))(1 -exp 27ri(z- b))

(where we have used the identity a + b =-a), and the coefficient c1, v {1, 2}, of the
dominating term in (2.43) may be determined from the asymptotic behavior of/1, for

On the other hand, if c311 # 0, then the coefficients c21 and c2 cannot be determined
by this method.
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INVERTIBILITY OF SHIFTED BOX SPLINE INTERPOLATION
OPERATORS *
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Abstract. Cardinal interpolation by integer-translates of shifted box splines Mn,a := Mnnn(’+
a) on the three-direction mesh is studied. It was recently shown by Sivakumar that for even integers
n the imaginary part of a certain rotation of the symbol of Mn,a does not vanish on the torus T2 for
all c in the shift region A (-1/2, 1/2)2 n {(s, t): Is < 1/2 }, and consequently, cardinal interpolation
at 2 by using Mn,a(.- j),j E 2, is poised for all even n and all E A. For odd n, however, since
both the real and imaginary parts of the rotated symbol have nonempty zero sets on T2 for certain
a E A close to the corners of 0A, the analysis in Sivakumar’s work does not directly apply to the
study of this situation. In this paper we prove that the above mentioned zero sets are disjoint for all
odd integers n and all a E A, and hence, the symbol of Mn,a never vanishes on T2. In other words,
the cardinal interpolation operators corresponding to Mn,a, a E A and n 1, 2,..., are invertible.

Key words, cardinal interpolation, poisedness, shifted box splines, symbols
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1. Introduction and results. Let be a piecewise continuous real-valued func-
tion with compact support in 8, s >_ 1, and let

S() "= I Z aj(.- j)" ajE 1"
The problem of cardinal interpolation from S() is to study the existence and unique-
ness of a bounded "coefficient" sequence {aj } C corresponding to any given bounded
"data" sequence {fj } C , such that the "spline" function a(.-j) from S() agrees
with {fj} on Zs; that is,

(1.1) Z aj(i- j)= fi, e Z.
This problem is said to be poised (or correct) if corresponding to any bounded data
sequence {fj} there exists a unique bounded coefficient sequence {aj} such that (1.1)
is satisfied. The discrete Fourier transform of , defined by

jZ

plays a central role in the study of the above problem. (Note that agrees with the
restriction on the torus T of the symbol or z-transform E(j)z-J of .) In fact, the
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problem of cardinal interpolation from S() is poised if and only if never vanishes
(cf. [1], [6], and [3]. Hence, in this paper, we will concentrate on establishing the
strict positivity of I(x)l, x e ]R8.

A somewhat stronger condition is the so-called "metric condition"

(1.3) I1- (x)l < 1, x e ]R8,

first considered in this context in [4]. If satisfies (1.3), then not only the cardinal
interpolation problem has a unique solution to any given bounded data sequence,
but this solution can also be constructed using the Neumann series (cf. [5] and [3]).
Another important reason for considering a condition such as the metric condition
in (1.3) is that since a multivariate analogue of the univariate "total positivity" does
not exist, some condition which is not described in terms of sign changes, such as
the metric condition (1.3) (or perhaps more suitably a somewhat weaker one), is
needed to take place of total positivity in ]Rs, s > 2. For instance, let B Bk
X(-1/2,1/2) *"" * X(-1/2,1/2) be the kth order centered B-spline, where a k-fold convolution

of the characteristic function of (-1/2, 1/2) is taken. Then by using total positivity, it was
shown in Micchelli [7] and de Boor and Schoenberg [2] that the cardinal interpolation
operator corresponding to the shifted B-spline Ba "= B(. + a), lal _< 1/2 is invertible
if and only if a g: 4-1/2. In Sivakumar [8], this invertibility result was recovered by
showing that/a never vanishes for lal < 1/2. Recently, in Smith and Ward [10], it was
further shown that the metric condition

I1- B(x)l < 1,

is satisfied for lal
_

1/2 if and only if a # +/- 1/2. Hence, it would seem to be hopeful that
the metric condition can sometimes replace the total positivity property in certain
multivariate derivations.

In this paper, we will restrict attention to bivariate box splines on a three-direction
mesh. Let Mnnn denote the centered box spline with directions (1,0), (0,1), and (1,1),
each repeated n times (cf. [3], Chap. 2). We will study the shifted box spline

(1.4) M,:=Mnnn(.+a),

where a is in the shift region

(1.5) a := (-1/2, 1/2)= {(,,t). tl < 1/2},

(cf. Fig. 1). Note that A is a largest connected region for the shift parameter a in
the sense that for each a E 0A, the zero set of in,a is nonempty (f. [9] and [12]).
Recently, Sivakumar [9] showed that when n is even, Im(e-i2a’xMn,a(x)) 0 for all
x E ]2. For odd n > 1, however, this conclusion no longerholds, and in fact, both of
the zero sets of the real and imaginary parts of e-i2’’Mn,a(x) are nonempty. The
objective of this paper is to show that these two sets are disjoint. More precisely, the
following result will be established.

THEOREM 1. For each n 1, 2,..., Mn,a(x) 0 for all x IR2 and a A.
Of course, as mentioned above, for even n this result was already established in

[9]. It is interesting to note that due to the nature of the zero sets of the real and
imaginary parts, the proof for odd integers n is much more involved, and in fact we
used computer experiments to locate a separation of these zero sets.
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(1/2,1/2)/
/s=t

A2 / /I
A3

/

/

/
(1/2)

s"

// A4

/(- 1/2,- 1/2) (0,- 1/2)

/

FIG. I

A very brief outline of the proof of Theorem 1 will be given in 2. Necessary
lemmas and Theorem 1 will be proved in 3. In the final section, numerical examples
will be given to demonstrate that in contrast with the univariate B-spline situation,
the metric condition (1.3) is not satisfied by every Mn,a, a E A, and this leaves room
for further investigation.

2. Brief outline of proof. Let denote, as usual, the Fourier transform of .
Then by an application of the Poisson Summation formula (cf. [11, p. 49]), we have

(2.1) rn,a(x) E n,a(x + 2rj)
jZ

E nnn(X + 2rj)eia’(x+2ri),
jZ

where Mn,a is the shift of Mnnn by a as defined in (1.4). Also, let A denote the mul-
tiplicative group of 2 x 2 matrices isomorphic to the permutation group 5’3; that is, A
has order 6 and consists of the matrices" ( ), (_01-01), (0 _l), (1 01) (-11 -), (_01 _ll)"
As noted in [9], the following identities hold for all A E A:

Mn,+aA(:kxA) Mn,a(x),
Mn,+/-(A(X) Mn,a(=t:xAt),

where, as usual, A denotes the transpose of A. The identities in (2.2) allow us to
restrict our attention to a certain subregion of ]R2 in establishing Mn,a(x) 0, x ]R2.

Let x (2ru, 2rv) and let A denote the closed triangular region with vertices at
(0,0), (1/2, 0), and (1/2, 1/2). Then the set

(J { (u, v)A" (u, v) e A},
+/-A.A

shown in Fig. 2, is a fundamental region in the sense that with a portion of its boundary
removed, the translates of F over Z2 form a disjoint partition of ]R2. It is not difficult
to verify that F is invariant under the transformations q-A for all A ,4, and that
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(-2/3,1/3 .1/3,1/3) A2

(- 113,- 1/3: (23,- f3)

u=l/2-v

FIG. 2

the shift region A is invariant under the transformations A E A. Hence, in view of
(2.2) and the definition of F, in order to prove that Mn,(x) 0 for all x E ]1,2 and
a A, it is sufficient to show that Mn,(x) 0 for all x 27rA and a A. For this
purpose, we divide A into two sub-triangles:

u + <

(cf. Fig. 2). Instead of showing that Mn,a(x) O, we follow [9] and show that a
related series does not vanish on A. First, consider the rotated symbol

(2.4) Pn,a(u, v) := e-i2a’(u,V)Mn,a(27ru, 27rv)

j,kez
kr(u + j) r(v + k) r(u + v + j + k)

Here and throughout, we set c (s, t). For (u, v) A, the zero structure of Pn,a is
the same as that of

 r(u+v)Q,,,(u, v) :=
sin ru sin Trv sin Tr(u + v) P,,,(u, v)

u+j v+k u+v+j+k
j,kEZ

We will first show that Re Qn,a(u, v) > 0 for (u, v) E A1. To analyse Qn,a on A2,
we divide the shift region A into six parts A1,..., A6 as shown in Fig. 1. Since we
require A A U... U A6, the six edges separating A,..., A6 and joining the origin to
the boundary of A must be included. For notational convenience, we simply include
both such boundary edges of each Ai to Ai. For (u, v) /k2 it will be shown that
Im Qn,,(u, v) < 0 if a (s,t) e AUA2\{0} and ImQn,(u, v) > 0 if a (s, t) e A3t.J
A4\{0}. On the other hand, for a (s,t) e Ah\{0} and a (s,t) e A6\{0}, we will
see that Im(ei2tQn,a(u, v)) is strictly positive and strictly negative, respectively, for
all (u, v) A2. Of course the isolated situation a 0 not considered here corresponds
to the centered box spline Mnnn result already established by de Boor, Hhllig, and
Riemenschneider in [1].
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3. Proof of main result. Theorem 1 can be easily verified for n 1, and,
as mentioned above, has already been established by Sivakumar [9] for even n. In
this section, we will present a proof for all integers n _> 3, although some of the
estimates still hold for n 2. To facilitate oar argument, several simple observations
are included in the following lemma.

LEMMA 1. Let k,l, m Z\{0} and 0 < v < u < 1. Then
(a) sin 2ryk <_ Ikll sin 2ry for all y e ;
(b) The functions

hi(x, y, z) (1
=i= (1 +

are increasing in each of the variables x,y,z on the interval [0, 1); moreover,
Ih_(x,y,z)] <_ h_(Ix],lyl,]zl) forx, y,z E (-1, 1).

(c)
(d) <1 -4-1; and

(e)
Note that the inequalities (c), (d), and (e) were also used in [9]. We now proceed

with our estimates.
LEMMA 2. Let n 2 be any integer. Then ReQn,(s,t)(u, v) > 0 for all (u, v) E Ai

and (s, t) E A.
Proof. om (2.5), we have

u+j v+k u+v+j+k
j,k

We split this series into two parts, namely"

E=E
j,k jeZ,k=O

=’S+T,

u+v)n( u

u+v+j u-j-1
1 2 n 1 2(e-v) n

1 2e n 1 2(e- v) n]

[(uaj "= (-1)J
u+j

ForSl, set’-1/2-u_>0and

(3.2)

u+v
u+v+j

u+v )n]u+v-j-1

and will show that two terms in the series S dominate. To see this, the series S is
again written as the sum of two subseries as follows:
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Here, as a function of (u, v), ao is nonnegative and vanishes only when (u, v) (1/2,0).
Hence, it follows from Lemma l(b) and 0 <_ v _< e <_ 1/2 that

1JayJ <
(2j -t- 1)2ha

for all j >_ 1, and consequently, for all n _> 2,

(3.3) $1 ay _> ao 1-
(2j + 1)2n -> --gao.

The subseries $2 defined in (3.2) can be treated in a similar manner. Let

(3.4) by (-1)Y+12 sin2 rj (- (u--u j-u-v j+u j+u+v

where b >_ 0 and is strictly positive for [s[ < 1/2 and (u, v) 7t (0, 0). By factoring out
j-2n in (3.4) and applying Lemma 1 (a) and (b), we have

(3.5) [ .2 1 sin2rj(1/2-s)lS >_ b 1-
.= j--- n -f s)

[ 1 ]>_ b 1- j2nz2 >- 0.35b

for all n _> 2. Hence, combining the information from (3.3) and (3.5), we have

67
(3.6) S >_ --ga0 + 0.35b,

which is strictly positive for all (u, v) E/Xl and Isl < 1/2. To study the series T, note
that for (u, v) E/X, the inequalities

O<_u,u+v<_ 1/2 and 1/4<_l-v_<1

hold. It follows that for n >_ 2,

v n 1 n ln 1 n

ITI-< (i-v) I1
4 1 212 1 2

I1
yz,k#o

5
-4

On the other hand, writing e 1/2 -u, we have

ao>_l
1-u

> 2e > 2v.

(1 + 2e)2 (1 2e)2

(1 + 2e)
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This together with the lower bound estimate (3.6) gives

ReQn,(8,t) (u, v) >_ S- ITI >_ - g ao + 0.35bl > 0

for all Isl < 1/2, completing the proof of the lemma.
For (u, v) E A2, we first consider the shift region A1 U A2 U A3 A4 as follows.
LEMMA 3. Let n >_ 3 be an integer and (u, v) A2. Then

(a.7) < 0

and

ImQn,a(u, v) ) 0 /’or a e A3 [J A4\{0}.

Proof. We first observe that since

Q,,(u, v) Q,,_(u, v),

the conclusions (3.7) and (3.8) are equivalent. To verify (3.7), write

(3.9) ImQn,(8,O(u, v) =. T1 / T2,

where

and

TI:= E sin 2rsj cos 2rtk
u v u + v in,ez u + j v + k u + v + j + k

sin 2rtk
u v

2rsj
u+j v+k

u+v
u+v+j+k

Our plan is to show that T1, T2 <_ 0 on A2 and have disjoint zeros there. For the series
T1, we factor out the dominant term

u u-Fv <_ O,(3.10) c-l,o := sin 2rs
1- u 1- u v

and using the condition u / v > 1/2 and u > 1/4 for (u, v) A2 and applying Lemma 1
(c)-(e), we conclude that

cos 2rtk
u + j v + k

l+3k l+2j+2k

1-u-v n }u+v+j+k

where the numerical constant is obtained by using n 3. Hence, T _< 0 and has
zeros in A2 (and in fact vanishes identically) if and only if s 0. To study T2, we
first restrict our attention to v _> 0.05. In this case, factoring out the dominant term

v
do,- "= sin 2rt

1 v
u+v )n<O1 -u-v
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and applying Lemma 1 (c)-(e), we have, similarly,

T2<_d0,-1 1- E [k[ l+2j" l/20k" l/2j+2k
(j,k)#(o,-1)

<_ 0.08do,-1,

where, in addition to the constraint v >_ 0.05, n 3 has been used for computing the
numerical constant. Note that T2 < 0 if t - 0, and vanishes only if t 0. Now suppose
that v <_ 0.05. We keep (u, v) E A2 and t fixed and consider g(s):- T2(s, t, u, v) as a

1function of s. We will first show that g() < 0 for t 0 and odd n, and g(0) < 0 for
t 0 and even n. Next we will verify that g is an increasing (respectively, decreasing)
function on [0, 1/2] depending on n odd or even; hence, the proof of the lemma will be
complete.

To establish the first claim for odd n, set e 1/2 u and consider the sum of the
(j, k) and (-j 1,-k) terms of [uv(u + v)]-ng(1/2), namely:

(3.11)
gjk "= (--1)J22n sin 2rtk{(2j + 1 2e)-n(k + v)-n(2j + 2k + 1 + 2(v e))-n

(2j + 1 + 2e)-n(k v)-’(2j + 2k + 1 2(v e)) -’}
(-1)J22n(sin 2rtk)(2j + 1)-nk-n(2j + 2k + 1) -n

2e (1 v -n 2(V e) -nX{(1 2j+l) -n. +)(l+2j+2k+l)
2e -n v -n 2(v e) -n

-(1+2j+1 ) (1-)(1-2j+2k+1)}.
Here, the assumption that n is odd has been used to determine the signs of both terms
in the above formulation. By Lemma 1 (a),(b),

where g-1,1 <_ 0 and 0 only for t 0. Hence, it follows that

g "
__

g--l,l[UV(lt --V)]n 1 E 12J + ll-nlkl-n+ll2J + 2k + ll-n
k>l_

0.89g-l,l[uv(u + v)]n.

If n is even, then g-1,1 _> 0 and the corresponding term in the series of [uv(u +
v)]-ng(O) is 9jk :- (-1)Jgjk. Since 9-1,1 _< 0 and 0 only for t 0, the above
analysis directly applies to showing g(0) _< 0.

To establish the claim that g is a monotone function on [0, 1/2] for fixed (u, v) E A2
with v _< 0.05 and t 0, we note that

g’ (s) -2r E j sin 2rjs sin 2rkt
u

j,k#O

v u+v ]nv+k u+v+j+k

In particular, the series is dominated by the (-1, 1) term

-2r sin 2rs sin 2rt
u

g--1, 1"-- [u_l l+v
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which is positive for odd n and negative for even n. Assuming 0 _< v _< 0.05, 0.45
u _< 0.5, and 0.5 _< u / v _< 0.525, Lemma 1 (c)-(e) is used as follows:

E jsin2rjssin2rkt[ u. v u+v inu+j v+k u+v+j+k

z’ u+’----’v+k u+v+j+k
(j,k)(-,l)

Ii-u l+v u+v 13u+j v+k u+v+j+k1,1
(.,k)(-.,.)

-< 0"45g- 1,1"

Hence, combining the estimates for Tz and T2 into (3.9), we have established (3.7)
and consequently completed the proof of the lemma. E]

To complete the proof of Theorem 1, the only remaining task is to establish the
following.

LEMMA 4. Let n >_ 3. Then for all (u, v) e A2,

(3.12) Im ei2Qn,(s,O(u,v > 0 ff (s,t) e Ah\{0},
(3.3) z, -Q,(,)(, ) < 0 f (,t) e A\{0).

Proof. The proof adapts the method in [9] (cf. Case IV in the proof there)
applied to a different A2 as follows. Again, it is sufficient to establish (3.12). Let
c (s, t) e A5\{0). Then

(3.) z .Q,(,)(u, )

sin2r(js / (k / l)t)
u / j v / k u + v / j + k

=" T’ + T",

where T’ and T" are defined as in [9] (see also (3.15)-(3.16) to follow). For (u, v) 6 A2,
and0 < u+v < it follows from [9, Eq.(4.25)] that T’ is0<u< 1/2,0 < v < ,

dominated by sin 2rt, and hence is nonnegative and vanishes only when t 0. For
andT", we must modify the argument in [9] and rely on the restrictions u >_ 1/4, v <_

u / v >_ 1/2 in applying Lemma 1 (c)-(d). With the dominant term

(3.15) t ( u u+v )n sin 2r(t- s) > 0,,o :=
1--u 1--u--v

we have

T,,::t[ [1_ E (1-u v 1-u-v ),o u+j’v+k u+v+j+k
(,k)

(o,o),(-,o)

sin 2rj(t s)
2rjt cos 2r(k + 1)t](’)

i:(t )
o

+4j l+a l+j+
>t"-I,0

(,k)#
(0,o),(- ,o)

>_ 0.96t"_ 1,o,
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50 -0.25 0,00 0.25 0.50

FG. 3

where the numerical lower bound is obtained by using n 3. In view of (3.15),
T" _> 0 and vanishes only for s t. Combining this with the estimate for T’, we
conclude that Im ei2tQn,(s,t)(u, v) is strictly positive for all (u, v) 6 A2 and all shift
parameters (s,t) 6 Ab\{0}. This completes the proof of Lemma 4, and hence, of
Theorem 1. D

4. The metric condition. The purpose of establishing (x) 0 for all x 6
s is to guarantee that cardinal interpolation by using (.- j),j 6 Z is poised.
If satisfies the metric condition (1.3), then not only (x) 0 for all x
but the cardinal interpolants can also be constructed by using the Neumann series
[5]. For B-splines Bk in one variable, it was shown in [10] that I1 Sk,a(x)l < 1
for all x and Icl < 1/2, where Bk,a "= Bk(" / c); hence, the important univariate
notion of total positivity is not required in establishing invertibility of the cardinal
interpolation operators corresponding to the shifted B-splines. Unfortunately, in the
case of bivariate splines on the three-direction mesh considered in this paper, the
metric condition

(4.1) I1 Mn,a(x)[ < 1, x e 2,

is no longer equivalent to the condition

Mn,a(x) # O, x e ]2.

Let An denote the largest subregion of A on which the metric condition (4.1) holds. In
Fig. 3, we have plotted subregions A1, A2, A3, A4 of the shift region A. Observe that
A A D A2 D A3 D A4, where all the containments are proper. However, at this
writing, we do not know if {An } is a monotone sequence. It would also be interesting
to know its "limit" or "intersection."

Acknowledgment. The authors thank N. Sivakumar for several stimulating
conversations.

REFERENCES

[1] C. DE BOOR, K. HbLLIG, AND S.D. RIEMENSCHNEIDER, Bivariate cardinal interpolation by
splines on a three direction mesh, Illinois J. Math., 29 (1985), pp. 533-566.



INVERTIBILITY OF SHIFTED BOX SPLINE INTERPOLATION OPERATORS 553

[2] C. DE BOOR AND I.J. SCHOENBERG, Cardinal interpolation and spline functions VIII:

[10]

[11]

[12]

The
Budan-Fourier theorem for splines and applications, Lecture Notes in Mathematics 501,
Springer-Verlag, 1976.

[3] C.K. CHUI, Multivariate Splines, CBMS-NSF Regional Conference Series in Applied Math. 54,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1988.

[4] C.K. CHUI AND H. DIAMOND, A natural formulation of quasi-interpolation by multivariate
splines, Proc. Amer. Math. Soc., 99 (1987), pp. 643-646.

[5] C.K. CnvI, H. DIAMOND, AND L.A. RAPHAEL, Interpolation by multivariate splines, Math.
Comp., 51 (1988), pp. 203-218.

[6] C.K. CHUI, K. JETTER, AND J. D. WARD, Cardinal interpolation by multivariate splines, Math.
Comp., 48 (1987), pp. 711-724.

[7] C.A. MICCHELLI, Cardinal L-splines, in Studies in Spline Functions and Approximation Theory,
Karlin, Micchelli, Pinkus, and Schoenberg, eds., Academic Press, New York, 1976, pp. 163-
202.

[8] N. SIVAKUMAR, On univariate cardinal interpolation by shifted splines, Rocky Mountain J.
Math., 19 (1989), pp. 481-489.

[9] , On bivariate cardinal interpolation by shifted splines on a three-direction mesh, J. Ap-
prox. Theory, 61 (1990), pp. 178-193.

P.W. SMITH AND J. D. WARD, Quasi-interpolants from spline interpolation operators, Constr.
Appr., 6 (1990), pp. 97-110.

E.M. STEIN AND g. WEISS, Introduction to Fourier Analysis on Euclidean Spaces, Princeton
University Press, Princeton, NJ, 1971.

J. STSCKLER, Cardinal interpolation with translates of shifted bivariate box-splines, in Math-
ematical Methods in Computer Aided Geometric Design, T. Lyche and L.L. Schumaker,
eds., Academic Press, New York, 1989, pp. 583-592.



SIAM J. MATH. ANAL.
Vol. 22, No. 2, pp. 554-572, March 1991

1991 Society for Industrial and Applied Mathematics

016

A SIMPLE WILSON ORTHONORMAL BASIS WITH
EXPONENTIAL DECAY*

INGRID DAUBECHIES’, STIPHANE JAFFARD:, AND JEAN-LIN JOURNI

Abstract. Following a basic idea of Wilson ["Generalized Wannier functions," preprint] orthonormal
bases for L2(R) which are a variation on the Gabor scheme are constructed. More precisely, b L-(R) is
constructed such that the ln, N, n 7, defined by

4,o.(X) (x- n)

q%(x)=x/b(x-)cos(27r/x) if O, l+ n 271

b(x-)sin(2"rr/x) ifl0, /+n2Z+l,.-.-
constitute an orthonormal basis. Explicit examples are given in which both b and its Fourier transform 4
have exponential decay. In the examples b is constructed as an infinite superposition ofmodulated Gaussians,
with coefficients that decrease exponentially fast. It is believed that such orthonormal bases could be useful
in many contexts where lattices of modulated Gaussian functions are now used.

Key words, orthonormal bases, phase space localization, time-frequency analysis

AMS(MOS) subject classifications. 46C10, 81C40, 94A11

1. Introduction. In several applications in quantum mechanics and in signal analy-
sis, sets of functions generated from one single function by phase space translations
are encountered:

(1.1) gm,,(x)=e2"i’mXg(x--fln), m,n7/.

If the function g and its Fourier transform g,

() f dx e:’"’XC:g(x),

are both centered around zero, then the function g,n is centered around the phase
space point (am, fin). We can then hope to use the functions g,n for expansions of
functions with good phase space localization. More concretely, we would like
expansions of the type

(1.2) f= E Cm,,(f)g.,,,,

with the property that the c,,,(f) are nonnegligible only for those values of (m, n)
associated to phase space points where f is nonnegligible. For example, if
jltl>_r dt If(t)12-<_ ellfll and lel_>_a d If(:)l2= ellfll, then we would prefer most of the
"content" off to be concentrated in the c,,,,,(f) with (ma, nil) within or close to the
rectangle [-l),12] x [-T, T]. More concretely, this can be translated into the
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requirement

(1.3) ]Cmn(f)12 cllfll =,
Iozml>= T+A T

where C should be independent of e, T, and 1, and where A T, AO should only depend
on the desired precision e.

One example of a set of functions of type (1.1) are the phase space Wannier
functions used in solid state physics. In the absence of a potential they are obtained
by the choice

sin 7rx
g(x)

which corresponds to

1, 1 1<1/2,
(:)

0, otherwise.

(When the potential is nonzero, the Wannier functions are more complicated 1 ].) For
this choice of g, and for the parameter choice a =/3 1, the functions (1.1) constitute
an orthonormal basis of L2(). Expansions of type (1.2) are therefore simple to obtain:
it suffices to take mn(f)-- dx gmn(X)f(x). Unfortunately, the localization of g is not
very good. The function g has a rather long tail, so that

ax xZlg(x)l2- .
As a consequence of this, expansions of functions with respect to the phase space
Wannier functions do not have the good phase space localization features described
above.

Another example of a set of functions of type (1.1) is given by the "Gabor
expansions." These correspond to the choice

g(x)-- 21/4 exp (-zrx2).
In the original proposal of Gabor [2], the parameter choice a =/3 1 is made. Unfortu-
nately, this parameter choice leads to numerically unstable expansions: for any e > 0,
there existsf L2() such that ]If 1 but ,,,, ICm,,(f)12 e. It can be shown that this
phenomenon happens for any choice of a,/3 such that a/3 1 [3a, b], [4a, b]. If a/3 > 1,
then the g,, do not span all of L2() [5], [6]. If a/3 < 0.996, then numerically stable
expansions of type (1.2) do exist, with the "good" phase space localization described
by (1.3) (see [7], [8]; it is conjectured that this situation persists for a/3 < 1). There is,
however, a price to pay: for a/3 < 1, the g,,, are highly redundant, in the sense that
any finite number of them lies in the closed linear span of all the others. While Gabor
expansions with a/3 < 1 are indeed used in practical computations in atomic and nuclear
physics, this redundancy can be quite a nuisance.

These two examples illustrate how convenient it would be to have a nice orthonor-
mal basis (- no redundancy) of type (1.1), based on a function g such that both g
and have good decay properties (- expansions with good phase space localization).
Unfortunately, such an orthonormal basis does not exist. A theorem stated by Balian
[9] and Low [10] asserts that a set of functions of type (1.1) can only constitute an
orthonormal basis if either dx x2[g(x)l2-- o or dsc Balian’s and Low’s
proofs contain a technical gap that was filled by Coifman and Semmes, as reported
in [7]; a much simpler proof was subsequently found by Battle [11]. Even if the
orthonormality, but not the "basis" requirement, is given up, the same conclusion still
holds, as shown by the extension of Battle’s argument in [12]. Both the original proof



556 I. DAUBECHIES, S. JAFFARD, AND J.-L. JOURNI

and Battle’s proof of the Balian-Low theorem rely heavily on the special structure of
the g,n as defined by (1.1). We might therefore wonder whether there exist more
general bases, 4’m,,(X), with phase space localizations distributed more or less regularly
over phase space, and such that uniform bounds on the decay of all the 4,, and
(4,m)^, away from their central value, would hold. It turns out that there is indeed
improvement from giving up the simplicity of (1.1), but only very little. Bourgain [13]
has constructed an orthonormal basis of 4m, such that

lax (X ,mn)211]lrnn(X)l2 C,

(1.4)

a: (- -m,,)l(q,,,,,,)^()l:’< C,

uniformly in m, n, where ’mn dx XI,I,m,,(X)I 2, and mn is defined analogously. However,
as soon as a slightly sharper localization is required, we hit another no-go-theorem,
even for these more general constructions: Steger [14] proved that L2(R) does not
admit an orthonormal basis ,,, satisfying

dx (x mn)2(l+e)lclmn(X)]2 C,

(.5)

d (- m,,)Z(l+)l(q6,,,,,)^()12-< C.

Orthonormality, or, what is weaker, the existence of numerically stable expansions of
type (1.2) with nonredundant functions 46, is therefore incompatible with good phase
space localization.

In all the above, "good phase space localization" stands for strong decay properties
of the 4,, (4m)^ away from the average values g,,, ,n. This corresponds to a picture
in which both 4’m, and (4’m,) have essentially one peak. In [15] Wilson proposes
instead to construct orthonormal bases 4’,, of the type

(1.6) bm,(X) f,,(x- n), m N,

where f,, has two peaks, situated near m/2 and m/2,

with b +., b-, centered around zero. He proposes numerical evidence for the existence
of such an orthonormal basis, with uniform exponential decay for f, and b+,,, b. In
his numerical construction he further "optimizes" the localization by requiring

(1.8) d:2(4%.)^(s) qm,,,() 0
if Im m’l > 1,
or if m m’l 1, > 1.

In [16] Sullivan et al. present arguments explaining both the existence of Wilson’s
basis and its exponential decay. In both 15] and 16] there are infinitely many functions

m; as rn tends to c, the b tend to a limit function
The moral of Wilson’s construction is that orthonormal bases with good phase

space localization are possible after all if bimodal functions as in (1.7) are used. This
is reminiscent of what happens for orthonormal wavelet bases, i.e., orthonormal bases
of L2(R) of the type

(1.9) hmn(X) 2-’/2h(2-’x n), m, n 7/.
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There exist functions h with excellent phase space localization properties such that
the functions (1.9) constitute an orthonormal basis. In [17] Meyer constructs such a
function h with compactly supported, C Fourier transform/; 18]-[20] give examples
of exponentially decaying h ck; and [21] constructs compactly supported h C k. In
all these examples, hl has two peaks, one for positive and one for negative frequencies.
It has been shown [22] that these two peaks need not be symmetrical in order for the
h,,n to constitute an orthonormal basis (the examples in [17]-[21] all have symmetric
peaks for I1). However, there is no example, so far, of reasonably well-localized
functions h such that support (h +/-) c R+/- and such that the hn constitute an orthonor-
mal basis of L2(R), corresponding to wavelet bases with only one "peak" in frequency.
(Equivalently, there is no example of a reasonably smooth function b =// such that
the functions 2 m/2 exp (2,rri2mn)b(2m) are an orthonormal basis of L2(+).) It is
believed, without proof so far, that no such basis exists. This seems to be the analogue,
for the wavelet situation, of the Balian-Low theorem.

In this paper we construct an explicit bimodal orthonormal basis of the type (1.6),
(1.7). Our basis is especially simple because it is again generated by one single function,
unlike the bases in [15], [16]. More explicitly, we construct a real function b such
that with the definitions

fl() b (:),

(1.9a) 1fe+K(sc)=__[b(sc_)+(_l)e+Kb(sc+g)] i’n’: \{0}, K=0 or 1

the family

(1.9b) ,,,(x)=fm(x-n), m \{0}, n7/

constitutes an orthonormal basis. Both b and its Fourier transform b have exponential
decay. Moreover, b can be explicitly constructed as a rapidly converging superposition
of Gaussians. All these features should make the basis constructed here especially
attractive for the computations in atomic and nuclear physics where the Gabor functions
are now used. The price we pay for the simplicity of our Wilson basis is that the
near-diagonalization (1.8) of :e no longer holds.

This paper is organized as follows. In 2 we derive necessary and sufficient
conditions on b for the ,,., defined by (1.9), to be an orthonormal basis of Le().
In 3 we rewrite these conditions in another form, via the Zak transform. In their new
form, it is easy to see how to satisfy these conditions. We use this in 4 to construct
an explicit Wilson basis with all the properties mentioned above. It turns out that our
construction is related to "tight frames" [23], [7]. We review this concept in 5, and
explain how it is linked to the present construction. This leads to an alternate construc-
tion method, given in 6, which is easier to implement numerically. Finally 7 gives
some concluding remarks. In particular, we show how a relabelling of the p,. in (1.9)
reduces the construction to the formula given in the Abstract.

2. Necessary and sufficient conditions. It suffices to prove that

(2.1) I1 , .11 1, m6N\{O}, n7/,

and

(2.2) Z
m=l

(g, ..)( g’m., h) (g, h)
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for all g, h L2(R). Indeed, from (2.1) and (2.2) we obtain

1 +
(m,n)(m’ n’)

whence (,, ,,,) 6,6,,,. It follows that (2.1) and (2.2) imply that , constitute
a total ohonormal set.

We first concentrate on (2.2). Using Parseval’s identity and the Poisson summation
formula, we find

(g, )(, h)= J d() h(+k)f()f(+k).
m=l n=-- m=l k=-

(Note that we use the physicist’s convention for the inner product in L2(), which is
linear in the second argument, (g, h)=J dxg(x)h(x).) In order to have (2.2), it is
therefore necessary and sucient that

(2.3) E f()f(+ k)= o.
m=l

Let us write this out in terms of . For the time being, we disregard any convergence
questions; for the function we will construct all series converge absolutely and uni-
formly. We also assume to be real.

f()f(+ k)

((++ 2 [(_+(_le+(+]
g=l =0

(.4 [(,,,

1
=((++ 2 (+(++(+(-

1

ge,gO

If k is even, k 2j, then

(2.4)=

If k is odd, k 2j + 1, then

(2.4)= 2

as is easily shown by the change of summation index g’=-+ 2j + 1. It follows that
(2.3) is equivalent to

We now turn to (2.1). It clearly suces to prove IImll 1, m 0. For m 1
this gives
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For rn 2g+ o-, g>_-1, we find

IIf,l[2= d Ib(- {) + (-1)e+b(:+ {)12

1+(-1)e+ d(-g)(+g).

It follows that (2.1) is equivalent to

(2.6) d()(+2g) 6eo.

This condition is automatically satisfied if (2.5) holds:

d()(+2) Z d(+k)(+k+2)
ke

deo eo.

We have again assumed that is suciently well behaved so that the summation and
integration may be commuted in this computation. It is easily checked that it is sucient
that decays Nster than I1- for I1 . For the examples we will construct, this is
no problem. The following proposition summarizes our findings.
Pooso 2.1. Suppose tha is a real function on N satisfying

I()1 c(1 +ll) -1-

for some C, e O. en the functions , defined by (1.9) constitute an orthonormal
basis for L() Vand only V

(+)(++2j) ao.
We therefore have only one set of conditions, namely (2.5). This condition can

be almost trivially satisfied if we choose to be supposed in [-1, 1]. In this case
b()(+ 2d) 0 if d 0, for any . It follows that (2.5) is satisfied if(+d)
1. Since this sum is periodic in with period 1, we only need to check what happens
for 0 1. For supposed in [-1, 1], this means we only need to asceain that
b()+(-l)2= 1 for 01. Such are easy to construct: for any function F
such that

F’

F(x) {0, xN0,
1, xl,

ON F(x) N1 for allx,

,()

the function 4 defined by

sin

cos [F()], _->0



560 I. DAUBECHIES, S. JAFFARD, AND J.-L. JOURNI

is a function supported in [-1, 1] which satisfies (2.5), hence (2.1) and (2.2). If F is
C k (where k may be c), then b is C k. The corresponding qm, are C-functions; their
decay at c is regulated by the regularity of F. If F is C, then the q,,n have "fast
decay," i.e., for all N N, there exists CN such that

@m,(X)[ CN(1 +lx- hi2)-.
In practice, however, the constants CN turn out to be rather large, so that the numerical
localization ofthe q,,n is not very good. The examples we construct in 4, corresponding
to noncompactly supported b, have better effective localization.

3. The Zak transform--rewriting the conditions. Using a unitary transformation,
we will rewrite the infinitely many conditions (2.5) (one for every j) into a different
form, reducing them to one single condition which is then easy to satisfy. The unitary
map we shall use is the Zak transform. For the purposes of this paper, we define the
Zak transform by

(3.1) (Uzg)(t, s)=x/ e2"kg(2(s--k)).
kET/

This is well defined for functions g with sufficient decay, [g(x)[ <- C(1 -t-IX[2) -1/2-e. The
two-variable function G Uzg is periodic in the first and "semi-periodic" in the second
variable,

(3.2)
G(t+l,s)=G(t,s),

G(t, s+ 1)= e2="G(t, s).

The set of all functions G of two variables satisfying the periodicity conditions (3.2)
can be equipped with the norm

(3.3) IIGII== dt ds IG(t, s)l 2.

We will denote the closure of this set, under the norm (3.3), by Lr. A function G is in
Lr if and only if its restriction to [0, 1[ [0, 1[ is square integrable, and it satisfies the
periodicity conditions (3.2) almost everywhere. It follows that Lr is isomorphic with
L2([0, 112). The functions E,,(t, s), defined by

Emn( t, s) e2i"t e2=i’s for t,s[0,1[,

extended by (3.2) to all of R-, constitute an orthonormal basis for .
The map Uz defined by (3.1) can be extended to a unitary map from L2(R) to

This follows from the fact that Uz maps the orthonormal basis e,,n(x) e=i’XX(x-2n),
where X(x) 2 -1/2 if 0 -< x < 2, X(x) 0 otherwise, to the orthonormal basis
Uze,, Emn.

The Zak transform has many interesting properties; it derives its name from its
systematic study by J. Zak, who introduced it as a tool in solid state physics [24a-c].
It had already been studied sporadically before Zak’s work, and it is claimed that even
Gauss was already aware ofsome of its properties. An excellent review ofthe mathemati-
cal properties of Uz and its applications to signal analysis is Janssen’s paper [25],
which also contains an extensive reference list.

The inverse transform of (3.1) is given by

(3.4) U1G)(x) -- at G t,
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Again this is only well defined for some G in Y (including all bounded G), but it can
be extended to all of .

There exists a relationship between Uzg and Uz. Using the Poisson summation
formula, we find

(Uz,)(t, s)= x/ eeE e2ite I_ dx e4i(s-e)Xg(x)

e2ist E e_2=iskg(2k)(3.5a) -x/ k

Similarly,

_1 e2=,s(,+j) (Uzg) -4s,
2j=0

(3.5b) Uzg)( t, s) j-o e2is(t+J( Uz) 4s,

Let us now apply all this to the problem at hand. We define Uzch, and we
rewrite (2.5) in terms of . We have

e 2

=-e2 dt dr’ t,
2

k
’2 k+j

+k t’, +k+j
2 2. dt dt’ e2ik(t+t’) d 2ijt’

2 o

(use (3.2))

dt e-2rijt

2

2

In the last step we have assumed that (., s) is square integrable for all s; by the
definition (3.1) of the Zak transform we easily check that this is equivalent to the
requirement that k 14,(2S- 2k)]2 be bounded for all s, which is certainly true if, as in
Proposition 2.1, b decays faster than I1 -. Note that we have used (-t, s)= @(t, s),
which is true for real functions b. All this proves the following proposition.

PROPOSITION 3.1. Let qb be as in Proposition 2.1. Then (2.5) is satisfied, i.e.,

E 6(+ e)6(+ e+ej) o
if and only if the Zak transform dp Uzqb of qb, as defined by (3.1) satisfies
(3.6) [(t, s)[2 + [(t, s + 1/2)[2 2

for almost all t, s [0, 1 ]2.
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4. Constructing solutions. Now that we have reduced the infinitely many condi-
tions (2.5) to the single condition (3.6), we can get down to the business of constructing
explicit "nice" b satisfying (2.5). Typically, we start with a real function g with
exponential decay,

(4.1) Ig(x)l <- C e-lxl,
such that its Fourier transform has exponential decay as well,

(4.2) Iff(y)[ <: C e-Iyl.

Define G Uzg; G is well defined and continuous. Since g is real, we have, for all
t, seN,

G(-t,s)=G(t,s).(4.3)

Assume that

(4.4)

We then define

(4.5)

where

inf [Ia(t,s)l+lG(t,s+1/2)12]>O.
t,s[0,1]

/) UI(I),

G(t,s)
(4.6) O(t, s) =x/

[IG(t, s)l+lG(t, s /-12)1=] 1/"

Then the following theorem holds.
THEOREM 4.1. The function oh, defined by (4.5), is a real function, and satisfies

(2.5). Furthermore, both dp and ch have exponential decay.
Proof 1. It follows from (4.3) and (4.6) that

O(-t,s)=O(t,s),

so that, using (3.4) and (3.2),

1Io () 1 fo| ()c(x)=- dt t, =- dt -t,

if lfo’-x/ -1

dt t, =- dt t, =th(x).

2. To prove that b has exponential decay, we first extend the definition domain
of G from N2 to (N+ i(-A/r, oe)) xN. From (4.1) we see that the series

(4.7) G( + i-, s) x/ eE"i(t+i’)fg(2(s 1))

converges absolutely for ’>-A/r. The function G(z,s) is continuous on
i(-A/cr, co)) xN, and G(-, s) is analytic on N+ i(-A/cr, oo) for every s eN. Moreover,

G(z, s+ 1)= e2iZG(z, s),
(4.8)

G(z+l,s)=G(z,s).

We also define, for z e N + i(-A / r, ), s e N

(4.9) Cg(z, s)= G(z, s) G(-z, s) + G(z, s + 1/2)G(-z, s + 1/2).
Then cg(., s) is analytic on N+ i(-A/or, m) for every seN, and

(4.10) Cg(z + 1, s)= Cg(z, s)= (z, s+1/2)
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for all z + i(-h/zr, o), s . Using (4.2), we can show that G is uniformly con-
tinuous on ([+i[-h/, ))[0, 1]; together with (4.10) this implies that is uni-
formly continuous on (+ i[-h/r, o)). On the other hand, the restriction of to

g is real, and bounded below away from zero by (4.4). It follows that there exists
>0 so that [qd[ is bounded below away from zero on (+ i[-, ])x. We can
therefore define c-1/2 as a uniformly continuous function on (+i[-,])x;
q3(z, s) -1/2 is analytic in z+i(-, ]) for all s. We can therefore extend (4.6),
and define for z + i(-, ), s ,

(z, s) (z, s)-/a(z, s).

By (4.8) and (4.10) this extension satisfies

(4.11)
gP(z + I, s) (z, s),

(z, s+ 1) e2=iZ(z, s).

We can now use this extension to prove exponential decay of b. By (4.5) and (3.4)

1 Io’ ()p(x): dt P t,

Assume that x _-> 0. (We will treat x _-< 0 afterwards.) Using the analyticity of in + i%
we can deform the integration path,

dp x - dr gp iz, + dt + A, + dz l + iz,

where we assume 0< A < . Since (1 + iz, x/2)=(iz, x/2), the first and third integral
cancel out. If x 2n + 2xl, with xl [0, 1 ], then, by (4.11),

1
dt e2rin(t+iA)((t + iA, x)

e-2"rrAn-< sup [(z, s 1[
s[O,1]

<= C’ e-Ax.
For x <-0 we use the same argument, but we deform the integration path by going into
the Im z < 0 half plane. It follows that for all A such that

A<min (, inf{l-[; c(t+i%s)=O for some t, s[0, 1]}),
there exists a constant CA such that

(4.12) ]b(x)[ <-- CA e-atxl.

3. To prove the exponential decay of , we use the connection (3.5) between the
Zak transforms of a function and of its Fourier transform. Because of (4.2) and (3.5b),
arguments similar to those in step 2 above show that G can be extended to a uniformly
continuous function on x(+ i(tx/4r, )), and that, for every te, G(t, s+ kr) is
analytic in s+krE+i(tx/47r, o). We can now define, for t6E, w=s+kr
+ i(tx/47r, c),

F(t, w)= G(t, w)G(-t, w)+ G(t, w+1/2)G(-t, w+1/2).
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Again F(t, w) is analytic, and there exists /2 > 0 so that IFI is bounded below away
from zero on E x (E + i[-/,/2]). It follows that has an extension to (R + i[-/2,/2]),

t, s + ir) G( t, s +/)r( t, s + i) -/,
which is analytic in s + i for every fixed t, and which satisfies

(t, w+ 1)= e2it(t, w),

(t+ 1, w)=(t, w).

By (3.4) and (3.5a) we have

ds eiy(+) -2y,
2=o

We can now play the same game as before (deform the integral over s into the complex
plane, ). The result is that for all such that

A<min(,4inf{ll;F(t,s+i)=O for some t, se[O, 1]}),
there exists a constant Ca such that

(4.13) (Y)l N da e-alyl.

4. It remains to show that satisfies (2.5). It is obvious from Ia(t, s+ 1)1 IG(t, s)[
and from (4.6) that

(4.14) I*(t, s)[ + I(t, s +)l 2

for all t, s e N. Because of the exponential decay of and , all the manipulations of
3 are indeed allowed, and (4.14) implies (2.5).

Any function g satisfying (4.1), (4.2), and (4.4) can therefore be used to construct
an oahonormal Wilson basis of type (1.9). An explicit example is given by the Gaussian

(4.5) g(x) (e)’/4 e-x.
The Zak transform of g is related to one of Jacobi’s theta functions,

a(t, s)= (2p)/4 e-4: e-4e eee(4+it

(4.16)
(2p) /4 e_4O3(t_4ipsl4ip),

with Bateman’s notation [26]

03(zl ): 1 + 2 cos (2) ei",e.

As defined by (4.16), the function G has only one zero in [0, 1]
[26]. Consequently, (4.4) is satisfied. Since g and (y)=(2/p) 1/4 e-y/ obviously
have exponential decay, the construction (4.5)-(4.6) does lead to a Wilson basis with
exponential phase space localization. For p 0.5 we find

inf{Irl; (t+ir, s)=O for some t,s[O, 1]}=0.5,

inf {1; r(t, s + i) 0 for some t, s e [0, 1 ]} 0.25.
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Consequently, for every e > 0 there exists C such that

(4.17)
[(y)l<_fe-(-)txl.

Remarks. 1. The decay rates in (4.17) can be adjusted by starting with a Gaussian
different from (4.15). For v 2-/ e.g., we find that the corresponding and are
bounded by

(4.18)
I(Y)I N C exp (-(- e)lyl/).

2. It is easy to show that if g is an even function, then & is even as well.
3. In [16] the explanation for the existence and exponential decay of the basis

constructed by Wilson in [15] stas from an ansatz different from (1.9): the bimodal
functions used as a staing point are of the form

(4.19) g
2m+l

+(_l)mg +4 4

For this ansatz the normalization (2.1) and the "completeness requirement" (2.2) do
not reduce to the same condition. The oahonormalization of the functions in (4.19),
staaing from a "nice" g, results therefore in

f() ( 2m+l) (2m+l)+6 +
where the depend on m. In the ohonormalization procedure in 16] the "overlap
matrix" of the functions (4.19) is used. This overlap matrix also contains the quantity
G(t, s)l+lG(t, s+)l:, where G is the Zak transform of g (see Appendix B in [16];
the notation is very different, however). The merit of the present construction, staing
from (1.9), is that the oahonormality (2.1) automatically follows once (2.2) is estab-
lished; moreover, (2.1) + (2.2) are equivalent to the single condition (3.6), which enables
us to construct, via (4.5)-(4.6) a single function generating the whole Wilson basis.

5. The link with tight frames. We sta by briefly reviewing some material concern-
ing "frames." Frames were introduced by Dun and Schaeffer [27] in the context of
nonharmonic Fourier series; in [23] and [7] special frames, constituted by families of
functions of type (1.1), were studied in connection with the windowed Fourier trans-
form. We review here some results from [7].

A family of gmn, as defined in (1.1), constitutes a frame if there exist A
such that, for all f in Le(E),

(5.1) mllfll E I<g.,f>l=nllfll.
This condition can also be rewritten as

(5.2) A Id_-<P_-< B Id,

where P is the positive operator

(5.3) P= Y’. Pro,,, P,,f= (gm,,f)gm,.
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If the gmn constitute a frame, then functionsf L2([) can be completely characterized
by the family of inner products ((gmn,f))m,nZ, and there exists a numerically stable
inversion procedure to reconstruct f from these inner products,

f= Y (gmn, f),mn,
m

with

,mn(X) e2rrimn ff, (X rt),
p-lg,

with P as defined by (5.3). Because of (5.2), P has a bounded inverse, so that is well
defined. A special case arises when the frame is tight, i.e., when the frame bounds A
and B are equal,

Y I(gm,,f)l2-- Allfll 2.
m, rlG7/

It then follows that

P=A Id,

=A-lg,

f=A- , (gmn,f)gmn.
m, Z

In general, frames are redundant (they contain "too many" vectors, or more precisely,
any frame vector lies in the closed linear span of all the others). If the frame is tight,
then A indicates how redundant the frame is; for tight frames of type (1.1) we find [7]
(5.4) A (ce/3)-il[g[I 2

A frame of type (1.1) can only be an orthonormal basis if a/3 1 (and if, moreover,
g is chosen appropriately), corresponding to A 1, or no redundancy. Tight frames
with "nice" g exist if and only if a/3 < 1; see [23] for a construction with compactly
supported g.

Let us now specialize to the case ce .5,/3 1,

g,,,,,(x)=ei’Xg(x-n).
The density of the phase space lattice corresponding to the g,, is then twice as high
as for an orthonormal basis. Suppose g is "nice," i.e., both g and have fast decay
at oo. Let us investigate under which conditions on g the g, constitute a frame
(respectively, tight frame). Because (cq3)-= 2 is an integer, the Zak transform is a
natural tool to study these questions, as observed in [8]. Using (3.1), we find

Uzg,,2,)(t, s) e-2"" e2="SG(t, s),
(Uzgm2n_l) (t, S) e-2with e2wires G( t, s + 1/2),

where G Uzg. It follows that, for all hi, h2 L2(),
E (hi, Pm2nh2)-- E (hi, gm2n)(gm2n,

m, m, 7/, dt ds Uzhl(t, s)G(t, s) e" e-2rims
m, T/

dt ds Uzh2( t, s) G( t, s) e2=t. e-2wims

de ds Szh(t, s) Szh(, s)la(, s)l.
o
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Consequently, Uz[mng Pm2n]U is multiplication by G(t, S)I 2 in Y. Similarly,
--i’Uz[Y’.,,.,z P,,z,-1]Uz s multiplication by [G(t,s+1/2)[ -. Consequently, P=m.,

is unitarily equivalent to multiplication by ]G(t, s)l z + IG(t, s +)l2 on . It follows that
the g, constitute a frame, or equivalently that P satisfies (5.2), if and only if

o<alG(t, s)12+G(t, s+)12B<
for all t, s [0, 1 ]. All this is summarized in the following proposition.

POPOSITOy 5.1. e functions g,(x) em=Xg(x n) constitute a frame if and
only if the Zak transform G Uzg of g, as defined by (3.1), satisfies

A= inf
t,s[0,1]

and

B sup [I G(t, s)l - +lG(t, s + 1/2)12] < oo.
t,s[0,1]

Note that if Ig(x)l_-< c(1 /lxl) --, then G is bounded, and B is automatically finite.
There are other procedures than the Zak transform to check whether the g,,, constitute
a frame [7]. The point of Proposition 5.1 is that any reasonably well-localized g such
that the g,,, constitute a frame can be used as a starting point in the construction of
b in 4. Note that the computations above also prove the following proposition.

PROPOSITION 5.2. Let be a real function such that Icb(x)l<=C(l+lxl)-- and
dx Ib(x)l2= 1. Then the following are equivalent:

(1) The q,,,,, as defined by (1.9), constitute an orthonorrnal basis,
(2) The Zak transform dp= Uzcb of cb satisfies

I(t, s)l 2 + I(t, s + 1/2)12 2,

(3) The functions Cmn(X) eim=xqb(X n), m, n 7], constitute a tight frame.
Proof

(1) :> (2) is proved in Proposition 5.2.

Define now P(b) by

P(b)f-- (4)mn,f)4)mn.

Then, by the computation above,

(5.5) P(b) ul{multiplication with Ilk(t, s)=l /l(t, s/)12]}uz,
If (2) holds, then it follows that P(b)= 2 Id, i.e.,

Z I<,b..,f)l’-- 21lfll

so the b,,, constitute a tight frame.
On the other hand, if the )mn constitute a tight frame, i.e.,

then A= 2 by (5.4) (a .5,/3 1, and Ilgll ). It follows that P(6)= 2 Id, which by
(5.5) implies (2).

Remark. From this analysis it follows that the construction in 4 and 6 below
can also be used to generate tight frames with exponential localization in both time
and frequency. The construction in 6 can easily be extended to tight frames with
arbitrary redundancy. These tight frames contrast with those constructed in [23 ], where
either 4 or b had compact support.
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Proposition 5.2 leads to the following interpretation of our Wilson bases. Suppose
that the tm constitute a tight frame. Since a/3 .5, this tight frame has redundancy
2, i.e., it has "two times as many vectors" as an orthonormal basis. The Wilson basis
vectors generated by b via (1.9) are given by

lmn )^ e27rinm
or

(5.6a) (Ol,)^(sc) e2="eb()=

1
e2in i.rrK[(2g+n)’() e 6(-e)+ (-1)

(5.6b) 1
(e+ + (- 1)e+-e2+)(),

{0}, =0 or 1.

Formula (1.9) can therefore be viewed as a procedure eliminating the redundancy
factor 2 from the tight frame , by choosing only the o with even n, and replacing
every pair e,, -e (fl 0) by one judiciously chosen linear combination of these two
vectors. It seems a small miracle that the result is an ohonormal basis

Note that (5.6) can be made even simpler by a relabelling of the m,. Denote

e2.+ qze+., g# 0, 0 or 1,

Then (5.6) becomes

(I’o.)^ o2.,

1
(*e.)^ (be. + (-1)e+"th_e.),

making the reduction from the right frame with redundancy 2 to the orthonormal basis
even more elegant.

6. The construction revisited. The equivalence between (4.4) and the flame condi-
tion (5.1) leads to an alternate construction for the function b which is very easy to
implement numerically.

Choose g such that (4.1), (4.2), and (4.4) are satisfied. Then, by the argument in
5,

consequently,

UzPU’ multiplication by IG(t, s)l 2 + IG(t, s +1/2)12;

/I G(t, s)12+lG(t, s+1/2)l2
(])-- UZ

X/ p-lwlG x/ p-1/g.

The operator p-l/2

U1Uzp-1/2UI G

can be written as a convergent series. Since

A Id-<P_-< B Id



SIMPLE WILSON BASIS WITH EXPONENTIAL DECAY 569

for all A > 0, B < c satisfying

a-_< inf [I G( t, s )l= / a( t,
t,s[0,1]

we have

(6.1)

B-> sup [IG(t,s)[:+lG(t,s+1/2)l:],
t,s[O,1]

A- B
Id- Id-

A+ B

_( 2 )1/2 (2k)! ( 2P ) k

A+B =o (k! A+B22k )2
Id-

where the series converges because

Id-A+ B
B-A
=<<1.
B+A

This can be used to write b as a combination of gmn, with coefficients computed
recursively. For instance, if g is Gaussian, g,,(x)=(2u) 1/4 e-,,x2, then we find

2 ., am,,g,,(x)(6.2) b(x)

with

(6.3)

where

(2k)!
a,,,, k 22k .)2

bk
=o (kV

k ( 2 ) bk,,-,_2
COmn,m,n,bm,n,,

Wm,,,.,,n, exp [ i( m, m )( n + n,)
,rr v’rr

n,)2 ’77"--- n --u m m

bm. mO6nO

While this seems lengthy, it is very easy to program on a computer. The procedure
converges at least as fast as a geometric series in (B,,-A,,)/(B,,+A,,). For v=.5 we
find A,,= 1.670, B,,=2.361, (B,,-A,,)/(B,,+A,,)=.1712; for v=2-/2, we have A,,=
1.:533, B,, =2.492, (B,,-A,,)/(B,,+A,,)=.2381. Figures 1 and 2 give graphs of th and
b, for v .5 and v 2 -1/2, respectively.

Remarks. 1. A and B can be computed via the Zak transform"

A inf [l( Uzg)(t, s)l2 + I( Uzg)(t, s + 1/2)12],
t,se[0,1]

B= sup [l(Uzg)(t,s)l+l(Uzg)(t,s+)[].
t,s[0,1]

In [7] an alternative way of estimating A and B is given, leading to a lower bound
for A and an upper bound for B, without recourse to the Zak transform. Using the
Poisson summation formula, we find

(6.4) re(g) r(g) A =< B =< M(g) + r(g),
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2

-1
-4 -2 0 2 4

-1
-4 0 2 4

FIG. 1. Plots of ok and , constructedfrom g(x)= e-x2/2. For this choice ofg, we have (y)= x/ b(2y)
(see (6.6)). To draw these graphs, the recursive computation (6.2), (6.3) was used.

where
re(g) xto,]inf Ig(x- n)l,
M(g) sup 2 Ig(x- n)l =,

x[O,1]

r(g)=2 [(2k)(-2k)]/,
k=l

/3(s) sup Y Ig(x- n)g(x- n + s)l.
x[O,1]

Note that the lower bound in (6.4) also gives a sufficient condition ensuring that (4.4)
holds, without having to check the Zak transform. In some cases, more efficient bounds
can be computed from the Fourier transform ff of g. We obtain [7]

(g) -(g) <= A <- B -<_ ll(g)-(g)
with

(g)= inf Z I(sc-n/2)]2,
:[0,1/2]

l/l(g) sup Iff(- n/2)l 2,
[0,1/2]

(g)=2 [(k)(-k)]1/2,

/3(s) sup
c[0,1/2]
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-1
-4 4-2 0 2

--4 -2 0 2

FIG. 2. Plots of dp and constructed from g(x)= 2/8 e-’2/’/. For this choice of g, the decay rates of &
and are identical (see (4.18)). We have again used (6.2), (6.3) to compute oh; is simply obtained by
replacing g,, in (6.2) by (gnn)"(y)=(--1) e2iyngl/V(y+(m/2)).

2. Let us introduce the notation F for the Fourier transform and D for the
dilations (Daf)(x) --[all/2f(ax), and let us write P(g), b(g) to make the dependence
of the operator P and the function 4 on the function g more explicit. Then we easily
check that

D1/2 FP(g) P(DI/Fg)D1/2F,

implying

(6.5) D1/2Fdp(g) qb(D/2Fg).

Denoting b(g) by b, where g(x)= (2u)/4 exp (-rux2), we find therefore

(6.6) (b)^(y) b(4,,)-(2y).

In particular, for u=.5, (b/)^(y)= 1/2(2y).

7. Conclusion. We have shown how to construct very simple Wilson bases
generated by a single function 4, via

,,,,(x)=fm(X-n), n_7, m NI\{O},

(7.1)
1fze+(j)=---.[(,-{)+(-1)e+"ch(gj+{)] ei=, {NI\{O}, =0 or 1.
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We have explicitly constructed such bases;Ain order to obtain exponential decay for
both the qmn and their Fourier transforms p,,n, it suffices to choose a function g such
that g and have exponential decay, and such that condition (4.4) is satisfied, or
equivalently, such that the g,,,(x)=e=imXg(x-n) constitute a frame. (For this it is
sufficient that m(g)-r(g) > 0 or fi(g)-(g) > 0--see 6.) The function b can then be
constructed from g either via the Zak transform (see 4) or via a recursive algorithm
(see 6).

The functions f,, in (7.1) are given by the inverse Fourier transform of . If g is
real and even, then so is , so that its Fourier transform and inverse Fourier transform
coincide. We then have

2’igx

Using the relabelling

we find

%.(x)

( ){cos (2r&)
e(x) x/ x-

sin (2rgx)
if g+ n is even,
if g+ n is odd.

It follows that the Wilson bases constructed here are very similar to the functions (1.1):
the only difference is the alternate use of sines and cosines instead of complex
exponentials. This trick is sufficient to beat the no-go Balian-Low theorem.
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A HYPERBOLIC THEORY FOR THE EVOLUTION OF PLANE CURVES*

MORTON E. GURTIN" AND PAOLO PODIO-GUIDUGLI

Abstract. A theory is developed for the evolution of plane curves. This theory is based on balance laws
for mass and momentum in conjunction with constitutive equations appropriate to a phase interface such
as that between a crystal and its melt. The resulting evolution equation is hyperbolic and has solutions with
aspects qualitatively reminiscent of the melting-freezing waves observed at the surface of He4 crystals.

Key words, evolving curves, phase interfaces, melting-freezing waves

AMS(MOS) subject classifications. 35L70, 70K99

1. Introduction. It is the purpose of this paper to develop a theory for the evolution
of plane curves which is based on balance laws for mass and momentum in conjunction
with constitutive equations appropriate to a phase interface, and which leads to
hyperbolic evolution equations. We have three reasons for presenting such a theory:

(1) The form of the balance laws is not at all obvious, and, in fact, represents an
intriguing problem in continuum mechanics whose solution requires a nonstandard
conceptual framework.

(2) The parabolic theory for the evolution of plane curves, which in its simplest
form is based on the curve-shortening equation

(1.1)

(relating the normal velocity v and curvature K) has been extremely successful,
providing geometers with great insight; to our knowledge there is no hyperbolic version
of (1.1).

(3) Crystals of helium in their melt exhibit a phenomenon generally not found
in other materials" oscillations of the solid-liquid interface in which atoms of the solid
move only when they melt and enter the liquid. Motivated by Andreev and Parshin’s
[AP] classical discussion of such melting-freezing waves, a continuum model was
developed in [G4] for a rigid crystal in an incompressible, inviscid melt. This model,
which we shall refer to as the CM model, leads to a free-boundary problem for the
evolution of the interface; coupling between the interface and the melt renders this
problem difficult, and it would seem useful to have a simple model in which the motion
of the interface is governed by a hyperbolic analog of (1.1).
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See, e.g., Brakke [B], Gage and Hamilton [GH], and Grayson [Gr], as well as the references therein
and those cited in 5 of [AG].

Such waves were predicted by Andreev and Parshin [AP] in 1978 and exhibited experimentally by
Keshishev, Parshin, and Babkin [KPB] in 1979.

Using, as a basis, a framework developed in [G1]-[G3], lAG], [GS].
4 Andreev and Parshin [AP] note that the phase velocity of melting-freezing waves is generally well

below the sound velocity.
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Here we develop a theory in which only the interface is endowed with mathematical
structure "5 we model the inertia of the melt through an "effective" inertia for the
interface, with the melt considered only as a source of atoms for the crystallization
process; and we characterize this inertia constitutively through the corresponding
interracial mass density. As in the CM model, we restrict our attention to a purely
mechanical6 theory, and, to avoid the geometric complications that accompany evolving
surfaces, to a two-dimensional theory in which the interface evolves as a plane curve.

Because of the presence of an "effective inertia," the balance laws for mass and
momentum are not obvious. We derive these laws as a consequence of the requirement
that the mechanical energy productionmthe rate at which the kinetic energy is changing
minus the power expended by capillary forcesmbe invariant under Galilean changes
in observer.

Constitutive equations, of the form derived in [G1] as a consequence of thermo-
dynamical arguments, are assumed for the relevant interracial fields. These equations
and the underlying balance laws yield a single equation for the evolution ofthe interface:

(1.2) p(O)v+(O)v=[b(O)+O"(O)JK-F.

Here q(0), p(O), and /3(0) are the energy, effective density, and kinetic coefficients
for the interface; F is a constant which represents the driving force for crystallization;
v is the time derivative of v following the interface; and 0 is the angle to the
interface-normal m. We assume that

(1.3) 0(0) + 0"(0) > 0, p(0)>0

for all values of 0; this ensures that when (1.2) is combined with standard kinematical
conditions for the evolution of a plane curve, the resulting partial differential equations
are hyperbolic.

Equation (1.2) with/3(0) 0, linearized about aflat interface at equilibrium, reduces
to the classical wave equation

(1.4) poh, + O")ohxx

for the interface expressed as a graph y h (x, t). This equation exhibits melting-freezing
waves; that is, oscillatory solutions of the form

h(x, t)= C e iax e(1.5)

with

(1.6) (2) 2=
(q, + q,")o,X

/9O

As noted by Andreev and Parshin [AP] (cf. [G4]), the CM model exhibits melting-
freezing waves of the form (1.5), but there w 2 is proportional7 to A 3, rather than A2 as
in (1.6). Thus the agreement between the simple model developed here and the more
detailed CM model is at most qualitative; because of the simplified modeling of inertia,
this is not unexpected.

This is the point of view taken by Brower et al. [BK] and Ben-Jacob et al. [BG], who use equations
involving only the interface to model interfacial evolution governed by bulk diffusion.

AS noted by Maris and Andreev [MA], for superconductors such as solid helium and its melt,
solidification is "essentially a mechanical process, rather than a thermal process as it is for ordinary materials."

This proporationality of w to A is confirmed by the experiments of Keshishev, Parshin, and Babkin

[KPB].
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For completeness we discuss the form the basic equations take when the interface
is an evolving surface in R3. There (1.2) is replaced by

(1.7) p(m)v+/3(m)v q,(m)t + q,m,(m) L- F,

where L is the curvature tensor, tr L is twice the mean curvature, and %,(m) is
the second gradient of q,(m) on the surface of the unit ball.

We solve the problem (in R and 3) of radially symmetric crystallization of an
isotropic crystal in an infinite melt. If the phase interface is initially at rest, then:

(i) For F -> 0 the crystal melts completely in finite time.
(ii) For F<0 there is a critical radius Rcrit:=(n-1)4,/[F[ (in a") such that a

crystal of radius R(0) < Rcrit melts in finite time, a crystal of radius R(0) > Rcrit grows
unboundedly as t-

An analogous problem is discussed in [G4] for the CM model in 3. The results are
qualitatively the same as those described in (i) and (ii). In fact, if we identify F with
the constant + P-s(+ P) of the CM model, where c and are the crystal and
melt energies, s is the ratio of crystal density to melt density, and P is the far-field
pressure in the melt, then the critical radii of the two theories coincide. As would be
expected, the two theories exhibit quantitative differences" for example, during
unbounded growth the radius grows asymptotically as 2 within the present theory and
as within the CM model.

Although the CM model does exhibit oscillatory behavior, it is not clear whether
or not shocks and other propagating discontinuities are possible, To the contrary,
such phenomena are generated within the present theory. We study the propagation
of fronts across which the curvature is discontinuous. We show that, in the presence
of anisotropy, fronts whose amplitude is sufficiently large and of the right sign grow
to infinity in finite time, strongly suggesting that the interface develops a corner. Guided
by other theories9 of hyperbolic behavior, this result seems to indicate that there is
global existence of classical solutions of (1.2) for initial data that are both sufficiently
small and sufficiently smooth, but that smooth solutions corresponding to large data
develop singularities in finite time.

2. Crystals. We consider an infinite crystal lattice modeled as a two-dimensional
continuum, in fact as 2. A crystal is then a compact subset of the lattice with
boundary 0, a smooth, simple closed curve. 0 represents the interface between the
crystal and its melt; we write re(x) for the outward unit normal to 0 and define a
unit tangent (x) so that {(x), re(x)} is a positively oriented basis of 2 (cf. Fig. 1).
We let ds denote the element of arclength on 0 and write f for the derivative,
sometimes partial, offwith respect to arclength on 0. (Our convention is that arclength
increase in the direction of g.) We then have the Frenet formulas

(2.1) ms -K, s=Km
with (x) the curvature of 0. We define the angle 0(x), as a smooth function of x,
through

(2.2) m (cos 0, sin 0), (sin 0, -cos 0).

Our goal is to model situations in which crystals grow or shrink by processes such
as solidification and melting. We therefore consider crystals (t) that evolve with time

Rogers [R] shows that such phenomena are not possible within the linearized CM theory.
See, e.g., Renardy, Hrusa, and Nobel [RHN].



578 M. E. GURTIN AND P. PODIO-GUIDUGLI

melt

interface

negativ :urvature m

crystal

FIG. 1. Sign conventions for interfacial motions.

t, under the assumption that 0R(t) is a smooth evolving curve (in the sense of [AG]).
We write v(x, t) for the normal velocity of 0cO(t) in the direction re(x, t), so that

(2.3) v(x, t)-- V(X, t)m(x, t)

represents the velocity of 0cO(t). Fix and x 0R(t) and (for " sufficiently close to t)
let y(’) denote the curve that passes through x at time and has

y’(’) v(y(’), ’)

(y’(’) dy(’)/d’; we use this notation for functions of time alone). Then the normal
time-derivative g(x, t) (following OR(t)) of a scalar or vector function (x, t) is
defined by

(2.4)
d

g(x, t)= -- (y(), ’)1:,.

The identities

0- m-- -m g--
(2.5)

g=mO--Vs+KVg

are standard.
By an interracial chunk we mean a smoothly evolving curve o(t) with o(t)= 0c(t)

at each time t; we say that o(t) evolves normally if its endpoints x(t) and x(t) evolve
with the normal velocity of the interface:

(2.6) x](t) :v(x(t), t), x’2(t)=v(x2(t), t).

For any function @(x, t) we write

(2.7) fo (I) (I)(x2(t), t) --(I)(Xl(t), t).
o(t)

See, e.g., [AG, eqs. (2.4), (2.6), (2.18)].
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We then have the identities 11

(2.8)

For convenience, we will generally omit the argument when writing such integrals.

3. Interfacial forces. Inertia. Balance laws.
3.1. Basic concepts. We describe the micromechanics of an evolving crystal c(t)

by four functions of x 0R(t) and t:

C(x, t) interfacial stress,
b(x, t) interaction force,
p(x, t) (effective) inertial density,
r(x, t) mass supply.

C(x, t) represents the force within the interface exerted across x at time t; if we let 6
+

and -, respectively, denote right and left neighborhoods of x in 0R(t), then C(x, t)
is the force exerted on 6- by 6+. Concerning the remaining functions, b(x, t) represents
the net force exerted on the interface by the bulk material of the crystal and the melt;
p(x, t) gives the inertial density of the interface; r(x, t) represents the rate at which
mass is supplied to the interface.

We characterize forces by the manner in which they expend power, and inertia
by the manner in which it affects kinetic energy. In particular, we assume that C(x, t)
and b(x, t) expend power through the velocity12 v(x, t), and that it is this velocity that
is appropriate to the kinetic energy of the interface. Precisely, given any normally
evolving interfacial chunk 6(t),

(3.1) plvl ds

is the kinetic energy of 6(t),

1 Io rlv[2 as(3.2)

is the rate at which kinetic energy is supplied to 6(t), and

(3.3) foC.v+Iob.vdso
is the power expended on 6(t). We will refer to

(3.4) (o)(t)--- plvl 2 as -- rlvl = as- C.v- b.v as

as the mechanical energy production at time t. The first law of thermodynamics requires
that this quantity be balanced by the addition of heat and by changes in the internal
energy.

Identities (2.8)2 are generally not true if the chunk does not evolve normally: an additional term is
needed to account for the flux of across 06(t) (of., e.g., [AG, eq. (2.34)]).

12 See [G1, eq. (1.3) and 3].
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3.2. Invariance under observer changes. Balance laws for interfacial mass and momen-
tum. A basic assumption of our theory is that

The mechanical energy production be invariant
under Galilean changes in observer;

precisely, we assume that, given any normally "evolving interfacial chunk 6(t) and any
time t,

a-S plv+clas -- rlv+clas- C" (v+c)- b" (v+c) as
(3.5)

-dr - p]v] ds - r[v] ds- C.v- .vds

for any constant vector c. Here c is the velocity defining an arbitrary observer change,
and underlying (3.5) is the tacit assumption that p, C, r, and b be invariant, while v
transform to v/ c.

If we expand the left side of (3.5) in terms of c, we find that

1 icl2f d(3.6) c.{ttffpvds-frvds-foc-fhds} -+ -- I o ds ff r ds } O

since c is arbitrary, this yields balance of mass

(3.7)
dt

pds= rds

and balance of momentum

(3.8)
dd--{fopvds}-forvds= foc+ fo bds.

The relations (3.7) and (3.8) are required to hold for every normally evolving interfacial
chunk (t); using (2.8), we have the local balance laws:

p-pKv r,
(3.9)

pv Cs + b.

We have taken the normal velocity as the kinematic variable that characterizes
the manner in which power is expended" tangential motion does not expend power.
As is consistent with a "constraint" of this type, we leave as indeterminate the tangential
component of the interaction b, and therefore concern ourselves only with the normal
component of the momentum balance law (3.9)2.

Using the local balance laws (3.9) in conjunction with (2.8), we can write the
mechanical energy production (3.4) in the simple form

(3.10) ’(o)(t) f C. vs ds.

For convenience, we decompose the interfacial stress into normal and tangential
components:

(3.11) C= rg+:m
with or(x, t) the surface tension (line tension) and :(x, t) the surface shear. Then, writing

(3.12) b=b.m
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for the normal interaction, the normal component of (3.9)1 becomes

(3.13) PV s + o’K + b.

4. Constitutive equations. To state the constitutive equations that form the basis
of our theory, we associate, with each evolving crystal, an interfacial energy q. As
constitutive equations we allow the interfacial energy, the interfacial stress, the inertial
density, and the normal interaction to depend on the orientation of the interface
through a dependence on the angle 0, and we allow the kinetics of the interface to
affect the normal interaction through a dependence on the normal velocity13 v:

(4.1) q=q(0), C=C(0), p=p(O), b=b(O,v).

We assume that: 14

(i) (0) generates the interfacial stress through the thermodynamic relation 15

(4.2) C(0) 6(0)(0) + 6’(0)m(0);

(ii) The normal interaction is given by a relation of the form

(4.3) b( O, v) -F-(O)v,

with F a constant;
(iii) The following inequalities hold:

(4.4) p(0), 6(0),/3(0) > 0.

Trivially, (4.2) implies that o---r(0) and sc= so(0) with

(4.5) o-(0) q(0), (0) q’(0).

Concerning (4.3), the constant F represents a driving force for the crystallization
process, while -/3(0)v represents a "drag force" which, by (4.4)3, opposes interfacial
motion. 16

A consequence of (3.9) and the constitutive relations (4.2) and (4.3) is the balance
17law for energy:

d{I (1 ) } llo r[vl:Zds_I v2ds,(4.6)
dt

plvl2 / 6 ds + F area (c)

with 0c 0c(t). This result allows us to identify the last term as energy dissipated
during crystal growth. The derivation of (4.6) is not difficult. First of all we have the
standard relation

(4.7) d- area () v ds,

as well as the following consequences of (2.5), (4.2), and (4.3):

c v, q,’( o)o- o( o)v,, q,( o)- q,( o)w,
(4.8)

bv -Fv+ /3 (0)v2.

13 Here v represents the normal velocity of the interface relative to the crystal, so that v is trivially
invariant under observer changes.

14See [G1] and [AG], where (4.2) and (4.3) (with fl=(O, v)>=O) are derived using a thermodynamic
argument.

’ ,’(o)=a(o)/ao.
16 See [G1, Remark 4.1].
17 Generalizing (7.6) of [AG]. The integral involving q over 0 plus F area (qg) represents a basic

Gibbsian functional for the statical theory of crystals (cf. [G2, 312]).
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The relation (4.6) follows from (3.4) and (3.10) with o=Oc (so that ao=) in
conjunction with (2.3), (3.12), (4.7), and (4.8).

5. Partial differential equations. The equations of our theory are balance of mass
(3.9)1 and the normal component (3.13) of balance of momentum in conjunction with
the constitutive relations (4.2) and (4.3). Balance ofmass (3.9)1 coupled with (2.5)1 yield

(5.) t’( o)v (o),v .
The melt serves only as a source of atoms for the evolving crystal, TM so we may regard
(5.1) as defining r. On the other hand, (3.13), by virtue of (2.5)3, (4.3), and (4.4), yields
the evolution equation

(5.2) p(O)v+(O)v=[d/(O)+d/"(O)]K-F,

which forms the basis of our theory. Note that, for an isotropic interface, q, , and p
are constants and (5.2) reduces to

(5.3)

When the crystallization process takes place in 3, the interface evolves as a
surface, rather than as a curve, but apart from notation the theory is identical. Following
the notation and terminology of[G1 ], we write Vsurr for the surface gradient, L -Vsurrm
for the curvature tensor, and =tr L for twice the mean curvature. Then the only
essential changes regarding the theory presented thus far are the replacement of q(0)
by q(m),/3(0) by/3(m), p(O) by p(m), and (5.2) by

(5.4) p(m)v+ fl(m)v q(m) + qm.,(m) L- F,

where 6m,,(m) is the second gradient of 6(m) on the surface of the unit ball.
Consider now the general theory in 1 as defined by (5.2). Locally, the interface

may be represented as the graph of a function y h(x, t), provided the x and y axes
are chosen appropriately. Consider the choice indicated in Fig. 2 (with orientation
such that arclength increase with increasing x) and let

(.) p= h,

where a subscript denotes partial differentiation with respect to the corresponding
variable. Then

(5.6) p tan 0 -1

crystal

m

FIG. 2. Sign conventions when the interface is a graph y h(x, t).

Reference [G4] considers a more detailed structure for the melt.
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and, considering v as a function v(x, t),

(5.7) v h, sin 0, K hxx sin 0,

v= v,+VxV cos 0=sin 0[h,+2 sin 0 cos Ohtht+(ht sin 0 cos O)2hx].
Thus, defining

n(o)-#(o)/p(o), G(o)=[6(o)+,"(o)]/p(o),

D( O) F/[p( O) sin 0],

the evolution equation (5.2) takes the form

(5.9) h,, + B(O)ht +2 sin 0 cos Ohth,, =sin20[G(O)-(ht cos 0)2]h,, D(O),

with 0 a function of hx through (5.5) and (5.6).
Equation (5.9) is hyperbolic if and only if the discriminant A of the coefficients

of its principal part is strictly positive. Since A =4 sin20G(O), it is clear from (4.4)
that (5.9) is hyperbolic if and only if
(5.10) q(O) + 4t"(O) > O.

We will assume that (5.10) is satisfied for all angles of interest.

Remark. The inequality (5.10) is essentially a condition of static stability for the
interface: it follows from the requirement that straight line-segments locally minimize
interfacial energy. 19 When the inequality (5.10) is reversed the partial differential
equation (5.9) is elliptic and yields unstable behavior for standard initial value
problems. There is no compelling physical reason to suppose that (5.10) is satisfied;
in fact, material scientists often consider energies which violate (5.10) for particular
ranges of 0 (cf. Gjostein [G], Cahn and Hoffman [CH]). Since q(0) > 0 and is periodic,
at worst we can have an equation which is elliptic for some but not all values of 0.
Such elliptic intervals can be treated by introducing corners in the evolving crystal (cf.
[AG]).

6. Some simple solutions.
6.1. Radial solutions for an isotropic crystal. In view of (5.3) and (5.4), isotropic,

radially symmetric crystals in n (n 2, 3) evolve according to

(6.1) pR"(t)+R’(t)+(n-1)R(t)-l=-F,

with R(t), the radius of the interface. Assuming that R’(0)=0 and appealing to the
phase portrait for (6.1), it is not difficult to verify that:

(i) For F=> 0, crystals melt completely in finite time;
(ii) For F<0, crystals of radius R(O)<Rcrit:=(n-1)/IFI melt in finite time,

while crystals of radius R(0)> Rcrit grow unboundedly as .
These conclusions are true whether or not p 0 (provided we drop the initial condition
R’(0) =0 for p=0). Furthermore, for F<0 and R(0)> Rcrit R(t) grows (for large t)
as when p 0 and as 2 when p # O.

6.2. Small oscillations about a flat interface. Assume that

(6.2) F:O.

Then flat interfaces (K 0) describe equilibrium solutions of the general anisotropic
equation (5.2). We now consider interfacial motions which are close to equilibria of this

19 See Herring [H], Frank [Fr], Gjostein [G], Gruber (as referred to in [G]), Taylor IT], Fonseca IF],
and Angenent and Gurtin [AG].
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form. Precisely, we assume, without loss of generality, that the interface has angle
0 7r/2 at equilibrium and consider interfacial motions represented as a graph y
h(x, t) with h and its derivatives "small." In view of (5.6), the angle O(x, t), to first
order in h, is given by

(6.3) O=(Tr/2)+ hx.

Therefore (5.9) linearized about this equilibrium has the form

(6.4) htt+ Boht Gohxx,

where the subscript zero signifies that the corresponding quantity is to be evaluated
at 0= 7r/2. Equation (6.4) has the solution

h(x, t) C e’x e -(i’+c)’

(6.5)
w 2 Go, 2__ 2, Bo/2,

which represents damped oscillations of the interface.

6.3. Curvature waves advancing on a flat interface. In continuum mechanics the
breakdown of solutions due to the formation of shocks (jumps in velocity) can be
discussed qualitatively in terms of the blowup of waves involving jumps in accelera-
tion.2 An analogous discussion applies here with corners (jumps in angle) playing the
role of shocks and curvature the role of acceleration.

We continue to assume that F 0. We consider a front of discontinuous curvature
advancing into a flat interface (with 0= r/2). Precisely, we consider an interface
described by a graph y h(x, t) and assume that there is a curve Y{" in the (x, t)-plane
which has the form x (t) and is such that:
(W1) h(x, t) 0 for x _-> so(t);
(W2) h and its first derivatives are continuous across Y{, but second and higher

derivatives of h suffer possible jump discontinuities across
(W3) []0.
Here and in what follows, [g](t) denotes the jump in a function g(x, t) across Y{:

(6.6) [g](t) g((t)+O, t)-g((t)-O, t).

Because of (W3), we will refer to Y{" as a curvature wave.
Standard kinematical conditions2 give

(6.7)

where

[h,,]=-c[hx,]=c2[hxx],

(6.8) c
dt

is the velocity of propagation. Furthermore, by (W1) and (W2),

(6.9) 0=7r/2 and ht=
hence (5.6) and (5.7) yield

(6.10) [0,..] [hx,], [] [hxx].

20 See, e.g., 2 of [CG] for a discussion of such waves.
21 See, e.g., [CG, eq. (2.5)].
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As before, we write 4o for a function 4(0) evaluated at 0 7r/2. The jump in (5.9)
across Y{ then yields

(6.11) c2 Go (q + ")o/Po,

and the velocity ofpropagation is constant.
We define the amplitude of the wave by

(6.12) a [K] [hx,];

a standard identity22 then yields

da
(6.13) 2c2-d-= [h,,,] c[hx,].

Next, we differentiate (5.9) with respect to and take the jump in the resulting equation;
because of (6.9) and (6.10), this yields

(6.14) [h,,] + Bo[h,] Go[h,]+(G’)o[h][hx,].

In deriving (6.14), we used the fact that, by (Wl), [h,O,]=[h][O,]. The relations
(6.7) and (6.11)-(6.14) yield a nonlinear differential equation for the amplitude

2da [(Gct)o] 2(6.15)
dt

t- Boa + a O.

For an isotropic crystal, G(0) is independent of 0 and (G’)o 0. In this case,

(6.16) a(t) a(0) e-n’/2

and curvature waves decay.
The results are far more interesting when the crystal is anisotropic. Assume that

(G’)o 0. Then (6.15) has the explicit solution

a(0)[1 -a]
a(t)

1 A en’/2
(6.17)

A BocA=I- h=-
a(0)’ (G’)o

An elementary analysis of the solution (6.17) leads to the following conclusions:
(i) a(O)/A 1 implies a(t) a(0);
(ii) a(O)/A < 1 implies a(t) 0 monotonically as ,
(iii) a(0)/A > 1 implies a(t)c in the finite time

(6.18) t=-2(lnA)/Bo.

The result (iii) asserts that if initially the jump in curvature is sufficiently large and of
the right sign, then this jump becomes infinite in finite time, strongly suggesting that
the interface develops a corner: [0] # 0. The number A represents a critical amplitude:
a(t) grows without bound or decays to zero according as a(O)/A > 1 or a(0)/A < 1.
This critical amplitude captures the competing effects of anisotropy and dissipation:
anisotropy, measured by (G’)o, promotes blowup; dissipation, measured by Bo,
promotes decay.

22 See, e.g., [CG, eq. (2.10)].
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BLOWUP ASYMPTOTICS FOR THE
REACTIVE-EULER GAS MODEL*

ALBERTO BRESSANt

Abstract. This paper is concerned with a semilinear hyperbolic system modeling the behavior
of a reactive gas. Because of the presence of a nonlinear reaction term, solutions become unbounded
within finite time; generically, the blowup occurs at a single point. As the explosion time is ap-
proached, a precise description of the asymptotic profile of a solution is obtained by the use of a
rescaled set of coordinates. Relying on a topological argument, we prove that the rescaled solution
has a nontrivial, nonsingular limit, whose analytical expression depends on a finite set of parameters,
determined by the initial conditions.

Key words, reactive-Euler equations, blowup, asymptotic profile
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1. Introduction. A semilinear hyperbolic system of the form

(1.1)
Or-aPt-be#

vt + cP 0

vx + dPt be#

was first derived in [4] and, independently, in [9] as a model for the behavior of a
reactive gas where viscous and diffusive effects are sufficiently weak. See also [3],
[11] for a unified treatment. Here the variables P, v, and 0 denote the perturbations
from a spatially uniform equilibrium state of pressure, velocity, and temperature,
respectively, while a, b, c, d are positive constants. We first study the system (1.1) in
the bounded domain I [-1, 1], with initial and boundary conditions

P(O,x) P(x), v(0, x) (x), 0(0, x) O(x),

(1.3) v(t, 1) v(t,-1) =0.

Here /5, , are continuous functions on I, with (1) (-1) 0. The presence
in (1.1) of a reaction term which grows exponentially with the temperature allows
solutions to become unbounded within finite time. Our main concern is the location
of the blowup and the description of the profile of a solution as the explosion time
is approached. In 3 we prove that a generic solution of (1.1)-(1.3) blows up at a
single point. In 4, assuming that the initial conditions are smooth and that the
initial temperature has a sufficiently large and "well-focused" maximum (in a sense
to be specified later), we determine the asymptotic profile of a solution close to the
blowup point. A topological argument [8, p. 278] combined with standard compari-
son techniques shows that, in a suitable set of rescaled coordinates, the solution has
a nontrivial nonsingular limit. This asymptotic limit depends on finitely many pa-
rameters, determined by the initial conditions. For a single parabolic equation, a
similar rescaling of coordinates was studied in [7] and later in [2] for an exponential
nonlinearity. The present paper supplies a rigorous proof to the formal computations
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on the reactive-Euler model which appeared in [6], [10], relative to the case where
the blowup occurs in the interior of the domain I. If the blowup point lies on the
boundary of I, the variable rescaling and the consequent mathematical analysis will
be different [10].

2. Preliminaries. The change of variables

zl -O-aP
a
iF + (cd)_l/2vZ2 -a iF_ (cd)_i/2vZ3 -transforms (1.1), (1.3)into the system

with boundary conditions

Zl,t A ezl+z2

Z2,t -- Z2,x B ezl+z2+z3

Z3,t Z3,x B ez+z2+z3

(2.3) z2(t, 1) z3(t, 1), z2(t,-1) z3(t,-1).

Here A b, B ab/2d, A (c/d) 1/2. Call g C C(I,3) the Banach space of all
continuous functions z -(zl, z2, 23) from [-1, 1] into l3 which satisfy

z2(1)- z3(1), z2(-1) z3(-1),

with the usual norm

IIz II-max{Izi(x)l; Ixl_< 1, i=1,2,3}.

For a given set of initial conditions

(2.4) z(0, x)- 2(x),

with 2 e E, it is well known [5], [12] that the system (2.2), (2.3) has a unique forward
solution z defined on some maximal interval [0, T). Using the semigroup notation, we
write St(2) z(t, .) E E for the value of this solution at time t. Observe that either
T +cx or II St(2) -- oc as t -+ T-. In this second case, we call T T(2) the
blowup time for the initial conditions (2.4). A point 2 E [-1, 1] is a blowup point
if there exist sequences Xn -- 2, tn -+ T- such that Iz(tn, xn)l -+ +oc. The set of
blowup points, given the initial data z(0, .) 2(x), is denoted by B(2). On the space
E, define the ordering

u-Z,_v iff ui(x) <_ vi(x) V x I, i=1,2,3.

By a standard comparison theorem, if u v, then S (u)

_
S (v) for all t >_ 0 at which

both are defined. In particular, u v implies T(u) >_ T(v).
In a metric space Y, B(y, ) denotes the open ball centered at y with radius 5.

We recall that a set-vMued map F is upper semicontinuous [1, p. 66] if, for all 2 and
> 0, there exists 5 > 0 such that

z e B(5, 5) F(z) C_ B(F(2),s).
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Here B(F(2), ) denotes the neighborhood of radius around the set F(2). If Y is a
complete metric space, a subset R c_ Y is residual in Y (i.e., of second category) if and
only if its complement Y \R lies in the union of countably many closed nowhere dense
sets. A property 7) for the elements of Y is generic if it holds true for all y in a residual
subset of Y. In the next section we prove that the property "Be(2) is a singleton"
is generic in the space E. This is a mathematically precise way of expressing the
fact that for "most" initial conditions 2 E E the corresponding solution of (2.2)
(2.4) blows up at a single point. All of our results will be stated for the system (2.2),
which is more tractable than (1.1). Performing the change of variables inverse of (2.1),
analogous results for the original system (1.1) can be easily obtained.

3. Properties of the blowup set. As a preliminary, observe that for every
initial condition 2 E E the solution z of (2.2), (2.3) blows up in finite time. Indeed,
following [3] define

(3.1) c+ max {A, B}, c- min {A, B},

(3.2)
m+-max{2i(x); xeI, i=1,2,3},
m- =min{2i(x); xeI, i-1,2,3}.

Comparing the components of z with the solutions of the scalar Cauchy problems

c+

we deduce

(3.4) ln[e-3m+ 3c+t]ln[e-3m- --3c-t] < zi(t,x) < -3

for t > 0, x I, 1, 2, 3. Hence the solution z blows up at some time T T(2)
with

(3.5) (3c+e3m+) -1 <_ T(2) <_ (3c-e3m-) -1.

Observe, however, that all solutions can be extended backwards for all times t
(-cx, 0]. Indeed, another simple comparison argument yields

m- + c+e3m+t <_ z{(t,x) <_ m+ V t <_ O.

In this section we study the dependence of the blowup time and of the blowup set on
the initial data and prove that, generically, solutions blow up at a single point.

PROPOSITION 3.1. The map 2 --+ T(2) is continuous on E.

Proof. Fix 2 e E. If T < T(2), then S(2) < oc and S provides
homeomorphism of a bounded neighborhood V of S (2) onto a neighborhood U of
This implies T() > T for all U, hence

(3.6) liminf T(fi) _> T(2).

To prove the converse inequality, fix > 0 and call z z(t, x), v v(t, x) the solutions
of (2.2), (2.3) with initial conditions z, v, respectively. For all t,x we have

(3.7) vi(t,x) >_ min{i(x); Ixl _< 1, i= 1,2, 3}.
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Define m- as in (3.2) and choose T < T(5) and K large enough so that

(3.8) e1-K e2-2"- < c-,

max {zi (T, X) Ixl _< 1, i= 1,2, 3} > K.

As before, S- provides a homeomorphism between a neighborhood V of S (2) and
a neighborhood U of 5. By possibly shrinking U and V, it is not restrictive to assume
that

From (3.9), (3.10)we deduce

(3.11) max {vi (% x) Ix]_<l, i=1,2,3}>K-1 VeU.

Assume that this maximum is vj(’, 2.). Integrating the jth equation in (2.2) along the
jth characteristic line through (%2,) and estimating the other components vi, j
by vi(t, x) >_ m- 1 we obtain

d
(3.12) d-- Vj(T + t,2, + 3jt) >_ C-e2r--2+

Here A1 0, iX2 A, )3 --). If j 2, 3, the corresponding characteristic may
hit the boundary of [-1, 1]. In such cases, the estimate can be continued along the
reflected characteristic, through the same boundary point. A comparison with the
solution of the Cauchy problem

-e2rn--2+y y(O) K- 1y=c

yields the estimate

(3.13) vj(7 + t, 2. + Ajt) >_ -ln[e1-K c- e2m--2t].

By (3.13), (3.8), every solution v with initial data E U blows up within time
This implies

limsup T() _< T(2),

completing the proof.
PROPOSITION 3.2. The map 2 -- 13e(2) is upper semicontinuous, compact valued,

from E into [-1, 1].
Proof. It is clear that each set Be(2) is closed, hence compact. The upper semi-

continuity of the map Bt will be established by proving that for each 2 E E and each
2, Be(2) there exists e > 0 and a neighborhood U of 5 such that

(3.14) [2, e, 2, + ] Be() V e U.

Let 2,2, be given. Since 2, Be(2), there exists 5 > 0 and L such that the solution
z- z(t, x) of (2.2) (2.4) satisfies

(3.15) z(t,x)<L-1 Vi-1,2,3, x-2,1-<5, 0_<t<T(2).
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Set min {e-3L/Tc+, 5/3A}, with c+ as in (3.1), and define T T(5)-. Then S
provides a homeomorphism from a neighborhood V of S (5) onto .a neighborhood U
of 2. By possibly shrinking U and V, in view of (3.15) and of Proposition 3.1, we can
assume that

(3.16) vi(T,x)<L Vi=1,2,3, Ix--21_<5,

for all solutions v with initial conditions E U, and that

(3.17) T() < T(2)+ V e U.

Comparing the values of vi with the solution of the Cauchy problem

(3.18) y’- c+ e3y, y(T) L

from (3.16) it follows that

(3.19) ln(3c+ (7 t) + e-3L)x) <_

for t e [7, T()], Ix 21 < 5 A(t T). Since T() < + 2, (3.19) and the choice of
imply that, for every initial condition U, the corresponding blowup set does not
contain the interval [2 , 2 + ].

THEOREM 3.3. The set E* of all 2 E such that Bg(2) consists of a single point
is residual in E.

Proof. For every integer m > 1 define the set

Am {2 E, diamBe(2) > m-l},

where diam V sup {Ix -Yl; x, y E V} denotes the diameter of the set V. Clearly
E* E\ [-Jm>l A,. It thus suffices to show that each A, is closed and nowhere
dense.

To see that A, is closed, assume vn Am for all n > 1, Vn -- u. Let Xn, Yn
B(vn) with [Xn Ynl >-- m-1. Choosing a suitable subsequence, we can assume that
Xn, --4 2, Yn’ "-’+ ]. By Proposition 3.2, 2, B(u), hence diamBt(u) > ]2-] > m-1

and u A,.
It remains to prove that the complement A of A, is everywhere dense. Fix

u e Eandlet 2 e Be(u). Definee- 1/9m, 5-e/,k. Let o-[-1,1]- [0,1] bea
continuous function such that o(x) 1 if Ix 21 < 2e, o(x) 0 if Ix 21 > 3. For
each n > 1 define the functions v (v, v2, v3) and n by setting

vni(x ui(T(u) 5, x) + n-lo(x), n s-T(u)-i-5(Vn)

Clearly v ---, sT()-5(u) and --+ u as n --, oo. We claim that n Am for every
n > 1. Call wn(t, x) the solution of (2.2), (2.3) with initial conditions n(X). Then

Wn(T(u) 5, x) v(x) > u(T(u) 5, x)

for each n _> 1, Ix 21 _< 3. By the continuity of u with respect to time, there exists
5’ (0, 5) such that

Wni(T(u) 5, x) >_ ui(T(u) -[- 6’, x)
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for [x- 1 2. From (3.20) we deduce

(3.21) Wni(t, x) > ui(t A- ’, x)

whenever t >_ T(u) , Ix 21 < 2 A(t T(u) + ).
Since 2 is a blowup point for u, (3.21) implies T(ffn) < T(u)- 5’. All blowup

points of Zbn, however, are contained inside the set {x; Ix- 2[ < 4}, because
Wn(t,x) u(t,x) whenever Ix 2[ > 3 -+- A(t T(u) + 5), T(u) 5 < t < T(n).
Hence diamBt(n) > rn- and Am, for all n > 1.

4. Asymptotic estimates. The aim of this section is to describe the asymptotic
profile of a solution of (2.2) as the blowup time is approached. Since what matters
here is just the local behavior, for simplicity we neglect the boundary conditions (2.3)
and work with the Banach space 3(,3) of functions z (z,z2, z3) which are
three times continuously differentiable on i. Furthermore, we assume A + 2B 1.
This condition is clearly not restrictive, because it can always be achieved by the time
rescaling t (A + 2B)t.

THEOREM 4.1. There exists a nonempty open set U C C3(ti,3) such that, if
2 U, the corresponding solution z of (2.2) (2.4) blows up at an isolated point xo.
Moreover, if T- T(2) is the blowup time, there exist constants < 0 and z such
that z + z + z O, with the following property. For every > 0 there exists
5 > 0 such that

(4.1) IZl (t, X) Z -4- A In [(T t) - (x x0)2] < ,
]zi(t, x) z + BIn [(T t) - (x xo)2] <

(i-2,3), whenever T-5 < t < T, [x-xo[ <5.
Further estimates can be easily deduced from (4.1). For example, the temperature

0 z + z2 + z3 satisfies

lim O(t,x)+ln (T-t)--
uniformly on every domain of the form Ixl (T-t), being any continuous function
with (0) 0. Moreover, for x - x0 the limit values of zi(t,x) as t - T- are well
defined. In particular, the final temperature profile tg(T, .) satisfies

(4.2) lim [O(T, x) + 2 In Ix x01 + ln(-ft/2)] O.
X--+0

A more precise version of the above theorem will be actually proved, providing com-
putable conditions on the initial data 5 which imply (4.1). As a preliminary, observe
that, given any a,/3, 3’ > 0, we can always find ? large enough so that the following
conditions hold.

(C1) e/ > max{2A, 123A/a, 47A, el/2},
(C2) The solution (tt, m, M, D) of the Cauchy problem

(4.3)

it -4me-/6 #/2
(n- 2me-/3

1 8m2e-/3
[9 2fl + 8f12e-/3 D

#() 7/2,
m() -/3/2,
M(?) -2a,
D(?) 2/3,
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satisfies

(4.4) #(T)<7, m(T) > --fl, M(T) < --a, D(T) K 3fl VT >_.

THEOREM 4.2. Let a, fl,7, be constants for which the conditions (C1), (C2)
hold. Let 5 (51,53, 53) be a C3 function such that 51 + 52 + 53 attains a local
maximum > + 1 at a point . In addition, assume that

(i) max 1(2,)xl < (7/2)e(-1)/2,
(ii) max 1(Si)xl < 2 e-1,
(iii) -e-/2 < Yi min (z)xx _< Y max (z)x < -2a e+1,

the max and min being all taken over the set Ix- 21 <_ 2e2(1-)/3. Then the solution
z o] (2.2), (2.4) blows up at an isolated point xo, at some time T, with

Moreover, the estimates (4.1) hold with - <_ <_ -c.
We outline here the main arguments in the proof, while the details will be worked

out in 5 and 6. Since all solutions of (2.2) have components which remain uniformly
bounded from below, the blowup occurs precisely when their sum zl / z2 + z3
becomes unbounded. If blows up at t T, x x0, we expect that a nontrivial,
nonsingular asymptotic limit can be obtained using the rescaled variables

X X0(4.5 T -ln(T- t),
x/T t’

(4.6)
u Zl -[- n. ln(T- t),
v z2 + B. ln(T- t),
w z3 + B. ln(T- t),

(4.7) S u + v + w v + ln(T- t).

In these new variables, (2.2) takes the form

(4.8)

(4.9) S- + - S, + ,e-/2(vn wn) es 1.

The new initial conditions, at To -In T are

U(TO, ,1 t(l) 51(x0 q- rIT1/2), V(TO, r/) (r/) 52(X0 if- r/T1/2),

(4.10) W(TO, r/) @(r]) 53(x0 q-tiT1/2).
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We remark, however, that the exact values of T and x0 are now known a priori.
Instead, we know the point & where the maximum value of Zl / z2 + z3 is

initially attained. Of course, we expect x0 - & and T
_

e-0, but equality need
not hold, in general. For this reason, we have to consider a two-parameter family of
transformations depending on T, x0. Define the set

(4.11) G {(T, x0); e-1-0

_
T _< e1- [- x0[ < e2(1-)/3}

Elements of { will be our "guesses" for the exact time and location of the blowup.
For each fixed (T, x0) e {i, call (T) the point at which the rescaled variable S(,r, .)
attains its maximum. Assuming that S is negative at , from (4.9) and the relations

(4..) S(, ()) 0, S(,()) + S(,())() 0,

we obtain

1 -/2

(4 14) d, Sv,r(T ,) ,(’r) + e_./2(vvv-; s,.,(-. ) ’"
(4.15)

d
S(,r.(’r)) S- + Sv eS(’) 1 ),e-/2(vv(’r. () Wn(T.))

The initial conditions for , S() are

(4.16) (’r0) (i xo)T-1/2, S((’r0)) + In T.

In 3, define the tube with shrinking square section

(4.17)

As (T, x0) range in {i, (4.14) (4.16) determine a two-parameter family of trajectories
"r ((T),S(,r,(T))) depending continuously on T, xo. We will show that these
trajectories are well defined (in particular SW(T,C(T)) < 0) as long as they remain
inside T. Moreover, all boundary points of 7" are strict exit points. A topological
argument thus implies the existence of some T, x0 E whose corresponding solution
of (4.14) (4.16) remains forever inside 7". Such T and x0 provide the exact timing
and location of the blowup. In the second part of the proof we refine the estimates
on u,v,w, and on their derivatives, and establish the limits (4.1) by means of a
comparison theorem.

5. Proof of Theorem 4.2. Step 1. For (T, x0) E , let u,v,w,S be the
corresponding solution of (4.8) (4.10), defined for ,r _> -r0 -In T. Introduce the
scalar quantities

(5.1) #(T) max {I-,b-.,fll. Iv, b’. )1. Iw,(-..)l; I,1 -< -/}

mU(T) min uvv(’r, )
m (,r) min vv,(.r
mw (T) min wv,(,r

MP(T) max uvv(,r r])
M (,r) max vvv(,r r])
MTM (,r) max wv, (’r ),



HYPERBOLIC BLOWUP 595

(5.2) D(T) max (lUVV(T, r])l, IVuu(T, r)l, IWv,(T, 7)1},

where the min and max are all taken over the set Irl
_

e-r/6. Defining

(5.3) m mu + mv + mw, M Mu + Mv + Mw,
we clearly have

(5.4) re(T) <_ Sm(T r]) <_ M(T)

whenever ]] _< e-r/6. Estimates on the initial values of #,m,M, and D can be
derived from assumptions (i) (iii) in Theorem 4.2. Recalling that

+1 >_ T0 -lnT > - 1 > > 3,

IX- XoI--Ir]l e-r/2

_
e-2r/3

_
e2(1-0)/3,

Ix &l <- Ix xol-4-Ixo 1 <- 2 e2(1-0)/3.

Hypotheses (i) (iii) therefore imply

(.6)

To estimate #, m, M, D when T > r0, we differentiate (4.8) and obtain

(.8)

Observe that the three families of characteristics for the system (4.8) are determined
by the equations

r] r/2 r] /2=, #=+e =-
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By (5.5) and assumption (C1) on -, when T _> all characteristics are flowing out
from the domain {(T, r#); 171 <_ e-/6}. Assume that (T,(T),S((,r))) e "Y and m(T)
M(,r) < 0 for T in some initial interval I-r0, T’). Then the following estimates hold.

(5.9) S(T, 17) <_ e-’/3, eS(-’’D <_ 1 + 2 e-’/3 <_ 2,

Using (5.9), (5.10), from (5.7), (5.8) we deduce

(5.11) ft(.r) _< -is(,r)/2 + mx {IS(,r, r]) eS(’); Ivl <- -/}
<- -(1/ + 41m()l-’/,

gnU(T) >_ --m"(T) + A" re(T)(1 + 2e-/3)

(n’(,r) >_ --m’(,r) + B m(,r)(1 + 2e-/3)

rh’(,r) >_ --row(T)+ B. m(,r)(1 + 2e-/3),

(5.12)

(5.13) h;/(.r) _< 8m2(,r)e-13.

Assumptions (C1), (C2)now imply

(5.14) Is(-r) < ’, m(,r) > -, M(’r) < -o

for all ,r e I-r0, ,r’). Since Svv < M(,r) < 0, (5.14) shows that solutions (, S) of (4.14),
(4.15) are well defined and depend continuously on the parameters T, x0, as long as

(, S) remain inside the tube T. Moreover, from (5.8) it follows

D(m) --D(T)+ 2max {(S + IS,,I); Inl -/6}
(5.15) -D()+ 2[(21()1-/)2 + I()11

--D(T) + 8fl:e-13 + 2,

hence, by condition (C2),

(5.16) D() < aZ V e [0, ’).

We now define a continuous map from the unit square Q {(y, y2); y, y2 1}
onto its boundary as follows. Given (y,y2) Q, there exists a unique (T, xo)
such that, setting 0 -In T, we have

(5.17) (ya, y2) e/3((o), S((To))) T-x/3((& xo)T-/2, 0 + In T).
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If the corresponding solution of (4.14) (4.16) escapes through the boundary of :T
at time T, define

(5.18) o(yl, y2)= e1-/3((r), S(T,(r))) e OQ.

As customary, the continuity of o can be proved by showing that every boundary
point of T with T _> is a strict exit point for solutions of (4.14) (4.16). Indeed, if
[(T)[ e-1-/3, using (5.16)in (4.14)we obtain

d 1 e_1-/3 A -1-/3 2D(T)>d-
1 e_1-/3 6/A -/2>- -e >0

--2 a

because of (C1). On the other hand, if IS(T, (T))I e-1-/3, using (5.14) in (4.15) we
now have

1 e_1-/3 2A7 e
d

IS(T,C(r))I >
1 e_1-/3 ,k e -1-/2. 2#(T) > > 0.d-

If every choice (T, x0) E G yields a trajectory which escapes from T at some finite
time T, the map would then be a continuous surjection from Q onto OQ which
leaves the points of OQ fixed. Since no such map exists, we have proved the existence
of some (T, xo) e whose corresponding trajectory r --+ ((T),S(T,(T))) remains
inside T for all times > r0.

6. Proof of Theorem 4.2. Step 2. From now on, everything is referred to a
unique coordinate transformation, i.e., the one determined by the element (T, x0) G
singled out at the end of 5. Differentiating (5.8) once again we find

Call E(T) the maximum of over the set Ivl _< e-r/6, and define Ev(T),
Ew(T) similarly. Set E E + Ev + Ew. Since IS(T,r/) < E(r), by (6.1) E
satisfies the differential inequality

The estimates (5.10) and (5.14)together imply

(6.3) lim max {ISn(r, )l; I1 _< e-r/6} O.

Using (6.3) and the uniform bounds on S, I&,l in (6.2) we obtain

lim E(T) O,

therefore, recalling the definitions (5.3),

(6.4) lim IMff) m(r)l o.
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By (5.4), (5.14), from (6.4) it follows that

(6.5)
Ivl<--’r/

exists and satisfies

(6.6) - <_ gt _< -c.

Using (6.5)in (5.8) we now obtain

lim uuv
(6.7)

,.li_>rn vm lim w,m B,

all limits being taken inside the region I1 _< e-16. The equations (4.14), (4.15) in
view of (6.5), (6.7) yield

(6.8) I()1 < c-/, IS0-, 0-))1 _< C1 e-r12

for some constant C1 and all T large enough. Since SV(T,((T)) =-- 0 and Is,,I < ,
(6.8) implies an estimate of the form

(6.9) IS,(, )1 < C-,/

whenever Ir/I _< (C + 2)e-/. In particular, (6.8) and (6.9)yield

(6.10) IS0-, 0)1 _< C3e-12,

valid for some constant 63 and all T large enough. Define

#’(T) max {lu,l(’r, ’DI, Iv,(’-, ’DI, Iw,,(’, ’DI; I’ll < 2, -’,/}.
An estimate entirely similar to (5.11) now yields

ia’ <_ --iu’(T)/2 + max {IS,(-,
<_ --#’(r)/2 + 20 e-,l,

which implies, in particular,

(6.11)

To extend our estimates beyond the narrow strip Ir#l 2A e-r/2 we rely on a compar-
ison technique.

LEMMA. Let (u,v,w) be a solution of (5.2) and let Z Z(T, rl) be a scalar
function such that

(6.12)

Call

?]
eZZ + - Z 1.

u-(T, 17) min {U(T, 7’); l7 ql --< 2.X e--’rl2},
U+ (% r) max {U(T, 7’); I,/- ,1 <- 2a e-1}
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and similarly ]or v-, v+, w-, w+ I] at some point (7, ) we have (u-+v-+w-) (T, ) >_
Z(-, ), then

(6.13) (u- + v- + w-)(T + t, et/2) Z(T + t, et/2) Vt > O.

On the other hand, if (u+ + v+ + W+)(T,)

_
Z(T,y), then

(6.14) (u+ + v+ + W+)(T + t, et/2) <_ Z(T + t, et/2) V t > O.

Indeed, (6.13) and (6.14) can be proved by defining

Y+(t) (+ + v+ + w+/-)( + t, , /)
and checking that

dY- (t) d> z( + t, /),
dt dt

dY+ (t) < d Z(T + t, et/2)
dt dt

whenever Y- >_ Z or Y+ <_ Z, respectively.
Using the lemma, we now prove that as T -- C the functions u, v, w, S converge

to some limit, uniformly on bounded sets. Fix > 0 and define

Z+(T, r) in (1 + )2 2

Z-(’r, r) In (1 f-e )2 r2

Observe that Z+, Z- are time-invariant solutions of (6.12), with Z+n(0
Z-n(0) . For any ’ > 0, by (6.7) there exists T1 so large that

(6.15)
n(T, ) <__ U(T, O) + Un(T, 0) + (A + ’)2/2
v(, ) < v(,, O) + v,(, 0) + (Bn + ’)/2
w(7, ) <_ w(T, O) + Wn(T, 0) + (Bgt + ’)2/2

whenever I1 <- e-’/6, " - T1.
Call uoo, voo, woo, respectively, the limits of U(T, 0), v(-, 0), w(T, 0) aS - -- CX).

Using (6.10), (6.11) in (4.8), it is clear that these limits exist. In fact, we have the
estimates

for some constant C5 and all T large enough. Moreover,

uoo + voo + woo lim S(T, O) O.

By (6.15), (6.16), there exists so large that

(6.17) u+ uoo <_ AZ+, v+ voo <_ BZ+, w+- woo <_ BZ+,
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at every point of the set {(% ); T _> , Inl e }. In particular,

(6.18) (+ + v+ + +)(, +-/) _< z+ (,+ -/)
for all - _> . The previous lemma now yields

(6.19) s(-,-,,) _< (+ +,+ + w+)(-,-,,) _< z+(-,-,,)

on the region

--T/6 e(’r--)/2 e-e/6r {(, ); > , _< I1 _< }.
For suitably large, an entirely similar argument yields

(6.20) s(,) > (- +v- + x-)(,n) > z-(,n)

-/2 (6.19) andfor all (% r) E Ee. Since S(’, ) - 0 as - -- oc on the strip I]1 _< e

(6.20) prove the following. For every > 0 there exists large enough so that

(6.21) S(T,) + ln 1--
for every (% ) in the region

e/2 e-2e/3

Using (6.19) and (6.20) in (4.8), another comparison argument shows that on Ee the
functions u+ satisfy

A. Z-(q) < u-(T, q) U _< u+ (T, r/) Uo < A" Z+ (/).

Similarly, the functions v+ -v and w+ -w are bounded by B. Z+. On the strip
/6 estimates on u, v, w are already known. Therefore we conclude that forInl < -every e > 0 there exists such that

(6.22)

u(%n)-u+A.ln 1--n2

v(-,r)-v+B.ln 1--r
w(-, r) w + B. In 1 - r

for every (% /) E Re. By setting z u, z v, z w, the reinterpretation
of (6.22) in the original variables t, x, z is the following. For every e > 0 there exists

(T- t)2/3t < T such that the estimates (4.1) hold whenever - <_ t < T, Ix x01 <_
This proves Theorem 4.2.

The statements in Theorem 4.1 now follow as corollaries. Indeed, for any given
a,/, 7, , the hypotheses in Theorem 4.2 are satisfied by a nonempty, open set of
functions. The previous proof also indicates that the parameters T, xo, z, and fl,
which characterize the self-similar blowup, depend continuously on the initial data 2
in the (:2 topology.
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AN INTERIOR DISCONTINUITY OF A NONLINEAR
ELLIPTIC-HYPERBOLIC SYSTEM*

SENHUEI E. CHENt AND R. BRUCE KELLOGG$

Abstract. A nonlinear elliptic-hyperbolic system of partial differential equations which is a
simplified form of the equations of viscous, compressible, barotropic flow at steady-state is studied.
A boundary value problem for the system on a strip D (0, a) (-cx, c) is considered. Zero
boundary conditions for the velocities u and v on the sides of the strip D are imposed, and for
pressure p(0, y) Po(Y) is imposed, where Po(Y) has a jump at y 0. Jump conditions for the
system show that u and v are continuous. However, their derivatives and pressure have a curve of
discontinuity. With sufficient small width of the strip D the Schauder fixed-point theorem gives a
solution with a curve of discontinuity. The results suggest that there are two-dimensional, viscous,
barotropic, steady-state compressible flows with discontinuity.

Key words, viscous compressible flow, discontinuous solutions

AMS(MOS) subject classifications. 76N10, 35Q10

1. Introduction. The mathematical theory of the compressible Navier-Stokes
equations is far from complete, and there are many unsolved questions. Among these
questions is the interior regularity of the solutions. There are some situations where
it is quite clear what to expect. For example, in the case of compressible inviscid
flow, the governing system of equations is hyperbolic and solutions will, in general,
contain shock discontinuities. In the case of incompressible viscous flow, the governing
system of equations may be thought of as elliptic, and it is reasonable to expect
that the solutions will be regular interior to the flow region. In the case of viscous
compressible flow, the governing system of equations is neither elliptic nor hyperbolic,
and the issue of interior regularity is open. In this paper, we make a contribution to
this problem.

There has been some work related to the problem of interior regularity of the
solutions to the compressible flow equations. D. Hoff [1], [2] has considered the time-
dependent, viscous, compressible flow equations in one space dimension. He shows
that there are indeed solutions for which the pressure has a jump discontinuity; how-
ever, he also shows that this discontinuity decays as time goes to infinity. In [4] Valli
considers the three-dimensional, steady-state, compressible flow equations. He shows
that if the boundary data is small and smooth, then there is a smooth solution to the
system. Kellogg [6] studies the two-dimensional, steady-state, viscous, compressible
flow equations. The equations are linearized around an ambient nonzero solution to
the nonlinear system. He shows that there is a solution to this linearized system
that contains an interior discontinuity. The pressure takes a jump across this curve.
The curve is a streamline of the ambient flow field that emanates from a jump in the
specified boundary values of the pressure.

From the above discussion it seems possible that there are solutions to the steady-
state, viscous, compressible flow equations which have an interior curve of disconti-
nuity. We are unable to prove this result. Instead, we construct a simplified system
of equations that still retains the "elliptic-hyperbolic" character of the original flow
equations. Our simplification enables us to carry through an existence theorem for a
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discontinuous solution, which is the purpose of this paper.
Let the primary unknowns be the velocity u(x, y), v(x, y) in the x, y directions,

respectively, and the pressure p(x, y), and let p(p) be the density, which is related
to the pressure through the equation of state. We consider the case of barotropic
flow, in which there is no dependence on temperature. Let # and A denote the two
coefficients of viscosity. The two-dimensional, barotropic, steady-state, compressible
Navier-Stokes equations are:

(l.la) -(, + )u (, + )v , + (p) + (pv) +p 0,

(1.1b)

(l.lc) (pu)x + (pv), O.

To obtain the simplified system we set tt - 1 and we drop the convective
terms in (1.1a,b). More crucially, we replace the continuity equation by a modified
"continuity" equation, upx q--Vpy O. Thus, we have dropped the term puo +pvy from
the continuity equation. This modified "continuity" equation has no physical meaning.
Our only justification in considering it is that the elliptic-hyperbolic character of the
system is unchanged, and that we are able to demonstrate the existence of a solution
of the modified system with an interior discontinuity. The difficulties encountered in
using (1.1c) are explained in 2. With the assumption that the system is barotropic,
the density p p(p) is a function of pressure only and the system can be simplified
further. Writing p, (dp/dp)p,, #y (dp/dp)py, we obtain from (1.1c) the equation
upx q--vpy 0. We make a further notational change. The solution that we obtain will
be such that the flow is close to uniform flow in the x direction. We therefore replace
the unknown u by 1 + u. This leaves the modified momentum equations unchanged.
The modified compressible tiow equations studied in this paper are therefore

(1.2a) -uxx uyy + Px O,

--Vxx Vyy + py O

(1 + u)p + vp O.

The system (1.2) will be considered in the strip D (0, a) x (-oo, oo). The width
a will be chosen later. We impose zero boundary conditions for u and v on the sides of
the strip D, and we impose the boundary condition for the pressure on the side of the
strip D through which the flow enters. Thus, we are led to the boundary conditions:

(1.2d) u(0, y) u(a, y) O,

(1.2e) (o, v) (a, V) O,

(:.el) p(o, ) ;o(v).
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The function Po(Y) will be chosen to have a simple jump discontinuity at y 0,
to vanish outside [0, a], and to be smooth for y _> 0. We let 5p0 p0(+0) denote the
jump in po(y) at y 0. We will show that the system (1.2) has a solution with the
property that p(x, y) is discontinuous across a curve C. The curve C is the streamline
of the flow emanating from the point (0,0), which is the point of discontinuity of p0.

The first derivatives of u and v undergo jump discontinuities across C, and satisfy
certain jump conditions analogous to the Rankine-Hugoniot conditions for inviscid
flow. The proof reformulates the problem as a fixed-point mapping T in a Banach
space and uses the Schauder fixed-point theorem. In the course of the proof, we must
choose a to be suitably small. The specific restriction on a is given below, and is used
to guarantee that T is a self-mapping of a ball in the Banach space. Thus, both the
width of the strip D and the support of p0 are made small. On the other hand, there
is no restriction on the size of the jump 5p0.

In 2 we define precisely what is meant by a weak solution of (1.2), we reformulate
(1.2) as finding the fixed point of a map in a certain Banach space, and we state our
existence theorem (Theorem 2.1). In addition, we derive in a heuristic way the jump
conditions that the solution satisfies across the curve C.

Section 3 presents a formula for the solution of the momentum equations (l.2a,b)
in terms of certain weakly singular integrals. From this formula we obtain a modulus
of continuity of u and v in the y variable of the form r(I In Irl I-t- 1), which is just enough
to ensure the unique solvability of the characteristic equations associated with (1.2c).
Also in this section, we verify the jump conditions for a weak solution of (1.2), and
we derive a formula for the solution of (1.2c).

In 4 an analysis of the interaction between the weakly singular integrals occurring
in the solution of (1.2a,b) and the characteristic equation occurring in the solution
of (1.2c) proves the continuity of the fixed-point mapping T. Following that, some a
priori inequalities are derived.

In 5, a value of the width of the strip D is determined, and the Schauder fixed-
point theorem (see, for example, [3]), is applied to give the existence of a solution
with a curve C of discontinuity.

2. Existence theorem and jump conditions. In this section we define pre-
cisely what we mean by a weak solution of the system (1.2). We then state our main
existence theorem as Theorem 2.1, whose proof is given in 5. The existence theo-
rem establishes the existence of a weak solution (u, v, p) with the property that p has
a curve (J of discontinuity. The weak solution must satisfy certain jump conditions
across the curve C of discontinuity, and we end this section with a discussion and
heuristic derivation of these jump conditions.

Let cO(/)) be the space of continuous functions in/). Let

4 {(,v): e C()),v e C(), I111 + I111 < },
where

x,yED
sup

,,y,feD,yCf lY fl(I In lY 11 + 1)

and similarly for lvll. It is easy to see that 4 is a Banach space with the norm
II(, v)ll I111 + Ilvll, The particular form of the norm I111 reflects the elliptic-
hyperbolic character of our system. The modulus of continuity of u in the y variable
is r[I In Irll + 1]. This modulus of continuity is just enough to guarantee the solvability
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of the hyperbolic equation (1.2c), see the beginning of 3, and to provide the a priori
estimates that arise from this solution (note Lemmas 4.1 and 4.2). On the other hand,
this modulus of continuity is provided by estimates for the weakly singular integrals
that occur in the solution of the elliptic equations (1.2a,b), and it seems that no better
modulus of continuity arises from these weakly singular integrals.

For system (1.2), we say that (u, v, p) is a weak solution, if u and v belong to
p is a locally integrable function in D, and (u, v,p) satisfy the following conditions:
for any (x, y) e C(D), the equations

[-uCxx UCyy -px]dxdy O,

ff
(2.1b) ] /D[--vCx vCyy py]dxdy O

hold; on each curve y h(x, yo) defined by the equation h’(x, Yo) v(x, h(x, y0))/(1 +
u(x,h(x, Y0))), h(0, y0) y0, p is constant and hence satisfies (1.2c). As mentioned
above, since (u, v) e .A, the function h(x, yo) is well defined. We now state the main
existence theorem.

THEOREM 2.1. Let Po be a function with Po(y) 0 for y < 0 and y >_ a, po(y)
infinitely differentiable for y >_ O, and limy-,+opo(y) 5po 7 O. Then there is a

number a* > O, satisfying (al), (R2), and (R3) defined in 4 and 5 such that, if
0 < a < a*, the system (1.2) has a weak solution (u,v,p) with (u,v) e Jr. The
solution has a curve C of discontinuity on which the jump conditions (J1), (J2), and
(J3) defined below are satisfied.

Let B be the closed ball in ,4 with center 0 and radius 1/4. We define a mapping
T on B as follows. Let T1 (u, v) --, p, where p is obtained by solving

(1 + u)p + vpu O,

and let T2 "p --+ (fi, ), where fi, satisfy

--txx tyy "- p O,

p(o,

(0, y) fi(a, y) 0,

(O,y) --(a,y) --0.

Let T T2 o T1 be the composition of T2 and T1. Theorem 2.1 will be proved in 5
by showing that the mapping T has a fixed point in B.

We may now explain the difficulties encountered in using the true continuity
equation (1.1c), instead of (1.2c). Presumably, T1 should be the solution operator of
(1.1c). When written out, (1.1c) becomes up +vp + (u +vy)p 0; if this equation
were used, the space A would need to be replaced by a space of functions for which
u + v has meaning. Alternately, we could define a solution operator T1 of (1.1c)
by means of a weak solution. If this is the case, it is hard to get enough information
concerning p to establish continuity results of the form given in Propositions 4.3 and
4.7.

Let F (x(s), y(s)) be a smooth curve, parametrized by s, which divides D into
two parts, D and D2. The unit normal vector to the curve is n(s) (-9(s),(s)).
Suppose n(s) points into D2, so n(s) is the outward pointing normal to D. In each
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subregion we suppose that u, v, and p are smooth, but they or their derivatives may
have a simple jump across F. Let ut denote the tangential derivative along the curve
F. Let lull, [u]2, [ux]l, [ux]2, etc., denote the one-sided limits of u, u, etc., on F.
We use the notation 5u [u]2 -[u], 5ux [u]2 -[u] to measure the jump. In
the following theorem, we present jump conditions for solutions with a curve F of
discontinuity. The proof uses the standard technique of integration by parts, but
assumes that the solution is smooth on either side of F. In Theorem 3.1 these jump
conditions are established for a weak solution.

THEOREM 2.2. Let the domain D be divided into two parts D1, 02, by a smooth
curve F. Let (u, v,p) be a weak solution of (1.2). Suppose u, v,p are smooth in each
subdomain with one-sided limits on F, and suppose p has a jump on F. Then F is a
streamline of the flow, the first derivatives o] u and v have jumps on F, and u, v,p
satisfy the jump conditions

(j1) 5u 5v 5ut 5vt O,

(J2) Sux 25uy $5p,

(J3) 95v &Svy -icSp.

Proof. Let 7 denote a curve that crosses F at a point q0. Let q E ,, and let Fq
be the streamline through q. Then p p(q) on Fq. As q varies over , N D1, p(q)
is continuous, and as p varies over 7 N D2, p(q) is continuous. Hence, for p to be
discontinuous across F, we must have 7 Fqo; that is, F is a streamline.

Since (u, v) E ,4, u and v are continuous. Hence 5u 5v 0, and since u and v
are assumed to be smooth on either side of F, 5ut 5vt 0, and we have (J1).

Let be a smooth function of compact support contained in D1. From a well-
known property of the Laplacian operator and the fact that p is smooth in D1, (2.1a)
implies that u satisfies (1.2a) in O1. Similarly, u satisfies (1.2a) in 02. Next, let
have support which intersects F. Applying (2.1a), we write the integral as a sum of
integrals over D and D2. Integrating by parts and using (1.2a) in D1 and D2, we
obtain

fr[Su
)Sp + 5u(Sp Spy)]ds O.

Since this is true for all smooth with compact support, and since 5u 0, we obtain
(J2). The proof of (J3) is similar.

3. Properties of solutions. The aim of this section is to derive formulas for the
mappings T1 andT2. These formula are then used to verify jump conditions and derive
a formula for the modulus of continuity for a pair (fi, ) in the range of T2. First, we
derive a formula for T1 by solving (1.2c) and (1.2f) for p with (u, v) a given pair in
The characteristic curves y h(x, yo) corresponding to the hyperbolic equation (1.2c)
are those defined by the solutions of the nonlinear ordinary differential equation:

(3.1)
dh v(x, h(x, yo))

h(O Yo) yo
dx 1 + u(x, h(x, Yo))
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In particular, when y0 0, we obtain the characteristic curve y H(x) emanating
from (0, 0):

(3.2)
dH v(x,H(x)) H(O) O.
dx 1 + u(x, H(x))

For the existence and uniqueness of solution of (3.1) and (3.2) we refer to Hartman
[5]. Since u and v are continuous, the Peano existence theorem [5, Chap. II, Thm.
2.1] shows that solutions h(x, yo) and H(x) exist. Since u and v are in Jr, the Osgood
criterion [5, Chap. III, Cor. 6.2] is satisfied and the solutions h and H are unique.
As a consequence of this uniqueness, h(x, yo) is a strictly increasing function in y0, so
the inverse function exists. For each x, let the inverse function of h(x, yo) be g(x, y),
i.e.,

(3.3) a(x, h(x, g(x, h(x, 0)) g(x, H(x)) O.

Through g(x, y), the solution p Tl(u, v) can be expressed as

In particular,

(3.4) p(x, H(x)) po(g(x, H(x))) p0(+0) 5P0.

Thus, p is constant along each curve y h(x, yo). Due to the jump discontinuity of
po(y) at y 0, p(x, y) has a jump discontinuity across the characteristic y H(x),
that is, the one emanating from (0, 0) and denoted by C. Moreover p(x, y) 0, if
y < H(x), p(x, y) is continuous and compactly supported in y >_ H(x).

Now we are in position to solve (1.2a,b) subject to (1.2d,e) for fi(x, y) and (x, y)
with given p(x, y) in the range of T1. We will take the Fourier transform of (1.2a,b)
with respect to y. Since p(x, y), and the first derivatives of fi(x, y) and (x, y) possibly
are discontinuous on the curve y H(x), the usual formulas for the Fourier transform
of the derivatives must be modified and the transformed equations include terms
containing these jumps. When we apply the jump conditions (J1) and (J2), these
extra terms cancel out and we obtain two linear ordinary differential equations in x
with coefficients in t:

-xx + t2 + 15x 0,

-.3 + t2.3 + it 0,

where , ,3, and i5 denote the Fourier transform of, v, p, and t denotes the transformed
variable. These equations may be solved subject to boundary conditions.

For this, let

sin rr(x s)/a
8a(sinh2 r(y t)/2a + sin2 rr(x s)/2a)

k (x + ,, y- t)
sin rr(x + s)/a

8a(sinh2 r(y t)/2a + sin2 rr(x + s)/2a)
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sinh r(y t)/a
8a(sinh2 (y t)/2a + sin2 (x s)/2a)

k4(x + s, y t)
sinh n(y t)/a

8a(sinh2 (y t)/2a + sin2 (x + s)/2a)
Then, taking the inverse Fourier transform of the solutions and using some formulas
in [7], we obtain the following formula for (fi, ) T2(p)"

t(x, y)= ffp(s, t)(kl (x s, y- t)+ k2(x + s, y- t))dtds
(3.5) J JD

=_ (x, ) + (x, ),

(3.6)
(X, y) ]]D p(8, t)(k3(x 8, y t) -- k4(x -J- 8, y t))dtds

=_ (x, ) + (x, ).

For some analysis in 4, it is convenient to introduce

8--X
(x ,- t) 2(( t) + (x ))"

We may write (x, y) as

(3.) (x, u) [(x, ) (x, )] + (x, ) + (x, ),

where

Now we verify the jump conditions (J1), (J2), and (J3) for a pair (fi, ) in the
range of T2.

THEOREM 3.1. Let u, v be in jr, and p the image of u, v under the mapping TI,
then (ft, )- T2(p) satisfies the jump conditions (J1), (J2), and (J3).

Proof. Since k2(x + s, y t) is C as a function of x and y and bounded for all
(s, t) in D, (x, y) in D, 2(x, y) is C in x and y. Hence fi2(x, y) takes no jump across
y H(x). Using the fact that p(s, t) is supported in t H(s) and making a change
of variables y- t , x s a yields

(x, y) p(x a, y 7)k (a, 7)dTda.
--a

We use this expression to evaluate the partial derivatives of (x, y)"

0i / fy-H(a)Ox
p(O, y T)k (x, )d7 p(a, y T)kl (x a, T)dT

+ P,1 (X a, y T)kl (a,
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A1 + A2 + A3 + A4,
01 =fx JY.__.-H(x-a)Oy -a x

P,2 (x a, y T)kl (a, T)dTdo"

+ p(x a, H(x a))kl (a, y H(x a))da
--a

=- A5 + A6.
Here p,i means the partial derivative of p with respect to the ith variable. Terms
A1, A2, A4, A5 are continuous across y H(x). However, A3 and A6 become singular
as x, y approaches the curve C, and these terms give rise to the jump discontinuity in

Ol/OX and Ol/Oy. Using (3.4) we have

where

a

A3(x,y)-- H’(s)p(s,H(s))k(x- s,y- H(s))ds

H’(s)k(x- s,y- H(s))ds

(H’(s) H’(x))k(x s,y- H(s))ds

/oO( 1 )-Sport’(x) k(x s,y- U(s)) --k5(x s,y- g(s)) ds

-@o H’() (( -/-/())-( s -/-/()))e2r

27r

k5(x s, y- H(s)) ((y_ H(s))2 + (x s)2)
(-x)k6(x s, y- H(s)) (y H(x) H’(x)(s x))2 + (x s)2"

Since (H’(s) H’(x))kl, k k5, and k5 k6 are continuous in x, y and bounded in
D as a function of s, t for all (x, y) in D, f2(H’(s)- H’(x))kds, f(k k5)ds and

f2(k5 k6)ds do not take a jump across C. Further analysis of

@0 H’(x) k6(x s, y H(s))ds
2r

is needed to bring out the jump of OUl/OX across C. By setting x-s , y-H(x) c,
and ./c- a,

a 5POH,(x s-SPO2r H’(x) k6(x s, y- H(s))ds
--a (a- H’(x)g)2 +

d

/oz O"Spo g’(x)
(1 g’(x)cr)2 + a2

da
2r J(x-a)l

Spo
H’(x).T’(c).

2r
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When y- H(x) > O,

+(a)-
2(1 + H’(x)2)

In 1 (X)-c + (x)

+1 +H’(X)H’(x) 2 tan-1 ((1 + H’(x)2) -x H’(x))
1 (( + (z)2(1 + H’(x)2)

In 1 g’(x)x -aa H’ x

a

a

H’(x) 1( H’ x a H’(x))-1 + H’(x)2
tan- (1 4- (x)2)T

When y- H(x) -a < 0,

+ (x)9-(a)= 2(l+H’(x)2)
ln 1-H’(x)acx H’ 2 a(x

1 +H’(X)H’ (x)2 tan-l((l+H’(x)2)a-xa H’(x))
2(1 + H’(x)2)

In 1 H’(x) + H,(x)2 -_fixa
H’(x) 1( H’ -X H’(x))1 + H’(x)2

tan- (1 + (x)2)-
Letting y go to H(x) from above and below, we find that lim__.o +(c) exists and
we obtain

(3.9) lim 5P0 H’
-o ()(+() :r-()1

5poH’(x)H’(x)
(1 + H’(x)2

Next, in the expression of OUl/Oy, A6(x, y) takes the same amount of jump across
as

 /oo
a

G k6(x- s, y- H(s))ds.

By setting x s , y- H(x) , / a,

P0 j0 X- 8-SPo2r k6(x s, y- g(s))ds
( H’(x)(x s))2 + (x s)2

PO xx

2r (o- H’())2 4- 2
d

@o f/ a

2r !J(x_a)/ (1 H’(x)a)2 + a

@o 6().
27

do

d8
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When y- H(x) > O,

1 ((.,+() =-2(1 + H’(x)2)
In 1 (x)-c + H’(x)2

H’(x)
1 + H’(x)2 tan-l(l+H’(x)2)X-H’(x))

1 (( )2+ (x) ( )2)+ 2(1 + H’(x)2)
In 1 g’(x)x

(

a H’ 2 x

c

a

H’(x) tan_l ((l + H,(x)2)x-a H’(x))+1 + H’(x)

When y- H(x) - < O,

1

2(1 + H’(x)2)
H’(x)

1 + H’(x)2

In 1 H’(x)
a x a x

+ H’(x)2

tan-l((l + H’(x)2) a-x

+2(1 + H’(x)2)
In 1 H’(x) -xa H’

1 +H’(X)H’(x) 2 tan_l((l+H,(x)2)-___x_x_H,(x)).a
Letting y go to H(x) from above and below, we find that lim-0 G+(a) exists and
we obtain

lim
5p0 5p0H’ (x)

-0-(G+(a) 6- (a)) -(1 + H’(x)2)

Since k 1, H’(x), jump condition (J2) follows from equations (3.9) and (3.10),
and (J3) is proved in a similar way. To verify (J1), note that from these formulas,
and have one-sided derivatives on either side of C, so (J 1) follows from the continuity
of fi and across C. This completes the proof.

In the expression (3.7) for (x, y), fi (x, y) 3(x, y) and 2(x, y) are smoother
than 3(x, y). The crucial part concerning the modulus of the continuity of fi(x, y) is

3(x, y). We state the modulus of continuity of fi3(x, y) and give the proof as follows.

PROPOSITION 3.2. Let 0 < a < 1, and let p be a bounded function supported in
[0, a] [-2a, 2a], then

fi3(x, y) p(s, t)kT(x s, y t)dtds
2a

satisfies

]3(x, y) 3(x, )1 -< aCl]pll]y ]1(I In lY 11 + 1),

where I[p[I- sup(,t)D IP(s,t)l C1 is a constant.
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Proof. Define

fo a

f (x, y, fl) I(s x)(y + fl 2t)ldtds
2a ((X 8) 2 -- (y t)2)((X 8)2 -- (- t)2).

Then

Consider, without loss of generality, the case x 0. Then,

f(o, O)y, Jo J-o ( + (- t))( + t)
dtds _= fl (0, y, 0) + f2(0, y, 0).

We rescale fl (0, y, 0) by setting s ya, t ayT. Then

[a/ [2/ alallldrdafl(O,y,O) < a
0 -2/y 02 + (1 aT)2)(a2 + a2"r2)

Let

Since 0 < a < 1, Bi C B2, alllTI/(2 + a2T2) < 1/2, then

fl(O, y, O)

_
o-2 + (1 aT)"

With B2 B3 (-J B4,

aj/ d’rda
fl(O,y,O)<_- (a2+(l_aT)2)

_a
2

((i) + (ii)).

.2 + (1 a’r) 2)

Since B4 C B5, a < 1, and

1 1

(0.2 + (1 a"r) 2) - (0.2 4- (1 T)2)
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we obtain

]’L 1
(i) < 32 + (1 T)2)

dda < C2,

f fB dadT
(ii) <

4
32 + (1 T)2)

ff dadT<
( + ( 1)

drdO < C3(I In lull + ),
1<_

7r Jll2 r

for some constants C2, Ca. Choosing Ca max(C2, Ca),
a

Yl(0, y, 0)

_
C4(I In lYll / 1).

Similarly,

a
f2(O, y, O) <_ Ce(I In I11 + 1).

We have shown that f(x, y, fl) < aC4([ In lyll + 1). This completes the proof.
The functions k2(x s, y t) and kl (x s, y t) kT(X s, y t) are in C as

functions of x and y, and are bounded for all (s,t) e D, (x, y) E D. Hence 2 and
1 --3 are continuously differentiable in D, so there is a constant C5 such that

(3.12) 12(x, y) 2(x, ff)l aC511pllly 1,

(3.13) I’ll(X, y) ’g3 (x, y) (Q,1 (x, ) ’/3 (X, ff))l -< aCllpllly fl.
In view of (3.11), (3.12), and (3.13) we have the following concerning the modulus of
continuity of g(x, y). A similar analysis holds for (x, y) andwe obtain the following
proposition.

PROPOSITION 3.3. There is a constant C6 such that

(3.14) I(x, y) z(x, f)l <- aCallplllY J(I In ly ll + 1),

I’O(x, y) (x, :0)1 < aC611pllly 31(I In ly 11 + 1).

4. A priori estimates. By definition, h(x, yo) is the solution to the ordinary
idh/dx < (1/4)/(1 ) < 1 Thusdifferential equation (3.1). Since I111 + Ilvll < ,

if y > 2a, g(x,y) > 1, then po(g(x,y))= 0; if y < -2a, g(x,y) < O, po(g(x,y))= O.
Hence the support of p is contained in [0, a] x [-2a, 2a]. Furthermore, the set of y0

such that the curve y h(x, Yo) meets the rectangle [0, a] x [-2a, 2a] is contained in
the interval [-3a, 3a]. For later purposes, we require this interval to have length less
than 1; thus, we require

(R1) a < g.
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Let (uJ, vJ) E B, j 1, 2, and let hi(x, go) be the corresponding characteristic
curves satisfying (3.1). In particular, since Hi(O) 0, we may write Hi(x) as

Let

H (x) 1 + dE, j 1, 2.

IIH(x)l sup IH(x)l, IIh(x, yo)ll sup
xE(O,a) (x,yo)ED

With this notation we shall derive inequalities for perturbations H1 H2 and h h2
in terms of u -u2 and v -v2. For this, we first state and prove in Lemma 4.2
variation of Gronwall’s inequality.

LEMMA 4.1. Let K4 > O, K5 > O, 1 > > 0 be constants and let L(x) solve

(.) L’(x) -K4(L(x) lnL(Z) L(x)), L(O) K5 < 1,

\--ag4then L(x) <_ a(g5)
Proof. Equation (,) has solution i(x) exp[1 e-xK + e-K ln(Kh)] so

L(x)

_
3exp[e-xg4 ln(K5)]

_
3exp[e-ag4 ln(K5)] 3(K5)e-aK.

LEMMA 4.2. Let f(x) be a nonnegative function satisfying

f(x) -K4(f(s) In f(s) f(s))ds + Kh.

Suppose K5 < 1 and 3(K5)e-ag4 < 1, then

f (x) < a(K)-
Proof. It is sufficient to show that L(x) dominates f(x). We use the fact that

-x lnx + x is an increasing function in (0, 1). So we require 0 _< L(x) _< 1. This is

fulfilled by our assumption 3(K5)e-aKt < 1. Define for 5 > 0,

Lh(x) -K4(L6(s) lnLh(s) Lh(s))ds + K5 + 5, Lh(O) K5 + 5 > f(O).

Both f(x) and Lh(x) are continuous functions. Suppose Lh(x) < f(x) for some x.
Let x* > 0 be the smallest number such that Lh(x*) f(x*). Of course, x* > 0,
since L(0) > f(0). Hence f(x) < L(x), x e (0, x*). We have

O= Lh(x*) f(x*)
X* [’*Jo -Ka(Lh(s)lnLh(s) Lh(s))ds Jo -K4(f(s)In f(s) f(s))ds + 5 > 0,

a contradiction. Consequently, f(x) <_ Lh(x). This is true for any ti > 0. Therefore

f(x) <_ lim L(x) 3(K5)e-aK4.
640



INTERIOR DISCONTINUITY 615

PROPOSITION 4.3. Let (ui,vi) be in 13, and let Hi, hi be the corresponding
solution of (3.1), (3.2), respectively, for i= 1,2. Then

(4.1)

where K --3(8a)K, K2- e-4a.
Proof. Inequality (4.1) will be proved in detail. Similar arguments will derive

(4.2), therefore we skip the proof of (4.2). We have

Thus,

IHl(x) H2(x)l 8 {Ivl(s, H1) v(s,g=)l + lul(s, H1) ul(s, H2)l}ds

Using (3.14) and (3.15) in the right-hand side of (4.3) yields

(4.4)
IH1 (x)- H2(x)l _< -4(]H1 H2I In IH1 H2[- IH1 H2I)ds

+8a(liv v2[I 4-IIu
It is sufficient to require

(R2) 3(8a)K K 1,

to apply Lemma 4.2 to (4.4) with c ]Iv --V211-]--]l?.t t211, f(x) ]Hl(x)- H2(x)],
K4 4, K5 8a. The proof is complete.

Next, two inequalities for I] -fi211 and 11-211 bounded in terms of IIH-H211,
IIh- h211 are needed. These inequalities are given in Proposition 4.7. We first require
some preliminary results.
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LEMMA 4.4. Suppose f(x,y) is a function in D satisfying

If(x, ) f(x, )1 Coly 1(I In lY 11 + 1),

for all x E [0, a] and Co is a constant satisfying 0 < 2aCo < 1. Let z(x, zo) and
2(x, 2o) be the solutions of

dz
dx

f(x z) z(0, zo) zo, x e [0, a]

d2
d-- f(x,2), 2(0,20)- 20, x e [0, a],

respectively. Then, there are constants (0, 1) and K6 > O, depending on a and Co
only, such that

2(x) z(x) >_ K6(20- zo) 1/, if 0 20 -z0 1.

Proof.

2(x) z(x) 20 zo + fx f (s, 2! f (s, z) (2
do

Introducing w(x) 2(x) z(x) and (f(s,2) f(s,z))/(2- z) (s), we have

w(x) w(O) + (s)w(s)ds,

which has the solution

 (o) fJ
Letting the max of [[ be assumed at x*, we have

< <

Using the assumption in the case x x*, I(x*)l Co(l +lln w(x*)]), we obtain, for
all x in [0, hi,

w(O)e-aCo(l+[ ln w(x*)[) W(X) w(O)eaC(l+[ lnw(x*)[).

If 0 _< w(x*) _< 1, the left side inequality in (4.5) becomes

(4.6a) W(X) w(O)e-aCw(x*)aGO.

In particular,

> co,
which implies

W(X*) w(o)l/(1-aC)e-aC/(1-aC).
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Then

W(X*)aC w(o)aC/(1-aC)e-a2Cl/(1-aC).

Inserting this back into (4.6a), we obtain

(4.65) w(x) >_ w(O)l/(1-aC)e-ac/(1-aC)

If 1 _< w(x*), the right-hand side inequality in (4.5) becomes

(x) <_ (o)Co(x*)co.
In particular,

w(x*)

_
w(O)eaCw(x*)he,

which implies

W(X*)

_
w(o)l/(1-aC)eaC/(1-aC).

Therefore,

(4.7a) W(X*)-aC
__

w(O)-aC/(1-aC)e-a2Cg/(1-aCo).

Meanwhile, the left-hand side inequality in (4.5) becomes

(4.7b) w(x)

__
w(O)e-aCw(x*)-aC.

Inserting (4.7a)into (4.7b), we obtain

(4.7c) w(x)

_
w(O)(1-2aC)/(1-aC)e-aC/(1-aC)

Since 0 _< w(0) _< 1, (4.6b) and (4.7c) imply, for all x in [0, a],

w(x)

_
w(O)l/(1-aC){?-aC/(1-aC).

Let/ 1 aCo and K6 e-aC/(1-aC), the proof is complete.

LEMMA 4.5. Let (ul,v1) be in B and g(s, tj) be theinverse function of hl(x, yj),
which satisfies the differential equation (3.1) subject to initial value yj, for j 1, 2,
and O

_
lYe-Y21

_
1. Then

(4.8) lg(s,t) g(s,t)l <_ KTltl t21,
for some constant K7 and as in the Lemma 4.4 .for all (s, tl) and (s, t2) in D.

Proof. Since (u1, v1) is in B, applying Lemma 4.4 to the differential equation (3.1)
with C0 and using (al), we find that lYl- Y211/ <- g6-11hl(S, yl)- h(s, y2)l.
Through the definition of gl and h, this inequality is equivalent to (4.8) if K7 K6-f.

LEMMA 4.6. Fix tl, let (uJ,vj) be in B. Let g(s,tl) and g2(s, tl) satisfy 0 <_
Igl(s,t)-g2(s, tl)l <_ 1. Let hy(s, yy) be the inverse function of gy(s,t) for j- 1,2,
where hj(s, yj) satisfies equation (3.1). Then

(4.9) gl(s, tl) g2(s, tl) KTh(s, y2) h2(s, y2)

for all (s, tl) and (s, y2) in D and constant K7 as in Lemma 4.4.
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2

Y2

FIG. 4.1. These curves show the relation between and y for fixed s.

Proof. Referring to Fig. 4.1 and applying Lemma 4.5, we have

Igl(s, tl) g2(s, tl)l lYl Y21- Igl(s, tl) gl(s, t2)l

_
KTItl t21.

That is equivalent to (4.9).
As in (3.7), for i- 1, 2, we write fii= frill -u] + u + u.
PROPOSITION 4.7.

(4.10) IIt --t211
__

K1511PolIIIH. H211a + K1211polIIIH1 H211a

9.K1311Pollllhl h211 9- KTKlolIPolIIIhl h211

(4.11)
9-K3]lPoll]lh h21]f 9- KTKlolIPolI]]hl h211

where ]IPII supy>o IPo(Y)I, KT, Klo, K12, K13, and K15 are positive constants,
with E (0, 1) and as in Lemma 4.4.

Proof. Given H(x) and H2(x), define/l(x) H(x)- 211H H211, /2(x)
H (x)9- 211H1 H211. Let us decompose D in the following way:

DM {(x,y) e D, lY- Hl(x)[ <_ 2[IH1 H21I},
Dv {(x, y) e D, y- g2(x) > 0},
DL {(x, y) e D, y-/1 (x) < 0}.
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t(x, y) t(x, y) / /D (x s)(p(gl (s’ t)) P(g2(s’ t))) dtds
(X ) + ( t)

J fD (x s)(po(gi(s,t)) -po(g2(s,t)))dtds+ ( ) + ( t)M

/ (x s)(po(gl(s, t)) po(g2(s, t)))
dtds+ ( ) + ( t).u

I+II+III.

For (s, t) in DL, P0(gl(8, t)) po(g2(8, t)) O, hence

(4.12) III =0.
To estimate II we write

jof
[I() dtds

() v/( ) + ( t)

Let { t H1 (s), then

ooa’o[-t2(s)-l(s) dt-ds
Q <_

V/(X s): + (y

_
(s))"

Making the further change of variables T y - Hi(s), a x s, and setting
d- 411HI g2],

][Y-=(-)dTda
-a -(-) a + T2

</fd/ dtds

J-d S2 + t2

4 see OdrdO + 4 drdO
0 dan- d/a 0

--= II1 + II2.

Since 0 < sec0 < 2 in 0 < 0 < tan-1 d/a, if d/a < 1, and tan-1 d/a < CT(d/a)a for
0 < a < 1, for some constant C7 depending on a, we have

II1 _< Csal-ada C9d.
II2 <d -d0<d In -ln <C10

-1 d/2a O - -a
for some constant C10. Hence

(4.13) IIII _< 211poll(Co + clo)da K15IIPolIIIH1 H211.
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It remains to estimate III. In Du, both gl (s, t) and g2 (s, t) are positive. They fall in the
range in which po(’) is differentiable. Using (R1), we see that Igl (s, t) g2(s, t)[ < 1.
Hence we may use Lemma 4.6 to obtain IPO(gl(s, t)) -p(g2(s, t))l <_ IIpollgTIh h21 ft.
Consequently, there is a constant Ko such that

(4.14)

Define

IIIII _< KTKlol]Po]IIh h21.
(, ) ](x, ) ((, ) ](x, ))

ff +(0() -0()) + ((x s) + (- t))(( ) + (- t))u

ff ++ . (0() 0()) ((x ) j- t):)(( )7t):)M

IV+V.

By Proposition 3.3 there is a constant K such that

]IV] ]P]]gl g2]]K11Y (] In y ]] + 1).

By the proof of (4.13), there is a constant K2 such that

(4.15) IV[ [po]H H2[K2y ( In y { + 1).

Finally, using (4.9),

(4.16) ]IV] p[]hl h2][K131y (] In ]y ]] + 1)

for some constant K3. With these estimates of (4.12) through (4.16), the quantity
[fi -fi[] has been bounded by the right-hand side of (4.10). The other terms in the
decomposition of 1 2 and -2 could be bounded in the same way, since they
are more regular than fi -fi. This completes the proof.

As a consequence of Propositions 4.3 and 4.7 we have Corollary 4.8.

COROLLARY 4.8. The mapping T is continuous in .
Proof. Inserting estimates (4.1), (4.2) into (4.10) and (4.11), we see that the

mapping T is continuous in A.
PROPOSITION 4.9. There are constants C6, K14 such that

I1 + ll 2aC6]po]] + 8a[]po] + 2aK14]po]].

Proof. By the definition of 23, since p(s, t) is supported in [0, a] x [-2a, 2a],

ooa/"___a3(x, y) p(s, t)kT(x s, y t)dtds.
2a

For those (x, y) such that (y- t)2 + (x s)2 > a2 for all (s, t) in [0, a] [-2a, 2a] we
have

13(x, Y)I <-IlPoll fo 2a Is--xl dsdta f-2a 2((y-t)+(x-s)2)

L2 dsdt 4a[po[.[P0[ f0 2a
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Otherwise, using the polar coordinate centered at (x, y),

(4.17)

In either case, we conclude that

(4.18)

Similarly, there is a constant K14 such that

(4.19)

(4.20) 12(x, Y)I <- aK1411Poll.
Applying Proposition 3.3, we achieve

(4.21) It(x, y) gt(x, 1)1 + I(x, Y) (x, gl)l <_ 2aC611pollly gll(I In lY 11 + 1).

By inequalities (4.18), (4.19), (4.20), and (4.21) the proof is complete.
In the next section, Proposition 4.9 will be used to show that T is self-mapping

from B into B. With Corollary 4.8 concerning the continuity of the mapping T, the
Schauder fixed-point theorem will be applied to obtain the fixed point of T.

5. Proof of Theorem 2.1. First we show that T is a self-mapping on B. Let-
ting (u, v) E B, we construct h(x, yo), H(x) h(x, O), g(x, y) to obtain p(x, y)
po(g(x, y)) Tl(u, v). We must show that the pair (, ) T2(p) is in B.

By Proposition 4.9 and choosing a small enough so that

eaC ll oll + Sall 011 + eag 411 011 _<

for a given liP011, it follows that T(B) c B. The continuity of the mapping T is
verified by the Corollary 4.8. To apply the Schauder fixed-point theorem, T must be
a compact mapping from B into B. To this end, we must show that any sequence in
the image of T has a convergent subsequence. Given a sequence (ui, vi) in/3, through
the mapping T, we have pj, hj(x, yo),Hi(x), and gj(x, y); then through the mapping
T2, we end up with the sequence (J, J). By the definitions of hi(x, yo) and Hi(x),
it is easy to obtain

IHj(x) -gj(’2)l - 6111x -1,

 0)1 < C  (Ix +
for some constants Cll, C12 independent of j. Thus {Hi(x)} and {hj(x,yo)} are
equicontinuous families. Since [0, a] is compact, by the Arzela-Ascoli theorem, there
is a convergent subsequence Hk(x) in C[0, a]. For the sequence ht(x, yo), by the
same argument, there is a convergent subsequence hi(x, Yo) in C([0, a] [-2a, 2a]).
Therefore {Hi(x)} and {hz(x, yo)} are Cauchy sequences in the spaces C[0, a], and
C([0, a] [-2a, 2a]), respectively. Now we show that the sequence (z,) is Cauchy
in . Let R [0, a] [-2a, 2a]. Applying Proposition 4.7, we have

[Il+m -lll - K5[]Po[I[IHI+m HII[a + KTKolIPoll supR Iht+m htl
+KI2[[po]I][HI+m Ht[[ + K31[PI[ supR ]ht+m ht[,
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I]z+m Zll --< K15[IPolIIIHt+m -HIlIa + KTKloI[Po[I supR Iht+m htl
+K1211PolIIIHz+mHtlI + KI311Poll suPR Iht+, htl.

Hence (t, z) is Cauchy in B. Thus T is a continuous compact mapping from
into B, if a is sufficiently small so that (R1), (a2), and (R3) are fulfilled. The

Schauder fixed-point theorem completes the proof.
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Abstract. This article considers an obstacle problem for quasilinear elliptic equations of p Laplacian
type. It is shown, under certain smoothness assumptions on the obstacle, that the solution to the corresponding
obstacle problem has interior H/Alder continuous derivatives.
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1. Introduction. In this paper we consider solutions to an obstacle problem for
the following partial differential equation in a bounded domain of Euclidean n
space (En).

(1.1) div (IVwl, -2Vw)- t;(x, w,

when 1 < p < oe. Here, Vw denotes the gradient of w. The left-hand side of this equation
is the so-called p Laplacian, and is interesting from a partial differential equation
(P.D.E.) standpoint, essentially because of its degeneracy. Thus to obtain the results
in this paper we cannot directly apply standard obstacle theorems for uniformly elliptic
equations of divergence type.

As for our results, under certain regularity assumptions on/ and the obstacle q),
we shall show that a bounded solution to the obstacle problem for (1.1) has H61der
continuous derivatives on compact subsets of f. These results generalize work of Fuchs
[2], Lindqvist [6], and Norando [9], who obtained similar regularity results for an
obstacle problem corresponding to (1.1) under more restrictive assumptions.

Indeed, Lindqvist assumes 1 c 2 and uses quasi-conformal mapping techniques.
Fuchs and Norando consider only the case when p > 2, /--0, and q has essentially
bounded distributional second partials in Y"[q W2,oo(")]. Moreover, their methods
do not appear extendable to the case when 1 < p < 2. In contrast we assume

(a) l<p<oe,
(b) q has distributional second partials on " which are qth power integrable

for some q > n, i.e.,

(1.2) q Wz,q("),

(c) For some cl > 0, / satisfies the structure conditions"

(1.3) z, h )l <= cl (f(x) + [hiP),

when x f and (z, h)N xNn. Here, f=>0 is measurable and qth power integrable on
for some q > n, i.e.,

(1.4) fG Lq(n).

(a)-(c) are well known to be optimal in the classical case, p 2.

* Received by the editors July 20, 1989; accepted for publication (in revised form) April 11, 1990.
? Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027. The work of

the second author was supported in part by the National Science Foundation and the Commonwealth of
Kentucky through the Kentucky EPSCoR program.
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Our results are new even for weak subsolutions to (1.1) (so no obstacle is present).
Previously DiBenedetto [1] has shown regularity of weak subsolutions to (1.1) when
either f=0 in (1.3), or when Ihl in (1,.3) is deleted and f Lp,n(f), p’=p/(p-1).
Also, Tolksdorf 11] obtained regularity as above when f= 1 in (1.3).

To get our results we use, among other things, an improved version of a method
originally used by Lewis in [5]. We essentially show that a certain function of the
gradient of our solution (say Va) is a subsolution to a uniformly elliptic equation in
divergence form, whose right-hand side involves terms in , f, and a function which
satisfies an inequality of reverse H61der type on balls contained in f. Using elliptic
theory, we then get an integral inequality for Ivl which can be iterated to get H61der
continuity of V a.

We remark that, as this paper was in preparation, Bill Ziemer informed the authors
that Jun Mu has an independent and quite different proof of regularity for the obstacle
problem corresponding to (1.1) when l<p<, W2,(En), and /--0. Next, we
remark that our arguments apply to more general partial differential equations than
(1.1). For example, iflVwlP-2Vw is replaced in (1.1) by A(x, w, Vw), A (A1, , An)
and A satisfies the conditions in either 1 or 11 ], then solutions to the corresponding
obstacle problem have the same regularity as for the p Laplacian. Moreover, the proof
we give can be adapted to equations with the same principal part as in [3] and [7]
Finally, we emphasize that the ultimate generality of the structure assumptions on b
in (1.3) forces us to assume our solutions are bounded and makes it considerably
difficult to follow more or less standard P.D.E. procedure in approximating by smooth
solutions and establishing L bounds on the gradient.

To be more specific, recall that a is a solution to the obstacle problem for (1.1)
with obstacle , provided Wl,p(-),

a(x) _-> (x), x 12 a.e.,

whenever r/ C(O) with + (almost everywhere in ), and so in paicular
when 0. We prove the following theorem.

TZORZM 1. Let be a bounded domain and E a given compact subset of .
For fixed p, 1 < p <, suppose , , b, satisfy (1.2)-(1.6), and

(1.7) la(x)l c: < , x a.
en has a representative in W,v() with continuous derivatives andfor this representa-
tive: Given E, a compact subset of , there exists a (0, 1), and c , depending only
on p, n, q, Cl, c, [[ ,, [[f[[, and the distance from E to the boundary of a such that

max [V(x)[ c,

IV (x) V(y)[ <- c[x yl, x, yeE.

In Theorem 1, II" 112,q and [l" IIq, denote the norm in W2,q(n) and Lq([[n), respec-
tively. In the sequel, we shall let c denote a positive constant, with the same dependence
as in Theorem 1, not necessarily the same at each occurrence. We say that c depends
on the data. Also a denotes a positive constant depending only on p and n, not
necessarily the same at each occurrence. As for our proof, let (F1, F2) denote the
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distance between the sets F1, F2, and B(x,R)={y:ly-xl<R}. If 0<e_--<

1/lOmin[6(E, Ol2), 1] then we first consider functions u=u(., e), q= (., e), such
that q C(Rn), where (1.2), (1.5) hold with , q replaced by u, q, and f by
B= B(xo, Ro). Also, Xo E and 0< Ro <- 1/lOmin[6(E, Of), 1]. Moreover,

(1.8)

and

(1.9) I [(e+[Vul2)’/z-’Vu’Vn+b(x’u’Vu)n]dx>=O
B

whenever r/ ff’l,p(f) with u / r/>_-q almost everywhere in B. Here I)1,p(11) denotes
the closure of C(12) in the norm of W,p(12), and

(1.10) Ib(x, z, h)l <-_2cl min [,f(x)+lhlPl,
when (x,z,h)fR" (c as in (1.3)). Next we suppose for fixed e as above,

(1.11) Ill(X)] C3, xB,

where c3 depends only on the data.
We note that (1.9) is easier to work with than (1.6), since u-u(., e) is a

supersolution to a nondegenerate elliptic equation. In 2 we make some preliminary
remarks concerning HSlder continuity of u, , and point out that a difference quotient
argument of Tolksdorf can be used to show for fixed o-, 0 < r < 1, e, and Ro as above
that u W2,2[B(xo, rRo)] and IVul L[B(xo, o’Ro)]. In 3, we obtain L estimates
on IXTu] in B(xo, ORo) which depend only on r, R0, and the data (i.e., the same
quantities as c in Theorem 1). Thus our estimates are independent of e, 0< e <
1/10 min [1, 6(E, 012)]. In 4 and 5 we use the argument of Lewis, mentioned earlier,
to obtain Theorem 1 with replaced by u(., e), 11- B,/5 B(Xo, oRo), and constants
which depend only on or, Ro and the data. In 6 we show the existence of u u(., e)
for Ro>0 sufficiently small (depending only on the data). We then let e-*0 and get
Theorem 1 from local uniqueness type arguments and our previous work.

2. Preliminary reductions. Let u u(., e), b b, and ,(., e) be as in 1 for
fixed e, Ro, with 0<e, Ro< 1/10 rain [.,1, (E, 0fl)] and p, 1 <p<. Then u W.p(B)
and u, p, satisfy (1.2), (1.5), with , b, replaced by u, ,, and also (1.8)-(1.11). For
in Theorem 1 we claim there exists c, > 0, depending only on the data, such that
has a representative in Wl,p(12) with

(2.1 a) la(x)- a(y)l-<- clx- yl x,
whenever

max [({x}, E), ({y}, E)]<-_1/2(E, OI)).

We also claim for e > 0 as above and fixed r, 0< r < 1, that there exists d, h > 0
depending only on r, Ro, and the data such that

(2.1b) lu(x)- u(y)l <= dlx- yl ’,
whenever x,y B1 B(xo, R). Here, R=(1/lOO)(99+o)Ro. To prove (2.1) observe
from Sobolev’s theorem that

(2.2) [X7 q(x)- X7 q(y)l _-< cllqll2.qlx-y[ (-’/q,
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x, y R". Inequality (2.1) now follows from (2.2) and the argument in [8] with slight
modification. Essentially the modification consists in using the estimates for bounded
sub- and supersolutions in [12] rather than those in [10]. We omit the details. We
assume, as we may, that 0 < A, < min [, 1- (n/q)]. In the rest of this section and

3-5, cr and Ro will be fixed. We let d denote a positive constant which may depend
only on r, Ro, and the same quantities as in Theorem 1 (the data), not necessarily
the same at each occurrence.

With e still fixed as above, let K {x: u(x) t0(x)}, and observe from (2.1b) that
K is relatively closed in B. For fixed e in R" with [e[ 1, h > 0, and g a function on
n, put

rhg(x) [g(x + he) g(x)]/ h, x

’rg(x) [g(x he) g(x)]/ h, x

Let ,f(3,)=(e+13,12)(p/2-)’),, "),", and note that

(2.3) ((y)- :(y’)).

when y, y’ N", where a a(p, n) depends only on p and n. Next, let e C[B] and
put A+--max (A, 0). Since, (u--/3)+4 vanishes in a neighborhood of K f-I/ for
each/3>0, we see upon letting/3-0 that equality holds in (1.9) for r/= (u-6)6. If
0<h < ((1-cr)/400)Ro, it follows from this observation and (1.9) that

(2.4) f {’rh[(Vu)]" V’rh(rl)+7"[’rh(rl)]b} dx<-O.
B

Using this inequality, (2.3), and arguing as in Tolksdorf [11, 2.2] we deduce first that
u 6 W2,2[ B1] for p -> 2 and u W2,p[ B1] for 1 < p <_- 2. Second, it follows as in 11, 2.3
that Vu L[B1] for 1 <p < c and thereupon that u W2,2(B1) for 1 <p <. Here the
norm of u, V u, in each space may depend in addition to R0, o-, and the data, on e,
the smoothness of q, and Ilbll. Additional terms in the iteration due to the obstacle
are easily handled using the smoothness of q. Again we omit the details.

From the above facts and (1.9) we see that

(2.5) V.[(Vu(x))]-b(x,u, Vu)=O fora.e.xB-K.
Let ge--Tg, e, e e N", [el 1. Then from (2.5) and integration by parts we get

(2.6, f[(’bl)]e’7’lcdx--f(’)TedX--fB b,ledx---f(.")Tedx
--K K

where x)= (7u(x)) in the last two integrals and e ,2[B]. For almost every
x 6 B we note that the ith component of e at x is

(2.7) (e)i aij(VU)(Ue)x;, 1 ,
where repeated indexes denote summation from 1 to n and

(2.8) ao() ( + l)/-[(p 2),+ a0( + 1)]
for 1N i, j N n, y N". In (2.8), 6o is the Kronnecker 8. Also for

(2.9) a e + ylz) (p/2-1 ao y)m a(e + y[)(p/2-)2
for some al a(p, n), a2 a(p, n) > O.

3. Loo estimates on IVul. Let R2--(1/25)(24+ r)Ro and put B2= B(xo, R). In this
section we prove the following lemma.
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LEMMA 1. For Ro, e, r, p fixed as in 2,

(3.1) ess. max IV u(x)l <- d.
B

To prove (3.1) we use Moser iteration. We will need some notation. Let E, OE,
denote, respectively, the closure, boundary, and outer Lebesgue measure of E. If g is
a function on B(x, r), r > 0, put

g dx ]B(x, r),-’ f g dx,
(x,r) (x,r)

M(r, g)= M(r, g, x)=ess, max g(y).
yB(x,r)

The proof consists of two parts. In the first part we essentially estimate M(R2,
in terms of the L norm of Vu over B3 B(xo, R3), where Ra=(1/50)(49+)Ro. Here,

(p, n). The second pa of the proof consists of estimating this norm in terms of
the Lp norm of ]Vu and ultimately in terms of the Hlder norm of u in B1. Since the
proof is more or less standard (see [1, 3] or [11, 3]), we will omit many details.
Let 0< R < ((1 )Ro)/1,000), z B(xo, R2), 16R < p < <32R, C[B(z, t)], and
1 on B(z,p) with ]V]l,OOO/(t-p). Let w(x)=(e+]Vu]Z)(x), xB, and let
00 be a nondecreasing Lipschitz function on E. We put (x)=u(x)O[w(x)]Z(x)
in (2.6) and use (2.7)-(2.9) with e e(k), 1 k n, where {e(k), 1 k n} is an
ohonormal set of coordinate vectors. Summing, we get

(3.2) Iw(p/2-1)O(w)lxil(lxixjl)lVldx
+ac f WP/21V[ dx+acl f flVl dx+a f IV. ,llvl dx= 12,

K

where a= a(p, n) and we have used (1.10). We first let 0(w)= w, s(p+ 1) in (3.2).
From

w /21v l + sw  - )lVul IVwl3 2+21vulw  lv

(3.3) (4ac,)-lw(p/2-)[sw(-)lVwl2+(2 lVu,12) w]
+ a(c + 1)[(s + 1)w(P/2+s+l)2+

and H61der’s inequality, it follows that for a large enough

(3.4)

In the last term of (3.4), the maximum of 1 + Ivl2 is relative to B(xo, Ro). Also,

).
Combining (3.2), (3.4), and (3.5), we get

(3.6) IIV[w<S/=+P/4>]II c(s+



628 HI JUN CHOE AND JOHN L. LEWIS

Let 2*=2n/(n-2), when n> 2. Then it follows from (3.6) and Sobolev’s theorem
when n > 2 that

(3.7)

Let t min (q, n/(1 A)) and t 2t/(- 2) < 2*. Now using H61der’s inequality again
we see from (3.7) that for n > 2 and s >-(p+ 1)/2,

c(s+ 1)-’lR-"l*llw"l+"14@ll.
(3.8)

<=J(p, t, R) w(p/4+s/2) dx
(z,t)

where f f+ 1,

and

+c(pl4+sl2)k(R)

k(R) c n-" o + Z [q%l dx
B(z,32R) i,j

J(p, t, R) cR (t p)-’ + w0/2 dx + k(R).
B(z,32R)

If n 2 put 2* 2. Then w(p/4+s/2)cb is of bounded mean oscillation in 2(BMO) with
BMO norm less than or equal to allV[w(p/a+/z)cb][[2. Using this fact and arguments
similar to the above, we find that (3.8) is still true. We note from our assumptions on
p, that

(3.9) k(R) < ce(1-nlO) cR(o’-"/O)= d.

From (3.9) it follows for properly chosen p, t, that (3.8) can be iterated in the usual
way staing with s (p+ 1)/2. Doing this we get

(3.10) M(16R, w)N 1+ wO/2dx (w+d)dx
B(z,32R) (z,20R)

where r (p +)/2. From (3.10) we see that in order to prove (3.1) it suffices to show
there exists R R(d) > 0 such that

(3.11) w dx d(R)-),
(,20R)

where a max [/2, r]. Indeed, from our choice of , we then get

dx d.W/2 dRt-l)O+,3
B(z,20R)

To prove (3.11) we need to estimate the term wp/2++dx in (3.4) in a different
way. To do this we consider two cases depending on whether (A) B(z, 64R) K {}
or (B) B(z, 64R) K {}. If (A) holds we put (u @)(w)e in (1.9) where
(w) =(w+1-1)+, and use H61der continuity of u, @, as well as HSlder’s inequality,
to get for ff max (w, 1), 0 < s a, and R R(d)> 0 small enough that

(3.1)

B(z, t)
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w(P/2+s-2where I’=wl} IVwl 2 dx. Next put O(w)=[wS-1]+ in (3.2),
(p/2)((2*/2)-l)<-s<-a. Arguing as in (3.2), (3.4), (3.5), and using (3.12), it follows
for R R(d) > 0 small enough that

f I[(s/2+p/4)][2dxd(t-p)-2(I (P/2+S) dx)
B(z,t)

B(z,t) i,j

This inequality and Sobolev’s and H/Slder’s inequalities imply as in (3.8) that for
(p/2)((2"/2)- 1) _-< s =< a,

<--_ k(R) d 0 ff,(p/4+s/o dx

(3.14) + dR p)-I ff(s+p/2) dx + k(R)
(z,t)

<--- dR ,o )-I ff,(’+P/ dx + k(R
(z,t)

for R small, since (3.9) holds and <2". Now iterate (3.14), starting with s=

((2*/2)-1)(p/2). After at most N= N(c) times, we obtain

(3.15) v? dx <= d 1(2.p/4) dx + dk(R).
(z,20R) (z,22R)

Finally to estimate the right-hand side of (3.15) let

Gk [uxk (4n)-1]+, l<=k<-n,

u*k=[-uxk-(4n)-’]+, l<k<n.=

First put r/= Gb2 in (2.6). By using (2.7)-(2.9) and summing, it follows that (3.2) is
valid with O(w)-= 1 and ux replaced by ix. Let 11 denote the left-hand side of (3.2)
in this case. Using (3.2), (3.3), we get (3.4) with s =0 and w replaced by v?. To estimate,~ 2 2v?P/2+cb 2 dx, on the right-hand side of (3.4) put (u-q)() lNkNn, in (1.9).
Summing, we obtain an inequality analogous to (3.12) with I, L, replaced by I and

L [ dx.
k=l

Carrying out the same program for Ux*, we obtain similar inequalities for L*, Ii*,
which we define as above with Gk replaced by u*. Now if w > 1, 0 < e < 1/4, then for
some k either ix > (1/4n) w1/ or u* > (1/4n) w/. From this fact and the above
inequalities it follows that

l(P/2+l)(/ 2 dx c(R" + 1 + L*)

--< dR2;(L + l*)+[dR2a(t-p)-2+ d](f 1p/2 dx)
B(z,t)
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Using this inequality in the new versions of (3.2), we find that (3.13) is valid with
s 0. From Sobolev’s inequality, we conclude for properly chosen b and R R(d) > 0
small enough that

(3.16) ff(*p/4 dx <-d ffP/ dx
(z,l (z,4

The right-hand side of (3.16) can be estimated using (u- 0)p in (1.9). Doing this
we deduce

(3.17) P/z dx dR p(-a)/2.

Clearly (3.17), (3.16), and (3.15) imply (3.11) in case A. A similar proof holds in case
B. We omit the details. The proof of Lemma 1 is now complete.

4. Reverse Hlder inequalities. In this section and 5, we use a modification of
the argument in [5, 2-3]. The reader is advised to have this paper on hand, as we
will often refer to it. We continue with the same notation as in 2 and 3. Let
re=max[p 1], s=m+p/2, and put v= w. Let

(4.1)

1 i, j n, where ao is as in (2.8). We also put (x)= ((7u)(x) as in 2 and

go(X)=(2s)[w(L yule)+ mw-u(L Vw)],

where repeated indices denote summation from 1 to n. Next put

g(x) (2s)[bx.,_ +(v. Dx.](u,,w + mu,w,w-’)

g+(x)=(2s)[bx.u_)+(7. ()X.](u,w), lln.

Here, X. denotes the characteristic function of E. From (2.9) we see that

(4.2) a-lw(-lt( lux,) go aw(S-l’( luxl

for some a a(p, n). We prove the following lemma.
LZMMa 2. If W,(B) and b0(x)= bo(Tu(x)) then

(4.3, fVxxdx=I(-g+gl)dx+ Ixg+dx"
To prove (4.3) we put uw in (2.6) and choose e e(k) as in 3. Summing, we
find that

J [w(L yule)+ mw-u(L Vw)]6 ax

(4.4)

B-K K

J+J+J4.

NOW,

(4.5) I go dx (2s)J.
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Next observe that if %(x)= ao(Vu(x)), then

b-ovx, 2SW(S-’ Uxk jUxkx,) 2SW("-P/2 Uxk (-ff Uxx, 2SWmUx x i,

where (sc,,k) denotes the ith component of ,. Using this observation, we obtain

(4.6) -2sj2 bov, &.

Also,

We put the right-hand side of this equality in the integrals defining J3, J4. Using (4.5),
(4.6), and rearranging terms, we get Lemma 2. Next let Vk U,W-1/2), 1 < k < n. We
shall also need the following lemma.

LEMMA 3. If 49 E I)V’I,2(B1), then for 1 <= k <= n

(4.7) bo(Vk)x,4)x dx <- a (go+ Go)14’l dx + a IV4,1G dx.

Here Go(x)= (Iblx.(,-, +IV" lx.)(w 2,, lux,xl),
a(x)-[Iblx.(l-+lV" lX.]w+1/2.

The proof of Lemma 3 is similar to the proof of Lemma 2. We omit the details.
Next we prove Lemma 4.

LEMMA 4. There exists /3 =/3 (c), 0 </3 < a min (q/n 1, 1) with the property" If
0< R < ((1 cr)/1,000)Ro, z B2, then

(4.8) g+ dx <- c go dx + c E l+ dx,
(z,R) (z,2R) (z,2R)

where E ff{m-p/2+l){lbl2 + Zi.a (,,,)2}.
Proof In Lemma 4, ff max (w, 1) as usual. We begin by choosing orthonormal

vectors el," ", e,-1 such that

(4.9) I w(m/2+p/4-1/2)blek dx O, 1 <- k <- n- 1.
B(z,3R/2)

This choice is possible since if Ak denotes the integral in (4.9) with ek replaced by Xk,
1 _--< k_-< n, then the solutions to Aiyi =0 span at least an (n- 1)-dimensional plane.
Now if e e {ek} we have as in (3.2) and (4.4) for r/= UeW’Cb 2, Cb C[B(z, 3R/2)],

HI=I wm((e. VUe)2dx< f mw(m-1)Ue((e. VW))2dx
(4.10)

2 ])UeWm(e V)) dx
B1-K

(V )71-]e dx
K

We estimate H2 slightly different than 12 in 3. Indeed, using H61der’s inequality once
again, we deduce for given r, 0 < r < a,

(4.11)

1 f IH2-- H1 <= ar go62 dx + ar1-2) lUe12mw(p/2-1)lVUe1262 dx

+alw(’-l’(ue)2lV612dx+cr-lf F_,c2dx=H3"
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Using (4.10), (4.11), and summing, we find that

(4.12) H1 w’-l)lVuek dx<= IYI3,

where H3 is obtained from H3 by summing over e{ek}. If e, is orthogonal to
{ek" 1 =< k--< n-1} and of unit length, then from (4.2) we get

(4.13) I goch2 dx<=affll + a l wS-’)(Ue.e.)22 dx.

Now for almost every x B1- K we see from (2.5) that

n--1

w(s-1)(/,/ 2 +l-p (s-l) 2e,e,) aw(m )lbl z + aw E (lgeiej)
i=1 j=l

while if x K,

w(s--1)(Uenen)2C E (Jxixj) 2"
i,j

These inequalities and (4.13) imply that

f god2 dx <- affIl + c f Ed dx.

Putting this inequality in (4.12) we see for ’= r(a)> 0 small enough that

go dxcl-zm) lUel2mwp/2-)lVUel2 2 dx
k=l

(4.14)
c w-l(u)v[&+c-1 E&.

With (a) now fixed we can estimate the first term on the right-hand side of (4.14)
by first putting W =[(Ue)+]Z+ in (2.6) and then W =[(-u)+]2+) in (2.6).
Using the resulting estimate in (4.14), we conclude

(4.15) go2 dxc W(S-1)(Uek)2[Vl2 dx+cr-1 E2 dx.
k=l

From (4.15), (4.9), it follows as in [5, Lemma 1 that Lemma 4 is true. We omit the details.

5. H61der continuity of Vu(., e). In this section we use Lemmas 1-4 to prove the
following lemma for e, Ro, G fixed as in 1.

LEMMA 5. ere exists a d > 0 such that

(5.1) IVu(x)-Vu(y)ldlx-yl, x,yB(xo, io).

Proof Let Vk, 1 k n, be as in Lemma 3, and put Vo v, v as in Lemma 2. Note
from (4.1), (2.9) that the eigenvalues of (b;) are uniformly bounded above and below.
Suppose z 6 B(xo, cRo), and O<r((1-)/lO,OOO)Ro. Then Vk WI,e(B1), so by the
usual variational argument there exists hk hk(’, 4r), 0 k n with hk WI,e[B(z, 4r)],
hk Vk on OB(z, 4r) in the Wl,2 sense, and

(5.2) Lhk=(b;h;),=O, Okn,

weakly in B(z, 4r). Since Vk--hk I,2[B(z, 4r)], 0k n, we have

bo(h)x,(v- h) dx=O,
(z,4r)
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so from (4.1), (2.9),

Iv hl dx a | Ivl dx

(5.3)
B(z,4r) dB(z,4r)

<- a bo( vk )x, Vk )x dx.
(z,4r)

From (5.3) and well-known ellipticity theory (see [5, (2.12)]), we find for < 4r

(5.4)
Na E [Vvg dx

B(z,4r)

for some , 0 < < 1, depending on the ellipticity constants. If F h- v in B(z, 4r)
and F 0 otherwise in N, we see from Lemmas 2 and 3,

k=0

=-a (b)(V)x,(F)x dxNa (go+ Go)( [F[)=o dx

(5.5) +a IG( ]VF])
N algo( [FI)dx+aM(4r, vo) I Edx

k=0 B(z,4r)

+ a G2 dx +- 7GI: dx
B(z,4r) 2 k=0

where E is as in Lemma 4 and we have used that fact that M(4r, F)2M(4r, Vo), to
estimate Go. Let r (1 +)/ be the conjugate exponent to 1 + in Lemma 4. Then
from Lemma 4 we have for 0 k n, R 4r,

(,4r) g[F[ dx [(z,4) g+ dxJ/+(f [Fk[ dx) /
(5.6)

(z,Sr)

where

(5.7) Ql<-aM(4r, )O)[-B(z,16r <-- aM(4r, vo)r-’/llEllo clr-’/

Here, =min (n, q/2), X=X.B2, and we have used Lemma 1. Using (5.6), (5.7), and
the definition of G in (5.5), we deduce for 0< t<-4r,

k=0 B(z,t) k =0 B(z,4r)

d
B(z,16r)

go dx IGI dx + dr(n-2+)
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where 6=2-(n/)>0. Also as in [5, (3.11), (3.12)] we find that

(5.9) MC8r, v0) -1 IFI+dx <= d 1- +
k=0 M(8r, Vo)

Next let 61 1/4 min (6, 2/x) and suppose that

(5.10) M(4r, Vo) > dl r6’.

If d is large enough, it follows from ellipticity theory and an argument similar to
5, (3.9) that

(5.11) M(8r, vo)(I godx)<=a( I ,Vvt,,2dx)+dr("-2+).
B(z,8r) k =0 B(z,16r)

Using (5.9) and (5.11) in (5.8) we obtain

(5.12)
k =0 (z,t) k =0 B(z,16r)

M(2r, Vo)
_
dr(,_2+,) + dr(._2+,1-M(8r, Vo)

provided (5.10) is true. Multiplying (5.12) by -" and adding the resulting inequality
to (5.4) we obtain an inequality which can be iterated as in [5, p. 857], even though
we now must also consider the case when (5.10) is false. Doing this and using Poincar6’s
inequality we find (see [5, 3.22]) that

k=0 (z,p)

for some 62-- 2(d) >0 and 0< p < ((1 o-)/1,000)Ro. Since z B(xo, rRo) is arbitrary
it follows from (5.13) and Lemma 1, in a well-known way, that Lemma 5 is valid.

6. Proof of Theorem 1. We now construct u(’,e) for 0<e<l/10x
min [1, 6(E, Ol))] and show for sufficiently small Ro>0 that {u(., e)} satisfies (1.9)
and (1.11). To do so, let C(") with 4)dx= 1. Put Ct(x)= t-"(x/t), x
and let

q(x, e)= I;),- (x-y)dp(y) dy q * b(x), XGn.

Then q C(") and (1.8) is valid. As in Tolksdorf [11, 5] we let

b(x, z, h)= sgn b(x, a(x), Va(x)) min {]b(x, a(x), Va(x))], 2c[]h]p +/(x)]}

for (x, z, h) B x R x R", where c, f are as in (1.3). Now put

b(x, z, h)=sgn (x, z, h) min {[(x, z, h)[,}
for (x, z, h) 6 B x 92 x 9]". Clearly, (1.10) holds. We claim there exists a solution u
u(., e) to (1.9) with u * ck (Vl,p(B), u >= $ in B, almost everywhere, and u <- A < o.
The existence of u(., e) follows from standard ellipticity theory using the boundedness
of b (see [4, Chap. 10]). Next we prove the following lemma.
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LEMMA 6. There exists Pl =pl(C)>0, /x =/z(c)>0, depending only on the data
such that if 0 < Ro <= p then

(6.1) lu(x)l<=c, xB,

(6.2) IVuldx c(llalll,p+l),
B

(6.3) osc u <= cry.
B

To prove Lemma 6 let/3 M(Ro, t b) and put r/= er(u-)+- 1. Then
and for this equality holds in (1.9), since t @(., e) in B. Hence,

yj ]Vu[PeV"-)+dx I ,bldx+T (+l) dx
{u} B B

(6.4) 2c f 17 u[p dx
u}

B

where again f =f+ 1. If 7 4c, then from (6.4) we conclude

u}
(6.5)

c f(x) & e’(- x
B

where q/(q- 1) < n/(n- 1).
We now consider the following cases (a) p > n, (b) 1 <p < n, (c) p n. In case

(a), it follows from Sobolev’s theorem and (6.5) that

[’e(r/P)(’-t)+- ll’<= a [ fn [V e(’/P)(U-)+lP dx] 1/pRI-n/p

<= c.Yll e(’/P)U-+)lloRo,
where sc= 1-(n/p)+(n/p). If y=4c in the above inequality, then we first deduce
that (u-fi)+ c for p small enough and second for p > n that

(6.6) u(x)+cR, x6B.

If 1 <p < n, we use Sobolev’s theorem again to deduce for p*= np/(n-p),

(6.7) (e(e/p)(u-)+- 1)p* dx cyR ev("-)+ dx
B B

where =(n/@)-(n/p*)>O, since (p*/p)>. If p=n, then eV/P)-)+-l
BMO (") with BMO norm bounded by the W,, norm of this function. Using this
fact, we see that (6.7) remains valid with p* 2n. If w e"-)+, a p*/(p) > 1,
then from (6.7) we deduce for 1 < p n and y 4c,

dx c(l/) dx
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Iterating this inequality we conclude

M(Ro, w) <- c w dx

where yo 4Cl. By using (6.7) again, it follows that

M(Ro, w)lip <_ cToRM(Ro, w)1/ + c,

and hence

(6.8) (u-B)+c
for Ro Pl in cases (b) and (c). To prove an analogue of (6.6) for 1 <p n, we use
(6.8). If v e("-)+- 1, B v, s 1, then as in (6.4), (6.5), we deduce using (6.8),

]Vv(s--1)/p+I[p dx csp v(’-) dx
B

From this inequality we see that the argument following (6.5) can be repeated to get

M(Ro, v) c v "o dx R1/2, + cRy, cM(Ro, v)/R1/+ cRy,
B

for some s0 so(c), =(c)>0. Clearly, this inequality implies for p>0 small
enough that

(6.9) u(x)+cRg,, xeB,

when lNpNn. Next put 6=min (. ) and let =eV(-")+-l .p(B). Using
(1.9) it follows that for y 4Cl,

IVe(/)(-)+l dx c e(-+ dx
B B

Repeating the argument following (6.5) we first get (6.6) with u replaced by -u and
by , for p > n. Second, we find (6 u)+ N c for 1 N p N n. Using this fact, putting
(e(-"+- 1) in (1.9), and arguing as in the proof of (6.9) we deduce that (6.9)

holds with u replaced by -u and by -6 when 1 < p N n. Combining these inequalities
and using (1.5), (2.1a) we conclude first that

M(eo, lUl)M(eo, la * l)+ceRc,

and second that

osc (u) _-< osc ( b) + CR <- cRy,
B B

where x =min (rl, A, ). Thus (6.1) and (6.3) of Lemma 6 are true for pl small enough.
To prove (6.2) put r 4 u in (1.9). If i @ it follows from (6.3), (1.5),

and the definition of b that

J,= [ (+lvul2)’/2-’>lvul2 dx
B

c f (e+lVul)(/2-1/2)lval tiN+ Ibllwl dx
B

J,+cf(lValp+I) dx+cRg[ (IValp+lValp+f) dx.
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Since, In IVilp <-- a Ia IValp dx, we see from the above inequality that (6.2) also holds
when pl pl(c) > 0 is small enough. This completes the proof of Lemma 6.
We now prove Theorem 1. From Lemma 6, we see there is a subsequence u u(., e)

of {u(., e)} such that u converges weakly to a function v with v-a in I;VI,p(B). Also
from (6.1) we see that Lemmas 1 and 5 can be used to deduce that u, V u, converge
uniformly to v, Vv on compact subsets of B and that these functions are also H61der
continuous on compact subsets of B. We now show there exists 02 < pl dependi,,ng only
on the data such that if 0 < Ro _-< P2, then v . To do this, suppose v + sr-> 0, where

(VI,p(B) is continuous and vanishes in a neighborhood of OB. Put

max [O(x, e)- u(x, ei), st(x)], xB,

j= 1, 2, . Then supp. c (supp. ’f’l B), j= 1, 2,. , since 0(’, e)_-< u(’, e) in B.
Also, 6 fVI,p(B) and (1.9) holds with e e, r/= , j= 1,2,’... Using these facts
and uniform convergence of Vu, u, to Vv, v on compact subsets of B, we see that

(6.10) [[vvl(-vv v’+ tT(x, v, vv)c] dx >-0.

Suppose now that ’ C(B) and [l’ + v- all,,- 0 as j- oe. Let
min [max (-v, ’), 2c], where c is chosen so large that IIv-[[oo<_-c. Then - a-v
in the norm of W.p(B), and Iloo -< c, j 1, 2,. . Since {be } is Lebesgue dominated
by an integrable function, we deduce from these facts and (6.10) with " ,j 1, 2, ,
that

(6.11)

[Ivvl(p-)Vv v(a-v)+ g(x, v, Vv)(a-v)] dx
B

J-.lim f [[Vv[(P-2)Vv. V + (x, v, Vv)] dx >-0.

Interchanging the roles of and v, we also get

(6.12) f ]V/](P-2)V/" V(v-/)-11-(x,/, V/,)(v- ) dx>-O.
B

By using (6.11), (6.12), it follows that

(Iv + Ivv[)(-lv vvl dx
B

B
(6.13)

<--a [b(x, v, Vv)-b(x, a, Va)l[a-vl dx
B

<-- cRX f, [6(x, v, Vv)-/(x, a, Va)[ dx,

where we have used Lemma 6 in the last inequality. Now /(x, (x),V(x))=
b(x, v(x), Vv(x)) for x B unless

2cl(f(x) + ]V v(x)lP) < )(x, (x), V(x)) < cl(f(x) + lV (x)lP),
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thanks to (1.3). Thus

f(x) + IV v(x)Ip <- 1/2(f(x) + IV u(x)lP),
and so for x e B,

I(x, a(x), V(x))- 6(x, v(x), Vv(x))l <_- alV(x)-Vv(x)l=(IV(x)l/(IVv(x)l) (’-2).

Putting this inequality in (6.13), we find that

provided 0<Ro=<p2, and p2(c)>0 is sufficiently small. Hence, 7a=7v almost
everywhere in B. Since a-v lfft/1,p(B we conclude a= v. Finally to get Theorem 1
take Ro p(c) and put r 1/2 in Lemmas 1 and 5. Then all constants depend only on
the data and since , X7, are uniform limits on compact subsets of u(., e), 7u(., e),
respectively, we see that Theorem 1 holds in B(xo, 1/2Ro)fq E. Since E can be covered
by at most N N(c) such balls, we conclude that Theorem 1 is true.
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HOMOGENIZATION WITH SMALL PERFORATIONS OF INCREASINGLY
COMPLICATED SHAPES*

ALAIN DAMLAMIANf AND PATRIZIA DONATO

Abstract. The limit case for a domain perturbed with many small and periodically distributed inclusions
(holes or cracks) with increasingly complicated shapes is studied for the Poisson problem. On each
"perforation" the boundary condition relates the value of the unknown function, assumed to be constant,
with the total flux of the same unknown.

The limit problem involves an extra term of order zero whose coefficient depends on all the parameters,
in particular the capacity of the normalized inclusion and the measure of its boundary (or their behaviors
as the size of the mesh goes to zero). Some examples involving fractal sets and cracks are given.

Key words. Poisson equation, homogenization, small inclusions, perforated domains, fractal cracks

AMS(MOS) subject classifications. 35J20, 35R05, 35J70

Introduction. A well-known application of homogenization theory consists in
replacing a partial differential equation which has highly oscillatory coefficients or is
posed on an oscillatory perturbation of a fixed domain by a smooth partial differential
equation on a fixed domain (see, for example, De Giorgi and Spagnolo [12], Tartar
[20], Sanchez-Palencia [19], Bensoussan, Lions, and Papanicolaou [3]).

In this paper we study the limit case for a perforated domain with many small
and periodically distributed holes with increasingly complicated shapes. More pre-
cisely, we consider a domain f, perforated in an e-periodic fashion by holes or cracks
of size r, similar to a reference hole or crack T of unit size.

For simplicity, we consider the Poisson equation with homogeneous Dirichlet
condition on the boundary . On each perforation, we consider a boundary condition
relating the total flux of the unknown to its value on the perforation (see (1.2)-(1.3)).
This is the usual variational formulation on the boundary of a conductor in electro-
statics. The purpose here is to consider holes and cracks with very complicated shapes,
including some fractal behaviors (see 6).

We prove that in general the limit problem is posed in the whole of fl, with an
extra term of order zero appearing in the limit equation, whose constant coefficient
depends on all the parameters (see Theorem 4.1 and Remark 4.2), in particular on the
limit behavior of the capacity of T and of the measure of its boundary.

This problem was first introduced in Kaizu [15], where a first partial answer is
proposed. If the reference hole or crack T does not vary with respect to e (i.e., T T),
the similar problem with pointwise Dirichlet or Robin condition on the boundary of
the perforations has already been studied by many authors (see Marchenko and Hruslov
[17], Rauch and Taylor [18], Carbone and Colombini [5], Dal Maso and Longo [9],
Cioranescu and Murat [7], Attouch and Picard [2], Conca [8], Cioranescu and Donato
[6], Brillard [4], Kaizu [14]).
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Our method could be generalized to Robin conditions in the case of varying
perforations only if the norm of the exterior trace operator on OT and the exterior
Wirtinger-Poincar6 constant associated to T are bounded with respect to e. This seems
to be false in the most interesting case, i.e., in the fractal construction of T.

The plan of this paper is as follows. Section 1 gives notation and position of the
problem; 2 gives an approximation lemma; 3 gives some auxiliary results; 4 gives
the asymptotic behavior; 5 is a summary ofthe results; 6 gives some fractal examples.

1. Notation and position of the problem. In what follows we will use the following
notation:

e a positive parameter taking values in a sequence going to zero.

r = a positive parameter such that r < e/2.
f a bounded open set of N, N >= 2.
Br--the ball of s of radius r centered at the origin.

kB B, +2ek, k ZN, for 0 < r/ _--< e.

’{e {k G ZN Bk2r C }.
N(e) card

LJ kc Bk
T --an open set in B1 with Lipschitz boundary 0 T.
T rT + 2ek, k Z.

T

X the characteristic function of

f denotes the mean value of over the set ,4.

We will suppose in the following that

e r---0 as e-O.(1.1) r <,
Z

Thus, 12 denotes the perforated domain obtained removing the set 3- of the
"holes" from the domain f.

The holes are then periodically distributed in f with 2e-periodicity and, for every
e, each hole is r-homothetic to the unitary hole T. See Fig. 1.

By (1.1) the size of the holes is of order smaller than the period. So, when e - 0,
the number of the holes N(e)- o as e -N and the N-dimensional measure of - - 0
while the shape of the holes varies in general with e.

B1

FIG. 1. The set f together with the normalized T.
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Now let a 6 [0, +c[ andf L2(f) and set for pc[l, +o]

v wo’,(n), v= v,
VPe {U VP u constant on each Tk k Y{ in T}, V V

It is easy to check that V is a closed subspace of Vp, and consequently a Banach
space when endowed with the W’P()-norm.

Consider the problem:

-Au=f in ,
u =0 on O,

k+au d=0

e
where n denotes the outward unit normal to .

The variational formulation of problem (1.2) is

Find u V such that
(1.3)

The existence and uniqueness of the solution of (1.3) follows from Lax-Milgram’s
theorem, observing that

(1.4) Ilu v c(v)llVull=,. c(v)llult
where C(V) is the Poincar6 constant of K

Our purpose is to study the asymptotic behavior of the solutions u as e 0. It is
clear from (1.3), (1.4) that u is bounded in so that, by extraction of a subsequence,
we can assume that there exists a u in V such that

(1.5) uu weaklyin E

We are left with the task of identifying such u’s, and determining the corresponding
"limit problems," which is the aim of the remaining sections of this paper.

2. An approximate lemma. The following lemma shows that V is the proper
variational space for the possible limit problems (see Kaizu [15]).

LZMMa 2.1. For every p < and v Vp, there exists a sequence {v} such that:
(i) For all e, v V,
(ii) v v strongly in V,
(iii) If v C(), then v v strongly in C().
Proo Let (Be) be such that 1 on B, and set

(. v(x= v(x- 2 v(x- v

By the definition of 2 we deduce that v belongs to V. We have

e LP(Bgre(2.2)

+ I11
3



642 A. DAMLAMIAN AND P. DONATO

A straightforward modification of the classical Wirtinger-Poincar6-Friedrichs
inequality for WI"P(B2) yields a constant C(B2, BI) such that

(2.3) VO W’P(B2) q dx <= C(B2, B) IVlp dx.
B2 B2

It follows that for every u in V satisfying - u 0 we have
a

f uPdx=ryJ uP(ry) dy
Br +B

(2.4) rC(B=, B) [ IVu(y)l de
k+B

rC(B, B,)
B

By (2.2) and (2.4), it follows that

(2.) IIV(v-v)ll;p. cllvll..
A similar calculation shows that

(2.6) IIv v I;.. CrllVvll..
Since by (1.1), the measure of 2r 0 as e 0, this implies (i) and (ii) of Lemma 2.1,
while (iii) follows easily from the definition of v, making use of the modulus of
uniform continuity of v.

Remark 2.2. In the case where r is of the same order as e, (2.5) and (2.6) still
show the weak convergence of v to v in Vp.

In this case, however, strong convergence does not hold for nonconstant v. Indeed
if Vv converges strongly in Lp (), then XVv 0 in together with the fact that

X converges to a nonzero constant weakly star in LP’(O) implies that Vv=O.
Remark 2.3. Actually, Lemma 2.1 yields the convergence of V to V in the classical

sense of Kuratowski [16].
Remark 2.4. We constructed the v’s to be constant in the balls in order to

avoid the difficulty of estimating the Wiinger-Poincar6 constant of T.
3. Some auxilia results. In this section we introduce an auxiliary problem in

order to construct test functions used in the process of passing to the limit in problem
(1.2) as e0.

By (1.1) it follows that T B/r. Consider the problem:

-AW=0 inB/rT,

W =0 on OB/,

+ra(W- 1) d=O,

Set

constant on T,

WeGHI(Be/r).

(3.2) A=ralOT[



HOMOGENIZATION WITH SMALL PERFORATIONS 643

and

(3.3) cap=cap(T,B/r)
where the capacity is in the H-sense, i.e.,

For all Ac B in N

(3.4)

(3.5)

cap (A’ B)=inf { fRv IVv[Z dy’ Vv H(B)’ v=- l n A in the H-sense}"
Remark 3.1. If N-> 3, then

cap <_- cap (B, B2) < cx3.

Moreover, ifthere exists/3 > 0 such that for all e, T, contains a disk (of codimension
one) D of radius/3, then

(3.6)

hence cap is bounded below away from 0.
If N 2, we have

(3.7)

cap >- cap (D, N) > 0,

cap <_- cap (B1, B,/,.)
27r

ln(s/r)’
so that cap 0 as s 0. However, if there exists/3 > 0 such that for all e, T contains
a segment S of length/3, then (el. Attouch and Picard [2, Prop. A3]) "1

27r 27r
(3.8) cap => cap (St3, B/r,) -ln (e/r) -ln (e/r)’
which proves that, in this case, for N 2, cap is equivalent to 2r/ln (e/r).

We denote by q the capacitory potential of T in B/r, i.e., the function achieving
the minimum in (3.4) for A T and B B/r. Then q satisfies

-A =0 in B/r\T,

(3.9)
6 =0 on B/r,
q=l on OT,

b H(B/,).
The following lemma holds.
LEMMA 3.2. There exists a unique solution W for problem (3.1) and

w=a,(3.10)

with A [0, 1 given by

A(3.11) A A + cap
where A and cap are defined by (3.2) and (3.3).

Proof. By uniqueness of the solution (3.1), there exists such that (3.10) holds.
To identify A, observe that

(3.12) cap IVql dy do-.
s/ :re On

The notation---indicates infinitesimal equivalence as e- 0.
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Using (3.10) in (3.1), we get

(3.13) Ae cape + reae(Ae- 1)]0Te[ =0
where IoTel denotes the (N- 1)-Lebesgue measure of OTe. By (3.13), we deduce (3.11)
and, consequently, the uniqueness of

For x Be set

and extend we by periodicity of period eZN to obtain an element of Hoc(RN) still
denoted as we, which satisfies

Bk Tk-Awe=0 in U { e\
kZ

=0 inR Uz Bk

k

-n a(- a=0 ez,
constant on each 0T, k Z.

Remark 3.3. Since 0_-< qe--< 1, Lemma 3.2 with (3.14) implies that

0=<We-<Ae-<l a.e. in

0<- We--<__Ae =< 1 a.e. in

PROPOSITION 3.4. Assume that

N-2

(3 16) re 2
rv capele is bounded aseO;

e

then

(3.17) we 0 weakly in H]oc(N).

Furthermore, the following equivalence holds"
N--2re 2(3.18) we 0 strongly in Hoc(N) : capele -0
E

as eO.

Proof By Remark 3.3 for any smooth bounded open set in En we have

(3.19) IIwll 2)_-__
where C(O) is independent of e.

On the other hand, Lemma 3.2 together with (3.5) yields

i
(3.20) - lvW(y)lZr? de

8 JB/% r,e
N-2

8
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Hence, if (3.16) is satisfied, we is bounded hence weakly relatively compact in HI().
Observe that

WeX(r\U kzN .)

Since X(e\UkzNB- converges weakly star in L() to some strictly positive constant,
the whole sequence we converges weakly to zero in HI(). Finally, (3.18) is a direct
consequence of (3.20).

We now introduce some measures supported on the boundaries of the Yde and
-e. Set

(3.21) /x* -Ow----z
On

Owe(3.22) /xe

where n denotes the outward unit normal to ONe and 0-e respectively, and where
denotes the (N-1)-dimensional surface measure. We now want to investigate the
strong compactness of x* in H-().

PROPOSITION 3.5. If there exists a constant c independent of e such that

<c if N=2,2e In (e/r)
(3.23) _

Nc ifN3,

then {} is a compact set of H-’(a).
Iffurther there exists a nonnegative constant such that

N--2

(3.24) r cap1 aseO,

then

(3.25) & strongly in H-l(a).
Remark 3.6. From (3.5) and (3.7) of Remark 3.1 it follows that (3.23) implies the

boundedness of (r-/e) cap I. The converse is true for N 3 (respectively, N 2)
if and only if cap (respectively cap In (e/r)) is bounded below away from zero.
Thus (3.6) and (3.8) give sucient conditions for this to occur.

Remark 3.7. If (3.24) holds, using (3.2) and (3.11) we obtain the following explicit
formula"

r-’ alor cap
(3.26) a =lim uo e ar(OLl+cap
which shows that all the parameters of the problem appear in the definition of . In
6 we will show examples where (3.23) or (3.24) hold.

Proof of Proposition 3.5. We make use of test functions and a comparison lemma
introduced by Cioranescu and Murat in [7].

Let satisfy

(3.27)

-Awe =0 in

we =0 in

we=l in r,
We HI().
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By the maximum principle we <- heWe, SO

OW O "to"
0 <-- 8o <- -he 6o

On On

By Lemma 2.8 of [7], the relative compactness of /x* is implied by that of
-Ae(Owe/On)3o. On the other hand, Lemma 2.3 of [7] shows that

reN-2
he N-1 if N-->3

an h if N=2,
e In (e/r)

and that e30 is relatively compact in H-l(f). Hence (3.23) implies the relative
compactness of/x*. To show (3.25) let/z* be a limit point in H-I(f) of {tze} as e - 0.
From the e-periodicity of/x*, it follows that * is itself invariant under translations,
which implies that it is a multiple of the Lebesgue measure.

From (3.2), (3.11), and (3.15), we have

1o OW d
l f Owd= 0 I1N . -0n d

-Ifll d- a(a w) d
On I1

N--1 N-2re re
-al (1-a10rl-i cap,

which implies that * dxn.
Remark 3.8. The above proof shows that if cap (respectively, cap In (e/r)) is

bounded below away from zero for N 3 (respectively, N 2), then the boundedness
of in the space of measures on implies its relative compactness in H-I().

COROLLARY 3.9. Under (3.23), a necessary and sucient conditionfor to converge
strongly in H-() is that (r-/e N) capA0 as e 0.

Proo It is enough to note that- Aw in H-I() and to apply (3.18) with
Proposition 3.5.

4. The asymptotic behavior of problem (1.2). Set

cape rN-2e(4.1) Xe N Ye
E

/.N-2
N

(4.2) X,e=
e

2rr
e 2 In (e/re)

and

(4.3)

aerN -lloTel
N

I?,

for N=>3,

for N 2,

arU-’loZl
N

y, e cape

e 2 In (e/re) cape

for N_>-3,

for N=2.
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We note that conditions (3.23) and (3.24) are equivalent to X’ Y’/(X’+ Y’)
bounded, and lim_.oXY/(X + Y)=a, respectively. Our main result can now be
stated as follows.

THEOREM 4.1. Suppose that (3.23) and (3.24) hold, namely, X’ Y’/(X’ + Y’) is

bounded, and lim_,o XY/(X + Y) a, as e - O. Then the solutions u of problem
(1.2) converge weakly in V to the unique solution u of the following problem:

-Au + au f in
(4.4)

u =0 on

Proof By the uniqueness of the solution of (4.4) and referring to (1.5), it is enough
to show that any weak limit point of {u} is a solution of (4.4).

Let be in @() and let VP be the sequence given by Lemma 2.1 such that

(4.5) /p 1, +o[, - strongly in Vp.

Choosing w as test function in (1.3) yields

(4.6) wVuV dx + VuVw dx + auwd fwx dx.

Also, multiplying (3.15) by u and integrating by pas gives

f u Vw V  dx+f  vw Vu dx
(4.7)

ud+ a(1-w)ud.
On

Combining (4.6) and (4.7), and since w 0 in, we obtain

Io--ud+ uad
(4.8)

dx.

On the other hand, we can apply Proposition 3.4, which states that w converges
weakly to zero in H]o(N) because (3.24) is satisfied and A 1. In order to go to the
limit as e-0 in the first two terms of (4.8), we choose p such that l/p+ 1/q+= 1,
for some q < 2N/(N-2) (respectively, q < for N =2), namely p > N, and use the
fact that u and w converge strongly in Lq(O), the latter going to zero.

Consequently, because the right-hand side of (4.8) converges to zero, we obtain
the following convergence for the remaining terms:

(4.9) lim aud ( u) O.
eO og

On the other hand, by Lemma 2.1, converges to in C(O) and V converges
strongly to in LP(O) so that u converges to u weakly in K By Proposition 3.5,

* converges strongly to a dx in H-(O), so

(4.10) limfo aud=afudx.e0 ff
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Finally, using q as a test function in (1.3) yields

fa VuVqdx=-Io auqdcr+Ia fqdx Vq V,

which, together with (4.10), gives as e 0

for all (fl). This is the variational formulation of (4.4), and the proof is com-
plete.

Remark 4.2. In Theorem 4.1, we assume that the holes are modeled after an open
set T. However, it is easy to see that all the definitions and statements of the previous
sections remain valid in the case of cracks, i.e., when T is a piecewise C set of
codimension 1 (possibly with branchpoints), provided the following changes are
performed:

The variational formulation (1.3) is preserved and in (1.2) the boundary
condition is replaced by

k +au d=0

where [Ou/On] denotes the jump of Vu. n across the crack along the unit normal
n (which is independent of the orientation chosen for n). An example of this situation
is given in 6.

g. Nry f te resMts. To present the results of the previous paragraph in a
synthetic form we will combine them into Table 1, in which we use the following

X’--0

0< X’ <

X’

Y’--O

Y=0

Y=0

TABLE

O< Y’<+

X=O

, x/(x + v)

Y<+o
, x/ x+ v)

y’=

X<+c

xY/(x
Note

Note 2

IfX=Y=+then

Note 1. If 3,>0, thenX’=+X=+and Y’=+Y=+so a=Yor a=X,
respectively.

Note 2. If 3’ > 0, then a + can be obtained by a comparison method which is standard
in the theory of F-convergence (see Di Giorgi [10], [11], Attouch [1]). Here a-+ means

that the limit u is identically zero. However, we should note that the case of y 0 can occur
from two distinct possibilities: either a misjudgment of the values of re (which may have been
chosen too big, whereas y 0 leading to an indetermination), or a true difficulty for the case
where re is adjusted in such a way as to keep T exactly inside a ball of unit radius and inside
no smaller ball. In the latter case, the problem remains open.
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notation to denote the "normalized" capacity of

(5.1)
cape for N => 3

cape
(2r/ln (e/re))

for N=2.

Note that from (3.5) and (3.7), ye is bounded with respect to e.
We assume (possibly taking subsequences) that the following convergences occur

in [0, +]:

(5.2) lim Xe X, lim Ye Y,
e-0 e-0

(5.3) lim X’ X’, lim Y’e Y’
e-0 e0

(5.4) lim Ye 3’ < +o.
0

Clearly from (4.1)-(4.3) and provided the following operations make sense in [0, +c]
we have

X=X’T and Y=Y’T.
In this setting, conditions (3.23) and (3.24), which appear as the hypotheses ofTheorem
4.1, are respectively equivalent to min (X’, Y’) <+and a (XY/(X + Y). The results
of Theorem 4.1 are summarized in Table 1, where the main entries are X’ and Y’ and
the conclusions bear on X, Y, and a. We only remark that the results of Theorem 4.1
can be applied in a more general setting without assuming the existence ofthe individual
limits X, X’, Y, and Y’.

6. Some fractal examples. In this section we give some examples involving some
fractal sets, namely, the ones which can be defined as limits of recursive sequences of
"normal" sets with a specific geometrical operation involved in the inductive step.
Therefore, the limit set is self-similar. We refer to Falconer 13, Chap. 8] for a detailed
presentation of such sets and the determination of their Hausdortt dimension.

In these constructions, it is more natural to use as a main parameter the induction
index, an integer n which goes to c, and to consider three sequences {e,}, {a,}, and
{r,}, in place of e,
rather than

In each construction, there is a number K > 0 which determines the boundary
measure of 0T, as a function of n:

this number is intimately connected to the Hausdortt dimension of the boundaries of
the limits of the T,’s.

Following the notation of the previous section, we set y,, X,, Y,, X’,, and Y’,
in place of ye, Xe, etc. For simplicity we consider examples for which y, converges
to a nonzero 3’. Then the values of X and Y are obtained as the following limits:
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In these formulas, both the capacity and the coefficient K appear explicitly to give the
limit coefficient a.

For a first example we take the twisted curve in the plane for which K- 2 and
whose boundary is of Hausdorff dimension 1.5. It is clear that 3’ is the normalized
capacity of the limit of the sequence of sets Tn and is larger than zero. The first four
iterations are given in Fig. 2.

Our second example concerns a set Tn in the plane which becomes more and
more disconnected (see Fig. 3). It is not very hard to check that in this case also 3’ is
not zero for any scaling factor q, q (0, 1/2). Then, 4q and the Hausdorff dimension
is In 4/ln (l/q). In Fig. 3, q=1/2 so that = and the Hausdorff dimension is In 4/ln 3.

The third example is based on the well-known Koch curve in the plane, for which
< ] and the Hausdorff dimension is In 4/ln 3 (see Fig. 4).

The fourth example (Fig. 5) corresponds to the situation of a fractal cracks, with
a similarity factor q and a given number of branches v. Then 1 + (v 1)q and the
Hausdorff dimension of the tips is In v/-ln q.

Each of these examples can be generalized to higher dimensions. In Fig. 6, we
show the extension of the Koch curve to three dimensions, for which < and the
Hausdorff dimension is In 6/ln 2.

FIG. 2. Twisted curve. Hausdorff dimension" 1.5, < 2.

FIG. 3. Hausdorff dimension" In 4/In 3, : .
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FIG. 4. The Koch snowflake. Hausdorff dimension: In 4/In 3, : .

FIG. 5. A fractal crack. Hausdorff dimension" =In 3/ln 2.5, K 1.8.

FIG. 6. A three-dimensional Koch snowflake surface. Hausdorff dimension: In 6/ln 2, : =-.
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THE BIFURCATIONS OF COUNTABLE CONNECTIONS FROM A
TWISTED HETEROCLINIC LOOP*

BO DENG?

Abstract. Codimension-two bifurcation phenomena associated with nondegenerate heteroclinic loops
are studied. The bifurcation curves of homoclinic orbits in the parameter space are characterized by the
twist structure of the heteroclinic loops at the bifurcation points. Among other things, it is shown that
heteroclinic orbits with any given winding number around a doubly twisted heteroclinic loop must bifurcate.
Applications of these bifurcation phenomena are also discussed.

Key words, twisted heteroclinic orbit, homoclinic orbit, periodic orbit, k-heteroclinic orbit, Sil’nikov’s
variables, exponential expansions, strong A-lemmas, entrance sets, exit sets, bifurcation equations
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1. Introduction. A heteroclinic loop takes place for a vector field F when there
exist two heteroclinic orbits z*(t) and z*(t), with z* connecting an equilibrium point
al, to another one a2, and z2* connecting a2 to al. To be precise,

z/*(t) -> ai as --> -o and z/*(t) --> a as --> +

for i,j= 1,2 and i#j. Figures 1.1 and 1.2 heuristically illustrate what could happen
to two structurally different loops when a planar vector field F is perturbed slightly.
In Fig. 1.1, either a homoclinic orbit or a periodic orbit would possibly bifurcate from
the loop, while in Fig. 1.2 a heteroclinic orbit winding around the original loop for
any finite times before reaching its destinations in both backward and forward evol-
utions would also be possible under perturbation. The very structure distinguishing
the second loop from the first one is that a given heteroclinic orbit arises from and
tends to the equilibria from different "sides" of the other heteroclinic orbit. The purpose
of this paper is to study the bifurcations of a generic two-parameter family of vector
fields in Ea, d _-> 2 which exhibit the above heteroclinic phenomena.

The first obvious generalization is to assume that the equilibria ai of the equation

(1.1) :-- F(z)

FIG. 1.1

FIG. 1.2
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have the same dimension, m->_ l, for the stable manifolds W and the same unstable
dimension, n d m _-> l, for the unstable manifolds W’ for both 1 and 2. Moreover,
the ais are simple saddlepoints in the sense that

(1.2) There exist principal eigenvalues Ai <0< for the linearization DzF(a) and
constants A <0</2 such that for any other eigenvalue , of DzF(ai) either
Reu<<Ai or Re,>/2i>/,for i=l and 2.

Not as a generalization but as a generic restriction to all the cases, we assume
that both equilibria are relatively contractive"

(1.3) +/<0 for i=l and 2.

That is, the principal attraction of a dominates the principal repelling.
Concerning the structure on the intersection of the unstable manifold W’ of a

and the stable manifold W] of aj which must be nontransverse along the heteroclinic
orbit Fi := {z*(t)" 6 R}, we assume that they are in general position"

(1.4) codim

where

and TpW means the tangent space of a given manifold W at a base point p W. Also,
motivated by the strong h-lemma from Deng (1989), the following strong inclination
property, as another assumption, is also generic:

lim Tz(t T,, W/ + Ta, WSi
t--)

(1.5)
lim T()= T,W’’+ T,W.
t-)Too

Here, W and W are the strong stable and strong unstable manifolds of a, respec-
tively. See Fig. 1.3. If the vector field P is C , then W and W are C as well (see,
e.g., Shub (1987)). But, in general, W and W are proved to be C- instead (see
Deng (1989)). Moreover, W and W are (m-1)- and (n-1)-dimensional, respec-
tively, characterized by the fact that the limits

z(t)-a
lim 0 for z(0) WU\Wuu,

(1.6)
z(t)-a

lim
,-+oollz(t)-all

exist and are equal to unit eigenvectors for the principal unstable eigenvalue and
principal stable eigenvalue, respectively. The strong inclination property is a generic
property provided F is C with r >-7. See Deng (1989) for the proof.

The last structural assumption reads

(1.7) F, W/\ W’/") ("1 W\Ws) for i,j= 1, 2 and j.

That is, by virtue of (1.6) this hypothesis says that the heteroclinic orbits arise from
and tend to the equilibria along principal eigendirections. It is certainly a generic
condition.

The assumptions (1.4), (1.5), and (1.7) together are referred to as nondegeneracy.
They lead to our classifications of heteroclinic orbits into twisted and nontwisted as
follows.
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e-W
W’’ e

e;
a2

W

(a)

(b)

(c)

FIG. 1.3. (a) a nontwisted loop, (b) a single twisted loop, (c) a double twisted loop.

Let

e-= lim (z*,(t)-a)/llz*,(t)-all,
(1.8) e-= lim (z*(t)-a)/llz*i(t)-all.

By (1.6) and (1.7), they are unit principal eigenvectors. See Fig. 1.3. Choose pi G

F WTo sufficiently close to the equilibrium a and q F W]o sufficiently close
to the other equilibrium a. Let p z(0) and q z(T) for a large T 0. Because of
the strong inclination propey (1.5) and the principal asymptotic tangency (1.8),
choosing p and qj close enough to a and a, respectively, implies

e[ Tp, d= Tp, +span (el),
(1.9)

ef Tq, Nd Tq +span (el).



656 o DEYG

Since Tz(,), 0 <= <- T, defines a homotopy from Tp, to Tqj, the following definition is
justified (see Fig. 1.3).

DEFNa’ION 1.1. Let Fi be a nondegenerate heteroclinic orbit connecting two
simple saddles. Fi is said to be twisted if e and ef point to opposite sides of Tp, and

Tqj, respectively. Otherwise, it is nontwisted.
For the heteroclinic loop, cl (F1 (-.J F2) {a, a2} (-J 171 (-J F2, it is called double twisted

if both F and F2 are twisted, single twisted if and only if one of them is twisted, and
nontwisted if otherwise.

As the last assumption we assume

(1.10) F’Ea x2---,d is a generic C vector field with two parameters a

(a l, a2) E2, having a nondegenerate heteroclinic loop at a 0. Here, the
regularity r >_- 8.

By genericity we mean that our results will hold for a residual subset of C (d X 2, d
in the weak Whitney topology of Ck-convergence (see, e.g., Hirsch (1976)). To be
more precise, we include the following as equivalent conditions for (1.10):

(1.10a) The continuation of Fi: Given the fact that the heteroclinic orbit is
a codimension 1 object by (1.4), we assume for every (a 1,0) there
exists a heteroclinic orbit F2(al) {z*2(t, al)" } from a2 to al such that
z2* is a C two-dimensional surface in the phase space. Similarly, z*(t, a2)
forms a C surface in d as (t, a2) takes all values from 2 and each of
the t-curves is a heteroclinic orbit from a to a2;

(1.10b) The transverse crossing of the stable and unstable manifolds along F:
d,(1, 0) d(0,

lim--0 and lim--0,

where dl(al, a2) denotes the continuously varying distance of W’;(a)fE and
W(a)Z with d(0,0)=0 and E is an arbitrarily chosen Poincar6 cross
section to F. A similar description applies for d2.

Note that since the Poincar6 mapping introduced between any pair oftwo cross sections
is diffeomorphism, the nonzero limiting property in (1.10b) above is independent of
the choice of the cross section Z.

Finally, to state our main theorems we need a few more terms. Let be a small
tubular neighborhood of the heteroclinic loop cl (F1 t_J F). A k-periodic (k-per) orbit
is a periodic orbit which is contained in OR and has winding number k in OR. Similarly,
the closure of a k-homoclinic (k-hom) orbit has winding number k in OR. Accordingly,
a k-heteroclinic (k-het) orbit F from a to a2 is such a heteroclinic orbit that cl (F t_J Fz)
has winding number k + 1. Similarly, we define a k-heteroclinic (k-het2) orbit from a
to al. Thus, F and F2 themselves are zero-heteroclinic orbits. Note that as long as R
is chosen small enough, the above definition is independent of any particular choice
of OR. Also, the terminology extends canonically to small perturbations of the vector
field F(., 0).

The first theorem, except for the directions of bifurcation and the k-heteroclinic
orbits, is taken from Chow, Deng, and Terman (1990).

THEOREM A. Suppose F is a generic two-parameterfamily of vector fields having a
nondegenerate heteroclinic loop connecting two relatively contractive and simple saddle
equilibria at a O, i.e., (1.2)-(1.5), (1.7), and (1.10a, b) are satisfied. Then there exists
a small tubular neighborhood OR of the heteroclinic loop cl (F kJ F2) and a neighborhood
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f of the bifurcation point a 0 in the parameter space such that up to a nonsingular and
differentiable change of the parameters, which leaves the axes invariant as sets, the
following is satisfied (cf. the bifurcation diagram Fig. 1.4):

(i) There exists a C r-7 curve a2 hOml (al) with al > 0 in f such that there exists
a homoclinic orbit to a in if and only if hOml. Moreover, hom is asymptotically
tangent to the positive a 1-axis as a 0+ and the direction of the bifurcation is determined
by the twist of the heteroclinic orbit F2 as follows:

>0 if F is twisted,
hOml <0 otherwise.

(ii) There does not exist any k-heteroclinic orbit from a2 to al for k >- 1 if F2 is not

twisted and there exists at least one 1-heteroclinic orbit from a to al on a C r-7 curve;
a= 1-het (al) for a >0 otherwise. Moreover, 1-hete is asymptotically tangent to the
a -axis as a 0+.

(iii) Analogous statements hold for homoclinic orbits to ae and k-heteroclinic orbits
from a to a2.

(iv) Let A={(al,a2):a2>hOml(al) if al>O or a>hom2(a2) if a2>O}. Then
there exists a periodic orbit in 71 if and only if a A.

(v) The homoclinic and periodic orbits do not coexist in all for a given parameter.
They are all unique and are 1-hom and 1-per orbits, respectively.

Our main result is as follows.
THEOREM B. In addition to the hypotheses of Theorem A, suppose the stable

manifolds ofthe equilibria a and a are all one-dimensional; then thefollowing is satisfied
(cf. Fig. 1.4):

(i) If F2 is twisted but F1 is not, then the 1-heteroclinic orbit from a to al is the
unique k-heteroclinic orbit for all k >= 1 and a . Moreover,

1-het (a,) >hom, (al) for al > O.

(ii) If the loop cl (F U F) is double twisted, then there exist two sequences of C r-7

curves a2=k-het(a) with a>O and al=k-hetl (ae) with a>O in f, respectively,
satisfying

0 _--< k-het2 < (k + 1 )-het < hOml

for all k >= 0 such that there exists a k-heteroclinic orbit from a to a if and only if
a k-het2. Moreover, it is a unique heteroclinic orbit in 71 with respect to the parameter
and k-het is asymptotically tangent to the a-axis as a - 0+. Furthermore, the homoclinic

bifurcation curve hOml is inaccessible from below in the sense that for every al

k-het (a,) -- horn, (a,) as k- +.

An analogous statement also holds for the k-hetl curves.
Theorem A provides us with a useful clue to the twist of a given heteroclinic loop:

the two zero-heteroclinic continuation curves (which are the parameter axes in our

theorems) divide the neighborhood f into four sectors. The 1-homoclinic bifurcation
curves hom and hom lie in one sector for a double twisted loop, or in two adjacent
sectors for a single twisted loop, or in two opposite sectors for a nontwisted loop.
Keeping this fact in mind, let us examine the following bifurcation diagram Fig. 1.5
for traveling waves of the FitzHugh-Nagumo equation

vt=Vxx+f(v)-w, w,=e(v-yw), e,y_-->O,

where f(v)=-v+H(v-a) with H to be the Heaviside step function and O<a<1/2.
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0

hom

(a)

(b)

FIG. 1.4. The bifurcation diagramsfor (a) a nontwisted loop, (b) a single twisted loop, (c) a double twisted

loop.
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tl-t t/2-het,//"

-////--hom,/

(c)

FIG. 1.4.--continued

A traveling wave solution (v, w)(x, t) is a function (v, w)(z) of z=x+ct, c>=O.
Let u(z)= v’(z), then vc (v, u, w)(z) satisfies a first-order system of ODE

(1.11) v’=u, u’=cu-f(v)+w, w’=e-(v-yw).
c

For fixed 0 < a < 1/2 and 0 < e << 1, numerical as well as rigorous arguments from Rinzel
and Terman (1982) show that the front curve Or, on which there exits a front wave
connecting the rest steady state ff to the exitable state g as shown in Fig. 1.6, crosses
transversely the back curve 0B, on which there is a back wave from g to ft. Thus, at
the intersection point 0* there exists a front wave and a back wave traveling at the
same speed. This gives rise to a heteroclinic loop. Their numerical simulation also
shows that the impulse curve 0e, homoclinic to if, and the g’-impulse curve 0,
homoclinic to g, also bifurcate from the loop at 0". Note that their bifurcation directions
of asymptotic tangency are exactly opposite our bifurcation diagram Fig. 1.4 for
Theorems A and B. This is due to the fact that the steady states ff and g are relatively
contractive simple saddles having one-dimensional stable manifolds only for the time
reversed (z--z) system (1.11). What is most remarkable about these two curves is
that both of them lie in the same sector in the parameter space. In fact, this has been
rigorously proved (see (3.8) and (3.10) from Rinzel and Terman (1982)). Unfortunately,
however, we can only speculate that Theorem A suggests the double twist for the
heteroclinic loop. Indeed, we are facing a tantalizing dilemma here: either it is feasible
to check the transverse crossing condition (1.10b) and the double twist of the loop
due to the piecewise linearity of f but the vector field is not smooth enough, or it
becomes a fairly open problem to do so for a smooth vector field, e.g., the usual cubic
function f= v(v-1)(a-v). Nevertheless, the implication is interesting: for given
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OF

7 73 3’2 7

(a)

(b)

FIG. 1.5. (a) A heuristic bifurcation diagram produced from Rinzel and Terman (1982); (b) The conjec-
tured complete diagram.

w

FIG. 1.6. The conjectured twist for the front-back wave loop.

parameters e, 0 < a < 1/2 and 0 < Y3 Y << 1 there would be infinitely many fronts traveling
at different speeds. The more "humps" a front were to carry the slower it would travel.
If the humps were "too many" (infinity) the traveling wave arising from the rest state
would never be able to reach the exitable state but would return to itself after a
long excursion. Slowing down a little, it would become a traveling train, or periodic
orbit for the ODE. On the other hand, push y slightly to the right of Y3, the above
scenario would repeat for back waves and q-impulses.

By their numerical evidence on the stability of the primary front and back waves
with respect to the PDE, as well as other authors’ results on somewhat related stability
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problems, it has been demonstrated that the stability of a given impulse is closely
related to the direction at which the stable and unstable manifolds cross transversely
as the speed parameter c varies (see, e.g., Evans (1972), Jones (1984), Kokubu, Nishiura,
and Oka (1988)). Thus, we find the second implication is most interesting: there would
be infinitely many stable transition waves connecting two stable patterns.

However, all of these phenomena do not appear in the "chaotic" parameter region
discussed by Evans, Fenichel, and Feroe (1982) and Hastings (1982), where for a given
speed there are infinitely many impulses and traveling trains due to the Sil’nikov
saddle-focus homoclinic explosion for (1.11) (see also Sil’nikov (1967)), whereas there
would be a unique traveling front, or back, or impulse, or traveling train, except at
the bifurcation point 0* in our case. Indeed, as long as there are two bistable steady
states as shown in Fig. 1.6, the equilibria are not saddle-focus. Nevertheless, we would
probably not be too surprised by the enormous, stable, yet not "chaotical" transporting
capability that a nerve axion would inherit if our conjectures were true.

In contrast to our conjectures above, we will discuss the existence of nontwisted
heteroclinic orbits and thus the limited number of connections between two equilibrium
states for another type of reaction diffusion systems in 7. We will also discuss in that
section some ways newly discovered by other authors to check all the nondegenerate
and generic conditions (1.4), (1.5), (1.7), and (1.10a, b) for their examples to which
our theory is immediately applicable.

2. Preliminaries. This section is devoted to introducing the Sil’nikov variables for
a Poincar6 map around the loop.

--{Z: Z--Z ,’’’, z(d)), ]z(i (0} be theLet 0< 6o be a small number and B(6o)
6o-box of the origin. Let the coordinate be locally normalized near the equilibria
so that (x, y)=0 corresponds to z ai and the local stable, unstable manifolds are
given by the x-axis and y-axis in B(6o), respectively; i.e., Woc {y 0} B(8o) and
W’oc {x=O}B(6o). In addition, the directions of the first x-component x(1) and
the first y-component y(1) are chosen to be the unit principal eigenvectors e- and e-,
respectively, as in (1.8). Let the points p and q from (1.9) in the definition of twist

(1) (1)be specifically given as Pi (xi, O) and q (0, y). We can assume xi 8o and Yi 8o
because of assumption (1.7) for the asymptotic tangency of F along the principal
eigendirections.

Let E and E’ be two small cross sections, or (d- 1)-dimensional boxes B(81)
with 0 81 80, centered at p and qi and perpendicular to e and e-, respectively
(see Fig. 2.1). They are Poincar cross sections provided 8o and 81 are sufficiently
small. Let r be the subset of those initial points (Xo, yo)eE whose trajectories in
B(8o) first hit the exit cross section E’ at (xl, Yl) at time z(x0, Yo). This correspon-
dence gives rise to the local Poincar map I-I" r- E’ by (Xo, Yo)-* (xl, Yl). Similarly,
by the continuous dependence on initial data and parameters we can define a global
Poincar map IIi E’ -* E. Here, without loss of generality Es is taken to be the domain
of definition for I-Ii, whereas r is a proper subset ofE not containing any point from
the stable manifold Woc.

Let (, y)ea-1 and (x, )ea-1 be the normalized local coordinates on E and
E’ so that (0,0) corresponds to the center points Pi and qi, respectively. Indeed,
s=)-)i, and /=3-3i., where )---(X(2), ,X(m)) and )=(y(Z)..., ,y(")) (see
Fig. 2.1). Let s- e-() be the Sil’nikov time near a, where i(a) is the principal
unstable eigenvalue for DzF(a, a). Then the Sil’nikov variable for the local map is
(s, :, 7) and the Sil’nikov domain is

A:= {(s, ,
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r

//" -r constant

q.><>Q.:.-.y.r.._ r] constant ip2 E2

Y(/[
constant

FIG. 2.1. e cross sections and te corresponding Poinear map en m 1, n 2.

where So(a)= e-,(")o for some large but fixed to. Note that the dependence on a is
suppressed from rT, o’’, and ki.

It has been proved by Sil’nikov (1967) that for the initial point (Xo, Yo)e o- and
the end point (x,, y)e’ with r-- r(Xo, Yo) time units apart, the initial Yo and the end
x, components are functions of the Sil’nikov variable:

yo := Y/(s,:, ’9, a) and Xl:=Xi(s,, "9, a).

Moreover, it has been observed by Deng (1989) that the maps p’A- o-, with (s, :, "9)-
(, Y(s, sc, "9, a)) and p’" Ai r with (s, :, ’9)- (X(s, :, "9, a), "9) are actually diffeo-
morphisms of class C r. Thus, p gives rise to a smooth change of variables for the
local Poincar6 map 1-I, which in turn is p’ under the new Sil’nikov variable. See
Fig. 2.2. More important, we have the following exponential expansion result.

PROPOSiTiON 2.1 (Deng (1988), (1989)). Let the strong stable manifold and the
strong unstable manifold also be normalized such that Ws= {x(1)= 0, y 0} and W
{x=0, y() 0} locally. Let vi(a) hi(a)/tx(a)-1 and (a) and i(a) be as in (1.2).
Then for o sufficiently small there exist C r-7 functions p(sc, , a), ff(sc, "9, a),
Nil(S, , "9, o), and R2(s, , "9, a) over k such that

(2.1a)
X, s, , "r], ce) qgi(, "r], ol s + + R S, , "r], ol),
Y(s, sc, "9, a)= ,(, "9, a)s+ R,2(s, , "9, a)

with q and satisfying

(2.1b)
(i(, ’9, a)= emao+ o(([l / Inl /
IlJi , "9, Ol e.6o + O((Iscl +1"91 + 8o)ao)

and Rij No(s, , ’9, ) satisfying
k g l+v.+. --FIDe.) ,1[= O(s ’), ID,R,11= O(s ),

(2.1c)
]O(e,,)R,21 O(SI+"), ]DsR,2[ O(sO’),

for all s, , "9) A ,, 0 <--_ k <-_ r 7, where

and

e,--(1, O,.. ",o)Tm,

e,, =(1, O,..., 0) r
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FIG. 2.2. The Sil’nikov change of variables for the local map when rn n 2.

and i>O is a constant not greater than rain {li(a)/txi(a), (li(OI.)--i(O))fld(O)} for
all [a[ -< 60.

Equation (2.1a) is referred to as the exponential expansion, and i the expansion
coecient functions, and Rg, the remainders. From this proposition we immediately
have the following proposition.

PROPOSITION 2.2. For sufficiently small butfixed So, the domain of the local map
H is contained in the vertical sector < y) on . Moreover, for every boundary point
(, y) (, (So, , )), y) 6oSo/2. (See Fig. 2.2.)

It is also easy to see from (2.1c) that the functions X and , thus p and p,
can be C extended to s 0. From now on let us use the same notation for the extended
functions, but for the extended domain of A.

Let us conclude this section with two lemmas which will be frequently used later.
LEMMA 2.3. Let the global map Hi be expressed as P(x, , a), y Qi(x, , a),

under the new coordinates for and Z. Let

DnP(O, O, O) 0
and M

DnQ(O, O, O)M D,Q(O, O, O) e
__

(a-2)(a-2)

where e (0, O, 0), or e. en both Mi and i are nonsingularfor sufficiently small 60.
Proof Note first that all the column vectors of M except the middle one (0, e)

span the linear subspace Tp W7 E) + Tp W} E}), which has dimension d 2 by
the hypothesis (1.4) and the choices of E, which are transverse to the flow. On the
other hand, the remaining column vector is approximately parallel to the principal
unstable eigenvector e; by the exponential expansion property (2.1b). Thus, M
achieves its maximal rank by (1.9). Moreover, the strong inclination propey also
implies DnQ(0,0) is a diffeomorphism, thus the truncated square submatrix Mi
achieves its maximal rank d- 2 as well.



664 o DENG

LEMMA 2.4. Let Mi be the same as in Lemma 2.3 above with e (0, 0, 0) and

Ni
LDnQi(O, 0, 0) f (d-1)(d-1)

with f--(0, 1,’’’, O)W, (0, 0,’’’, 1). Then there is a constant mo so that

(2.2a) lirn
[det Mil> mo > 0

6o->0 0
and

(2.2b) lim det N/= 0.
6o->0

Proof (2.2a) is true because of p(0, 0)/6-* e, as o- 0 and the strong inclination
property (1.5) and (1.9). Since (0,f) is contained in T,jW.u, (2.2b) is also true for the
same reason. [3

3. Entrance and exit sets and their extensions. In this section we only consider the
heteroclinic connections from a2 to al. Analogous analysis and result can be immedi-
ately extended to the a to a2 connections. Again, the parameter ce is suppressed from
the text if no confusions arise.

Let Ex := Wloc fq Z denote the intersection of the local unstable manifold of as
with the exit cross section Z given in the previous section. Ex is referred to as the
initial exit set of W. It is obvious that there is a heteroclinic orbit (from a2 to a) if
and only if there is a solution of the initial exit set which also lies on the local stable
manifold of the other equilibrium a. Thus, we need to closely follow the images of
the initial exit set under those successive local and global Poincar6 maps. To be precise,
if we set the image of an empty set under a given map to be empty, then all the
following sets are well defined:

En k
2
k-

1: II(Ex ), En2k := H2(Exk)
Ex/k:=Hi(En/k0p(A)), i--1,2, k=l,2,...,

where p" A- r is the Sil’nikov change of variables and p(Ai) is contained in the
domain r of Hi. En/k and Exk are referred to as the kth entrance set and the kth exit
set of W near a, respectively. They might be empty except for the initial exit set Ex2
and the first entrance set En near a. Nevertheless, we have the following.

PROPOSITION 3.1. There exists a (k-1)-heteroclinic orbit from a to al sufficiently
close to the loop F[’2 if and only if En,J-, Ex,J- for l<=j<-k-1, i-1,2, and
En k Woc .

By definition, for every point (:, y) Enlk there exist (0, r/) Ex2 and z o-
with z,J. (,J., y), 1 -<_j -<_ k- 1 and i-- 1, 2 from the orbit of (0, r/) such that H21(0, r/)
z, H2 H(z) z,. , H_ H2(zk-) (, y). Using the "pull back, we have a

unique ’ (s, r/i)A satisfying zi= Ps(r)- Thus, the following proposition is
valid.

PROPOSrrION 3.2. (3.2a) The kth entrance set to a, Enlk, is nonempty if and only
if the following system of l (2k- 1)(d 1) equations has solutions for the l + n 1
unknown variables q, 1, , y with sr/=(s{, i, TJi) Ai satisfying the con-
straints si > 0 for all 1, 2 and 1 <-j <-_ k- 1"

n,(o, ) p()

1-I,(p’(’-’)) (, y);
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(3.2b) The kth exit setfrom al, Exk is nonempty ifand only if after replacing (, y)
Pl(’l) with k Aby k the same statement of (3.2a) holds true"

(3.2c) The kth entrance set to a2, En2k, is nonempty if and only if the following
system of 12 2k(d- 1) equations has solutions for the 12 4-n- 1 unknown variables

/, srll, rlk :, Y
with i (sji, rl Ai satisfying the constraints s > 0 for all 1, 2 and 1 <-j < k:

p,(’)I’[21(0, y)

nl(p’()) (, y);

(3.2d) The kth exit setfrom a2, Ex2k is nonempty ifand only ifafter replacing (, y)
by p(k) with k2 A2 the same statement of (3.2c) holds true.

Solving equations (3.2a-d) is more difficult with the constraints s > 0 than without
them when those maps p and p’ are considered as the extended maps on the extended
domain zi introduced in the previous section. Let us now study the extended equations
and leave the consideration of the constraints to the next section.

Note that each system of the extended equations (3.2a-d) might locally define an
(n 1)-dimensional manifold near the origin of the/-dimensional Euclidean space NI,
where li + n- 1. In fact, we have the following.

LEMMA 3.3. Suppose the equilibria are simple saddle, relatively contractive, and the
heteroclinic loop is nondegenerate. Then there exists a small constant 6 > 0 independent
of k such that in the 6-box B(6) of the origin in Nl each of the systems of the extended
equations (3.2a-d) defines an (n 1)-dimensional manifold J/[ in B(6) which contains
the origin and can be written as the graph of a C vector-valued function of the last
n 1 components, i.e., either 33 (y(2,..., y() or rh, where 11 + n 1, or 1 + n 1,
accordingly.

Proof. We prove the lemma by the implicit function theorem for equation (3.2a)
only since the other cases are identical. By using the notation II 0 (Pi, Q) r, p (i, Y)
and p’ (X, r/i) from the last section, we see that solving equation (3.2a) is equivalent
to solving the zero of the following equation:

a,(t’, 3) o,
where

(?,g)=

-l+P(O, )
YI + Q2(O,

--2 d- PI(X1, ’1)

-Y2+Q!(X, hi)

"k-1 k-1-+ P.(x
k-1 k-1-y + Q2(X2 q2

k2-1 k2-1 k-1 y(,
X= X(s, , rl{) and Y= Y(s, so{, r/{). It is obvious that the existence of the
heteroclinic loop FlU F2 (at a =0!) implies (0, 0)=0. A simple calculation yields
that the ll x ll square Jacobian matrix 0/0ff at (sr, fi) (0, 0) has the following diagonal
property

det _--7 (0, O) Idet diag (M2, M1 ,’’’, Ml, M=)I,
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where the diagonal blocks have the forms of Lemma 2.3 with all the blocks Mi except
the last M2 taking e=-Oj(0, 0, 0). Therefore, the Jacobian matrix is nonsingular.
Hence, by the implicit function theorem there exists a 3 > 0 such that (’, 33) 0 defines
in B(3) an (n- 1)-dimensional manifold (containing the origin at a 0) which is
the graph of a C function of the variable 33. Moreover, because of the diagonal block
structure it is not difficult to see that 3 can be chosen to be independent of the number
of the equations 11 (2k- 1)(d 1). 13

Let P be the canonical projection from E=Itl-d-lEd-1 onto the last d-1
components. Then Lemma 3.3 implies that the projection PJ// of the manifold J/ is
also the graph of a C function of the last n- 1 coordinates. Therefore, we have the
following.

DEFINITION 3.4. n/k:=P and lxk:=p’(P) are called the extended kth
entrance set and the extended kth exit set (of W) near ai, respectively, according to
whether is taken to be the manifold defined by the extended equations (3.2a-d) for
the entrance sets or the exit sets in Lemma 3.3.

Since all the extended entrance and exit sets exist in some small but fixed 3-box
B(3) of the center points on the entrance and exit cross sections, respectively, we can
easily construct a tubular neighborhood of the heteroclinic loop cl (F1 F2) such
that the intersections of with the entrance and exit cross sections (E and E’) are
exactly those 3-boxes. Thus, we only need to consider the real entrance and exit sets
(of W) in B(3) and rename Eft k :-" Eft k B(3) for simplicity of notation, where/ n
or x. Now we are read,y to compare these sets with their extensions. Because the kth
extended entrance set Enk near al is a graph over the last n- 1 coordinates fi on E
and the nonemptiness of its intersection with the local stable manifold W of a forces
33 0, we have proved the following.

COROLLARY 3.5. If a (k-1)-heteroclinic orbit from a2 to al exists in 11, then it
must be unique (for the corresponding parameter).

COROLLARY 3.6. Let nk =graph G, H) with = G(fi) and yl)= H(fi). If
dim W dim W 1, IH(33)1 <_- 3oSo/4 and the derivative Ion(fi)l <-- 1/2for all Ifil < 3, then
nk O tri f if and only if 0< H(0), where 3o and So are as in Proposition 2.2.

Proof Since dim W dim W 1, : G(y) 30, the x-component of the center
of the entrance section E T. Since the boundary point (30, Yo)=(30, Y(so, O))6Otr
satisfies yo>- 3oSo/2 > max HI by Proposition 2.2 and our assumption, the two boun-
dary points (30, Yo) and (30, 0) must be in different sides ofnk if 0< H(0). The path
connectedness of o- implies there must be a point (30, Y(sl, 30, 0)) lnk. This shows
0< H(0) is sufficient. To show that it also necessary, suppose it false, i.e., H(0)_-<0.
Since nk graph (H), then yo1)= n(0)-<_0. Thus, yl)-yol<=lDHIl[<-1fi[/2 by our
assumption. Let Yl 6 n/kf-)tr7 # ; then Ifill<y1 holds true by Proposition 2.2. It
follows that Ifil-yo<y])-yo)<-ll/2 and 0-< 13311/2<y01), a contradiction. [-1

Our main result of this section is as follows.
THEOREM 3.7. Let lnk graph G, H) with G() andy1 H(). Ifthe deriva-

tire ofH satisfies DHI < for all k, i= 1, 2 and Eft k is nonempty, then Ek .t k, where
ni or Xi.

Proof. Suppose it is false; then there exists a first E k such that Ek k. We
claim first fl x. If fl ni then there exists a point Po n/k_ Enk. Hence, there exists
a point (, 3) with Po P(, 3), and (, 3) has at least one sj=< 0, where and the
projection P are as in Definition 3.4. To be precise, say s =< 0.

Let us first note the following: Denote /3 k according to whether it is obtained
by the extended equations for the kth entrance set when/3 n or the exit set when
/3 xi. Now it is not difficult to see that if p /3 k then the point q, whose components
consist ofthe first (2j 1)(d 1) + n 1 components ofp, belongs to x since q satisfies
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the first (2j-1)(d- 1) equations (cf. Proposition 3.2). Similarly, if q is obtained by
keeping the first 2j(d- 1)+ n- 1 components of p, then q is in gx.

Now, resume our assumption s-<0 and let qo be such a truncated point of Po
which belongs to gx. Then P(qo) /x Ex since s _-< 0. This contradicts our assump-
tion for n. Hence, the claim holds true.

Since we have Ex x, it follows that there exist (ss, , r/s) zi with
j 1, 2, s, =< 0, and s2 > 0 such that p(srl) n-En and p(sr2) En fq o- for the
same reason as above on the truncated point q. Since n is path connected, being a
graph over the path connected set [931 < 6, there exists a sro (So, sCo, r/o) 6 ,i with So 0.
Hence, P(’o) (sCo, Y(0, so, r/o)) (sCo, 0) 0r f’] Wloc. That is, (sCo, 0) n
graph (G, H). This implies ly)l _-< IDHI I1--< 11/2 by our assumption for all (s, y) n.
It follows that n fq o- , since by Proposition 2.2 ]93] < y() for all (sc, y) . This
contradicts p,*.(’2) En f) r c ln f) r,*.. [3

4. Bifurcation equations. From now on, we shall spell out the parameter explicitly
wherever it is necessary. In this section we consider the constraints s{ > 0 in terms of
their sign changes with the parameter, in particular the sign changes of y(1)= H(0).
Here (G, H) gives the graph of the extended entrance set. For this reason, we consider
the following equations"

(4.1a) 1-I2(0, r/, c)= (, y),

(4.1b) II21(0, r/, a)--P(’l, a),

(4.1c) II21(P(2 a), ce)= (, y),

(4.1d) 172,(p(sr, c), a)= p(’,, a),

(4.1c’) II12(P(, ce), c)= (sc, y),
(4.1d’) 17112(P(’1, ce), a)= p(sr2, a),

which introduce every new s{ or y(1) into our recursive construction of the entrance
and exit sets in the last section, where (&, sc, r/).

Note that each of the systems above defines a system of d-1 equations with
l=(d- 1) + (n- 1)+2 unknown variables for (4.1a-b) or/2- 2(d- 1)+2 variables for
(4.1c-d’), including the parameters a and a2. Thus, presumably, each of them defines
an (l (d 1))-dimensional manifold in R6 accordingly. Indeed, we have the following
lemma.

LEMMA 4.1. Suppose the conditions of Theorem A are satisfied. Then there exists a
small constant 6 > 0 such that in the &box B(6) of the origin in t, each of the extended
equations (4.1 a-d) defines an (l (d 1)) -dimensional differential manifold in B(6)
which can be written as the graph ofa C function of the last n- 1)+ 2 variables (, a)
or r/, a) when li l or the first m and the last n 1) + 2 variables si, i, , a) or
(&, , r/, a) when li 12, accordingly. Moreover, up to only one nonsingular and differenti-
able change of the parameter for all the equations (4.1a-d’) considered, the following
bifurcation equations are satisfied for solutions to (4.1a-d’) with the corresponding
alphabetical order:

(4.2a)

(4.2b)

(4.2c)

(4.2d)

(4.2c’)

m,y(1)+ + m,y(")= a+
l Og2 -II-

mly(I)+ q-" m.y(")= a2 + ’r2(a )s+u2 + 0(([/:721 -i
I- [$21 <)Is=l l/t"2 + 13312),

S1 2 "It- T2( )S12+v2 -’1- O((l2l -’[- ]S2I ff2)lS2] 1+"2 + (In,I + ISll
l+Vl 1 1+ 2)t/0/lY(’>+’’" +tfi,Y(" O1-71(O)S1 /O((I,I/Isll )IS, "’/11
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(4.2d’)

where vi, f’i are as in Proposition 2.1. Here mi mi(t) are differentiable functions of a
satisfying 1/(26o) < ml <2/60, mi/ml o(1) as 6o-Ofori # 1 and the analogousproper-
ties also holdfor ri. Moreover, the scalarfunctions, ’i % (a), called twist functions, are
nonzero, differentiable, and satisfy

<0 if F is twisted,
(4.3) ’i(0)

>0 otherwise.

Furthermore, the change of the parameters leaves the parameter axes, as sets, invariant,
but may reverse their directions.

The basic framework for the proof of this lemma, in particular, the derivation of
the bifurcation equations through a modified Lyapunov-Schmidt reduction, has much
in common with the spirit of Chow, Deng, and Terman (1990). Thus, we will prove
it in the Appendix with necessary modifications given to the twist terms ’(a)s+’ and
the order estimates on the higher-order terms.

The following corollaries concern the conditions of Corollary 3.6 and Theorem
3.7 when the parameter is taken into consideration.

COROLLARY 4.2. Let n/k= graph (G(., a), H(., a)) with = G(;, a) and y(=
H(, a). Then 6o and 6 can be chosen sufficiently small but fixed such that IH(, a)l <=
6oSo/4 and IDH(f, a)[<=1/2 for all ]1, ]al<6 and k>=l, where D is the differentiation
operator in y.

Proof Using (4.2c) or (4.2c’), we have

lY<’>[ <= [max lmi(a)’6 / (6)]/m1() (1)6 /

and

IDHI t.[maxil Imi(a)l + 0(6%)]/m1(o)=o(1)+26o0(6"),
where Vo min {/21, /’*2, 1, 2}" Choosing 6o and 6 so small but fixed implies the desired
estimates.

COROLLARY 4.3. 6 can be chosen small so that if ln/k= graph (G(., a), H(., a))
crosses the stable manifold Wloc f’l E, then it does so transversely in aj in the sense that
0H(0, a)/0aj>0 for I1<, In other words, if H(O, a)=0 then for the fixed ith

0component o a H(O, ce > 0 if and only if aj > oi,

Proof. Using (4.2c) or (4.2c’) again, we have ml(a)H(0, a)=% + o(11/o) with
Vo min { v, v2, , 2}. Thus

( [ Om----A H(O, a)0H(0, c)/oc_-> 1

for < by an appropriately chosen small
COROLLARY 4.4. The first entrance set Enll to al intersects the domain cr of the

local map nonempty if and only if 02 > O.
Proof By (4.2b), s=2/o(InlllSll/lsl/,), implying s>0 if and only

if a>0.
5. Proof of Theorem A. As we mentioned earlier, Theorem A has been proved in

Chow, Deng, and Terman (1990), except for the directions of homoclinic bifurcations
and the k-heteroclinic orbits. Thus, we are going to outline the proof from that paper
and provide the necessary details for the other part of the proof.
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Consider the Poincar6 map II1 rI21 II2 I-[2 II from a subset of 0" into the
entrance section E near al. Using the Sil’nikov changes of variables, we can similarly
reduce the problem of finding periodic points of II1 into solving a system of equations
for the unknown Sil’nikov variables with the constraints si > 0. The conditions of the
nondegenerate heteroclinic loop and the relative contraction for the simple saddle
equilibria imply that the extended system has a unique solution parametrized by a by
the implicit function theorem. This uniqueness allows us to consider the simple
homoclinic, periodic orbits only. Thus, by the implicit function theorem, we solve
(’*, ’2*)(a)= (s*, :*, 7*, s*, :*, /*)(a) as the solution for the extended equations
I-I2(p’(’l, a), a)= p(’2, a) and Hl(p’(’, a), a)= p(sr, a), where ri (s, :, /i)
with I’*(a)[ O([a[). Now, substituting sr* and ’* into the bifurcation equation (4.2d’)
and (4.2d), we have s*2= a +O(la[ +o) and s*=a+O(la[+). It follows that the
map a- (s*, s2*) is a diffeomorphism. Thus, the sector A for the periodic orbits is
given by s* > 0 and s2* > 0 and the curve hom for 1-homoclinic orbits from a to a
is given as a piece of the boundary 0A with s*- 0 but s2* > 0. Substituting s* 0 and
s2* > 0 into (4.2d’) and (4.2d), again we have s*2 a + O([a[)[s*[ +o, implying al >0,
and

(.) o + ()*’++ o([ [)[*1 ’+,

implying az=hom (a)=[-Zz(a)+O(lal)]]s*2[ +2. Therefore, the bifurcation direc-
tions in (i) hold true because of (4.3). Finally, to complete the proof, we only need to
prove (ii).

Let us consider the 3(d- 1) equations 1-I2(0, rt, a)= p(sr, a),

II,(p’(’, a), a) p(’2, a), and 1-I2,(p’(’2, a)) (:, 0) for 3(d-1)+l variables,

including the two parameters al and a2, and assume F2 is twisted first. We solve the
following 3(d 1) 1 equations first:

-, + P2(0, ’q, a)
--rl+ Q2(0, ’q,a)

--2 - P(X1, r/l, a)(5.2) (, )= =0,
Y2 + QI(X,, "rl,,

-+ n(x, n, )

with 02 (Q(), , Q(f)), and solve the leftover equation Q(I)(X2, r/:, a)=0 later,
where "- (r/, s, :, , s, :, r/, :). The existence of the heteroclinic loop implies

(0, 0)=0 and a simple calculation shows the Jacobian square matrix satisfies

det -- (0, 0) [det diag (M2, M,, M)[,

where Mi and M are the same as in Lemma 2.3 with e being (0, 0) in M. Hence,
it follows from Lemma 2.3 that the Jacobian 0/0sr(0, 0) is nonsingular and sr can be
solved as a C function sr* of a satisfying ’*(0)=0 by the implicit function theorem.
Substituting sr=sr*(a) into the remaining equation Q(I)(X*, r/*, a)=0, we find it
equivalent to solving a from

s*=P2(X2* ’0* a),
(5.3)

O= Q:(X* n* a).
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Notice that this equation has the form of the connecting equation (4.2c) and the
corresponding bifurcation equation (4.2c) of Lemma 4.1 applies Thus, it is equivalent
to

Since s2*, *= o(lal), this equation always has a unique solution a2: 1-het (al) for
every a by the implicit function theorem Since F2 is twisted, then r:(a)< 0. This
implies 1-het>0. Also 1-het= O(lall’/). To see if the constraint s*(a)>0 and
s*(a) > 0 are satisfied at a 1-het we need to consider the other two bifurcation
equations (4.2b) and (4.2d’) corresponding to the first two connections:

(5.5a) S*l o=+ o(In* lls* l+ls* l/,),

From (5.5a) and a2 1-het (a)> 0 it is obvious to see that s* >0 is automatically
satisfied. Moreover, s* O(a2)= O([a11+2). Substituting this order for s* into (5.5b)
yields s2* > 0 if and only if a > 0 since a is the leading term in the right-hand side
when s* and a are of order O(la,l+). Let 1-het2 := 1-het I,>o be the desired curve

To show the nonexistence of k-heteroclinic orbits for k>-1 under the nontwist
assumption for F2, let us solve a system of equations similar to (5.2). Analogously, it
is equivalent to solving those a from the following bifurcation equations so that
j*

si (a) > 0 for all i,j:

1" 1" 1+
S2 Ol1-1"- ’,Is, ’+ o((l’,*l+lsl*ll)lsll*ll+l+(lnJ*l+ls’*lOls*l)

(5.6)

0 =/ =ls*l /=/ o((1*1 / Is*l =)lsg*l /=).
1"Since r > 0, the last equation implies a2 < 0. This forces s < 0 from the first equation.

This completes the proof.

6. Proof of Theorem B. To prove Theorem B we need the following three lemmas.
When dim W 1, two given graphs E graph (/-/) over 33 on the entrance set

E are denoted by E =< E if H(33) <- H2(33), or E1 < E2 if H(33) < H2(33) for all common
y. A point p=(6o, y)E is said to satisfy p-<_ (<)E graph (H) if y()-< (<)H(33). In
what follows, let Fx: W’ocf3 E’ and Fn be the corresponding first entrance set of

respectively. Now we haveW to a. Their definitions are analogous to Ex2 and End,
Lemma 6.1 (cf. Fig. 6.1).

and En to aiLEMMA 6.1. If dim W1--dim W 1 and all the entrance sets Fni
up to a given number k >-j are nonempty graphs over the fi-axis, then

(6.1a) If F: is twisted but F1 is not, then

En < En/< Fnl < Enl for 3 <=j <- k;

(6.1b) If both F1 and Fe are twisted, then

ki-1Fn < Enk < En < < En < En.
Proof. The proof is based on the following two simple observations: (1) The range

o-’ of the local map Hi contains all the exit sets and lies to one side of the corresponding
initial exit graph (FXl or Ex). The images of the exit sets under the global map



THE BIFURCATIONS FROM A TWISTED HETEROCLINIC LOOP 671

lie below (above), i.e., <(>), the corresponding first entrance graph to the other
equilibrium aj if the connection Fi from ai to aj is twisted (nontwisted); (2) For a
given pair of entrance graphs near a given equilibrium ai ordered by <, the ordering
(<) for the consecutive entrance graphs near the other equilibrium aj is (not) to be
reversed if the connection F from a to aj is (not) twisted.

To show (6.1(a)), we have Exc G, thus En+l < En for all j_-> 1 by (1). By (2),
the single twist and En{ < End1 imply En2 < En]+1 for all j -> 2. Since Fn < En1/2 for j => 1
by (1), we have En+1 < Fn2 by (2) (see Fig. 6.1(a)). To show (6.1(b)), we have En < Fn
and En+1 < En for all j>_- 1 by (1). The twist of F2 and En < Fnl imply Fnl < En+
for all j>_-0 by (2). The double twists and En2 < En imply En] < En2 by (2). Last, a
simple inductive argument shows En+1 < En for all j-> 1 (see Fig. 6.1(b)).

LEMMA 6.2. If dim W dim W 1 and [a2[ < al, then the kth exit set Exk from
a is nonempty if all the previous k- exit sets Ex from a are nonempty and the kth
extended entrance set .nk near a has nonempty intersection with the domain tr of the
local map H

Proof We first claim that the (k-1)st exit set Ex2k-1 from a2 is nonempty. Since
Exk-, the (k-1)st entrance set En2k- to a2 is nonempty. By [DH(.,a)[<-1/2 of
Corollary 4.2 and Theorem 3.7, we have Enk-l= lnzk- =graph (G(., a), H(., a)).
Using the bifurcation equation (4.2c’) we have

H(O, G) [Gl + O({o[l+%)]/ml(o) > O,

(a)

,(b)

FIG. 6.1. (a) F is twisted but F is not twisted; (b) Both F and F are twisted.
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since al is dominating by our assumption o > 121. It follows from IH(Y, c)l -< 6oSo/4
of Corollary 4.2 and Corollary 3.6 that n2-1 o- . Hence,

Ex2-I II2(En2- r) # .
The claim is proved. Obviously, this claim implies the kth entrance set En to al is
nonempty and equal to its extension n by Corollary 4.2 and Theorem 3.7. Thus, the
condition nfq r # implies the kth exit set Ex near al is nonempty. 13

Combining Corollary 3.6, Theorem 3.7, and Corollaries 4.2, 4.3 above we have
the following important result.

LEMMA 6.3. If dim W dim W 1 and Pi Wiloc(a)f"l Ei ,nki at some a
o o o nifqr if anda (a 1, a) with k >= 1, then for the fixed ith component ai ai,

only if a > a, where < Moreover, if En is nonempty then the same statement
holds true for En/.

Proof Let n graph (H(., a)). Corollary 4.3 implies H(0, a) > 0 for ai a if
o Since Corollary 4.2 implies the conditions IDHI < and ]HI _-< oSo/4and only if aj > aj.

of Corollary 3.6, we conclude from Corollary 3.6 that n f3 r7 # for a a if and
only if => 7. By the condition DHI < of Corollary 4.2 and Theorem 3.7, we have
En/ lni

Proofof Theorem B. (i) Corollary 4.2 implies the conditions of Corollary 3.6. The
nonemptiness of the kth entrance set En k with k >= 3 implies En2 f3 o-1 . Hence, by
Corollary 3.6, 0<H(0), where En2=graph(H), implying the center point
Wloc(a) f3E lies below the second entrance set En2. It follows from (6.1a) that the
existence of k-heteroclinic orbits from a2 to al is impossible for k-> 2. This together
with Theorem A(ii) proves the uniqueness of the 1-heteroclinic orbit from a2 to

Let 1-het2 be as in Theorem A. To show 1-het2 (a)> homl (a) for al>0, we
notice that Fn11 is nonempty in the spirit of Corollary 4.4. By (6.1a) we have Enl2 < Fn
En 1. It follows that with a2 increasing, the homoclinic connection Pl Fnll takes place
before the single heteroclinic connection Pl Enl2 does by the transverse crossing
property of Corollary 4.3 and Lemma 6.3.

(ii) First we zoom in the region of the parameter where (k 1)-heteroclinic orbits
(from a2 to al) can take place. We first claim there exists a (k-1)-heteroclinic orbit
only if 0<=ce2<hOml (tel) with al>0, where homl is the bifurcation curve for the
1-homoclinic orbit at al. If a < 0 then En2 < Fn < p2 for all k >= 1 by Corollary 4.4

k+land the twist of F1. Thus, Enk C? o-2 by Corollary 3.6. Hence, tnl for k >_- 1.
by Corollary 4.3 By Lemma 6 1 Pl < Fnl < Enlk for allIf a2> hOml (al) then Pl < Fnl

k_-> 1. This proves our claim.
The existence of these heteroclinic bifurcation curves (k-1)-het2 in the region

0--<aa<homl (al) is an immediate consequence of the following claim: in 0_-<a2 <
homl (al) there exists a unique a2 (k- 1)-het2 (al) for every k _-> 1 such that Pl < Enlk

if and only if a2> (k- 1)-het2 (al). We proceed by induction. When k 1, it is trivial
by the existence of the primary heteroclinic orbits and the transverse crossing property
of Corollary 4.4. Suppose the claim holds true for k- 1. Then, by Lemma 6.3 we have
En-1 f-I r for 0/2 < (k 2)-het2 (al); hence, (k 1)-heteroclinic orbits do not exist.
Again, by Lemma 6.2 and 6.3 we have Enk for (k-2)-het2 (al) % a2hom
cel. On the other hand, Corollary 4.4 implies Fn2 f’l or2 # G5 and thus Fn] # G5 for these
parameters. The transverse crossing properties of Lemma 6.3 and Corollary 3.6 imply
Fn En. It follows from the con-l<pl for a2<homl (al). Lemma 6.1 implies Fnl <
tinuity of En] on the parameter that when 0<a-(k-2)-het2(al)<< 1, Enk-1 is
sufficiently close to the stable manifold W, and Ex k-ll is close to FXl. Therefore,
Fnl < holds. Since Pl Fnl < Enlk at a2 hOml (al), there must be an
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such that Pl E Enlk at (a, ak-). Because Lemma 6.3 implies this crossing is transverse,
Pl < Enkl if and only if a2> ak-1 Let ak- := (k- 1)-bet2 (a). This completes the claim.
Furthermore, by the property of transverse crossing, the function (k-1)-bet2 is also
differentiable by the implicit function theorem.

Finally, to show the inaccessibility of the homoclinic bifurcation curve hom from
below, we suppose to the contrary that (k- 1)-het2 (al)- ce <hOml (eel) for some a.
Then, at a o (a o, a 2) Enk for all k. Let limk_, Enk E. Then E ->_ p > Fn at

0a Thus, Pl E because otherwise Fn < Enk <p for sufficiently large k for En kl
would be sufficiently close to the stable manifold W and k/l

tn would be empty.
Therefore, Pl < E. But, in this case, by moving a2 down a little, i.e., 0< a-a2 << 1,
p < E=< Enk would still hold true for all k and a =(a, a2). Thus, there would exist
a k such that a2<(k-1)-het2(al). This would imply Enk<p by our second claim
above. This is a contradiction. [3

7. Remarks. (a) It seems that the bifurcation equations (5.6) are solvable for
j*s (a)> 0 if the twist functions ’ and z2 are all negative. Incidentally, by neglecting

the higher-order terms, the truncated recursive formulas do give rise to a monotone
i* 1" 1+,.increasing set s_ for i=l,...,k-1 with se =a+ra ’>0 and amonotone de-

i* k*creasing set s for i= 1,..., k with sl := a+ z2[sk-I*I+2=0. Furthermore, the (k-
1)-het curve is then defined by the recursive formulas. Unfortunately, this argument
fails when those fuzzy error terms are taken into consideration. A similar situation of
our losing control over the full system appears in the homoclinic bifurcations with
resonant principal eigenvalues (i.e., h(0)-/Zl(0) in our notation) studied by Chow,
Deng, and Fiedler (1990). This is the reason we impose the condition dim Ws= m 1
and approach our problem topologically by considering the entrance and exit sets and
their extensions. We feel that this restriction may not be merely technical, since without
it the position of Fnl relative to Enk may behave in an unpredictable way.

(b) It can be easily seen from the bifurcation equation (5.1) that the asymptotic
tangency of the homoclinic curve homi is completely determined by the sign hj +/xj
for #j. That is, homi is asymptotically tangent to the ai-axis at a -0 for a relatively
contractive aj, or the a-axis for a relatively repelling ay, or tangent to none of them
for an a with principal resonant eigenvalues, i.e., hj +/x =0 at a =0. In all cases,
however, k-heteroclinic orbits are expected to bifurcate at a twisted heteroclinic loop.
In particular, as in the homoclinic doubling bifurcation for a twisted homoclinic orbit
(see, e.g., Chow, Deng, and Fiedler (1990)), a double homoclinic bifurcation will also
probably take place at a single twisted loop with the resonant eigenvalues, i.e.,
(1 + q)(1 + ,)- 1 at ce-0, or in the case where the heteroclinic loop is degenerate
(see Yanagida (1986)).

Relaxing the equal dimensionality dim W dim W assumption will also lead to
countable k-heteroclinic connections which, in contrast to Theorem B, take place in
an open set of the parameter space. This was observed by Deng (1989). Also, as the
principal eigenvalue (either stable or unstable) becomes a pair of complex, the system
itself at a --0 becomes rather chaotically complicated (see Tresser (1984) for the case
where dim W dim W, and Bykov (1980) where dim W dim W).

(c) The heteroclinic loop gives us another new bifurcation point which an oriented
homoclinic path can hit globally in the parameter space (cf. Fig. 7.1). The orientation
of a given homoclinic path is determined by the nonzero orbit index of the periodic
orbits nearby. See Mallet-Paret and Yorke (1982), Fiedler (1985), and Chow, Deng,
and Fiedler (1990) for more details on the orientation relative to the orbit index. Let
us suppose the homoclinic paths hom and hom_ are oriented as shown in the figure.
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k-het,

i / hom

The twisted heteroclinic loop_
O-heq k-het

O-het
FIG. 7.1. is the orbit index. If it is assumed to be then the region A is on the right of homi curves.

W

-yw+O=O

=f(v)

FIG. 7.2

Following hom,, it will hit and terminate at the heteroclinic loop bifurcation point
a 0. But, right at this point, the homoclinic orbit to a, trades itself to a homoclinic
orbit to a2 and the curve hom2 arises from a 0 as if it is the continuation of hom.
For this reason, we may also call our heteroclinic loop bifurcation the homoclinic
trading bifurcation. However, if we "follow" (actually we do not know how at this
moment) a heteroclinic path in the double twisted case, we will find doubly infinite
heteroclinic trading partners at the homoclinic trading place a =0. Certainly, this
immediately complicates any "global heteroclinic path following" attempt. But it also
gives us one more hope that a global homoclinic path following result seems on its
way (see a detailed discussion from Chow, Deng, and Fiedler (1990)).

(d) While writing these remarks, I received a preprint by Kokubu, Nishiura, and
Oka (1988). I found that our notion of twisted heteroclinic loop has been propagating
faster than I could finish writing this paper. Their work demonstrates that the non-
degenerate conditions (1.4), (1.5), (1.7), and (1.10a, b) are verifiable. Indeed, motivated
by the idea for the Mel’nikov function and the method of singular limit eigenvalue
problem developed by Nishiura and Fujii (1987) and Nishiura (1989), they derive not
only an analogous function to detect the transverse crossing of the stable and unstable
manifolds (also see, e.g., Kokubu (1988)), but also a computable twist function to
detect the strong inclination property and the twist of a given heteroclinic orbit at the
same time for the system of ODE for the traveling waves, (v, w)(x, t) (v, w)(x + ct).
The reaction diffusion system they consider is as follows:

ev, e2v +f v w,
(7.1)

W Wxx -Jl- I) llW -Jl" O,

where f=-v3+ v. Starting at a standing front wave and a standing back wave which
forms a heteroclinic loop (i.e., at c 0), they manage to obtain the local codimension-
three bifurcation unfoldings with c, O, y being the relevant parameters and globally
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extend the local bifurcation diagram. Among the most interesting is the nontwistedness
of all the resulting heteroclinic loops involved due to various symmetries exhibited by
the system. According to Theorem A, this implies that there are no multiple heteroclinic
connections other than the persistence of the zero-heteroclinic orbits from the loops.
They also show that some of the finite connections are actually unstable.

Perhaps some comparisons between their system and the FitzHugh-Nagumo
equation considered in the Introduction are worthwhile. First of all they model systems
of different worlds--chemical reactions, predator and prey populations for the former
while nerve impulses for the latter. Theoretically speaking, however, they are the same
system but at different values of the diffusion parameter for the w dynamics. Indeed,
if we move the origin to the left equilibrium state in Fig. 7.2, the parameter 0 is the
same as the parameter a in the FitzHugh-Nagumo equation (1.11). Rescaling the time
and the space variables in (7.1) yields

V VXX +f(v) w, wt 6Wx + e(v yw),

where we renamed := z/e and e := ez. Thus, it is the same FitzHugh-Nagumo equation
except for a large diffusion coefficient 6 for w. Since both systems have the same
symmetries, I think the appearance of the second diffusion simply "untwists" the
twisting structure somewhere. Thus, it is natural to ask whether it happens at some
6o> 0 or just at 0 =0. Indeed, there are two types of bifurcations involved. When
6o 0 the system of the ODE is singularly perturbed. When o> 0, however, to untwist
a heteroclinic loop a heteroclinic orbit must be degenerate in general and, in particular,
it must violate the strong inclination property. None of these bifurcations prob-
lems has ever been fully investigated. Nevertheless, the idea developed in this paper
offers more hope for solving the bifurcation of twists than the problem of singular
perturbation.

Appendix.
Proof of Lemma 4.1. The proof for the first half part of the lemma is identical to

the proof of Lemma 3.3 in 3. Thus, we omit it here. Using the notation from 2, we
write equations (4.1a-4.1d) in the following equivalent forms:

(L z, )=0,
where with the subindex a, b, c, d in correspondence with the alphabets in
the equation numbers. Here " (r/2, :1) and z varies with equations as follows.

z--yl,(I)a(, Z, 0)--
Q2(O, r/,

,(’, z,
(o, ,- g, = (Sl, ,

(e(x_, , )- 1) z (s, :, y),(C, z, )=
0(x, n, )-y

a(, z, a)
Q(X2, r12, a)- Y,

z (s, , s, rl),

where X X2(s, , rl, a) and Y Y(s, , rl, a). Delete the rnth component of
and let =((a), (m-),(m+), (a-)7". We solve c=0 first by the

implicit function theorem for r=sr*(z, a) and then solve the reduced remaining
equation (") (’*, z, a) 0 later.

Because of the existence of the heteroclinic loop we have (0, 0, 0) 0. Moreover,
the square Jacobian 0/0sr(0, 0, 0)- M is nonsingular by Lemma 2.3. (Note that this
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also implies 002/0T/(0 0, 0) nonsingular.) Hence, by the implicit function theorem
there exists a differentiable function ’* of Izl, [a[ < 6 satisfying st*(0, 0) 0 and [sr*[ < 6
such that (’, z, a)=0 if and only if ’= sr*(z, a). To solve the reduced equation

(m)(sr*, z, )=0, we need some important facts about ’*. Since ’* usually are not
the same for different indexes a, b, e, or d, we denote it by ’*, accordingly. Since
a and c do not depend on the first y-component yl), sr. and ’* are functions
of )1 and a only. Moreover, since X2(0, 2, r/, a)=0 and Y(0, s, r/l, a)=0 by the
property (2.1a) of exponential expansions, it is easy to see that when equations 0
for all are restricted to sl =0, s2=0, and =0 (whichever applies) they are all
reduced to the same equations as follows"

r/, )--1 =0,
(A.0)

Q2(0, r/2, a) 0, " (r/2, ,).

Thus, the solution " depends only on a. Therefore, the following functions ofrestrictions
sr*[;,=o, ’*[s,=o, sr*]s2=0,;,=o, and ’*[,=s2=o are in fact equal to the same function of a,
say (u, v)(a), which is the solution to (A.0). Note also that [’*- (u, v)r[ O([;l[ +[s2[)
or O([sl[ + [s2[), accordingly.

As another preparation, we need the following procedures one way or another.
Expand (P, Qz)(X, rt, a) at (x, rt)= (0, u),

(P)(x, rt, a) ( P2) 8(P2, Q2)
(O, u, a)( x )(A.1)

Q Q2,
+

o(x, n) "q u

where (P2, O2)= (P2, Q2)(0, u, a). Expand q(s, r/, a) at (:, r/)= (0, u) and q,(s, r/, a)
at (s, r/) (v, 0), respectively:

(A.2) X(s2, 2, T]2, og) (2as+v2-[- O[(l2[[-lT]2- ul)ls211+v2[-]s211+v2+’2],
(A.3) Y(s1, 1, T/l, )-- ,aS1 + O[(ISl- vl / Ir/ll)lXll / ISll’+v’],
where o2 o(O, u, a) and /la (V, O, 1). Let

oP (o, u,

oQ2
(0, u, a)

and

M2(o

(d-1)x(d --2)

P (o, u, a) -I

IOn
(O, u, ) 0 --Then, by the continuity of u on a and Lemma 2.3 we may assume that, without loss

of generality, Lz(a) has the maximal rank d-2 which is attained by the submatrix
//(a). Note that this also implies 0O2/0r/(0, u, a) nonsingular. Also, up to rn-1
permutations we may still call

(= (’
4, .-(.-1

and we have ]det M2(a)[ > mo6o for [a] < 6 by Lemma 2.3 and Lemma 2.4.
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Now we are ready to solve (’)(’*, z, a)=O. Since (’*, z, a)-=O, (’*, z, a)=
(0,. ., (m), 0," ", O)(Sr*, Z, a). This implies

det [L:(a), O(sr*, z, a)] (-1) d-’)+" det /l:(a)om)(*, z, a).

Hence, (I)(’(sr*, z, a)=0 is equivalent to

(A.4) det [L2(a), O(’*, z, a)] =0.

Since the simplifications for these equations are all identical we will only treat two
typical cases a and c here, with emphasis on how the nonsingular change of
parameters and the functions mi and ’i are obtained for all the bifurcation equations.

When a, substituting (x, r/) (0, r/z*) into the Taylor expansion (A.1) and using
[r/- U] 0(I;11) we have

(*,z,)=
Q

+0(P,
Q)

Or/
(0, u,,)(n2m-u)+O(I.,12)

yl

Since the second and the fourth terms all belong to the range of L2(a), they will
disappear in (A.4). This implies

0)]=det[L2 (P2 2).det [L2(a), (y
Dividing this equation by det M2(a) and expressing the left-hand side in terms of a
homogeneous linear combination in y]i) we have

m,(a)yl(1)qt- m,(a)y]") c2(a,

where

mi det [ L2(a )’ ( O ) ] /det M2(a

and

(A.5) c2 det L2(a),
Q2

det M2(a),

and ei En has zero components except for the ith component of 1. This has the form
of (4.2a). Let us show that the functions rni satisfy the required properties and postpone
the discussion of c2 until later.

Since (0, q,j(0, 0))/60-*(0, el) as 60-*0 by the exponential expansion property
(2.1b), det M2(a) is approximately the product of 6o and the numerator for ml as
6o-* 0. Hence, for small but fixed 60 we have 1/26o < ml < 2/60. Also, it follows from
Lemma 2.4 that

mi_det[L2(a),|O][/det[L2(a),|ol[r[\]/[[\’} =o(1) as 60-*0.
ml k \ / J/ k \ /el

Before we check the properties for 2, let us first obtain the bifurcation equation
(4.2d)o Substitute (x, r/)=(X*, r/*) with X*z=X(s, 2, r/*, a) into (A.1) and use
IX2*[ O([s2[ 1+"2) and Jr/z* u[ O([sl] + Is2[). Then substitute the exponential expansion
(A.2) for X*. Finally, substitute the obtained (A.1) and (A.3) with sol :* into the
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function d (’*, Z, a). We have

,, * z, o
Q

+
o (o, u, o , s

o(P2Q2) (0)+ (o, , )(n*- u)-

+ 0(([2[+[$2[2)[$2[1+v2+([1[+[$1[)[$1[).
Similarly, the third and fouh terms belong to the range of Lz(a ); hence, they disappear
in equation (A.4). This yields

(
+det [L()’O(P’OxQ) (0, u, )]s+
+ (the same form of higher order).

Dividing both sides by det M() det L(), ol)], we obtain the desired form
l+ps c+ rs + (the same form of higher order),

where the Nnction c of is the same as (A.5), and

"=det[L()’O(P’OxQ) (O,u,)p/detM().
Now we show c(, 0)=0 and Oca/O(O, 0) 0 and (4.3). Recall that Q 0.

Thus, from (A.5) we obtain

C2(ffl, if2) (__l)(m_l) det 0Q/0(0, u, )
2det M(

n(l=0 when =( 0)Because oQ/o(O, u, ) is nonsingular it suces to show
and 0.(/0 0 at (0, 0) by the product rule of differentiation. It is trivial to
check (=0 at =(1,0) because of the existence of the primary heteroclinic
connections from a to a on the -axis. Also, since (P, Q)r=(p, Q)r(0 u,
is on the unstable manifold W() for (0, u)e Woc(), by (1.10b) for the
distance between W and W on and Q 0 we have

()0 < d2(l, 2) < min ](P2, Q2)-(, 0)] ]2.
(#,0) ilo

(1)This implies Q2 at (0, 2) has a constant sign for 2> 0, say >0, since 0 < d2(O,
by our assumptions. Therefore,

()d(0, 2)
0< for=(0,2).

2 2

)/ (0, 0) by (1.10b). ThisPassing the limit 2 0+ above, we have 02.2> 0 at
completes the proof for c.

To show (4.3), we notice first that u(0)=0 and the set of all the column vectors
of M2(0) forms a base for TZ and

ox o(x, n
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Project this vector onto the one-dimensional linear space span {(0, $1o)r}, which is
complementary to the range of L2(0); namely, span {Tp,(W’f’lE), Tp,(WocVIE)}.
We obtain O(P2, Q2)/ox(O, O, 0)O2o "72(0, qlO) r + h with h range L2(0). Hence,

det [L.(O), O(P2, Q2)/ox(O, O, O)q2o] "72 det M2(O)
and -72 r2(0) follows. Of course, z2(0)> 0 if and only if 12 is not twisted by our
Definition 1.1. This completes the proof. [-I
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LAYERED VELOCITY INVERSION:
A MODEL PROBLEM FROM REFLECTION SEISMOLOGY*

WILLIAM W. SYMESt

Abstract. A simple model problem in exploration seismology requires that a depth-varying
sound velocity distribution be estimated from reflected sound waves. For various physical reasons,
these reflected signals or echoes have very small Fourier coefficients at both very high and very low
frequencies. Nonetheless, both geophysical practice, based on heuristic considerations, and recent
numerical evidence indicate that a spectrally complete estimate of the velocity distribution is often
achievable. We prove a theorem to this effect, showing that "sufficiently rough" velocity distributions
may be recovered from reflected waves under some restrictions, independently of the very low- or
high-frequency content of the data. The main restriction is that the velocity depend only on a single
(depth) variable; only in this case are sufficiently refined propagation-of-singularity results available.
The proof is based on a novel variational principle, from which numerical algorithms have been
derived. These algorithms have been implemented and used to estimate velocity distributions from
both synthetic and field reflection seismograms.

Key words, inverse problems, hyperbolic partial differential equations, sound velocity, reflection
seismology

AMS(MOS) subject classification. 35R25

1. Introduction. A simple model of the physical setting for reflection seismol-
ogy is constant-density linear acoustics, in which the sound velocity field c(x) (x e R3)
is connected to the pressure field u(x, t) via the wave equation

c (x)
u_=0, t <0.

The right-hand side represents an isotropic point dilatational energy source radi-
ating with time-varying (transient)intensity f(t) ("the source wavelet"). The seis-
mogram is a sampling of the pressure u at a number of "receiver" points. We adopt
the idealization that these points form the continuum {x3 z 0} ("the surface (of
the earth)") and that the measurement of u is also continuous in time for some time
interval 0 <_ t _< tmax. Regarding the source (i.e., f(t)) as known, the pressure field,
hence the seismogram, becomes a function of the sound velocity:

In this simple model, the fundamental problem of reflection seismology is to esti-
mate c from sic], i.e., to solve a functional equation of the form

possibly in some least-error sense accommodating the possibility (virtual certainty!)
of inconsistent data error.

This model is grossly inadequate for some practical purposes, as it ignores sig-
nificant physics of seismic wave generation and propagation. Nonetheless, it forms
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the basis for most contemporary seismic data processing (see, for instance, Yilmaz
(1987)), and it exhibits two fundamental features of the "real" problem:

(i) sic] is nonlinear in c;
(ii) f should be chosen to suppress Fourier components in sic] at "low" and

"high" frequencies.
Item (i) is simply the nonlinearity of solutions of linear equations as functions

of their coefficients. Item (ii) is required by observations of the spectra of reflection
seismograms: for various physical reasons, Fourier components at very low (<4Hz) and
very high (> 80 Hz) temporal frequencies are essentially missing from real reflection
seismograms.

The suppression of high-frequency components simply means that c - sic] is
a smoothing operator. Techniques for management of the resulting high-frequency
instability are well known (see, e.g., Wikhonov and Arsenin (1977), Miller (1970),
Payne (1975)).

In contrast, the instability resulting from the lack of low-frequency data has been
little discussed in the mathematical literature on inverse problems, even though it is
nearly ubiquitous in real-world parameter-estimation problems based on wave prop-
agation. This low-frequency lacuna is a striking feature of reflection seismology, in
particular, and the possible ambiguities resulting from spectral incompleteness of data
have sparked considerable discussion within the geophysical research community.

The present paper is devoted to the proof of a uniqueness and continuous depen-
dence result for a restricted version of the inverse problem described above, in which
the estimates are independent of the behaviour of ](w) near w 0. We shall show
that c is well determined by sic] when c is sufficiently nonsmooth.

This rather strange sounding requirement is natural in view of the application to
reflection seismology: rapid changes in the mechanical properties of rock are entirely
responsible for the return of substantial echoes to the surface, hence for the infor-
mation content of seismic reflection data. The times of arrival of these echoes--or
rather, the signals which simulate them in the model described abovemcarry infor-
mation about the slowly varying components of c, completely independently of the
low-frequency behavior of f. On the other hand, the identifiability of these echoes
depends on the wave nature of the seismic disturbance, in other words on the propa-
gation of singularity (or regularity), according to geometric optics. This propagation
property clearly requires some smoothness of the coefficients; thus the conditions nec-
essary for the creation of strong reflected signals are in tension with those necessary
for their propagation.

We show in this paper that this tension can be resolved at least in a special
case. The resolution requires certain estimates concerning propagation of regularity
currently available only under the additional constraint:

The sound velocity c is a function only of the "depth" variable

That is, the result detailed here applies to layered constant density fluid models only.
The necessary technical results for this class of models were established in previous
papers of Symes ((1981), (1983), (1985), (1986a), (1986b)). These are essentially
energy estimates and are related to earlier work of Rauch and Taylor (1974) and
Kreiss (1970) on mixed problems for linear hyperbolic systems in two independent
variables. Other authors basing results about one-dimensionM inverse problems for
hyperbolic equations on the same ideas include Fawcett (1984) and Suzuki (1988).

As mentioned above the constant-density fluid model is severely oversimplified.
For example, in reality the density of sedimentary rock is also variable, though much
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less dramatically so than the compressional wave velocity. Also, density and com-
pressional velocity are somewhat correlated in real rocks. Nonetheless the variation
of density must be taken into account in explaining the details of real reflection seismo-
grams. A natural extension of the problem considered here is therefore the determi-
nation of density and velocity profiles in a layered acoustic model. While treatment of
this problem goes beyond the intention of the present paper, several conjectures seem
plausible. First, based on the treatment of the linearized acoustic problem in Santosa
and Symes (1988), we expect to recover in addition to the velocity, the oscillatory or
rough part of the density profile (technically, we expect a Grding-type estimate for
small perturbations in density, similar to that stated in Theorem 4.1 below for the
velocity). Second, we do not expect to gain control over the slowly varying part of the
density, since the mechanism active in determination of the slowly varying part of the
velocity is inactive for the density (that is, we do not expect analogues of Theorem
2.1 on Theorem 6.1 to hold for the density). The only hope for density trends appears
to be that the above-mentioned correlation with velocity is accurate on long length
scales. Third, we expect the inclusion of variable density to be quite important in
accurate estimation of velocities. This last conclusion is based on the experience of
Symes and others .in velocity estimation from field seismograms.

More complicated (and so realistic) layered models (elastic, anelastic, can
doubtless be studied from the present point of view, but it is difficult to foresee the
results. Of course the most interesting question is the possibility of extension of our
results to nonlayered models--deviations from layering being the most dramatic way
in which the real earth differs from our simple model. A few remarks concerning the
prospects for weakening the layered medium assumption in these arguments may be
found in the next section.

The paper is organized as follows. Section 2 gives a precise statement of the main
results, a brief review of the literature, and discussion of related issues. Section 3
introduces the plane-wave decomposition and estimates for the plane-wave problems
from Symes’s previous work; this material forms the technical basis for the rest of
the paper. As we are concerned mostly with the information independent of the low-
frequency behaviour of f, we introduce in 4 the (temporary) assumption that f is
a compactly supported measure, defining an elliptic convolution operator bounded
on L2(R). Under this assumption, we prove an estimate of Grding type for the
derivative of the plane-wave seismogram map. In order to do more, it is necessary
to consider the various plane-wave problems simultaneously. Each plane-wave model
is parameterized by the vertical plane-wave velocity, viewed as a function of (its
own) travel-time. These models are a priori independent. We derive a coherency
condition in 5, equivalent to the existence of a (single) velocity profile c(z) from
which all of the plane-wave models are derived (i.e., "every (plane-wave) experiment
sees the same earth"). In 6 we show that a least-squares version of the inverse
problem stated above, posed in terms of the plane-wave models and augmented by
the coherency condition (as a so-called penalty term) has a positive-definite Hessian
(second derivative) operator at a consistent (zero-residual) solution provided that the
corresponding velocity profile is sufficiently rough, as stated above. Our main result
follows immediately via the implicit function theorem. So far we have maintained the
elliptic assumption concerning f; this is dropped in 7, for the usual price, paid for
the solution of compact operator equations, of a priori constraints on the smoothness
of c.
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2. Statement of main result and discussion. In this section we give a precise
statement of the major result of this paper, followed by a brief review of the literature
and a conceptual overview of the problem described above.

Since the principal goal of the present work is the production of a "solution"
of the inverse problem stated above with continuity properties independent of the
low-frequency behavior of the source wavelet f, we make the temporary assumption
that:

f E $’(R) is a Borel measure, defining a bounded elliptic convolution
operator on Hi(R): i.e., for positive K0, gl, g*, e Hi(R)

(2.1)
L2 (l)

Also, suppf C {t R’t _> 0}.
Such a distribution necessarily has a finite first moment

sup

The "elliptic" assumption (2.1) will be weakened, to the extent possible, in 7. Simple
examples of wavelets (i.e., kernels) f having the elliptic property (2.1) are obtained
by subtracting from a slightly shifted Dirac delta function a smooth approximation.

The conventional, though perhaps ill-founded, choice of measure for the seismo-
gram error is some weighted version of the L2-norm (see Warantola (1987, Chap. 6)).
We shall adopt this choice also. The elliptic nature of f precludes square-integrability
of sic], however, as can easily be seen, so we choose what amounts to a very singular
"weight": we define, for suitably small slowness p,

S[c](t,p) dxldx2-8[cl(xl,x2,t +pxl).

That is, S is a version of the Radon transform of s, which we shall further restrict to
a rectangle {(t, p)" 0 < t _< T1, P1 _< p _< P2} R1. It is easily seen that, for smooth
c, any T1 > 0, and P2 sufficiently small, S is square integrable (Santosa and Symes
(1988)). Thus the basic data set of this paper will be a member of L2(R1).

Another piece of notation needed to state our main result is used in our method
of measuring "roughness"" as mentioned in the Introduction, a stable solution of the
inverse problem can only be expected for sufficiently nonsmooth coefficient c.

The "roughness" measure depends on an arbitrary Dirac kernel h C(R)
satisfying

hi

_
0, hi(0) > 0, /hi 1.

Set

-i
For Z0, e, A > 0, c Hlloc, define

1 fz+A/2sup
-zx/

Ic’l
O<z<Zo
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zx) inf Ih’ c’l 2,
0<z<Zo - az-A

r* [c](Z0, e, A) sup
O<z<Zo

Ih’ , c’l

These are local average measures of fluctuation. For example, r, is a sizable
fraction of , r* when c has significant Fourier components at frequencies proportional

locally uniformly on the length scale A.to ,
The geometry of the plane-wave problem, which will occupy most of this paper,

is determined by the travel-time function

i 1
_p22 -y

which gives the time necessary for a point on a planar wavefront at slowness p, fixed
horizontal coordinates, to travel to depth z and back to the surface.

The earlier results of Symes (1986a, 1986b) imply that S extends to a bounded,
continuous map on the bounded set Ec c Hoc (R) parameterized by positive numbers
To, P1, co, cl, c*, according to

Ec {c C Hloc(R) c(z) co, z < 0; for

Z0>0 so that T0=T(Z0, P1),

log C]lHl[O,Zo] < c*;

c(z) c for z >_ Zo}.

We have also shown, however, that this extension is not locally Lipschitz-
continuous, and certainly not differentiable, in these metrics. S does become dif-
ferentiable when the domain is metricized more strictly (H3), but then the derivative
fails to have a lower bound. Thus the implicit function theorem does not apply to
the solution of least-squares problems for S. The computational consequences of this
pathology are also striking (Santosa and Symes 1989). Proofs of the above assertions,
together with an incisive discussion of their consequences, are given in the 1989 thesis
of R. M. Lewis in the Department of Mathematical Sciences at Rice University.

A suitable family of "rough" subsets Ec of Ec depends on positive parameters
M1, M2, , and A according to

E {cEEc" for Z0>0 such that

To -(Zo, P) and some

the following inequalities hold:

M1

_
r,(Z0, e, A),

M2r,(Zo, e,A) > max(F(Zo, A),r*(Zo, e, A))}.

We shall verify that E’ is nonempty for suitable choices of parameters.
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The main result of our paper is Theorem 2.1.

THEOREM 2.1. Suppose that 0, To < T1, 0 <_ PI < Ps, 0 <_ Ko, 0 < K1

_
K*

0 < co, c, c* are given. Then there exist constants M, M2, , , h, and L* depending
on To, T1, P, P2, Ko, gl, g*, co, c, and c* so that if f E "(R) satisfies (2.1) and

m} _h
then Ec is nonempty and there exists an open neighborhood U of the set

{S[c] e L2(RI)’c e E’}

and a map

so that

I" U -- Loc(R)

(i) For c e E, IS[c] c;
(iN) For D1, D2 U, Z > 0

III(Dx)- I(D2)lli.[o,z]

<_ L*IID

Thus we obtain a continuous left inverse for S, under various constraints. The
requirement that c be constant for large z is simply a way of controlling c at depths
below the zone influencing the seismogram. That the zone of constancy begins at
Z0 such that To T(Zo, P), rather than T1 T(Zo, P1), is an unfortunate side
effect of the "width" of the source wavelet f: since supp f is not a point, the depth
interval in which the seismogram gives sure control over the velocity coefficient is
strictly smaller than the depth interval needed to compute the seismogram. Given
an arbitrary velocity profile with mean c near z Z0, we can, of course, truncate
it to a member of Ec, i.e., by setting the velocity constant (= Cl) for z > Z0, as in
the definition. The corresponding seismograms are then different only in the "gap"
(To _< t _< T1). If the original profile obeys the uniform roughness conditions as in the
definition of E, then it follows from arguments similar to those in 3 and 4 that the
L2-norm of the difference of seismograms is O(m}). The theorem then gives the same
qualitative estimate for the error due to application of I. We leave to the reader the
formulation of a theorem embodying this extension of our results.

A more subtle consequence of this gap is that the value of c in this basement
region must be specified a priori, i.e., the condition that c(z) c for z >_ Z0. It seems
clear that this additional piece of data should have little influence on the values of c

at shallower depths--and, to the extent that it does, should be determined by S as
well. This may be a fruitful subject for further work; some related ideas are discussed
in Sacks and Santosa (1987). In any case the author does not see at present how to
formulate a convenient theorem without such a restriction.

It is easy to see that the Lipschitz estimate (iN) cannot be strengthened much.
See Symes (1986b), for instance. In particular it is not possible to replace L2 by H
on the left-hand side.

Estimates of the sort presented in Theorem 2.1 are only of qualitative importance.
Numerical evidence (Symes (1988), (1990); Symes and Carazzone (1989), (1990))
indicates that typical values of the Lipschitz constant L* are very large. On the other
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hand, restriction to a submanifold ofE of small codimension diminishes L* to a useful
magnitude, while leaving enough freedom in the model that some information about
c is still obtained from the data. Analysis of an approximation to S in Symes (1988),
(1990) and Symes and Carazzone (1989) illustrates this feature. A full understanding
of the need for this "residual regularization" is still lacking at this writing.

The significance of the present result lies in its reliance on the implicit function
theorem: i.e., the stability follows directly from linearization stability, and any residual
ill-conditioning can be improved by the straightforward addition of linear constraints.
This is surprising--and, perhaps, of practical importance--since the implicit function
theorem cannot be applied to S directly, as noted above, for elliptic f.

The left inverse I will be produced via the solution of an auxiliary least-squares
problem, developed in 5. In 7 we remove the elliptic requirement on f, to a certain
extent: for suitable f E C, we obtain an approximate left inverse to replace I, which
depends on a choice of regularization.

While a few previous papers (Symes (1983), (1986a), (19865), Fawcett (1984),
Suzuki (1988)) provide rigorous treatment of the central uniqueness, existence, and
continuous dependence issues, none treat the "bandlimited" problem described in 1
in a satisfactory way: without exception these works either assume the low-frequency
content problem away, or ignore it. The problem is well known to geophysical re-
searchers, and its severity is explicitly illustrated in Pao, Santosa, and Symes (1984)
and Gray and Symes (1985).

Note that even the known uniqueness theorems for several-dimensional inverse
problems in wave propagation either require data in a frequency interval [0, w) (Sacks
and Symes (1985), Sun (1988), Ramm (1986)) or do not allow the reflection con-
figuration (sources and receivers separated from the target region by a hyperplane
(Nachman (1987), aakesh and Symes (1988)). Thus the present paper is the only
instance, to the author’s knowledge, in which any version of the reflection inverse
problem has been shown to be well posed in the presence of a low-frequency lacuna.

Nonetheless, evidence of two sorts indicates that velocities, at least, are quite well
determined by bandlimited data. Conventional seismic data processing, as practiced
by academic and industrial reflection seismologists, appears to produce such infor-
mation. While based on numerous drastic approximations, the so-called "velocity
analysis" procedures incorporate a great deal of data-driven insight (see, for example,
Yilmaz (1987), Chap. 3). A side effect of our work is to provide a partial but rigorous
mathematical basis for these important techniques.

A universal feature of "velocity analysis," as currently practiced, is the implicit
separation of velocity (and other parameters) into slowly and rapidly varying parts.
The influence of the rapid parameter variations is treated as a perturbation about the
slowly varying trends. (We warn the reader that this linearization is seldom stated
explicitly in the applied literature, but is simply assumed without comment.) To
the author, one of the most gratifying features of the treatment given below is the
natural emergence of this scale separation in the course of our analysis (Theorem 4.1,
arguments in 6).

Other indications that velocities are well determined are to be found in recent
numerical investigations of the nonlinear least-squares problem

(2.2) min lisle] 8datal]2

These have turned up more direct evidence that bandlimited seismograms determine
velocity profiles (see Kolb, Collino, and Lailly (1986), McAulay (1985), Gauthier,
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Tarantola, and Virieux (1986), and Mora (1987)). All of these papers also reveal that
any reasonable setting of (2.2) results in a very difficult optimization problem. The
reasons for both the success and the difficulty of this so-called "least-squares inversion"
are noted briefly in 3, and explained in great detail in Santosa and Symes (1989),
to which we refer the reader for extensive discussion. In any case, the computational
difficulty of (2.2) was the main motivation for the work reported here, which relies on
a different, "relaxed" least-squares problem (5).

In this paper, we give only a qualitative analysis of this "relaxed" problem, which
we call the coherency optimization problem, leading to Theorem 2.1. A quantita-
tive analysis of an approximation appears in Symes (1988), (1990), and numerical
experiments are reported there and in Symes and Carazzone (1989) establishing the
feasibility of the optimization, its relative insensitivity to noise and its favorable com-
parison to (2.2) regarding computational efficiency. In Symes and Carazzone (1989),
(1990) the technique is applied to field reflection seismograms with quite satisfactory
results.

A very important remaining question concerns the extension of these results to
other models, notably to nonlayered velocities (i.e., c depending on all space vari-

ables). As shown in Symes and Carazzone (1989), for example, an approximation
to the coherency optimization problem can be formulated for the general nonlayered
fluid model. Preliminary numerical experiments with an implementation for two-
dimensional constant density acoustics will appear in Symes (1991). A full-blown
extension of our results awaits better understanding of propagation of regularity for
hyperbolic equations with nonsmooth coefficients, and implications for the relation
between solutions and coefficients, analogous to the results for problems in two inde-
pendent variables detailed in 3.

3. Preliminary considerations: Reduction to plane waves, properties
of the one-dimensional forward map. We assume that seismograms are given on
an open set ft of the space-time boundary of cylinder form:

with I a neighborhood of the "source" point x 0. We shall also assume that all
velocity profiles c" R - R+ satisfy

(3.1) 0 < Cmin C(Z) Cmax Z 0

for a priori fixed Cmin, Cmax. Whenever convenient we will also think of (3.1) as an

L(R)-bound on log c.

The principal technical device of this paper is the introduction of the Radon
transformed field

U(p,z,t) := frt dx u(x,z,t + p. Xl), p e R.

Standard arguments show that U is well defined for small p, t under the assumptions
made so far. For an attempt to maximize the domain of definition of U, see Santosa
and Symes (1988). We remind the reader that the Radon transform is defined on nat-
ural classes of distributions as a push-forward (Duistermaat (1973, Prop. 1.3.4, p. 3),
for example). It is commonplace to retain the integral notation even for distribution
arguments, however, and we shall follow this practice.
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A straightforward calculation shows that for suitably small p _> 0 so that CmxP <

1 O:U c92U
(z,t) (z,t)

U=O, t<<0

where the vertical wave velocity v(z, p) (or v[c], to emphasize the dependence on c) is
defined by

c(z)
V/1

Because of the a priori bounds (3.1), the support of u, hence of s, is contained in a
cone

Cmaxt _) V/Ix[ 2 q- Z2.

Therefore, for sufficiently small Pmax(< 1/Cmax) there exists max >_ 0 so that for

R-- {(t,p)" 0 t Tmax, [Pl Pmnx)

we have for (t, p) E R

(3.3)
:=

OU
at (p, 0,t) f(t)

O(X,Z,t -3t-pXl)- I(t --pXl)(X)),
i.e., the domains of integration of the Radon integrals intersect the support of u inside
t. We assume tacitly in the sequel that all (t, p) domains satisfy this constraint.

Now we recall some facts about the one-dimensional seismogram map Sic] (., p) =:
S0[v] (fixed p) for which references are Symes (1986a), (1986b). It is convenient to
include explicitly the source wavelet temporarily in the notation. That is, write

So[v, f] for the map defined by the solution of (3.2), (3.3) followed by restriction to
fixed p. Recall that f is assumed to define an elliptic convolution operator of order
zero. For the choice f 5, S0 defines a bounded continuous map from

1,+(R, v0) {v E Hi(R) v v0 for z < 0, log v Hloc(R)}Hloc
into L:[0, T] for any T > 0, but S0[.,5] is not locally uniformly continuous (Symes
(1986b)). In order to recover the necessary degree of regularity for the arguments to
follow, we introduce the "travel-time velocity" 9[c] defined by

OT--V

where

is the (one-way) travel time. More discussion of the map c - [c] appears in 15 (see
also Symes (1986a)). A short calculation shows that U, defined by
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(:(-(z), t) U(z, t),

satisfies

1

(x) ot (’ t)
0 1 0(] 1

Ox ,(x) Ox (x, t) -(t)(x).,o
Set

ou
(o, t)s0[, f](t) --We recapitulate a number of properties of 0. With exceptions noted below, all of

these may be found in Symes (1986a). Note that 0[, f] --- So[v,f] if o T v. 0
also defines a bounded map: H+(R, v0) Loc(R) for any v0 > O. Moreover, 0 is
actually of class C2, viewed as a map" HI,+([0, T/2], vo) -- L2[0, T]. The derivative
is given by the formal perturbation (5 E Hloc(R), 5 0, z < 0)

(x) ot ,(x) Ox (x,t)

0 5OU(x t) x>O,
Ox -$-x

5U 0, t << 0,

so that

Do[, f] -- x--O

I1o[ + , f] o[, f] Do[, f]-

o (llSllm(to,/l))
For f 5, more is true: for constants C_, C+ > 0 depending on log IIHI[O,T/2] and
on T,

C_
L2[0,T/21

C+ -x L2 [0,T/2]"
Also, for f H (the Heaviside function), there exists Co depending on log
and on T so that

Note that for 5 E Hlloc, D0[, H]5 Hloc and

0Do[, 6] -D0[9, HI.
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Also

o [’, f] f * o [’, 6],
Do[,f] f*Do[’,6].

All of these results are based on simple local energy estimates; with the exception of
(3.5) they are stated explicitly in Symes (1986a). The Heaviside estimate (3.5) is not
given there, but the proof presents no novelties.

4. Ellipticity for the one-dimensional forward map. We have assumed (un-
til 7) that f E E(R) defines an elliptic convolution operator of order zero. Since
D019, 5] for log9 E Hlloc is invertible, ((3.6), (3.7)), it seems clear that D019, f]
f *0[, 5] should be "elliptic" as well. The purpose of this section is to formulate and
prove a precise result along these lines, keeping track of the dependence of various
constants on the Hi-norm of , the time and depth intervals used, etc. The result is a
Grding-type estimate for D0, which requires that D0 be given on [0, T1], T1 > To,
to estimate 5 on [0, To]. It is clear that a little "extra" data is required, since the
support of f is not assumed to be a point. In fact, the principal constant intervening
in the estimates is the first moment of f, which measures its "spread," and is related
in the estimates to the size of the necessary "margin" T1 To.

Select a cutoff function C(R) with (t) =_ 0 for t > T1 and (t) 1 for
t < To, and define the smoothly cutoff version of So:

0
so also

D := Dg0.

In the following, we will apply the estimates of the previous section on various
t-intervals. Since the constants C_, C+, etc. depend on the length of the interval, we
will include the length explicitly in the notation, for the moment. Thus for estimates
on the interval [0, T], C_ becomes C_[T], etc. These constants depend on the H1-

norm of log 9 on the appropriate intervals.
Recall that "elliptic," applied to f, means the inequalities (2.1), which we recall

here for convenience: for H (R),

0

suppf C R+.

f * xx
oK1 xx L2(R)

From (3.5) and (3.6), for log fi e Hloc(R), 6 e Hio(R), 6(x) v0 for x < 0:

(4.2)
IIDSo[, 5]5IILIO,T]

C+ ITs]
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while

(4.3)

Also

IIDSo[(:,

C_[To]
:IO,o/:l

(4.4) [[D[9, H]5,I[L(+) <_

Now

DS[,, f]5(

where for e we have the standard commutator estimate

Here m} denotes the measure norm of the distribution

(if[,

i.e., the first moment of f, as explained in 2.
Combine this estimate with (4.1)-(4.4) to get

o DIIf* 0[,H]6llL=(m

-IIf* OCDo[+,HI6+IIL= -IIIIL.ot (t) (R)

0 D>_ Kill o[+, H]5+IIL:(m KoIICDo[+, H]5+IIL.(a)
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The upshot of all of this is the inequality

> K C_[To]

Remark. As noted in Symes (1986a), in general the constants C+[T], C0[T] in-
crease with T, while C_[T] decreases.

Remark. It is worth noting the relation of the various bounds involving f to its
Fourier transform. Indeed, obviously

whereas K0, KI are related to the detailed behaviour of the Fourier transform near
w 0. Suppose that, for some K,, w > 0,

(4.5) ]](w)l
_
K, for Iwl > w

(i.e., [w, o) constitutes the "passband" of ], measured with tolerance K.). Then for
E HI(R), it is easy to see that

L2(R)
> K, [ 0 L2(R)

which gives the relations

K1 >_ K,, Ko <_ wK,.

Note also the effect of scaling: if f satisfies (4.5), then

satisfies (4.5) with COmin/ COmin/ while m} era}. Thus K1 O(1), K0 (.9(),
and m} O(e) as e -+ 0.

It is clear from the preceding discussion and the form of (4.5) that, for any pre-
scribed T1 > To, as above, and any "base" source wavelet f, a scaled version of f
will have small enough first moment that

L(R)

1
C+[T1] <_ -K1C-[To]

with fixed K1 (independent of scaling). Note that we can certainly choose so that

2

These obserations establish the nonvacuousness of Theorem 4.1.



LAYERED VELOCITY INVERSION 693

THEOREM 4.1. Choose T1 > To > O, and K* > K1 > O. Then for any log E

Hloc (R), there exists rh, L2, L1, Lo > 0 depending on and on T1, To, If*, K1, and so
that if f satisfies (4.1) with some Ko > 0 and

then .for 5 e Hloc(R),

5. The optimum coherency principle. While we have shown that the lin-
earized one-dimensional forward map is elliptic under the circumstances which concern
us, it is certainly not boundedly invertible--or rather, the hypotheses concerning f do
not imply any uniform bound on the inverse. This circumstance is widely remarked in
the literature (for a sample, see Santosa and Symes (1989)), where numerical examples
are also given (see especially Chapters 6 and 7). Recall, however, the provenance of
the one-dimensional problem: it governs the propagation of a plane wave, the surface
data for which are identical to the Radon transform of the point source surface data
at fixed slowness (or angle). The possibility remains that the collection of all (precrit-
ical) plane-wave data might constrain the velocity estimate more severely than does
a single plane-wave component.

In this and the next section we confirm this possibility. Since we will consider
the data in an interval of slownesses P1 < p _< P2, we will work with a suite of
travel-time velocity models {(t,p)" 0 < t <_ T, P1 p < P2}. Recall from 3 that
these are derived from velocity profiles c(z); accordingly we begin with the question:
what condition must 9(t,p) satisfy in order that 9 9[c] for some c? That is, we
seek an operator whose kernel is identical to the range of c - 9[c]. We will call
membership in the null space of the required operator (or in the range of c -- 9[c])
the coherency condition, since coherence of the travel-time velocities 9 is then forced
across various values of p: all are representations of the same mechanical model, in
different coordinate systems.

Denote by 4(t,p) the inverse of the two-way travel time function T(z, p), i.e.,

(t’p) dz
t 2

v(z,p)"

Then clearly

(t,p) dTg(T,p).
JO

We will now regard as being defined by this formula, hence as a functional of 9. So,
given we can compute , whether 9 9[c] for some c, or not. Thus we can compute
the quantity

[ 1
")’[’] (’ 0 --1)2

"[- p2
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(Here o 4-1(z,p) ((-l(z,p), p).) Referring to the definitions (3), we see that if
[c], then

1

and it is thus independent of p: that is,

0
(.1) [c] [] _-- 0.

This last condition still involves the travel-time change of variables, so does not define
a sufficiently regular function of (recall the discussion in 3). Define instead

[]
2

[]

(.) -) o

A short chain-rule calculation gives

which relation allows us to view 0[] as a functional of . Clearly, from (5.1)

[c] [] 0.

It will be important to define the coherency condition in such a way as to have the
largest possible domain contained in HIc(R [P1, P2]) (which will be the natural
domain for the forward map, defined below). An obvious choice is H1, but ( is not
continuous in that topology. As it happens, we can replace with another operator
having the same kernel, but which is continuous (even C) in the H sense.

Suppose temporarily that [c] for some c. Then

Q[9] 90p -p pv

0.

Thus

2ft/20 it(.a) [c] g o po
The map
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therefore also satisfies

(5.4) [] : Q[] o.

On the other hand, for any T > 0, R [0, T] x [P1, P2], Q obviously defines a C2-map

Q" Hi(R)-- L2(R).

The following converse to (5.4) shows that Q 0 is an adequate coherency condition.

LEMMA 5.1. uppose that log E Hi(R) and Q[] 0. Then for some Z > 0
and some c HI[0, Z],

Proof. Integrate in t:

p) p3 (tt, p) }
after integration by parts, so we once again recover the relation

1[t/2 0 fO0
t/2

v Jo Op
--2p 2

It follows immediately that ([9] 0 as well, which is equivalent to

Set

Re {(z,p) P1 < p < P2, 0 < z <_ ff(T,p)},

V--O-1

It is easily checked that log v H1(R). On the other hand, with

) -/ec(z)
1 p2

(z,p) +

,[,] n z, p)

we have c e H[0, Z], Z suppl<p<p2 (T,p), and

(z,p) c(z)
V/1 c2(z)p2
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z 1-(z,p) 2
V

whence (-1 T, and the conclusion follows. [3

We now turn to the definition of the multi-plane-wave forward map. For simplic-
ity, define seismograms on the data rectangle

R1--[0, T1] x [P1,P2].

Choose co, cl > 0 with coP2, clP2 < 1, T2 > To, and * > 0 and set

E {6 E Hloc(R [P1,P2])’6(x,p) co/(1 cop2) 1/2

)(x,p) Cl/ (1- cp2) 1/2

x<O,

and its "tangent space"

x >_ T2
log )llHl([O,l./2T2]x[P1,P2]) < g* }

TE {6 E Hoc(R [P1, P21)"

v(x,p) o, x < o o, > T}.
Only a finite interval in t is needed for the arguments which follow. With T2 > T1

to be determined below, set

R2 [0, T2/2] [Pl, P21.

Identify elements of and T with their restrictions to/2, and topologize E
and T- as subsets of H (2).

With these conventions, define the forward map

;" E -+ L2(R1)

by

S%(t,p) S0[(’,p), f](t)

with o as in 4. From the results stated there and in 3, it follows that is of class
C2, with derivatives bounded in terms of co, T1, f, and g*.

The derivative DS[] also obeys an "elliptic" estimate. To state this, set

ko [o, To [P, P], & [0, T1/u] [P,, P=].

Then from Theorem 4.1 follows Theorem 5.2.

THEOREM 5.2. Given P2 > PI > O, T > To > O, K* > K > O, and g* > O,
there exist , Lo, L1, L2, L1 > O, so that for Ko > 0 and f $’(R) satisfying (4.1)
and
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Moreover, for each p E [P1, P2],

IIDS[9]59(’,P)IIL2[O,TI] + ml_fL2

L1 -x (’,p)
L2[O,To/2]

-x ("P)
r.[To,/:,T,/:]

In view of Lemma 5.1 and the obvious relation

we can now state a version of the inverse problem closely related to the least-squares
problem (2.2), as:

min [1[]- DIIL.(R) over
(5.5)

subject to Q[] O.

In fact, a solution to this problem clearly yields a solution to (2.2) on a suitable depth
interval. On the other hand, this problem would appear to have the advantage of
regularity: both the objective and constraint functions are of class C2,1. Moreover,
it is possible to show that, under the circumstances described in Theorem 6.1 below,
the Hessian operator of the objective function is positive definite on the null space of
the linearized constraints, at a consistent data set, i.e., when

for suitable c*.
Unfortunately these properties are insufficient to yield a stable local-existence

result. To motivate the next step in the development, we digress, with a brief review
of Lagrangian theory for constrained optimization, and a simple but closely related
example.

Suppose that X, Y are Hilbert spaces, f U - R, g: U -- Y smooth on an open
set U c X. As is well known (Luenberger (1973)), a local solution of the constrained
optimization problem

min f(x)
xEU

subject to g(x) 0

is a critical point of the Lagrangian
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We wish to apply the implicit function theorem, to assure that a solution is stable
against (C2’1) perturbations in f. The conditions necessary to apply the implicit
function theorem to the critical-point problem

grad x,),(x, A) 0

are also sufficient to ensure the convergence of Newton’s method (and, generally, of
its computationally efficient quasi-Newton relatives). These amount to

(i) Dg(x)6x 0 (6x, [Hess f(x) + (),nessg(x))],Sx) >_  lll xll
(ii) liDg(x)*),ll >_

for constant8 g, g2 > 0. The so cMled "second-order sufficiency" condition (i) may be
verified for the problem (5.3), as was mentioned above. The 8o-called "constraint qual-
ification, however, fails, in the manner illustrated by the following simple example,
which capture8 the main features of (5.5).

Let X {u H(R) f fnu 0}, Y L2(R), R [0, 1] 2 the unit square in
R. Set foruX,vYgiven

L2(R)

U
g()

and let us suppose that v v(xl), so that the problem

min grad /(u)
uEX

subject to g(u) 0

has the unique, zero-residual solution

xl

u(xl,x2) dx v(x) + const.

The second-order sufficiency condition (i) is an immediate consequence of a form of
Poincar’s inequality (Neas (1967)). The adjoint Dg*(u)is given by

where Af is the solution operator of the Neumann problem: Afb w, where

(I-A)w b inR,

0 on OR.
On

Set Ak(x) cos klxl cos k2x2 for k E Z2. Then

2k2

which can be made as small as we like by taking k large. Thus the constraint
qualification (ii) fails.

For similar but nonlinear problems such as (5.5), the nonzero singular values of
Dg are proportional to the instantaneous radii of curvature of the constraint set. The
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failure of the constraint qualification could conceivably be associated with the presence
of arbitrarily small radii of curvature--indeed, this must be the case for uniformly
nonlinear problems like (5.5). In essence, the constraint set for such a problem has
a cusp at every point! No reasonable stability properties can be expected for the
solutions of such a problem.

On the other hand, the Hessian operator of the "penalized" cost functional

is positive-definite for any a > 0--again, this is simply Poincar’s inequality. This
observation motivates the following construction.

For choices of time and slowness intervals T2 > T1 > To > 0, P2 > P1 _> 0, "data
set" D E L2(R1) and "tuning" parameters a, A _> 0, define for 9 E ’.

(5.6) J,[9] L2 (/2) --The first two summands in the definition of J, are motivated by analogy with the
"Dirichlet" problem discussed above. The form of the "elliptic" estimate (Theorem
5.2) and the need, explained in the next section, to choose T2 > To motivate the last
term. For example, the elliptic estimate gives a bound on 59 only on the shorter
interval [0, To], so 5 must be bounded a priori for t > To.

We shall call the three terms on the right-hand side of (5.6) "data," "coherency,"
and "extension" terms. Minimization of (5.6) is the "coherency optimization prob-
lem."

6. Proof of the main theorem. We begin this section with the proof that
the Hessian operator of J, as defined in 5 is positive-definite at a sufficiently
rough, coherent 9. The main idea is that the Hessian quadratic form consists of the
"data" term dominating the high frequencies in rig, and a "coherency" term essentially
consisting of the product of the indefinite integral (in x) of
This latter term is thus the product of a smooth factor (depending on 59) and a rough
factor (derivative of 9). When the rough factor is rough enough, uniformly on the
length scale of significant change in the smooth factor, then the product dominates
the smooth factor. Lemma 6.2 below makes this heuristic reasoning precise, and
establishes a mathematical meaning for "sufficiently rough." The "smooth factor"
discussed here is the indefinite (t-) integral of 59; the estimate for it, together with
the elliptic estimate from 5 and an interpolation argument, give a bound on ti9 in
terms of the "data," "coherency," and "extension" terms of the Hessian of Ja,.

Recall from the preceding sections the geometry of the coherency optimization
problem:

O < To < T < T
O<P <P.

time limits

slowness limits,

RV

(data, model rectangles);

=0,1,2
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the function spaces involved in its setting:

E { e H1(/2) (0,p) c0

V/1 cp2, v(T2, p)

V1 cp log ll/-z(= < e*

{5 E H1(/2)" 5(0,p)= 0 5(T2,p)}
and the maps:

" E-- L2(R1)’
V" E( L2(R1)’

It will be essential in the arguments given below that T2 be related appropriately to
To, as follows. For E , the L-bound on implies that

((To, P2) sup ((To,p)
P <_p<_P.
1< -Toee* Z
2

whence

T(Z, P1) sup T(Z,p)
PI _p_P2

<_ 2Zee* Toe2e*.

Set T2 Toe2e* Then it follows that for any pl, p2 [P1, P2],

T(((To,Pl),P2) <_ T2.

Define

Rz [0, z] [P, P].

Then for 5 e Hloc(R), E

and similarly for L2-norms.
Here we have introduced the habit, to which we shall uniformly adhere, of denoting

by C, C, constants which may be chosen uniformly over . We shall make no
attempt to identify optimum choices of such constants, so that the end result of our
argument is only qualitative in nature.
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Recall from 2 that the determination of c from bandlimited data requires that c
be "rough" in some sense. For convenience, we restate the basic "roughness" criterion,
phrased in terms of an (arbitrary) Dirac kernel

h(z) _1hl ( z
where h satisfies the usual requirements"

hi E C(R), h (0) > 0, hi _> 0, /h 1.

Then {eh} is bounded in L, and defines a family of "low-cut" filters, i.e., convolution
with eh suppresses Fourier components at frequencies less than or equal to d0(1/e).

For c E Hlloc(R), e > 0, A > 0 define

and for any Zo > 0,

1 fz+/X/2A _//
1 f+A/ I ’1

zx) inf r[c](z, e,
O<z<Zo
sup r[c](z, e,A),

O<z<Zo

suv
O<z<Zo

The main step in the proof of Theorem 2.1 is embodied in Theorem 6.1.

THEOREM 6.1. There exist constants h, M1, M2, co, and A0 > 0 depending on

To, T1, T2, g*, Ko, K1, and K* so that if
(i) f $’ satisfies (4.1) and

(ii) E is consistent with D L2(R), i.e., S[] D

(iii) E is coherent, [c] for c Hloc(R)
(iv) For some e, A, Zo > 0 with e <_ co, A _< Ao, and T(Zo, P1) 2 f:dz

(1/c2(z) p)1/2 >_ To the following inequalities hold: r,[c](Zo, e, A) >_ M1,
M2r,[c](Zo, e,A) > mx(r*[c](Zo, e,A), [c](Zo, A)).

Then there exists # > 0 depending on To, T1, T2, g*, Ko, K1, a, and so that for
5E,

Hess J>H:(2) > #I[II 2

Before giving the proof of Theorem 6.1, we digress to demonstrate the meaning
of condition (iv) in the theorem, and show that the set of satisfying it is nonempty.
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Let co, 6Cl E C(R)n L (R), so that

z+l

0 < , < Ihl cll < *Jz--1

and take SUpzep 3z--l’Z+l 15Cl [2. Clearly we can choose 5cl so that r* _> r., achieve
any prescribed values. On the other hand, set

Ce(Z) 2c1(Z), c(z) co(z) + (z)

for 0 _< z _< Z0, cut off to constants elsewhere. Then {log c}_<o is bounded in
H[0, Z0], for suitable e0, but

1 /*+ Ih’ 41 < * + o(), o() _< g.-
1

141 + o().

Thus with the choice A 2e, the quantities

,[cd(Z0, , 2),

* [co] (z0, , 2), [c] (zo, 2)

stand in more or less fixed proportions throughout the set {c}. We conclude that,
whatever the values of the constants M, M2, g, A specified in Theorem 6.1, the set of
travel-time velocities satisfying condition (iv) is nonempty--simply take [c] for
sufficiently small e, and a suitable choice of co, 5c.

Also the meaning of condition (iv) is clear from this construction. As e -- 0, the
perturbation 5c becomes smaller, but its derivative has uniformly bounded (above
and below) mean square over intervals of length e, and this even after convolution
with the oscillatory kernel eh’. Thus c has significant oscillation everywhere on the
scale e, i.e., c is "uniformly rough."

In the estimates which follow, we will write for convenience

Q DQ[}]9, 6- D[]6.

Also, for any function u of (t,p) or (z, p) we shall denote by /u the function

(t,p) dt’u(t’,p) or
z

(z,p) H dz’u(z’,p).

To begin the proof of Theorem 6.1, note that

because of the consistency and coherency assumptions.
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The second term in (6.1) is the most interesting. It follows immediately from the
definition of Q that

----p ---x 4p

Op 2

where we have written for convenience v oT. Note that v is not the perturbation
in v resulting from a perturbation in c.

Choose a test kernel g e C(R) with lgllL() 1 and suppg C [0, ). Then

g , (Q o T) g , v p dz v g , w + E’-3pg * (v2v)"

The error term E is the commutator of a multiplication operator and convolution
with g:

El=p{(f dzv) g, g,((f dz

for which a standard estimate gives

IlE(,p)llt0, Cll(’,p)ll.
(We have used the notation

for the moments of I1 as explained before.)
Set

The next goal is an L2 estimate for Kg on the domain Rz [0, Z] [P, P2].
Recall that Z is chosen so that

T0 5 (Z, P) < (Z, Pl) 5 T.
First note that for its indefinite p-integral,

P=Pl

Since composition with T nd
are M1 bounded operators on Loc(R
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f
Now assume that I g 0 and choose E C(R) with 1 on [0, Z]. For

p E [P1,P2], denote by 6 the extension 6v by a constant for z > Z. Then (since
suppg c R+)

x/
dk

ikl2
lik(k)l2

C (stp IO(k)l)21kl L2([0,Z])

since 5 is constant for z > Z and 5v(O, p) -O.
Define

sup

From the bound

05v
-z (’,p) <C -5; (" p

L2 [0,Z] L2 [0,T21

valid for 5 E’ we get for any P1 _< pl <_ p2 _< P2,

dp Kg C g
L2[0,Z]

(6.2)

-4-

+IIQII =
L2(h2) -+- mg

L2 (/2)

. ]L2[0,T2/2]

Next we estimate the p-derivative of Kg"

OKg 1
dz Sv g* Ozop 2

+p dz--p g , -z + p dz Sv g,
Op dzJ

The first term is clearly dominated in L2[0, Z] for each p by a (-dependent) multiple
of
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From the definition of 5Q,

dz---p dz 5Q oT p dz Sv -z 3P v25v

which is bounded by a (E-dependent) multiple of

Finally, we note that

V

V/1 c2p2

for some c with

IIClIHltO,Z C

so that for any p E [P1, P2],

(2V2
(.,;)OzOp [L2[0,Z]

The upshot is the estimate

(6.3) OK-p (’,p)
L2[0,Z]

< C {II’SQ(’,P)IIL".tO,T=/2I + 11’5(’,P)IILtO,T=/2I}"
Integrating in p, we also get

(6.4) cp L2(Rz)

Now we combine (6.2) and (6.4) to estimate Kg via a simple interpolation inequality,
which is a special case of Gilbarg and Trudinger (1983, Theorem 7.28):

For u E H2[a, b], a > 0:

(6.5)
C

where C C(Ib al).
Apply (6.5) to u(p) dp’Kg(z,p) for arbitrary po [P1,P2], integrate the

result in z, and use (6.2) and (6.4) to obtain

IIKllb<) c {4 ([P- re] II(.,po)ll 2 2

-o- IlL.(,=) + II’Oll L2 (/2)

With the choice

a* max(eg, rag1), a, min(eg, mgl),
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this becomes after integration in p0 from P1 to P2

L:(n,) + Ilall =L2 (/2)
(6.6)

The next step is to show that Kg actually dominates the indefinite integrM of .
It is at this point that some constraints on (hence on c), other than coherency and
membership in , become necessary. Recall that

K -p dz Sv g* Oz

Thus K is the product of a relatively smooth factor (the indefinite integral) and a
relatively rough factor (the derivative). Clearly, some estimate of the smooth factor
must be possible, provided that the rough factor is suciently uniformly rough. The
following simple lemma gives a crude criterion of this type.

LEMMA 6.2. Suppose that u, O C(R). Set for A O, a b

(x, )
,-/

r,(A)= inf r(x,A),
xE[a,b]

*() su (x, ).

Then :for any A > 0 (L2-norms)

,(zx) i111
16

r* ’2 L2[a,b ---(r,(/)-- (/))/211

Proof. Set

1 fx+zx/2>(x) N
Then the Cauchy-Schwarz inequality gives

4 /I(y) (x)l g le’l
x-A/2

forx-A/2yx+A/2. Thus

x-A/2 -A/2 -A/

x+A/216 A2r* 10’12AIo(x)I,(A) (A)

Similarly,

1 f+/2 2 16A2 f+/2I1 Io’l.zxl(x)l >
_/ -/.
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Thus

ix+A/2 12 > r, (A) ix+A/2 16I(I)u I(I)l 2 - (r, (A) -+- r*(A))A2 I(I)’l 2.
J-A/2 2 J--A/2 U J--A/2

Now sum both sides over x (k + 5)A, k 0,...[(b- a)/A] to obtain the
result. D

We shall apply Lemma 6.2 to Kg, with the identifications

Ov2

u g * --z (’,p).

Note that

Ov2

(1_c2p2)_20c
Oz Cz

so that

OcOv2
(1 -c2p2)-2cg * z + E2.g * -z

We will assume that the length scale A is chosen so that supp g c [A/2, A/2].
Then a slight refinement of the standard error estimate gives

1 fz+A/2 ]E2I < CA2r(A)ag(A)A az-12

where we have written, for any compactly supported measure h, and Z0 > 0 to be
determined"

ah(A)

1 f+/2 dc
sup h

ze[0,Zol z-X/

inf lfZ+ ’/2 Ih, dc

e[O,Zo] _x/

(sup Ihl,
e[O,Zo] -/2

de

For various -dependent constants C1-C4, any z E [0, Zo],

Clrg,,(A) C2A2r(A)ag(A) <_ 1 o.
.-a/

g * -z
C3r; (/k) -k-

Accordingly Lemma 6.2 implies, so long as Zo _< Z, for Po E [P1, P2]

L.[0,Z] _> Cp2rg,,(A) dz 5v(.,p)
L2[0,Zo](6.7)

-C’(rg,,(A) + r(A) +
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These estimates have no force unless the quantities rg,,(A) and

r(A) (rg,,(A) q- rg(A) q- rg(A)ag(A))

are comparable. These quantities depend on the parameters A and Z0 and on the
kernel g (all of which are still to be chosen)--and, of course, on the velocity profile c.

To further manipulate the norms of tiv, 5, we require an estimate on the p-
derivative: after some algebra,

2

dz 5v(., p)
n.[0,Zo]

2 dz 5v(., p), dz 5C o - + 2p dz 5v + 3pv2v
L2 [0,Zo]

2

< C / dz Sv(. p) + c’ II,Q o T(" p)I[ L2 [O,Zo]
J L2 [0,Zo]

In the following lemma we have employed an estimate on norms of products.

LEMMA 6.3. For f e g:[a,b], g e L2[a,b], define
z

fg h(z), a < z < b.

Then

for a constant C depending on a, b.

Proof. Since

we have

IlfllL Ill gllo + dz dz’f’(z’) g

whence the required inequality follows.

Thus Gronwall’s inequality gives

L2[0,Zo]

for any Po E [P1, P2]. Thus

dz 5v(.,po)
2

L2[0,Zo]
L2(h2)
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dp p2 dz 5v(., p)
L2[0,Zo]

>_ dz 5v(., Po)
L-[0,Zo]

cIIQll 2 P23
L2 (/2) 3]

so that (6.7) implies, after integrating the preceding inequality in P0 from P1 to P2,

c%,.()11 f dz ,vll2L=(tO,Zolxtp.,,p=])

--Ct! { I1(Q]12(12) --r(A)A2ll(vll2L2([O,Zo]X[pl,p2])}"
CIIKII2L,(Rz>

Now concatenate the above inequality with (6.6) to get

< c (*)
O,

Next recall that the L2-norms of 5v and 5 are related by

IIvlIL=(Rz)
as noted at the beginning of the section, which allows us to simplify the above in-
equality to

rg,(A)llfdzSvll.([O,Zo] [Pl,P2])<C( (*)2 + r;()2 I1112
(.s)

( 1)
It is convenient at this point to put the left-hand side in terms of also, by means
of Lemma 6.3. Since

dz’v(z’,p) dx (x,p)(x,p)
0

we can apply Lemma 6.3 with f ((.,p))-, 9 (’,P)(’,P), to get

L [0,(Zo ,po )l L [0, Zo

whence (6.8) implies, after integration in Po from P to P2,

(6.9) L2(Aa)

Here A3 is the region

{(x,p) P1 <_ p <_ P2, 0 <_ x <_ "r(Zo,p)}.
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At this point, we determine Z0" set

Thus

(1)inf -ToppeP1,P2

A3 c o.
The interpolation inequality (6.5) and (6.9) now yield

H(h)

C’(1+ * + (1/,)) 2

fla,,(A) II,QII().

It follows immediately from the Dirichlet condition at x T2 in the definition of

Hi(h2) Hl(ho) -Jr- C

It is only slightly more difficult to estimate

(6.11) 115II.(\A) C {
In fact, from the inequality

05v 05v-p+x

2

2 2

L2 (/2 \/o)

which holds at every point in R2, and the already-used inequality

IIllL(\) -< v/T2 T -x L.(h\ho)

(Dirichlet condition at x T2!) follows the estimate

II,llH.\o) -< c x (n\no)

whence from the trace theorem

115(., P)IILtTo,T.I C
L2(2o)

Any point in 1A3 lies on a curve of the family

p -(z,p),
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which joins it to the segment [To, T2] {P1 }, and iQ is a first-order partial differential
operator (acting on rig) whose principal part is a tangent vector field to this family of
curves. Now (6.11) follows from the standard energy estimate for hyperbolic systems.

Combining (6.11) with (6.10), we get

+c’[llsO,[ u 5 u ]n(h) +
L(o)

where C’ depends on , a,, a*, and rg,, as well. Now recall the conclusion of Theorem
5.2 which we rewrite in a suggestive way:

2
2 2IIS )+ (o)- -(o)II:(n (m)2L 05 > L[[59[] -(L + L)[159l[L(h)

Evidently, Theorem 6.1 has been proved if we can make the various choices deferred
above so that

(a.l) (g + + ,,( ,
To understand the left-hand side of (6.12) we first examine max(e,m). We
relieve the reader’s suspense by identifying the test kernel 9 with the kernel eh ap-
pearing in the statement of the theorem, so that the issue becomes one of choosing
e > 0. Note that with this identification

mg O(e)
J

and similarly,

On the other hand, from the definitions,

()rg
rg,,(A)
;(A)

while Young’s inequality gives

*(z0, A, ),
r,(Zo, A, ),
(Zo, /)

provided that e _< A, say, so that the support of h is contained within a fixed number
of A-intervals. In fact, we shall adopt the convention that e

_
CA2 and assume that

A is sufficiently small that e _< A as well. Then

rt,,(A)

_
C(r,(Zo, e, A) + r*(Zo, e, A) + (Zo, A)2)

where the constant now depends on the test wavelet h as well as on ’--this will be
the default dependence for constants "C" for the rest of the argument.

ag(A)

_
C(Z0, A)
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Note the uniform (over c E Hoc corresponding to e -) constraints, for all
> 0:

.(Zo, , A) _< *(Zo, , ZX) _< C,

e(Zo, ZX) <_ C,

* (Zo, , ZX) _< C* (Zo, ZX).

Choose a lower bound M1 and a relative lower bound M2, in the statement of
Theorem 6.1, subject to these constraints, and assume that c satisfies condition (iv)
of the theorem (recall that we have already met the constraint on Z0, viz.

To=(Zo, P) ).

That is,

(6.13)

M1 < r,(Zo, e, A),

f(Zo, A) < M2r,(Zo, e, A),

r*(Zo, e, A) < M2r,(Zo, e, A).

Then the ratio

,,(zX) ,
is O(e + A2) O(A2) for coherent e’ for which the corresponding velocity profile
c satisfies (6.13). Then we can choose C0(A) so that the left-hand side of (6.12)
becomes O(A) as well. In particular, for sufficiently small A, other choices as above,
the left-hand side of (6.12) is

1< C(L + L)A < L
whence finally

(6.14)
1 C’L12115112H(o)-< 115II=(R)+ CI[SQII 2

L=() +
L2 (/2 \/o)

The right-hand side of (6.14) is bounded by a multiple of the Hessian quadratic
form, the factor now depending on the penalty constants a and A as well. This
completes the proof of Theorem 6.1. rn

The proof of Theorem 2.1 is now immediate. Given appropriate To, T1, T2, K0, K1, K*,
P1, P2, co, el, and c*, let c denote the collection of c e HIoc(R) satisfying

(i) c(z) co, z < O,
(ii) log CllL(rt) < c* (< log P2),

(iii) c(z) Cl if 2 -ff P12 _> To.
For some 6" e(c*),

log C[IH[O,Z] < c* log ’[C](’,P)IIHIO,To/=I
Then c c [c] -, as defined before the statement of Theorem 6.1.
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Let rh be as in the statement of Theorem 5.2 and assume that f E $(R) is chosen
to satisfy

0
L2 (l:t)

Ko IIll/-(t)

for e H1 (R),

Choose a test wavelet h as described above. Then choose M1, M2, A, and as
in the statement of Theorem 6.1 and define

{cc’forA, ewith 0<A_<A, 0<e_<,

and Zo satisfying 2 f:o (1/c2 p2)1/2 To,

the following inequalities hold: M1 _< r.(Zo, , A)

M2r,(Zo, e, A) >_ max((Zo, A), r*(Zo, e, A))}

Then c is constant for z > Z0, so 9[c] is constant (for each p [P1, P2]) for t >_ T(Zo, p),
whence a fortiori for t _> To.

The remarks after the statement of Theorem 6.1 show that, for arbitrary (but
consistent) choices of the various parameters, the set -c is nonempty.

Finally, assume that in the definition of J,,

for c ’c. Then

D Sic]- S[[c]]

0

while Theorem 6.1 shows that the Hessian of J, at 9[c] is positive definite.
Therefore the implicit function theorem implies the existence of
(1) An open neighborhood U in L2 (R1) of the set

{Sic] c e

(2) An open neighborhood V in of the set

e E’c},
so that for each D U, the problem

has a unique solution 9 [[D]E V, which is moreover a Lipschitz continuous function
of the data D.

Define the averaging operator
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Ag(z)
P2 P1

dp 9(T(Zl p), p) + p2

Remark. A performs a version of the operation "normal moveout correction,
stack" from the reflection seismic data processing stream (see, e.g., Yilmaz (1987,

Then for c E

Also, A is Lipschitz continuous in the topologies indicated in its definition.
Set

I=AoI;’ULo.
Then I has all of the properties indicated in the statement of Theorem 2.1. In par-
ticular, for D1, D2 E U,

[[I(D)- I(D2)L[O,Z] L*[[D D2[[L(R)
for suitable L*, depending on the various parameters defining and on f. This
completes the proof of Theorem 2.1.

7. Nonelliptic sources. In this section we give a very brief sketch of the state of
affairs when f is smooth. The necessary regularization arguments have become quite
commonplace, so we shall concentrate on the steps necessary to modify the proof of
Theorem 6.1.

Thus, suppose that f C(R)" then the best "near-elliptic" estimate might
have the form

(7.1) f *
/(R) (R)

for @ S(a). The size of K2 measures the "passband" of f" i.e., if s
uniformly large in an interval Dt Da, then K2 O(1/D).

The analogue of Theorem 5.2 is Theorem 7.1.

THEOREM 7.1. Given P2 > P O, T1 > To > O, K* K > O, Ko, K2 O,
andS* > O, there exist ,Lo, L,L2,L3,> O, so that ff f C(R) satisfies (7.1) and

L1 LolI  IIL=<  )

L2 (/1\/o) L2(/1)

The principal new ingredient in the proof is the higher-order estimate for the
planewave problem

IIDSo[9, ’]5911L[0,TI < CllllHIO, T/el
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for log e Hi2oc(R), 5 e H12oc(R). See, for instance, Suzuki (1988) for similar esti-
mates.

Most of the proof of Theorem 6.1 goes through as before, except that now the
smoothness constraint implicit in Theorem 7.1 conflicts with the roughness conditions.
For example, for a coherent e C3Hi2oc(R), its corresponding c e H12oc (R) satisfies

1 fz+A/2-- ?1

For the constraint e -0(A), which we were bound to impose, this gives

_< C llc"lls iO,Zol.

So over any bounded set in H2(/2), r. is (9(A) over coherent travel-time velocities.
Thus estimates of the sort developed in 6 can only succeed if

(i) f is sufficiently "broadband" that (7.1) holds with small K2 relative to y, g0,
K*K1,
(ii) Target velocities exist in the intersection of y and a sufficiently large ball in

H2 (/2), for which the regularized cost functional

L2 (/2) }
takes a sufficiently small value, with p O(K2).

Then the Hessian of J,a,o will be positive-definite at target velocities as described
in (ii), while the value of J,,o will be small enough to conclude the existence of a
nearby local minimizer. Since it will no longer be possible to have J 0, only an ap-
proximation will be obtained even for data corresponding exactly to c e YIc C3H12oc (R).

The reader is referred to Symes (1986b) for details of a similar construction.
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SOLUTION OF THE INVERSE SCATTERING PROBLEM
FOR THE THREE-DIMENSIONAL SCHRODINGER EQUATION

USING A FREDHOLM INTEGRAL EQUATION*

TUNCAY AKTOSUN AND CORNELIS VAN DER MEE$

Abstract. It is shown that the inverse scattering problem for the three-dimensional SchrSdinger
equation with a potential having no spherical symmetry can be solved using a Fredholm integral
equation. The integral operator studied here is shown to be compact and self-adjoint with its spectrum
in [-1, 1]. The relationship between solutions of this Fredholm equation and of a related Riemann-
Hilbert problem is also clarified, and it is shown that the Fredholm integral equation is uniquely
solvable if and only if the Riemann-Hilbert problem is uniquely solvable.

Key words, inverse scattering, three-dimensional SchrSdinger equation, Fredholm integral
equation

AMS(MOS) subject classifications. 81U40, 35P25, 35Q15, 35R30, 47A40

1. Introduction. Consider the SchrSdinger equation in three dimensions

(1.1) x, + x, x,

where A is the Laplacian, k2 E R is energy, x E R3 is the space coordinate, and 0 S2

is a unit vector in R3. We assume that the potential V(x) is real and decreases to
zero sufficiently fast as Ixl c. However, we do not assume any spherical symmetry
on the potential. As Ixl , the wavefunction (k,x,,O) satisfies

+ A k,-,O +o

where A(k,O,O’) is the scattering amplitude. The scattering operator S(k, 0,0’) is
then defined by

S(k, , ’) ( ’) k----A
2ri

(k,O,O’)

where 5 is the Dirac delta distribution on S2. In operator notation (1.3) is written as

S(k) I- k---A
:.i

where the operators are all defined on L2($2), the Hilbert space of complex valued
square integrable functions on the unit sphere S2 in R3 with the usual inner product.

In this article we study the inverse scattering problem, which consists of recover-
ing V(x) when S(k) is known. Since the main source of information about molecular,
atomic, and subatomic particles consists of collision experiments, solving the inverse

* Received by the editors August 16, 1989; accepted for publication (in revised form) May 1,
1990.
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scattering problem is equivalent to determining the forces among particles from scat-
tering data.

For one-dimensional and radial SchrSdinger equations, the inverse scattering prob-
lem is fairly well understood (at least for certain classes of potentials) [1]. In higher
dimensions, however, the situation is quite different. The solution methods developed
in higher dimensions include the Newton-Marchenko method [2]-[4], the generalized
Gel’fand-Levitan method [2]-[5], the 0 method [6]-[9], a method that only relies on
backward scattering data [10]-[13], a method that uses the Green’s function of Fad-
deev [14]-[16], and the Wiener-Hopf factorization method [17]. There are still many
open problems in multidimensional inverse scattering, and the methods developed are
still far from being complete. Newton’s recent book [18] gives a comprehensive review
of the methods and related open problems in three-dimensional inverse scattering prior
to 1989.

The main idea behind both the Newton-Marchenko and generalized Gel’fand-
Levitan methods is to formulate the inverse scattering problem as a Riemann-Hilbert
boundary value problem, to transform this Riemann-Hilbert problem into a nonho-
mogeneous integral equation where the kernel contains the Fourier transform of the
scattering data, and to obtain the potential from the solution of the resulting integral
equation. In this paper we give the solution of the three-dimensional inverse scattering
problem by generalizing a method by Muskhelishvili and Vekua [19], [20] developed to
solve Riemann-Hilbert problems with several unknown functions. In the radial case,
Newton and Jost used this method to construct potentials from an n x n scattering
matrix for a system of n ordinary differential equations [21]. Here we generalize the
Muskhelishvili-Vekua method (and hence the Newton-Jost method) to solve an opera-
tor Riemann-Hilbert problem and thus to obtain the solution of the inverse scattering
problem for the three-dimensional SchrSdinger equation. In this method, the kernel
of the key integral equation is an n x n matrix valued function whereas in our case
we deal with an integral equation whose kernel is an operator valued function. In the
Newton-Jost method the inverse scattering problem pertains to a system of n ordi-
nary differential equations with an n x n scattering matrix; however, in this paper,
we deal with the inverse scattering problem for a partial differential equation where
the kernel of the key integral equation is an operator valued function. Contrary to
the three-dimensional Newton-Marchenko and generalized Gel’fand-Levitan inversion
methods, we do not use any Fourier transform in our solution of the inverse scattering
problem.

The present paper is organized as follows. In 2 we identify the class of potentials
for which all of the results in this paper are valid, and we state the key Riemann-
Hilbert problem which helps to solve the inverse scattering problem for the three-
dimensional SchrSdinger equation. In 3, using the Riemann-Hilbert problem, we
obtain our fundamental Fredholm integral equation (3.10). In 4, we show that the
Fredholm integral operator of (3.10) is compact and self-adjoint and its spectrum is
confined to [-i, i]. In 5, we study the relationship between solutions of our Fredholm
integral equation and of the Riemann-Hilbert problem and relate the unique solvability
of the Fredholm equation to that of the Riemann-Hilbert problem. In 6, utilizing the
solution of the fundamental Fredholm integral equation, we give the solution of the
inverse scattering problem for the three-dimensional SchrSdinger equation. Finally in
7, the conclusion is given.

2. Riemann-Hilbert problem. We first identify the class of potentials for
which all of the results in this paper are valid. Except for the third condition given in
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the following definition, these conditions are standard assumptions on the potential
[18]. These conditions were instrumental in proving the Hhlder continuity of the
scattering operator and the existence of a Wiener-Hopf factorization of the scattering
operator [17].

DEFINITION 2.1. A potential V(x) is said to belong to the Newton class if V(x)
is real valued and measurable and satisfies

1. a, b > 0 such that

(2.1) dx IV(x)l Ixl / lyl / a R
ix_y

<_b, rye

2. c > 0, s > 1/2 such that

c
(2.2) IV(x)l < ( / ixl=),

Vx e m,

3. 3a > 0 and some/3 E (0, 1] such that

(2.3) /I3 dx IxllY()l <

4. k 0 is not an exceptional point [22]. This condition is satisfied if at zero
energy there are neither bound states nor half bound states.

In the Schrhdinger equation (1.1), k appears as k2 and hence O(-k,x, 0) is a
solution whenever (k,x, t) is. These two solutions are related to each other as [2]

(2.4) (k, x, ) [ dO’ S(k, -, 0’)(-k, x, 0’).

Define

(2.) f(k,x, 0) e-ikO’xO(k,x,
If the potential satisfies (2.1) and if there are no bound states, for fixed x and , the
function f(k,x, O) has an analytic extension in k to the upper half complex plane C+
and f(k,x, 0) 1 + O() as ]k] there [2]. Similarly f(-k,x, O) has an analytic
extension in k to the lower half complex plane C-. Hence, using (2.4), we obtain the
Riemann-Hilbert problem

(2.6) f(k,x,O) f dO’ e-ike’S(k,-O,O’)e-ie"xf(-k,x,O’), k e R.

Let us define

(2.7) G(k,x,O,O’) e-k’S(k,-O,-O’)eik’’,

(2.8) x+/-() y(+/-k, , +/-0) 1,

where f(k,x,O) is as in (2.5). Then we can write (2.6) in vector form as

(2.9) X+(k) G(k)X_(k)+ [G(k)- I]i, k e R,

where G(k) is the operator on L2(S2) with its kernel given in (2.7), I is the identity
operator on this space, and i is the function on L2(S2) defined as i(0) 1, V0 E
S2. Note that, since x enters (2.9) only as a parameter, we have suppressed the x-
dependence of all the operators and vectors in (2.9).

If there are bound states, the extension of f(k,x, O) in k to C+ becomes mero-
morphic with simple poles on the imaginary axis. A pole at k in corresponds to
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a bound state of the Hamiltonian with energy _2. It is possible to remove these
simple poles from the Riemann-Hilbert problem by a reduction method [4]. Assume
there is a bound state corresponding to a pole at k i. Using a suitable orthogonal
projection B, we form the rational function

k+iII(k) I- B + k- i
B

and define the corresponding reduced quantities

Gred(k) II(k)-lG(k)H(k)

+ I]i

(2.11) xr_ed(k) II(k)X-(k)+ [II(k)- I]i.
As a result, x_ed(k) does not have a pole at k i and xLed(k) does not have a pole
at k -i. If there is more than one bound state, this procedure must be repeated
to remove the finitely many poles corresponding to the bound states; the details can
be found in [4]. This eventually leads to the reduced Riemann-Hilbert problem

(2.12) yred(/g) Gred(k)xr_ed(k)+ [Ored(k)_ I]i k e R.

Once the reduced Riemann-Hilbert problem (2.12) is solved, the solution of the orig-
inal Riemann-Hilbert problem (2.9) can easily be obtained using (2.10) and (2.11).
Hence, in the following sections, without any loss of generality, we will obtain the solu-
tion of the Riemann-Hilbert problem assuming that X+ (k) and X_ (k) have analytic
extensions to C+ and C-, respectively, and vanish in the norm of L2(S2) as k +
from that half plane.

3. Fredholm integral equation. In this section we show that the Riemann-
Hilbert problem posed in (2.9) leads to a Fredholm integral equation, which will be
the key equation to solve the inverse scattering problem.

From the Cauchy integral formula we have

(3.1) x+(t)X+(k) _1CPV dt
rn t-k

(3.2) X_(k) __1CPV telr j_

where CPV denotes the Cauchy principal value.
adding the result to (3.1), we obtain

(a.a) x+() + G(k)X_(k) 1CPV

Operating on (3.2) by G(k) and

dt
t k

[X+(t) a(k)X_(t)].

2X+(k)+[I-G(k)]i
dt ([I G(l)a(t)-*lX+(t) + a(k)[I- a(t)-]i).t- k

Define the integral operator K whose kernel is given by

(3.5)
1 I- G(k)G(t) -1K(k, t)

2ri t k
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Then we can write (3.4) as

(3.6) X+(k) CPV dt K(k, t)X+(t) H(k),

where H(k) is given by

H(k) [G(k) I + dt K(k, t)]i.

If the potential V(x) belongs to the Newton class defined in 2, the operator
G(k)-1 is HSlder continuous [17]. Hence the integral in (3.6) is no longer singular
and we can drop CPV in front of this integral. Thus, we obtain the regular Fredholm
integral equation of the second kind

X+(k) dt K(k, t)X+(t) H(k).

The MSbius transformation k --. (k- i)/(k + i) maps the extended real axis
onto the unit circle T, the upper half complex plane C+ onto the unit disk T+, and
the lower half complex plane C- onto the exterior of the unit disk T- where oc is
considered to be a point of T-. Let () S(k) under this transformation, and let
us adopt this notation and use the tilde to denote the MSbius transformed quantity
for other functions and operator valued functions throughout the paper.

Let k (k i)/(k + i) and t --, r (t i)/(t + i) under this MSbius
transformation. Defining

(3.9) L() /() +-----=H(k),k
1- 2i

we can transform (3.7) into

(3.10) Y() dr/K(, r/)Y(r/) L(),

where the kernel of the integral operator K is given by

1 I (()((r/)-i(3.11) /(’ r/)
2ri r/-

Comparing (3.11) with (3.5) we see that/ is the MSbius transformed operator for K.

4. Properties of the integral operator. In this section we show that the
integral operator K in (3.10) is compact and self-adjoint and its spectrum lies in

For a (0, 1] let (T; L2($2)) be the Banach space of HSlder continuous func-
tions W T L2($2); i.e., the Banach space of all (strongly) continuous functions
W" T L(S2) which are bounded with respect to the norm

IW]] mxW() + u IW()- W()I]

and

(3.8) +
1-( 2i
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Here and in the following I1" II without any subscript denotes the operator norm on
L2($2). Let (:(T; L2($2)) denote the Banach space of (strongly) continuous functions
W" W L2(S2) with norm IIWII maxeT IIW()II. Finally, for 1 < p _< let
Lp(T; L2($2)) denote the Banach space of all strongly measurable functions W T
L2(S2) such that IIW(’)II belongs to Lp(T)[23].

Let F be the singular integral operator on L2(S2) defined by

(4.1) (rf)() I’CPVTr, fT dr/ r/_(f(r/---)-)
Then, from (3.10) and (3.11) it is seen that we can write/ as

/ 1/2(F
where ( and (-1 are operators of multiplication by the respective functions. The
space L2(T;L2(S2)) is a Hilbert space which allows the decomposition into the or-
thogonal closed subspaces $+(T;L2(S2)) and $_(T;L2(S2)). Here $+(T;L2(S2)) is
the subspace of all L2-functions which allow for an analytic continuation to T+, while
$_(T; L2($2)) is the subspace of L2-functions which allow for an analytic continuation
to T- that vanishes at infinity. If f() is an L2-function defined on the unit circle T,
then using its Fourier series, we have the decomposition

’----(X) --0

as a sum of elements in $_(T; L2($2)) and t+(T; L2($2)), and this decomposition is
orthogonal. If we denote the two summations in the above decomposition as f_ and
f+, respectively, we obtain

(4.3) F$ f+ $_.

Thus, F is self-adjoint and has unit norm on L2(T;L2(S2)). More generally, F is a
bounded linear operator on $(T; L2($2)), where $ represents Lp with 1 < p < c or

7-/. with 0 < "y < 1. This result can be derived from the boundedness of F on the
spaces $(T) of scalar functions (Theorems I2.1 and I6.1 of [24]) and the density of the
linear subspace {.=1 qaj(.)hj’n e N, qj e $(T), hje L2($2)} in $(T; L2($2)) [23].

For potentials identified in Definition 2.1, we will prove the following three propo-
sitions.

PROPOSITION 4.1. Let V(x) belong to the Newton class. Then the Fredholm
integral operator ff[ in (3.10) is compact on LP(T;L2(S2)) for 1 < p < oc, on

C(T; L2($2)), and on 7-/7(T; L2($2)) for 0 < / < #. Here # =//2(1 +/3) for s > 1
in (2.2) and # fi/(1 s)/(/- s + ) for 1/2 < s < 1 in (2.2), where fle (0, 1] is the
constant in (2.3) [17].

Proof. Define the integral operator M acting on L2(S2) as

1 fT ((r/) ()(4.4) (MZ)() dr/
r/_

Z(r/).

Then (/Y)() (M-Y)(). Due to the fact that the scattering operator S(k) is
unitary, the operator ()- is bounded with norm I1(-111 1. Hence, to prove that
/ is compact, it is sufficient to prove that M is compact, and we will prove this by
showing that M can be approximated by a sequence of finite rank operators.
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It is known [17] that G()- I is a compact operator on L2(S2) depending contin-
uously on E T. Hence it can be approximated by a sequence of finite rank operators
{Gn() I},__ given by

(n()- I E JAj,

where {Aj}=_o is a sequence of mutually orthogonal finite rank operators on L2($2).
We then obtain

n j-1d,(r/) G() EE (t?_t_l t-j-t-1)Aj.(4.5)
7- = ,=0

Using (4.5) in (4.4) we obtain a sequence of operators {Mn}n__ given by

(4.6) )1 t t- Y(r#).(MnY)() E Aj &Trfi--
Hence, for each n, Mn is a finite rank operator. We will complete the proof of our
proposition by showing that M, converges to M as n oc in the function spaces
Lp(T; L2($2)), C(T; L2($2)), and 7-/(T; L2($2)).

(F F) and Mn 1/2(Fn nF).From (4.2) and (4.4), it is seen that M
Hence, using the boundedness of F on $(T;L2(S2)), where $ is equal to Lp with
1 < p < oc or equal to 7-/ with 0 < - < #, we have in the operator norm on
$(W; L2($2))

for some constant c > 0. Thus, Mn M in the norm of Lp(T; L2($2)) for 1 < p < oc
and in the norm of 7-/,(T; L2($2)) for 0 < " < #.

It remains to prove the convergence of Mn to M as n oc in the operator norm
on $(W; L2($2)). where $ is n1, L, or C. First, from (4.4) we obtain

(4.7)

where

In (2 2 cos t)(1-*)l
is a constant independent of E T. Then, from (4.7) it follows that Mn -+ M in
the operator norm on LI(T;Lg(S2)) and on L(T;L2(S2)). Next, as a result of
the dominated convergence theorem for Bochner integrals (Theorem II.3 of [23]), if

-+ 0 in T, then for every Y L(T;Lg(S2)), [(M- Mn)Y]() converges to
[(M- Mn)Y](0) in the norm of L2($2). Therefore, M and Mn map L(T; L9($2))
into (7(T; L2($2)). Hence, we obtain from (4.7) that the convergence of Mn to M also
holds in the operator norm on

If is a nonzero eigenvalue of K, then, by the compactness of K on $(T; L2($2)),
there exists some integer N > 1 such that the kernel of (K- AI)’ coincides with
the kernel of (/- I)N if n > N. The finite dimension of this subspace is called
the algebraic multiplicity of ,. The dimension of the kernel of K- ,I is called the
geometric multiplicity of

As a result of the compactness of/, we have the following result.
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COROLLARY 4.2. Let V(x) belong to the Newton class. Then the nonzero eigen-
values of as well as their (algebraic) multiplicities do not depend on the choice of the
function space on which they are defined. As a result, the eigenvectors and generalized
eigenvectors ofI corresponding to its nonzero eigenvalues belong to each of the spaces
((T; L2($2)), Lp(T; L2($2)) for 1 <_ p

_
x), and 7-/(T; L2($2)) for 0 < / < #, where

# is the constant specified in Proposition 4.1.

Proof. Note that for 0 < _< ’ and 1 _< p _< q < c we have

7-l C 7-l Cd. C L C Lq C LP.

Consider any of the four pairs of spaces {L, np}, {Lq, Lp}, {C, Lp}, and {7-/, C}. In
each pair, let t; denote the first space and t;2 denote the second space for functions
in L2($2). For example, for the first pair, we let t L(T;L2(S2)) and t2
Lp(T; L2($2)). Then for all the pairs, t; is continuously and densely imbedded in 2.
Since K is compact in t; and in 2, for each nonzero complex number A and natural
number n, the closure in 2 of the image of g’ under (/- AI)n coincides with the
image of 2 under (/- I)n. As a result, the complements of the ranges of (/- .I)n
in both t and in 2 have the same finite dimension. Since (K- .I)n is a Fredholm
operator of index 0, its kernels in t; and t;2 also have the same finite dimension.
As a consequence, the dimensions of the (generalized) eigenspaces for each nonzero
eigenvalue of/ are the same in d(W; L2($2)), in Lp(T; L2($2)) for 1 <_ p <_ oc, and in
?-/(T; L2($2)) for 0 < ’ < #, where it is the constant specified in Proposition 4.1.

PROPOSITION 4.3. Let the potential V(x) belong to the Newton class. Then
is self-adjoint on L2(T;L2(S2)). As a result, all eigenvalues of [( are real and their
algebraic and geometric multiplicities coincide.

Proof. Due to the unitarity of the scattering operator S(k), the operators ( and
(- are unitary. Because of (4.3), the singular integral operator F is self-adjoint.
Thus, from (4.2) it follows that K is self-adjoint on L2(T; L2($2)). E]

PROPOSITION 4.4. Let the potential V(x) belong to the Newton class. Then the
norm of R in L2(T; L2($2)) is bounded above by 1, and all eigenvalues of [( belong
to [-1, 1].

Proof. From (4.3) it is seen that the singular integral operator F has unit norm
on L2(T; L2(’2)). Due to their unitarity, the multiplication operators ( and (- each
have unit norm. Thus, as seen from (4.2),/ has at most unit norm on L2(T; L2($2)).
Furthermore, by Proposition 4.3, / is self-adjoint and hence its spectrum is real.
Thus, the spectrum of K lies in [-1, 1], and by Corollary 4.2, the spectrum does not
depend on the function space used.

If :t=1 are not eigenvalues of/, the Fredholm integral equation (3.10) has a unique
solution which can be obtained by iteration. Since we have shown in Corollary 4.2
that the spectral radius of/ does not depend on the function space used, the iteration
converges in the norm of any of the spaces mentioned in Proposition 4.1.

5. Relationship between solutions of the Fredholm integral equation
and of the Riemann-Hilbert problem. In this section we study the relation-
ship between solutions of the Fredholm integral equation (3.10) and solutions of the
Riemann-Hilbert problem on $(T;L2(S2)), where $ is either Lp with 1 < p <
or with 0 < / < #, # being the constant specified in Proposition 4.1. We also
investigate the relationship between the partial indices of G() [17] and the existence
and uniqueness of the solution of (3.10).
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Using F() (1/(1 ))[(() -I]i, we can transform (2.9) into the Riemann-
Hilbert problem on the unit circle T to obtain

(5.1) Y+(() G(()Y_(() + F((), E T.

Let us write (3.10) as

(5.2) (I-k)Y=L.
Note that the nonhomogeneous terms in (5.1) and in (5.2) are related to each other
by

(5.3) L 1/2((I + F)&-F.
We will relate the solutions of (5.1) with F E (T; L2($2)) and Y+ e +(T; L2($2))
to the solutions of (5.2) with L, Y e $(W; L2($2)).

As mentioned prior to Proposition 4.1, the singular integral operator F defined
in (4.1) is bounded on $(T; L2($2)). Then 1/2(I + F) and 1/2(I F) are complementary
bounded projections onto the subspace $+(W; L2($2)) of all functions in $(W; L2($2))
with an analytic continuation to T+ and onto the subspace $_(T; L2($2)) of all func-
tions in (T; L2($2)) with an analytic continuation to T- vanishing at infinity.

THEOREM 5.1. Let F (T;L2(S2)). If Y+ is a solution of (5.1) in +(T;
L2($2)), then Y Y+ is a solution of (5.2). Conversely, if Y is a solution of (5.2)
and Y +(W; L2($2)), then Y+, where Y+ Y and Y_ G-I(Y- F), is a solution
of (5.1) with Y+

Proof. Let Y+ $+/-(T;L2(S2)) be a solution of (5.1). Then using (4.2), (5.3),
and (I + F)Y: 0, we have

(I-/)Y+ 1/2(I- F)Y+ + 1/2((I + r)(-lY+
1/2((I + F)(Y_ + -F) 1/2((I + F)&-F L.

Conversely, let Y 6 +(T;L2(S2)) be a solution of (5.2). Clearly Y+ Y and
Y_ (-(Y- F) satisfy (5.1), provided Y_ 6 _(T; L2($2)). This follows from

(I + r)Y_ (&- + r&-)y- (I + r)&-F 2&-L- (I + r)&-F 0,

where we have used (4.2) and (5.3). [3

From (4.2) and F2 I it is immediate that k2 and F commute. Hence,/2 maps
+(T; L2($2))into +(T; L2($2))and _(W; L2($2))into _(T; L2($2)). Thus, using
the compactness of k2, we can decompose the kernel and range of I- k as
(5.4)
Ran(I- k2) {Ran(I- k2) N +(T; L2($2))} {Ran(I- k2) N _(T; L2(’2))}

and

ger(I- k2) {ger(I- k2) $_(T; L2($2))} @ {Ker(I- k2) N $_(T; L2($2))}.
PROPOSITION 5.2. Let F $(T; L2($2)). Then there exists at least one solution

of (5.2) if and only if there exists at least one solution of the equation

(5.5) (I- k)Z (I +/)L.
Moreover, if it exists, it is possible to choose the solution Z of (5.5) in $+(T; L2($2)),
but this solution may not satisfy (5.2).

Proof. If Y is a solution of (5.2) in $(T; L2($2)), then clearly it is also a solution
of (5.5). To prove the converse, let us first take $ L2. The solution of (5.5) exists
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provided (I +/)L is orthogonal to Ker(I-/2). Let Zo be such that (I-/2)Z0 0.
Writing Zo Z1 +Z2 where/Z1 Z and/Z2 -Z2, and using the self-adjointness
of K, we obtain

((I + R)L, Z2) (L, (I + R)Z2) 0

and
((I +/)L, Z) (L, (I +/)Z) 2(5, Z).

Hence, (I +/)L is orthogonal to Ker(I-/2) if and only if L is orthogonal to Ker(I-
/). Thus, a solution of (5.5) exists if and only if a solution of (5.2) exists.

Furthermore, from (4.2) and (5.3) we obtain

1
(I + K)L (I + r)d(I + r)&-F c +(T; 52($2)).

Then, since N := 1/4(I + F)((I + F)(-1 has a closed range in each (T;L2(S2)),
the image of L2(T; L2($2)) under N is the closure in L2(T; L2($2)) of the image of
(T; L2($2)) under N. Similarly, the image of L2(T; L2($2)) under I+K is the closure
in L2(T; L2($2)) of the image of (T; L2($2)) under I / g. Hence, if

N[L2(T; L2($2))] C (I +/)[L2(T; L2($2))]

as proven above, we also have

N[(T; L2($2))] C (I +/)[:(T; L2($2))]

for : Lp with 2 < p < oc or g" 7-/ with 0 < /< #. The same conclusion may be
drawn if g" Lp with 1 < p < 2, but this time we use the fact that L2(T; L(S2)) is
continuously and densely imbedded in g’(T; L2($2)).

Finally, from (5.5) it is seen that a solution of (5.5) exists provided (I +/)L
Ran(I-/2). Then using (5.4) and the invertibility of (I-/7f2) on Ran(I-/2), it
appears the solution of (5.5) can be chosen in Ran(I-/2)

The number of linearly independent solutions of the homogeneous Riemann-
Hilbert problem

(5.6) Y+() (()Y_(), T

is the sum of the positive partial indices of G(). Let (pj } denote the set of partial
indices of ((). These partial indices arise in the Wiener-Hopf factorization of (()

A special case of Theorem 5.1 with L 0 concludes that any solution Y+ of (5.6)
corresponds to a solution of the homogeneous Fredholm integral equation (I-K)Y 0
in ’+ (T; 52 (S2)). As a result,

(5.7) Z PJ dim(Ker(I-/) :+(T; L2($2))).
p0

To obtain an expression for the sum of the negative indices, we consider the
homogeneous Riemann-Hilbert problem which is adjoint to (5.6)

e T

where Z+ E :+(T;L2(S2)). Then the number of linearly independent solutions of
(5.8) is the sum of the positive partial indices of G()-. Due to the unitarity of G(),
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these indices coincide with the negatives of the negative partial indices of G() [17].
Using (4.2) and (5.8) we have

(I +/)Z_ (I + 1/2r 1/2(F(-I)Z_ 1/2(Z_ (FZ+) 0.

Conversely, if Z_ 6 -(T;L2(S2)) and (I + K)Z_ 0, then G-1Z_ G-1Z_-

(-1(I +/)Z_ -Z_ 1/2(-(I + r)Z_ 1/2(I- r)(-Z_ 1/2(I + r)(-Z_ e
E+(T; L2($2)). As a result, we find the expression

(5.9) E PJ dim{Ker(I + k)N E_(T; L2($2))}.
p <o

The norm of/ in L2(T; L2($2)), i.e., its spectral radius, can be expressed in terms of
the gap between certain subspaces [25], [26] For Hilbert spaces the gap between two
closed subspaces A/[1 and JY[2 equals lIP1 P211 where P1 and P2 are the orthogonal
projections onto A/[1 and J2, respectively. Now notice that F+ 1/2(I 4-F) are the
orthogonal projections of $(W; L2($2)) onto $+(T; L2($2)) and A+ 1/2((I 4- F)-1

are the orthogonal projections of $(T;L2(S2)) onto ([$+(T;L2(S2))]. In terms of
these projections, from (4.2) we obtain

(5.10) / F+ A+ and -/ F_ A_.

Hence, for E L2 we have II/11 gap (+/-(w; L2($2)), ([E+(T; L2($2))]).
Using the projections F+ and A+, we will now derive more convenient expressions

for the sums of the positive and negative partial indices of (() than (5.7) and (5.9).
Observe from (5.10) that

(5.11) I-/ F_ + A+ and I +/ F+ + A_.

Then we easily find from (5.7)

(5.12) E PJ dim{E+(T; L2($2)) F ([E_(T; L2($2))]},
pj >o

while we obtain from (5.9)

E pJ dim{g_(T; L2($2)) F ([E+(T; L2($2))]}.
pj <o

We can now prove the following.
THEOREM 5.3. The following statements are equivalent:
(1) 4-1 are not eigenvalues of the Fredholm integral operator g of (5.2).
(2) The Riemann-Hilbert problem (5.1) has a unique solution Y+/- E E+/-(T; L2($2))

.for every F E E(T; L2($2)).
(3) There exists a right canonical Wiener-Hopf factorization

() +()_(), e T,

o/ () h=() and :()- on o (T;(L())) a,d h an nc
continuation to T+/-, where "y is the constant specified in Proposition 4.1.

(4) There exists a left canonical Wiener-Hopf factorization
() _()+(), e T,

of () where +/-() and +/-()-1 belong to 7-/.(T; (L2($2))) and have an analytic
continuation to T+/-.
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(5) The operator function (), or equivalently the operator function G(k) given
in (2.7), has no partial indices [17].

(6) The three-dimensional Jost operator [5] exists and is unique [17].
Proof. The equivalence of (2)-(6), as well as the existence of the left and right

Wiener-Hopf factorizations of G(), has been proven in [17]. First, let us show that
(1) implies (2). Note that from (5.11) we have

(I -/()[+ (T; L(S))] C [$+(T; L(S))].
Since I- K is boundedly invertible in the absence of eigenvalues :t:1, it must act as a
boundedly invertible operator from $+(T; L2($2)) onto G[$+(T; L2($2))]. As a result,
the unique solution of (5.2) with right-hand side (5.3) belongs to $+(T;L2(S2)) for
every F E g’(T; L2($2)). Then by Theorem 5.1, we can conclude that (1) implies (2).

To complete the proof of our theorem, it suffices to prove that (3) and (4) together
imply (1). Indeed, let (3) and (4) be true. The canonical Wiener-Hopf factorization
of (() exists only when all the partial indices are zero. Thus, from (5.11) and (5.12)
we obtain

(5.14) t;+(T; L2(S2)) N ([$=(L2($2))] {0}.

Hence, if Y e Ker(I -/), then using (5.11) one obtains

r_Y -A+Y e $_(T; L2($2)) N ([+(T; L2($2))].

and hence, by virtue of (5.14),
Y e $+(T; L2($2)) ([_ (T; L2($2))],

which proves that Ker(I-/) {0}. Hence =t=l are not eigenvalues of/, and our
proof is complete.

The following corollary gives a sufficient condition on the scattering operator so
that the Fredholm integral equation (3.10) is uniquely solvable.

COROLLARY 5.4. The Fredholm integral equation (3.10) and the Riemann-
Hilbert problem (2.9) are uniquely solvable when the scattering operator satisfies
su  ea Ill <

1(I ()F 1/2(F(-I(I (). Since F ( andProof. From (4.2) we have K
(-1 have unit norms, we then obtain II/11 <_ IlI-(ll. However, we have IlI-(()ll-
IlI- e(k)ll IIS(k) Ill. Thus, if supket IIS(k) Ill < 1, we have II/11 < 1, and by
Theorem 5.3 both the Riemann-Hilbert problem and the Fredholm integral equation
are uniquely solvable.

6. Solution of the inverse problem. Once the Riemann-Hilbert problem
posed in (2.9) is solved by solving the Fredholm integral equation (3.10), we obtain
f(k,x, ) given in (3.2) using (3.8) and (2.8). From the SchrSdinger equation (1.1) we
then obtain the potential as

(6.1) V(x) (A + 2ikO. V)X+(k,x, O)
+ x+(k,x,o)

Note that the right-hand side of this equation contains 0 and k whereas these two vari-
ables are absent from the left-hand side. Hence the solution of the Riemann-Hilbert
problem will lead to a potential only if the right-hand side of (6.1) is independent of
0 and k. Below we show that if the so-called miracle condition [2] occurs and the
Riemann-Hilbert problem has a unique solution, then the right-hand side of (6.1) is
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independent of and k and becomes equal to a potential function of x. In the absence
of bound states the proof has been given in [17], and here we give the proof when the
bound states are present.

From (2.10) we have

(6.2) X+(k) ra(k) + [II(k)- I]i + [II(k)- I]X_ed(k)
where we have again suppressed the x-dependence of X+ (k) Xred

+ (k), and H(k). Defin-
ing

1 /5 dkX+(k) e(6.3) r/(, x, O)
__c

oa(, , ol exa(-,
1 fa(, , o e [n( I] -,

we can take the ourier transform of (6.2) o obtain

(6.4) y(a, x, 0) red(, X, 0) + a(, X, 0)i + da( , X, 0) red(, X, 0).

Note that X+(k) O(}) as k and is analytic in C+; H(k)- I O(})
as k and is analytic in C-. As a result, red(a,X, 0) 0 for a < 0 and
(a, x, 0) 0 for a > 0. Thus, we can write (6.4) as

(6.5) (, x, O) red(, X, O) + da(a , x, O) red(, X, 0), > O,

(a.a) (,, o) a(, , 0)i + aa( ,, o)a(,, o), < o.

In the Newton-Marchenko inversion theory [4], the potential () is obtained from
(6.) and (6.6)as

V() =-20. V lim [(, 0)- (-, 0)]
0+

(6.7) =-20. V lim [red(a,X 0)- (a X 0)]i
0+

provided the righ-hand side is independent of 0; his 0-independence is known as
he "miracle" ideniy of Newton [4]. If he miracle occurs and he Riemann-Hilbert
problem (2.9) has a unique solution, (,z, 0) satisfies he equation

(6.8) [A-2 ]oo. v- V(x) (,x,O) o.

Then we would like to show that (6.7) and (6.8) imply (6.1). To see this, note that
from (6.3) we have

O(a x O)
ikX+(k) lira [(-a,x,O) (a,x,O)] daek

aO+ 0

Thus, using (6.7) and (6.8) we obtain

[ + io.- v(l]x+( ()+ e o " v(l (,,o.
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From this last equation, it is seen that (6.1) is implied by (6.7) and (6.8); hence, when-
ever the miracle condition of Newton is satisfied and the Riemann-Hilbert problem
has a unique solution, the potential of the SchrSdinger equation is given by (6.1).

Remark that whenever the scattering operator S(k) is known to have a corre-
sponding potential, it is guaranteed that the right-hand side of (6.1) is independent
of k and . As a consequence, any of the statements in Theorem 5.3 is sufficient to
guarantee that the right-hand side of (6.1) is independent of k and .

7. Concluding remarks. The results of this article remain true for any real
measurable potential V(x) on R3 without real exceptional points that leads to a
scattering matrix S(k) such that S(k) I is compact for all k E R and ()
S(i(1 / )/(1- )) is HSlder continuous in on T. In that case we may generalize our
results here to potentials on R’ with n _> 2.

Acknowledgments. The authors are indebted to Roger Newton for his com-
ments.
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THE INVERSE EIGENVALUE PROBLEM WITH FINITE DATA*

DAVID C. BARNESt

Abstract. This work is concerned with the inverse eigenvalue problem for ordinary differential
equations such as y + (:k- q(x))y 0 and with some higher-order generalizations. A classical,
well-known inverse problem is to reconstruct the coefficient function q(x) in the differential equation
using only spectral data, say An(q). Most treatments of this subject require an infinite amount of
data which, of course, requires asymptotic formulae for the eigenvalues. Unfortunately, such formulae
are sometimes very difficult or impossible to obtain. This work considers a different kind of inverse
problem which ignores asymptotic formulae and uses only a fixed and finite amount of spectral data.
The central problem considered in this paper is that of extracting from the finite amount of spectral
data as much information as possible about the coefficient function q(x).

It turns out that to understand such problems, it is necessary to examine the topological foun-
dations of the continuity properties of the eigenvalues. This is done in 1. Based on these continuity
theorems, a general theorem is given proving the convergence of some numerical approximations to
the solution of the finite inverse problem.

In 2 a numerical algorithm for approximating a coefficient function using only a finite amount
of spectral data is given. The method works by minimizing the 12 norm of the difference between
the eigenvalues i(q), 1, 2, 3,..., N and the spectral data.

Key words, inverse problem, eigenvalue problem, continuous dependence

AMS(MOS) subject classifications. 35B25, 35J25

(1)

1. Formulation of the finite inverse problem.

1.1. Introduction. Consider the eigenvalue problem

a yPy" + (, q(x))y 0
ay(O) + 2Y (0) + a3y(1) + a4 (1) O,

b ’(0) + b3y+ + o.

We suppose that this is a self-adjoint problem and we denote the eigenvalues of (1)
by An(q). Let q*(x) represent the unknown coefficient function and suppose spectral
data (A1, A2,...) are given so that n(q*)

There are (at least) two inverse problems which could be considered for this
equation. The first, we call the infinite inverse problem; it consists of determining the
function q(x) given either an infinite amount of spectral data An(q), n 1, 2, ...,
or at least enough data together with an asymptotic formula which may be used to
approximate an infinite amount of data.

Various works have considered the problem of reconstructing q(x) in such cases.
The review article by McLaughlin [7] and the references given there provide many
examples of such inverse problems. For example, Hald [4] has shown that if two
functions q and q* are close enough together and if both q and q* are symmetric,
q(x) q(1 x), then

(2) IIq q*l[ -< 2.10s+3sM+IM E IAk AI"
k--O
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Therefore, if the eigenvalues An (q) are close enough to those of q* then the functions
q and q* are close in the I1" I1 norm. This shows that (for symmetric functions) the
information contained in an infinite amount of spectral data does, in fact, contain a
uniform approximation to the unknown function q* (x). We will see that the situation
is very different for the finite inverse problem. Although (2) is an interesting result,
it is not useful for actual numerical estimates since for even small values of M (say
M 1) the constant in (2) is of order 1057.

Another result of this type does not require the symmetry condition on q(x) but
uses the norming constants for (1) which are defined by Pn(q) IlYnl122/y’n(O). If q is
close enough to q*, then McLaughlin [8] has shown

c

(q(x) q* (x))2 dx <_ K

_
[(An(q) An(q*)] 2

n--1

+ n6 [Pn(q) Pn(q*)] 2

This result shows that, even without the symmetry condition on q(x), an infinite
amount of spectral data together with all of the norming constants still contains
enough information to reconstruct an L2 approximation to q* (x). The result of Sacks
[10], which proves the L2 convergence of certain numerical approximations to q*(x),
is also of this general type.

These results can only be used if we have an infinite amount of data or, at least,
an asymptotic formula and a sufficient amount of spectral data to make good approx-
imations to the infinite data. In some cases, neither is available. This leads us to
consider a second kind of inverse problem which we call the finite inverse problem.
Here, we assume that only a finite amount of data has been collected and that asymp-
totic formulae are not available. Clearly, such an inverse problem cannot be solved
uniquely since the set of all coefficient functions q(x) is infinite-dimensional, whereas
the set of vectors A (A1, A2, ,AN) is finite dimensional. Therefore, we under-
stand that to solve such a finite inverse problem simply means that we must produce
a function q(x) which has the correct spectral behavior. That is, An(q) An(q*)
for n 1, 2, 3,..., N. We must then provide a proper mathematical foundation and
interpretation of the results. In particular, we need to know if this process produces
an approximation to q*(x) in some suitable topology. If it does, we need to know
something about the topology used and how accurate the approximation is. Theorem
1.2 provides a partial answer to this need. It shows that under certain conditions,
as Nec, the approximating function q(x) converges to q*(x) in a certain topology.
In addition, Theorem 1.1 indicates what kind of variation in the solution of such an
inverse problem is still possible even after all of the requirements of a finite amount
of spectral data have been satisfied. These results provide a proper mathematical
foundation for the finite inverse problem.

Seidman [11] has studied a similar kind of finite inverse problem. He showed
that if a sequence qN satisfies An (qk) Ak for k 1, 2, 3,..., N and if a certain norm
[IqN[[. is minimized over some class of functions, then qN--q* in a.certain topology on
the class of functions. This is analogous to the classical spline interpolation problem
for real functions. Theorem 1.2 is also of this type. However, using the compactness
of the class C(H) gives a much easier proof and it does not require the minimizing
of a norm to achieve convergence of the interpolating sequence. Of course, such a
minimizing condition could be tacked on to Theorem 1.2 if desired. We will also show
that the topology used is stronger than that used in [11] so that Theorem 1.2 gives a
better approximation to q*(x).

One of the tools we will need is the following variational characterization of the
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eigenvalues using the Rayleigh quotient [3], [12]. Let be a self-adjoint operator
defined on a dense subspace D of a separable Hilbert space. Suppose that the lower
part of the spectrum of consists of isolated eigenvalues ,kl < ,k2 < ,k3 < ..., each
having finite multiplicity. Let y denote the eigenfunction corresponding to A and let
n be the subspace spanned by the first n eigenfunctions y, y2, "", Yn. Let Yn be
any other n-dimensional subspace of D. It follows that

(3) n< max and = max

1.2. The topology of the finite inverse eigenvalue problem. A crucial part
of the theory of the finite inverse problem is concerned with a norm . 2L which we
define by

(4) IIqlIL q(x) dx + q(x) dx dx + q(x) dx dx2 dx.
JoJo

The link between the 2L norm and eigenvalue problems is provided by the following
theorem.

THEOREM 1.1. Let An(q) denote the nth eigenvalue of (1). There is a constant
Kn(H) (which depends only on n and H) such that for any q, q2 C(H) we have

_< Kn(H)IIq (s)

We will give the proof in 1.3 below. From this, it follows that small changes in the 2L1
norm will produce small changes in the eigenvalues. However, it is vital to notice that
the modulus of continuity depends on n. Roughly speaking then, the only information
about q which can be extracted numerically from a finite number of eigenvalues is an
L approximation to the expression f f q(s)ds dr. Thus any numerical method that
attempts to reconstruct, as its final product, a pointwise approximation to q(x) using
a fixed amount of spectral data will, implicitly, hinge on taking two derivatives of
an L approximation to f f q(s)ds dr. This stands in sharp contrast to the results
dealing with the L2 norm (and even the L norm) quoted above, which use an infinite
amount of data.

To see how very different all of these norms really are and just how sharp this con-
trast is, consider a perturbation in q* (x) of the form Aq(x) A cos Bx so that q(x)
q*(x) + Aq*(x). A simple calculation shows, for large A and B, that IIAq*(x)ll2tl
O(A/B2). Thus, even if A is quite large, the size of the perturbation A cos Bx will
be very small in the 2L norm if only B is also large. This is somewhat like the
Riemann-Lebesgue lemma, in that, if the positive and negative oscillations tend to
balance out, then the overall effect will be small. On the other hand, if A is large,
then Aq*(x) will be large in the L2 (or especially the L) norms no matter what
B is. Unfortunately, any candidate for q*(x) (perhaps obtained using some numer-
ical approximation method) could be perturbed in this way and it would still be a
good solution to the finite inverse problem. The penalty for dealing with only a finite
amount of data and ignoring the infinite amount of high frequency spectral data is
that we must put up with such high frequency noise in the determination of q* (x).

We will show later that, depending on how smooth q is, the eigenvalues may even
be continuous in topologies much weaker than that defined by the 2L1 norm. Thus
we may actually know even less about q*(x) than a 2L1 approximation. Of course,
we should use the weakest topology in which all the eigenvalues are continuous since,
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otherwise, we would be attempting to extract more information from the spectral data
than it contains. This may very well result in ill-conditioned numerical procedures.
However, this weak topology seems to be very difficult to determine exactly. In this
work, we give some approximations to it.

Next, we will present a general convergence theorem which applies to the nu-
mericM solution of both the finite and infinite inverse eigenvalue problems. We first
discuss the infinite inverse problem. Given a constant H, let (?(H) be the set of all
functions q(x) which satisfy Iq(x)l <_ H and let ,.q be the set of all infinite sequences
(1,)2, 3," ") of numbers. Define a mapping

C(H)-S by (q) (Al(q), A2(q), A3(q)," "),

and use the brief notation )(q) (A(q),A2(q),)3(q),’"). Let S(H) C ,.q be the
range of . Define a topology on ,S(H) using the component-wise convergence criteria
)(qj)-A(q*) if and only if, for each n, in(qj)in(q*) as j-oc. We now topologize
(H) using the weakest topology in which all the eigenvalues are continuous. This
simply means that qjq* as j--,oc if and only if An(qj)--*in(q*) for each n.

We say that a sequence qg interpolates to the spectral data An(q*) if, for each
N, there is an eg such that

for 1, 2,... ,N and N---+0 aS Noc.

The theorem uses the 1Max norm which is defined by

(6) IlqllxM = max Zq(t)dt]
THEOREM 1.2. Given an eigenvalue problem and some spectral data An(q*),

suppose that the inverse eigenvalue problem has a unique solution. That is, given
any two coefficient/unctions q and q2, i/An(q) An(q2) for all of the data then it

follows that q q2. Let qg be any sequence o/functions which interpolates to the
data An (q* ). Then

IlqN q*lllMa"0 as

Furthermore, the range space $(H) is compact in the topology of component-wise
convergence.

Proof. Consider the set of all functions Q(x) f q(t)dt for q (:(H). Such
functions Q(x) will satisfy the Lipschitz condition IQ(x)-Q(y)l <_ HIx-yI. Applying
the Ascoli theorem shows that the space C(H) is compact in the 1Max norm. We will
show below that the eigenvalues are continuous functionals in the 1Max norm. Let
qN denote a convergent subsequence, say qN--. Then, if Nk >_ n, it follows that
IAn(qNk)- An(q*)l < Nk" Letting koc gives An(’) An(q*). Uniqueness implies
that q* ’, so every convergent subsequence converges to q*. Thus the original
sequence qg must converge to q*.

We will now show that $(H) is compact. Unique solvability of the inverse problem
implies that the mapping has an inversemsay ,.q(H)(H). Since and are
one-to-one, the weak topology induced on (:(H) by and the strong topology induced
on C(H) by are the same and both and are homeomorphisms [2]. Since C(H)
is compact in the 1Max topology, which is stronger than the weak topology, it follows
that C(H) is compact in the weak topology. Thus ,.q(H) is also compact. D
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The theorem shows that an interpolating sequence converges. In fact, it shows
that an infinite amount of spectral data contains a uniform approximation to f q* (t) dt
having arbitrarily high accuracy, however, the results [8], [4] show that such data ac-
tually contains much more than this. Our previous remarks regarding the information
content of a finite amount of spectral data are, of course, still valid, since this theorem
may require an arbitrarily large amount of data to produce such an approximation to

f q(t)dr. Even with such a large amount of data, this uniform approximation must
still be differentiated in order to construct a pointwise approximation to q(x).

Consider again the perturbation Aq*(x) A cos Bx. It is easy to see that by
choosing appropriate constants A and B, an example can be constructed which is
small in the 2L1 norm but is not small in the 1Max norm. Even after the spectral
data has been satisfied, a good 1Max approximation to q*(x) may not be obtained.
However, Theorem 1.2 provides a (perhaps rough) 1Max approximation to q* while
Theorem 1.1 shows how much variability is still left in the unknown function q*(x)
after using a finite amount of the data. In this sense, we have upper and lower
bounds on the information content of the spectral data. Some of these compactness
and continuity ideas have been used by Krein [5] to prove the existence of certain
functions which maximize an eigenvalue.

We will now consider the finite inverse problem. Since the solution of this inverse
problem is not unique, we must consider the isospectral equivalence classes on C(H).
Call this set of classes .N(H). Theorem 1.2 shows that if the infinite inverse problem
has a unique solution then the diameter (as measured in the 1Max norm) of each
equivalence class tends to zero as N-. Now N(H) inherits a natural topology
from C(H), and there are natural extensions of (I) and to this context. These
extensions will be both continuous and one-to-one. Thus, CN(H) is homeomorphic
to a subset of ordinary N-dimensional Euclidian space. This determines the weakest
topology on CN(H) in which the eigenvalues are continuous. Unfortunately, knowing
the topology on CN(H) still does not easily translate into usable conditions on the
coefficient functions q which, of course, belong to C(H), not to CN(H). The following
section considers this very difficult problem.

1.3. Approximating the weak topology. We are now interested in extracting
from the spectral data whatever information it contains about q*(x). Theorem 1.2
may provide only a rough approximation to f q(t)dt since we may not have the
data to take N large enough. It would be best, of course, if we could completely
characterize the weak topology on (H) in terms of conditions on the functions q(x).
This seems to be very difficult to do, but we will give some partial answers. First, we
will give the proof of Theorem 1.1.

Proof. Let bin(q) denote the space spanned by the first n-eigenfunctions of (1)
and use the notation Aq(x) q(x)- q2(x), A,n ,(q)- )(q2). Integrating by
parts, we see that
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We will show below that there is a constant Kn(H)such that for all x E [0, 1], for all
functions q E g(H), and for all functions y b/n(q), it follows that y2, y’2, and y"2
are uniformly bounded by some term of the form Kn (H) f3 y2 dx. Substituting these
bounds into the integration by parts formula and using (3) to compute the Rayleigh
quotient for (1), we find that

ix=l /o_yy 4- y2 q2(x)y2 dx
x--O

y2 dx

Ix=l /01_yy, + y,2 ql (x)y2 dx
x--0<_ +Kn(H) IIAqlIL.

d

Next, take the maximum over all functions y L/n(q) and use the inequality (3). We
find that An(q2) <_ )n(q) / Kn(U)I]AqlI2L1. This inequality, together with the one
obtained by reversing the roles of q and q2, gives (5).

We need to prove the uniform boundedness property of y, y, and y" for all
y l,[n(q). Let Yn be an eigenfunction of (1) and suppose that (y, y) (yn, yn) 1.
We see that

(7) ly ’(x)l Yn’() + yn"(s) ds q(s))yn(s)l ds.

If Yn is not a monotone function, then we will select to be some point for which
yn() O. Otherwise, we may assume that yn is an increasing function and there
is a number m for which y(x) >_ m > 0. It follows that there is some number c for
which y2(x) _> m2(x c) 2. Thus, 1 f y2n dx >_ f m2(x 1/2)2 dx m2/12 with
equality when Yn m(x- 1/2). Therefore, we must have m < 4. In this event, we
select to be some point for which Yn’() < 4. In either case, we obtain lyn’(x)l g

4 / f I(- q(x))yn(s)l ds. Since Iq(x)l <_ H, it follows that An(q) is uniformly
bounded, so the Schwarz inequality shows that lyn’(x)l is uniformly bounded. Thus,
lYnl is uniformly bounded and (1) shows that y is also uniformly bounded. Since y
is normalized and is a linear combination of the functions Yn, the theorem follows. [3

It is well known (see [7] and the references given there) that two different sets
of eigenvalues corresponding to different boundary conditions are sufficient to deter-
mine q*(x) uniquely. Furthermore, the results of McLaughlin and aundell [9] show
that if a fixed eigenvalue--say A2(q*)--is known for an infinite number of distinct
boundary conditions of the form y(0) y’(1) 4- y(1) 0, then the function q*(x) is
uniquely determined. However, the constant Kn(H) of Theorem 1.1 is independent
of the boundary conditions. It follows that no finite amount of spectral data corre-
sponding to any number of different boundary conditions can reproduce an accurate
pointwise approximation to the coefficient function q(x). At most, the only informa-
tion contained in such data is an L1 approximation to f f q(t)dt ds together with

approximations of the two quantities f q(x) dx and f f q(s) ds dx.
Incidentally, it is easy to see that approximating these two quantities is equivalent

to approximating the two Hausdorff moments f q(x)dx and f xq(x)dx. That is,
the norm

(s) Ilqll2H + fo !/oxq(x) dx 4-
Jo

q(x) dx dx2 dx

Throughout this work, "uniformly" refers to a property which holds for all functions q E C(H)
and for all of the functions y bln(q), not just uniformly for x [0, 1].
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is topologically equivalent to the norm ]lql]2L1. Furthermore, if boundary conditions
for which either y or y vanish at the endpoints are used, then the boundary terms in
the integration by parts formula drop out. Thus, the first two terms in the 2L1 norm
may be negelected and the much simpler norm

Ilqll,i.., q(xl) dxl dx2 dx
JoJo

may be used.
Next, suppose that the coefficient functions q are all of uniformly bounded varia-

tion. This is only a slightly stronger assumption and still includes most of the appli-
cations of the inverse problem. It follows that yn" will also be of bounded variation
and that we may now integrate by parts a third time to obtain

Aq(x)y2(x)dx=y2(1) Aq(x)dx y2’(1) Aq(x)dxdx2
dOdO

+ y2,,(1) Aq(x) dx dx2 dx3

We will now use the nor defined by

Ilqll:: q() d: + () d, d +x A() d,dd.
0 0 do

Not tt Ilqll:, S Ilqll:,. It is then esy to proe the foilowint theorem.
THEOREM 1.3. Let V be a constant and lt 7(H, 7) dnot th class ollunctions

q 7(H) which have total variation at most V. Then there is a constant K(H, V)
such that, ]or any ql, q { 7(H, V), it ]ollows that

(9) I:(qx) :(q)l S Kn(H, V)llq q2113M::.

Thus, we see that a finite amount of spectral data can yield, at most, an ap-
proximation to the first two Hausdorff moments and a uniform approximation to the
quantity f f f q(z) dz dt ds. Generating a pointwise approximation to q(x) requires
taking three derivatives of this uniform approximation.

If we use the subset of (H) consisting of coefficient functions q which have
bounded derivatives--say Iq’(x)l < Hmthen we can prove that

[A,(q) )n(q2)] _< Kn(H, HI, Y).llq q2il3L

where

q(x) dx Lf2 q(x) dxl dx2
Jo

4-
o o

q(x) dx dxg. dxa z4i3i2 q(x) dxl dx2 dx3
JO JO

dx4.

Generating a pointwise approximation to q(x) requires taking three derivatives of an

L approximation to f f f q(z)dz dtds. Thus, we see a hierarchy of continuity
conditions building. As q becomes smoother, we can build weaker topologies. We will
investigate this idea further.
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1.4. Some connections with weak convergence and other topologies.
Define a norm similar to (4) but using only one integration by parts,

q(x) dx q(xl)dxl dx.

It is easy to show that IIqII2z <- 21IqIIiL. Thus, the norm IIqII2z is weaker than
IlqlliL1. More generally, if the coefficient functions have N- 2 uniformly bounded
derivatives, then we can integrate by parts N times. Considering an appropriate
norm Ilqll(g+2)L1 will then give continuity of the eigenvalues in a whole sequence of
weaker topologies. If q is analytic, the process can be continued forever to give an
infinite sequence of ever weaker topologies.

The norms used in these continuity results can be related to the concept of weak
convergence using some fundamental facts of measure theory. For example, the fol-
lowing theorem holds.

THEOIEM 1.4. Let q, an e C(H). The sequence f qn(t)dt converges pointwise
to the function f q(t) dt if and only if (qn, g)-(q, g) .for all functions g e L2[0, 1].

The proof of this theorem hinges on taking g(x) to be the characteristic function
of the interval [0, x]. Therefore, the topology of weak convergence of qn (x) fits between
the topologies defined by the two norms f3lf q(t)dt dx and max f q(t)dt I.

Construct a topology T on t:(H) so that convergence of the sequence qn(x)-,q(x)
Vmeans that (qn, G)-(q, G) for every function G which satisfies fo G2 + 2 dx < oc

One of Seidman’s [11] results is that the eigenvalues are continuous in the topology
T. We will now show that the 2L norm defines a topology weaker than T and that
the 1Max norm is stronger that T.

Let g e L2[0, 1] and set G(x) f: g(t) dr. We see that (qn, G) (f qn(t) dr, g).
Thus, if qnq in the topology T, then f q,(t)dt converges weakly to f q(t)dr. By
Theorem 1.4, f f qn(t) dtdx converges pointwise to f f q(t) dtdx. Pointwise
convergence implies L convergence in C(H). Thus convergence in T implies conver-

gence in the norm f3lf qn(t)dt dx[ dx. Furthermore, we may take G 1 and
G x to show that

qn(x) dx q(x) dx and qn(x)dx dx2 q(xl)dx dx2.
J0

We now make use of (8) to finish the proof. Thus, Theorem 1.1 shows continuity of
the eigenvalues in a topology weaker than T. Theorem 1.4 can be easily adapted to
show that 1Max is stronger than -.

1.5. More general second-order equations. We may also apply these meth-
ods to the self-adjoint equation

(10) y" + Ap(x)y O, aly(0) + a2y’(0) + a3y(1) + a4yt(1) 0,
by(O) + b2y’(0) + b3y(1) + b4y’(1) 0.

We will need to use a slightly different class of coefficient functions p(x) that are
defined by

C(H1, H2)-- {p(x) H1 <_ p(x) <_ H.} where H > 0.

We have the following theorem.



740 DAVID C. BARNES

THEOREM 1.5. Let An(p) denote the nth eigenvalue of (10). There is a constant
Kn(H) which depends only on n, Hi, and H2 such that for any pl, p2 e C(H1,H2)
we have

(11) IAn(pl) An(p2)l <_ Kn(H) IlPl(S) p2(S)II2L1

Proof. First, we consider the Rayleigh quotient, Q(p, y) (Ay, y)/(y, y), for (10).
A short calculation yields

A further calculation yields

(,) 01 x=l

lP(x)y
2 dx

Ap(x)y2 dx
Q(Pl, Y)= Q(P2, Y) 1 + where Ap(x)= p2(x)- pl(x).

o
p (x)y dx

Next we develop an inequality for Ap(x) jus like we did for q() in l.a. I follows
tha there exists a constan A such that, uniformly for all functions ,

i i y2 dx.Ap(x)y2 dx AAp(x)2L

Using this and the relation p (x) H, we see that

Q(Pi,Y) (p2, y) 1 + llnp(x)lluL
Applying the variational relation (3), we find that

An(pi) An(p2) 1 + IIP(X)II2L
This result together with the one obtained by reversing the roles of P2 and p can be
easily manipulated to finish the proof.

Next, we will apply these methods to the equation

au(0) + ar(0)U’(0) + au(i) + a(i)(i) 0,(12) (()U’)’ + U 0, U(0) + (0)U’(0) + U(1) + r(1)U’(1) 0.

We assume that this is a selbadjoint system. Integration by parts may be used on the
expression f3 y2Ar(x)dx just as in Theorem 1.2. In this case, y will be continuous
but y’ will have discontinuities if r does. We must also take account of the values
of r at the endpoints since they occur in the boundary conditions. Given constants
H, h, V, A, B, let be the class of functions r(x) which satisfy the following conditions:

1. H r(x) h > O.
2. r(x) has total variation at most V.
3. r(x) has given values at the endpoints, limlor(x A, limz r(x) .B.
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Using the 1Max norm we obtain the following theorem.
THEOREM 1.6. Let An(r) denote the nth eigenvalue of (12). There is a constant

K Kn(U, V, h) such that for any rl, r2 E Tt(H, h, V), it follows that

(13) IA(r)- A(ru)l

_
Kilr- r2111Max.

Proof. Let Yn be the nth eigenfunction of (12). For any x, E [0, 1] we see that

(14) r(x)yn’(X) r()yn’() + (r(s)yn’(S))’ ds r()yn’() Ayn(S) ds.

Either the term r()yn’() is of one sign or not. If not, we may assume r()yn’() 0
for some . If it is of one sign, we may assume that r()yn’() >_ m > 0 for some
constant m. As in Theorem 1.1, it follows that m2

_
12H2. The uniform boundedness

properties follow from this and (14). We note that the differential equation shows

r (0)y’ (0) Ay(s) ds

Since r(x) is of uniformly bounded variation, this equation shows that y is also of
uniformly bounded variation. So the following Stieltjes integral formula is valid:

Yn (Ar(x))dx (y2)(1) (Ar(x)) dx Ar(x) d(y2).

We now use this formula and the bounds on y to construct the Rayleigh quotient for
(12) and obtain the relationship

y
x--1 o--yrl +
x--O

rl (x)y’2 dx

y2 dx

ix=l jOr y2--Y 2Y + r2(x) dx
x--0

001
y2 dx

+g

The theorem follows, using (3). F1

It is clear that these three examples can be extended to obtain theorems dealing
with the most general Sturm-Liouville equation (r(x)y’)’ + (Ap(x)- q(x))y O. It is
also clear that Theorem 1.2 can be generalized to include these equations.

1.6. Higher-order equations. Consider the fourth’order equation

(15) y’"’ (A- q(x))y O.

Suppose that four boundary conditions are given and that the resulting problem is
self-adjoint. Since the eigenfunctions of such an equation are necessarily smoother
than those for the second-order case, we may integrate by parts more times and
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obtain continuity in much weaker topologies. The required formula is

The new norm is given by

Methods like those used for Theorem 1.1 yield the following theorem.
THEOI%EM 1.7. Let An(q) denote the nth eigenvalue of (15) subject to seli-adjoint

boundary conditions. Then there is a constant Mn(H) such that, for any qi, q2 E
C(H), we have

(16) I)-(q) ,,(q2)l < M,(H)IIq qllLi.

The constant Mn(H) is independent of the boundary conditions.
If we are willing to assume that the coefficients are of bounded variation, then

we can integrate once more and imitate the procedure given in Theorem 1.2 above.
Thus, the only information contained in a finite amount of spectral data for this fourth-
order problem is a uniform approximation to the quantity f0 f f f f q together with
approximations to the first four Hausdorff moments. Reconstructing a pointwise ap-
proximation to the coefficient function implicitly requires the numerical computation
of five derivatives of this uniform approximation.

A generalization of Theorem 1.2 can also be obtained for higher-order equations.

2. Solving the finite inverse problem. We will now provide a numerical
method for solving the finite inverse problem. We will also give a few examples
and an analysis of the method. We will only consider the second-order equation (1) in
any detail, although the methods will work for the general equation Sturm-Louville
equation.

(17) (r(x)y’)’ + ()p(x) q(x))y O, ay(O) + a2y’(O) + a3y(1) + a4y’(1) O,
bly(O) + b2y’(O) + b3y(1) + b4y’(1) O.

The spectral data need not consist of the eigenvalues corresponding to one set of
boundary conditions listed in increasing order. The data may, for example, consist of
eigenvalues corresponding to several different sets of boundary conditions interlaced
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in some manner or, perhaps, data like that considered by McLaughlin and Rundell

This method works by minimizing the norm IIA- A(q)ll2 so that, if the inverse
problem has nonunique solutions, then we can still produce an approximation to one
of them. Even if there is no solution at all, then our method may produce a function
which minimizes the norm IIA-A(q)II2. We will need the following variational formula
for the functionals A(p, q, r) given by Barnes [1].

THEOREM 2.1. For coefficient functions p, q, r and p*, q*, r*, let y,A and
y, be corresponding eigenpairs for (17). Suppose that y is normalized so that

.* *2
P Yi dx 1. For two sets of coefficient ]unctions p*, q*, r* and p, q, r define a

functional J(p, q, r) on the set (H) and define a boundary term BT by

(18)

Then

J(p, q r) ,2 ,2 ,’21[Aipyi +qyi -ryi ldx,

r * * *’ *1x-1BT=r*y y- yiy -r y y
x--0

(19) Ai(p, q, r) Ai(p*, q*, r*) + BT J(p, q, r) + 02,

where the term 02 is defined by

* , , ,’02 P*YAiAyi / iyi ApAyi / yi AqAyi --Yi ArAy] dx.

This theorem shows that the two functionals A(p, q, r) and A(p*, q*, r*) + BT-
J(p, q, r) are tangent to each other at p p*, q q*, and r r* when considered as
functionals depending on (p, q, r).

2.1. Minimizing the norm ]]A-,,(q)]]2. In order to simplify the presentation,
we will restrict the following study to the simple equation (1) together with boundary
conditions for which either y or y’ vanish at both ends of the interval. However, it
would be easy to generalize to other cases. Theorem 1.2 requires a sequence qg(x)
which interpolates to the data. We will look for one in the class (M,H) of all
functions of the general form

M

(20) q(x) Z khc(x) with ]q(x)] <_ H.
k=l

Here, the hk(x) can be any conveniently chosen basis functions and the k are
constants. With this kind of representation we will sometimes use the notation
A(q) A(f) where f (1, 2,’", M).

For a given value of N, we will select a value of M (usually M > N) and take qv
to be a solution to the problem

M

(21) min IIA- A(q)ll2 IIA- A(qv)ll2 where q*N(X) hk(x).
q6C(M,H)

k=l
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Such a function always exists since there are only a finite number of the/k. If the
inverse problem does in fact have a unique solution, and if N-.c, then the sequence
of minimums must approach zero. It follows that the functions qv interpolate to the
data. Therefore, qq* in the 1Max norm. If the solution of the inverse problem
exists but is not unique, then the compactness of C(M, H) shows that a convergent
subsequence of qv can still be selected. Even if there is no solution of the inverse
problem, there will still be a subsequence which will converge to some function which
gives (at least a local) minimum to the norm IIA- )(q)l12. Under the circumstances,
this gives the best possible solution of the inverse problem.

The choice of M should be made large enough to allow q*N(X) to approximate
q*(x), which will make the norms (21) small. On the other hand, M should not be so
large that it becomes difficult just to evaluate qv(X). According to Theorem 1.2, it
does not make any real difference how large M is since we will always have at least a
subsequence of qv converging to q*. In the numerical examples given below, selecting
a value of M in the range N <_ M < 2N seems to work well. We will give additional
reasons for this choice later.

We will now show how to minimize the norm IIA- X(q)l12. We first use (20) and
(21) in the variational formula given by Theorem 2.1 to obtain the principal linear
part of the eigenvalue functional )i(q) in the form

)i(q) Ai(q*) q*(x)y2 dx / q(x)y2 dx / 02,

(22) M M

Ai(q) Ai(q’)-E hk(x)Y2 dx / Ek [ hc(x)y2 dx + 02.
k=l Ju k=l ,]u

We now recast these equations in matrix form. Let data A (A1,A2,...,AN) be
given and let y}2 be the eigenfunctions corresponding to A(fv) and define a matrix
F and a vector R by

(/0 )(23) F hk(x)y2 dx R A- A(*N) / F*N.
NM

We see that

(24) A(f) A(f*) rf* + r + o.
We will now substitute this equation into the norm function. This converts the

problem of minimizing a quantity involving the difficult functional )i(q) into a se-
quence of simple least squares problems. The mathematical details of this conversion
are based on the following theorem.

THEOREM 2.2. For fixed values of N, M, let *N be an approximate solution of
the inverse problem in the sense that it minimizes the norm IIA- A(f)ll2. Then the
choice D*Y also minimizes the norm Iltl- FII2. That is,

(25)

Conversely, if some vector D*g satisfies the minimum condition (25), then it must be
an extremal of the norm IIA- )(f)l12.

Proof. Using (24), we find that

(26)
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Equation (26) shows that the two norm functions are tangent to each other at D Dv.
The converse part of the theorem follows easily. Assuming that Dv is an extremal of
the norm IIA-,k(D)ll2 it follows that Dv is also an extremal of the norm
However, this norm is a nonnegative quadratic form in the components of fi. It can
not have a maximum, so Dv must be a minimum for it.

Except for the fact that both F and/ depend on Dv, it would follow that (25)
is a simple least squares problem. As it is, finding a vector Dv which satisfies the
minimizing condition is more difficult. Even so, we will set up an iterative scheme
which can solve for such a vector having the required properties.

First, we pick an approximation to v--call it v,lmand solve the eigenvalue
problem for Ai(Dv,1), and the corresponding eigenfunctions. These quantities are then
approximations to A(Dv) and y, so we use them in (23) to compute approximations
to F and to C. Call them F and C. We then let Dv,2 be the solution of the linear
least squares problem of minimizing IIC- FDII2 over all D. This gives a better
approximation to D*. Continue this iteration process.

In view of the compactness of C(H), the method must at least produce a conver-
gent subsequence. It may not, however, produce a truly convergent sequence since
there will always be infinitely many solutions q(x) of the equations A(q) A for

1, 2,..., N, and it is possible that the sequence may oscillate among them. Note,
however, that the convergence of the method comes from Theorem 1.2 by letting
N--.. Although it may seem strange, it is not necessary for the intermediate itera-
tions producing the values of Dv,k to converge.

2.2. On the numerical conditioning of the finite inverse problem. The
fundamental difficulty with the inverse eigenvlaue problem is caused by the fact that
the eigenvalues are continuous functionals in some very weak topologies. However,
we will now show that the inverse problem is, in fact, well conditioned if the validity
of the solution is measured in terms of the proper topology. In order to simplify the
presentation, we will deal only with boundary conditions for which either y 0 or
y 0 at both ends of the interval, although the methods can be generalized to cover
the case of arbitrary self-adjoint boundary conditions.

The proper topology really means the smallest topology in which the eigenvalues
are continuous functions. It seems very difficult to characterize this topology; how-
ever, a good approximation to it is the one defined by the 2L1 norm. As noted above,
the only information contained in a finite number of eigenvalues is a 2Lt approxima-
tion to q* (x). Therefore, based only on spectral data, we should not even attempt to
reconstruct an approximation using the 1Max norm, much less a pointwise approxi-
mation. Rather, we should only attempt to reconstruct an L approximation to the
function Q(x) given by Q(x) f f q(z) dz ds.

We may then change our viewpoint a little bit and consider the eigenvalues to
depend on the function Q(x) instead of q(x). We therefore write Ai Ai(Q) rather
than Ai Ai(q) to indicate this change in perspective. The direct eigenvalue problem
now consists of calculating the eigenvalues ,k, given the function Q(x), while the
inverse problem is that of finding Q*(x), given spectral data A A(Q*). We will
now show that the numerical behavior of this new problem based on Q(x) is quite
different from the behavior of the original problem based on q(x). Both the direct
and the inverse problem for Q(x) are numerically well conditioned!

In order to investigate the conditioning of the inverse problem, we will suppose
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that the functions Q(x) and q(x) are both expressed in the same general form:

M M

Q(x) Z akBk(x), q(x) Z kBk(x).
k=l k-i

Any convenient set of functions Bk(x) could be used for the basis; however, in order to
avoid generalized functions (which, of course is not absolutely necessary), the functions
Q(x) must have piecewise continuous second derivatives. We will now consider the
variation in the eigenvalues with small changes in the parameters ak and k. We first
integrate by parts twice in (22) to obtain the following relation:

(27)
]01 ]01Ai(Q) Ai(q*) q*(x)y2 dx / Q(x)(y2)’’ dx -t- 02,

N

Ai(Q) -,i(q’) fo q*(x)yi2dx / Zak Bk(x)" 2,,,* (yi) dx / 02.
k--1

We now appeal to a version of (22) which uses the basis Bk(x) and to (27) to take
derivatives. We find that

o)(Q) f o(q)
(2s) Sk(x)(yi2)’’ dxOa Jo 0

1

Bk(x)(yi2)dx.

These relations say a lot about the solution of the inverse problem. The asymp-
totic law for eigenvalues and eigenfunctions shows that the derivatives of Ai(Q) are
larger than the derivatives of Ai(q) roughly by a multiple of 2. This means that a
small perturbation in Q(x) will produce a much larger change in the eigenvalues than
will the same perturbation applied to q(x). Now consider this observation from the
perspective of the inverse problem. It implies that the spectral data can be used to
reconstruct the function Q(x) much more easily than it can be used to find q(x). The
inverse problem for Q(x) is much better conditioned than that for q(x).

Suppose that is large enough so that Ai(q) > Iq(x)l. The differential equation
shows that the zeros of yi and yi" coincide. Therefore, if the basis function B(x) is
positive and has its support concentrated in a very small interval, then some of the
derivatives (28) will have a better chance of being large because it is less likely that the
positive and negative parts of the integral involving (yi2) will cancel out. Also the
large values of Bk(x) will more readily match large values of the eigenfunctions. This
is a good thing since it makes the derivatives larger and improves the conditioning of
the inverse problem both for ,k(q) and for A(Q). This provides an intuitive foundation
for the rule of thumb N <_ M _< 2N given in 2.1. This analysis also shows that the
conditioning of a given inverse problem may depend on the location of the support of
the basis functions and provides some guidelines for selection of the specific form of
Sk(x).

On the other hand, the direct problem of finding ,k given Q(x) would seem to
require the computation of two numerical derivatives of Q(x) in order to find q(x) and
use the differential equation. Perhaps the direct problem of using Q(x) to calculate
,k will now be ill-conditioned. However, Theorem 1.1 shows that this is not the
case, in that any function which approximates Q(x) well enough in the Lx norm
will give about the same eigenvalues. It simply does not matter if Q’(x) is a good
pointwise approximation to q(x) or not. So we now have the best of both worlds in
that the inverse problem and the direct problem connecting Q(x) and A(Q) are well
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conditioned. Of course, the real difficulty with this point of view is that there are no
well-known numerical algorithms for calculating An(q) when given only Q(x).

Another way to think about the inverse problem for ,k(q) is to break it into two
separate steps. The first step is to use the spectral data to find an L1 approximation
to Q(x). The second step is to use some kind of numerical differentiation procedure to
compute q(x) Q"(x). It is only the second step which is ill-conditioned. The inverse
eigenvalue problem is only ill-conditioned if we attempt to extract more information
from the spectral data than it contains.

If it is known that the function q(x) is differentiable, then Theorem 1.2 can be
replaced with a stronger statement which involves three integrations by parts. The
function Q(x) can then be taken to be Q(x) f f f q(z)dzdsdt and the above
argument can be carried through using three derivatives rather than two.

2.3. Some numerical examples. To construct an example, we will use (1)
with

1 if 0_<x<g, and .4=)(q*)(29) q*(x)= -1 if 1/2_<x_<l,
We choose as spectral data the first five eigenvalues of (1) using the boundary condi-
tions y(0) y(1) 0 together with the first five eigenvalues of (1) using the boundary
conditions y(0) y(1) 0 for a total of 10 data values. We choose the representation
(20) using the simple basis functions given by

1 if x <_ /., k 1,2,...,M.h(x)
0 otherwise,

Given N 10, we choose M 115 and we now take, as the first approximation
to q*(x), the function q15, --.25. Using (23) we compute R and F and let q5,2(x)
be the result of solving the least squares problem IIR1 F/II minimum.

A little computation shows that

IIq*(x) q5,2(X)llMa .008..., Iq*(x) q15,2(x)l 0.144...,dx

II)(q,2) A 112 .041....

Thus, we have very good 1Max and 2L approximations but a very poor L1 approxi-
mation. Graphs of the various functions are given in Fig. 1 where the following labels
are used.

The curve () represents the function q*(x).
The curve () represents the function q5,2(x).
The two triangular shape curves () and () represent, respectively, the func-
tions f q*(z)dz and fo q5,2(z)dz.
Graphically the three functions ff q* (z)dz ds dx, ff q 15,2 (z) dz ds dx,
and ff q15,2(z) dz ds dx are indistinguishable and the S-shape curve () rep-
resents all of them. Only a slight thickening of the curve can be detected.
The curve () represents the function q$5,2 (x) which will be defined in 2.4
below.

We may now use the function q15,2 just obtained as a new approximation to q* (x)
and repeat the minimization process. However, the new minimizing function q15,3
obtained this way is, essentially, the same as q15,2, at least as far as the 1Max and
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FIG. 1. Graphs of the coefficient functions and some first and second integrals.

2L1 norms are concerned. Only some random roundoff error distinguishes them and
the method converges in only one iteration step. This is typical of the method in
that, depending on the choice of the first guess, it usually converges with only two or
three steps. This is due to the fact that, for any choice of coefficient function q(x),
the eigenfunctions corresponding to the same set of boundary conditions look very
much alike so that/ and F are quite insensitive to changes in q(x).

2.4. Constrained solutions using Hanson-Haskels program LSEI. In
view of the remarks in 1.2 and 1.3, it seems impossible to extract pointwise infor-
mation about q(x) from a finite amount of spectral data. However, if it is possible to
take advantage of some additional information about the unknown function, then we
may very well be able to obtain good pointwise information. Consider, for example,
the inverse problem associated with the free vibrations of the earth [6]. It seems quite
reasonable to assume that the density of the earth is an increasing function of depth
below the surface.

Such constraints can be used to eliminate the possibility of large oscillations like
those given above by the example Aq(x) A cos Bx. In fact, there are many condi-
tions which can be used to eliminate the oscillations. If, for example, the functions
are also required to be monotone or convex or concave or even just unimodal, such
oscillations will not be possible. Of course, the idea is to identify such an a priori
constraint which will prevent the oscillations and, at the same time, still allow us to
interpolate to the spectral data.

The CMLIB computing package contains a very useful FORTRAN program, writ-
ten by R. J. Hanson and K. H. Haskel, called LSEI, which can solve constrained least
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squares problems for matrices. Specifically, it solves the following problem:

(3o)
Minimize IIC- F/3112 subject to constraints

ED=F and GD_>K.

Other kinds of constraints on the coefficient functions, such as symmetry q(x)
q(1- x), are sometimes used when dealing with inverse problems. Or the function
could be given only for 0 < x < 1/2, and we might be required to find its unknown
values for 1/2 < x <_ 1. Fortunately, this iterative least squares method can be easily
adapted to take advantage of any such additional information.

We will now give an example which uses LSEI to solve a constrained inverse
problem. We will use the same function q*(x) given in (29); however, in addition
to the 10 spectral data values, we will now assume that q*(x) is also known to be
a decreasing function of x. This condition is reflected in the constraint /3k _> 0.
Incidentally, this shows one good reason for using a local basis like hk(x). It would
be very difficult to take advantage of the decreasing condition on q(x) using a global
basis such as a Fourier series. We now use LSEI to solve the constrained least squares
problem with the same iterative procedure as before. Since the constraint eliminates
the oscillations, we now get better results.

Using the previous solution q15,2(x) for the first guess, we solve the least squares
problem subject to the decreasing condition to obtain a new function which we call
q 15,2 (x). Its graph, given in Fig. 1, clearly shows that it is a much better ap-
proximation. It even gives a fairly good pointwise approximation to q*(x) in that
Iq*(x)- q15,2 (x)l < .019 except for the short interval about the midpoint. Further
computations show that

I]q* qlh,2[llMax " .0034,

IIq* q,ll .000,

Computing additional terms qlh,n

Iq*(x) qlb,2(x)l .083,dx

II,k(q$,2)- A]]2 .039.

in the sequence did not produce much better
approximations, at least as far as the 2L norm is concerned.

2.5. Jump discontinuities in the coefficient functions. In the previous ex-
ample, we obtained a solution which was very good at all points except near the jump
discontinuity x 1/2. We will now develop a method of allowing the break points
of the functions hk(x) to move around so as to better approximate a discontinuous
function q*(x). To do this, we introduce the function ht(x) defined for any number t
by

1 ifx<_t,(31) h,(x)= 0 ift<x.

We then select points tk, t E [0, 1] and suppose that q(x) and q* (x) are any two
functions of the form

M M

(32) q* (x) E ;ht (x) and q(x) E 3kht, (x).
k=l k=l

We suppose that both tk and k are variables and introduce the new vector
We then substitute the representation (32) into (22) and compute the principal linear
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part of Ai(q) as a function of 5. Finally, we will apply the iterative process used
previously to the new vector .

First, we derive the linear approximations to ,,(q). Putting (32) into (22) shows
that

(33)
M

k-1

We now use the relation

in (33) to obtain

M

y2(q) =i(q*) q*(x)y2 dx Et; (t)

M M

+ 9(o h. ex + tt kPkYi (t) + 02.
k=l

We recast this equation in matrix form as )(q) -S + F/i + 02 where

(35)

We may now take/ A- S and iterate in the minimum problem as before to solve
for . However, a few important details need to be considered first.

In the process of allowing the values of tk to move about, we may also use LSEI to
impose constraints. One obvious constraint to use is that t <_ t2

_ _
tM, which

serves to keep the indexing of the t’s straight. However, there are other problems with
using such a basis. If, for example, some of the tk’s are the same, then the "basis"
will not be linearly independent. Even if the. tk’s are allowed to come very close to
each other, then the basis will become numerically ill-conditioned. To avoid this kind
of problem, we will use LSEI to impose the restriction2 Irk -1 <-- 3-, which implies
thatltk_tjl>

However, problems may still arise with variable values for t. To see why this is so,
consider the variation in the eigenvalues with changes in and t. Taking derivatives
as we did for (27) we find that at flk =/; and tk t,

(36)
OAi(q) fo foti 2 OAi(q) y(t).
Ok ht (x)y dx y dx and

Otk

These two relations explain a great deal about the behavior of the inverse prob-
lem in general. First notice that a small change in 3 will produce a change in ,k
which depends on a global quantity involving an integral over an entire interval of

Actually, the example of 2.3 was implemented using the functions (31) and LSEI with the
restriction tk k/M.
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values. Such quantities are numerically well behaved. Now notice that a variation
in t produces a variation in ) which depends on the local pointwise value of the
eigenfunction y(t). So small changes in t may or may not produce small changes
in A It depends on whether 2kY (tk) is large or small, and this is unpredictable
because of the rapid oscillations of the eigenfunctions.

If we attempt to solve an inverse eigenvalue problem and, by random bad luck, it
happens that the discontinuity of the unknown coefficient q*(x) lies on or near some
nodal point for each of the eigenfunctions corresponding to all of the known spectral
data, then changes in t will produce very small changes in the eigenvalues. From the
perspective of the inverse problem, we see that it would be impossible to locate such
a discontinuity with any degree of accuracy using only spectral data. On the other
hand, it is fortunate that the nodal points of any eigenfunction are almost uniformly
spread out through the interval. Even with only a finite amount of data, we expect
that at least some of the eigenfunctions will have their maximum values close to the
point of discontinuity. Therefore, even using only a finite amount o] spectral data, we
should still be able to accurately locate discontinuities in the coefficient ]unction. We
only need to know a somewhat uniform sample of spectral data and to have a jump
discontinuity for which/, the size of the jump, is not especially small.

We now give a numerical example of this process. We will use the same function
q*(x) and the same spectral data used before. The solution q15,2(x), obtained using
the decreasing restriction, strongly suggests that q* (x) has a point of discontinuity in
the interval [tT, ts] where t7 .466666 and ts .533333. We choose to let ts become
a variable, but we will impose on t and f the restrictions

k
(37) tk= fork#8 but .47_<ts_<.54 and /k_>0.

These constraints will insure that the basis is numerically well conditioned, but at the
same time they will allow the discontinuity to be located.

Using the solution q$15,2(x) obtained in 2.4 as the first guess in the least squares
iteration procedure, subject to (37), gives a sequence of functions--call them ’n--for
which the points of discontinuity, called Tn, converge to .500. Some other important
numbers are listed in Table 1.

TABLE 1

Concerning the sequence of iterations n.

1
2
3
4
5
6

.53333333 2.7457058.10-02

0.4878601 3.3297241.10-2

0.5150741 2.3708206.10-3

0.5001864 8.6408332.10-3

0.5000984 2.1051883.10-3

0.5004199 8.2593737.10-4

1.0778840.10-3.0311858.10-3

7.3498831.10-04

3.3640519.10-3

7.7785080.10-1.0909934.10-04

2.5811850.10-03

3.9687917.10-2

8.4827110.10-2

2.1405114.10-2

2.8585272.10-2

1.1293867.10-3

At this point we must, subjectively, decide whether the unknown coefficient does
or does not have a discontinuity. If it does, then we accept the solution given in
Table 1. If we decide that there is no discontinuity, then we should construct a
continuous approximation to the function q15,2 as the solution. Unfortunately, the
size of II,k(q) All2 cannot be used to make this decision because the norm can be
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made small using many different functions q. Perhaps the strongest evidence for the
existence of a discontinuity is the clear convergence of the sequence Tn indicated by
the values in the table.

In this way, we have found a very good pointwise approximation to q*(x) using
the spectral data and the additional decreasing information about q*(x). There is
nothing special about the fact that there was only one discontinuity in this example.
Several discontinuities could have been dealt with the same way.

These methods have also been used to solve some inverse problems for the equa-
tions y" + q(x)y 0 and (r(x)y’)’ + y O, and the numerical behavior was in
most respects similar to that reported for (1). Theorem 2.1 must be used to ob-
tain new approximation formulae, replacing (22). Otherwise, the procedure is iden-
tical. More generally, the method could be easily modified to study the equation
(r(x)y’)’ + (p(x) q(x))y O, together with arbitrary self-adjoint boundary condi-
tions.

3. Summary and conclusions. We have provided an extensive mathematical
analysis of the finite inverse problem, proving a convergence theorem for some approx-
imations to its numerical solution. The most important tool used was the compactness
of the set C(H) in the 1Max topology. Another major part of the analysis was in-
troducing the idea of the weak topology on C(H) and approximating it using the 2L1
norm. The weak topology determines how much information about the coefficient
function is contained in the spectral data. Finally, the application of Theorem 2.1 of
[1] to develop (25), (28), and (36) yielded a very good intuitive understanding of the
finite inverse eigenvalue problem.

Perhaps one of the most striking results of this analysis was to show the great
disparity between the very weak approximations which must be used when given
only a finite amount of data (a 2L1 approximation or worse) and the much stronger
approximation (using the norms I1" I1 or I1" 112) which are possible when using an
infinite amount of data [4], [8]. However, even if the approximation is quite weak in
the finite case, it is still very a usable result. It is especially useful when combined
with additional information about the coefficient function, such as monotonicity or
convexity, which may frequently be available simply from the physics of the problem.
In such cases, it may still be possible to generate good pointwise approximations
using only finite data. This is an especially important development for equations
of the form (10) and (12) which may have discontinuous coefficient functions since
asymptotic formula are difficult to obtain in such cases. It would be interesting, and
probably not especially difficult, to develop a set of theorems to the effect that "If
q,, (x) converges in the 2L norm and if q,, (x) is a decreasing function of x or a convex
function of x or then qn(x) converges in a much stronger topology."
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HALF-BOUND STATES AND LEVINSON’S THEOREM FOR
DISCRETE SYSTEMS*
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Abstract. A second-order difference equation -Yn+ + 2yn -Yn-1 + qYn Ay,, n 1, 2, is considered.
The perturbation terms q, are assumed to satisfy the scattering condition n__ nlql <. A boundary
condition Yo + ayl 0 is imposed, and a formula is derived for the number of eigenvalues of the associated
self-adjoint operator. This formula, known as Levinson’s theorem, is in terms of the change of phase of the
complex amplitude function for solutions of the difference equation and of other factors whose value
depends on the existence of so-called half-bound states, which are defined herein. An application is given
to the equations of motion of a semi-infinite chain of masses connected by springs. It is established how
the large-t asymptotics depend on the existence of half-bound states.

Key words, difference equation, Titchmarsh-Weyl theory, spectrum, half-bound state
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1. Introduction. The spectral analysis of difference equations arises in many con-
texts. One such context is the dynamics of differential-difference equations. A simple
example of this is an infinite chain of masses, each of which is connected by springs
to its nearest neighbors. The same system of differential equations models certain large
electrical systems and disordered crystals. In the case of a semi-infinite chain with
identical springs, the difference equation

(1.1) -y,,+l+2yn-y,,_l+q,,y,,=Ayn, n=l,2,...,

arises in the computation of the vibrational frequencies or energy spectrum. Associated
with (1.1) is a boundary condition

1.2) Yo "+" ceYl 0

where a is a real number. The coefficients q, are real.
First we associate with (1.1)-(1.2) a self-adjoint operator T in the Hilbert space

2 of square summable sequences {y,}]. Define T, in 12 by
T,y),, -Y,+I + 2y,, y,,_ + q,,y,,, n= 1,2,...

with Yo -ceyl. Note that To is associated with the boundary condition Yo 0. Further-
more, the domain of T is the set of all y 12 such that T,y 12. The operator T, is
known to be self-adjoint, e.g., [1], [2].

We consider T, under the scattering condition

(1.3) E nlq.I < O,
rl=l

which implies that T, is a bounded operator on 12. Under (1.3), it turns out that the
essential spectrum of T is [0, 4] and that T may have finitely many eigenvalues in
(-c, 0) (4, o). In 2 we derive a formula which counts the number of eigenvalues
or bound states. This formula, of the type known as Levinson’s theorem, is in terms
of the change of phase of the complex amplitude function associated with a solution

* Received by the editors January 22, 1990; accepted for publication May 1, 1990.
? Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996.
$ Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

24061.
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of (1.1)-(1.2). Additional terms of-Tr must be added when half-bound states are
present; these are defined below (2.14). A good deal of work has recently been done
on Levinson-type theorems in different contexts. The first such result was proved by
Levinson for the Schr6dinger operator [9]. Results have been obtained more recently
for the Schr6dinger equation [8], the Dirac equation [5], [12], and four-dimensional
Hamiltonian systems [6], 11 ]. In [5], [6], and [8] the condition placed on the potentials
is the scattering condition. For difference equations of the type considered here, a
Levinson theorem has been formulated in [4]. But a proof under condition (1.3) was
not given and the half-bound state case was not considered.

In 3 the theory is applied to the equations of motion of a semi-infinite chain of
masses connected by springs. It is found that the long-time behavior of a displacement
is generically either of order -3/2 or -/2 according to whether or not a half-bound
state exists. (See the definition below (2.14).) Thus the influence of a half-bound state
is exhibited in the rate of return of each mass to its equilibrium position.

2. Asymptotics of (1.1) and Levinson’s theorem. For the sake of clarity we treat
only the case where a 0 in (1.2). A basic role will be played by the two solutions
O(A) ={O(A)}, b(A) {b(A)} of (1.1) defined by the initial conditions

(2.1) 0o(A)=0(A)=I, bo(A):0, b(A):I.

For the unperturbed case, i.e., q, =0 for all n, we designate 0,, 4’, by 0,, b
respectively. These sequences satisfy

(2.2) y,,++(A-2)y,,+y,,_l=O,

and we now calculate them. Setting y, z" in (2.2) gives that z2+ (A-2)z+ 1 0 so that

1 2-A
(2.3) 2- A z+-, z

z 2

We choose, for 5A _-> 0, a branch of square root in the following manner. Let

D {y C" 0=<y-<_ or, 0_-< 5y < oo},

D={zC" Il-<_ 1, _->0, 0},

D { C" 5A _--> 0}.

Then it is easily seen that the maps y- z e’o h 2-z-1/z are one to one and
onto from D -0 D- D, respectively; furthermore, interiors are mapped onto interiors
of these regions. Hence we see that for 5h > 0 we may choose - satisfying (2.3) so
that [z[<l and 5z>0. The map h=2-’r-1/’r maps (-1,0) onto (4,00) and (0,1)
onto (-oo, 0), so we may continue the map analytically (by conjugation) from {[z[ < 1"
z0} onto C\[0, 4]. This is the way we choose the solution z of z+(h-2)z+ 1 =0
for h C\[0, 4]. The corresponding y satisfies -r < , 3’ < vr, 5y > 0.

Then for fixed h C\[0, 4], we have two solutions of the free problem, namely,
z e and ’- e-. Note that - 0 as n - oo since 5y > 0. To compute { 0" (h)}and {4 o, (h)} we express them as linear combinations of {e} and { e-g"} and substitute
into (2.1). This yields, after some computation, that for n 0, 1,. .,

oO,,(h)=cos(n-1/2)y and 4,(h) -sin ny.
cos 3,/2 sin y

To compute {0,(h)} and {4,(h)} we apply variation 0f constants to (1.1) written in
the form

(2.4) -y,+, + (2 A )y, Y,-1 =f,, f, -q,,Y,,.
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This gives, for the solution of (2.4), that

sin ny cos (n-1/2)y 1 sin (n- k)y
Y Cl’-c2 - . qkYk

sin V cos (3,/2) k=l sin V

where a summation is zero when the upper limit is less than the lower limit. Using
(2.1) now to compute Cl and c, we obtain for n 1, 2,...

1 sin (n-k)y
(2.5) b, (A)

sin ny
+/. qktk ,. ),

sin 3’ k=l sin 3’

(2.6) On(A)=COS(n--1/2)T+lsin(n--k)/qkOk(A).
cos y/2 k= sin 3’

Now we introduce the Jost functions and the asymptotics of solutions. Multiplying
(2.5) by e inv, we get

e2in’y- 1 n--1 e2i(n-k)’Y_ 1
-i" qk eikV pk A ).(2.7) einvbn(A)=
2isin y k=l 2isin y

Since y > 0 for A C\[O, 4], equation (2.7) implies that if Vk
n=l,2,’’’,

(2.8) vn --< K 1 + =Y IqklV K
-Isin

Application of the Gronwall inequality for difference equations to (2.8) yields that

Vn [ein’cn(h )l K exp {K
k=l

]qk[
(2.9)

_-< K exp K Iql
=1

Using the bound (2.9) in (2.7) it follows that

(2.10) en’4n(1)=-(2isin y)- 1+ e’qd(A) +o(1)
=1

as n oe. Similar calculations with 0n(1) in (2.6) yield that as n

(2.11) en’On(A)=(2i sin y)- (ie’/ sin y)/(cos ,//2)- e’q,O(1) +o(1).
k=l

Thus for I C\[0, 4], we define the Jost functions by

f(a) 1 + 2 eiqb(A),
(2.12)

fo(A)=-(ie’’/2 sin ),)/(cos 3,/2)+ E e’k’qkOk(A)"
k=l

,kr bk (A)[, then for

0.()
(2.13) m(A) -lim 5A #0.

.()’

As in the differential equations case, the Jost function is the coefficient of the dominant
asymptotic term. Its zeros therefore constitute the A values corresponding to decaying
solutions. Closely related to the Jost function is the Titchmarsh-Weyl function re(A)
defined by
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A general proof for the existence of the limit in (2.13) may be found in the text of
Atkinson 1 and the papers of Asahi [2] and Bennewitz [3]; in our case the asymptotics
of (2.10) and (2.11) give that

(2.14). m(A )= -fo(A )/fe(A ),

provided f6 (,) 0 for 5h 0. That f6 (,) 0 for 5, 0 follows from the asymptotics
of solutions of (1.1). Under the condition (1.3), the asymptotic methods of differential
equations applied to difference equations yields solutions {z, (A)}, { w, (,)} of (1.1)
such that for , C\[0, 4], as n c,

z,(A)=ei"r[l+o(1)], w,(,)=e-i"r[l+o(1)].

Since {z,(A)}, {w,(A)} is a basis, it follows that f(,) =0 if and only if {z,(,)} and
{ b, (A)} are linearly dependent. This is equivalent to { 4), (,)} lz since {z, (,)} 12 and
{w,(h)} 12. Thus f6(h) =0 for A C\[0, 4] if and only if A is an eigenvalue for the
self-adjoint operator T with a 0. Since T has no complex eigenvalues, we have
another proof that f6 (A) 0 for , 0.

For , (0, 4), 0,(A) and b,(A) are asymptotically oscillatory, and we can show
that this corresponds to the continuous spectrum of T (but we will not need this fact).
Thus a point , C\[0, 4] is in the resolvent set unless it is an eigenvalue, in which
case f6(h)=0 (for the a=0 case). From (2.9) and (2.12) we see that f6(h)- 1 as
I)t I- so there are no eigenvalues sufficiently far out. We will presently show that the
behaviour off+ (A) as A 0 rules out a clustering of eigenvalues at , 0, and similarly
at , =4.

In particular, there will be only finitely many eigenvalues. This leaves only the
points A =0 and A =4. We say that , =0 is a half-bound state (HBS) provided that
{4,(0)} is a bounded sequence, and a non-half-bound state (non-HBS) otherwise. A
similar definition may be given at A =4 in terms of {b,(4)}. Sometimes it will be more
convenient to say that 4(0) or b(4) is a half-bound state. If instead {0,(0)} is bounded,
we say that we have a 0-half-bound state (0-HBS) at , 0, and similarly at A 4. It
is the analysis of the Jost functions fo and f+ at HBS that comprises the rest of this
paper. We begin with f6 near , 0.

TrEOREM 2.1. If , 0 is an HBS, then

(2.15) f(A) iya) + o(13,1) where a7)= Z kqkdk(O) # O.
k=l

If A 0 is a non-HBS, then

(2.16) f,(A)=a)+o(1) where a=1+ qb(O)O.
k=l

Proof For h 0 we have y 0 and the unperturbed problem --Yn+l + 2yn Yn-1 0
has solutions

b,(O)=n, 0,(0)=1, n=O, 1,....

Equations (2.5) and (2.6) are replaced by

(2.17a)

n-1

b,(O) n + (n k)qkqbk(O)
k=l

nl 1 n-1

n 1 + qkCk (0) kqkdPk (0),
k=l k=l
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(2.17b)

n-1

0,,(0) 1 + (n k)qkOk(O)
k=l

nl 1 n-1

1- qkOk(O) +n 2 kqkOk(O)
k=l k=l

for n 1, 2,.... Under the condition (1.3) with A 0, the methods of differential
equations yield a pair of linearly independent solutions {z,(0)}, {w,(0)} of (1.1) such
that as n--> , z,(0) [1 + o(1)] and w,(0) [n(1 + o(1)]. Returning to {4,(0)}, we see
that if {4,,(0)} is bounded, then by (2.17a) 1 +Yk=l qkCkk(O)=O. On the other hand,
since {oh,(0)} is a linear combination of {z,(0)} and {w,(0)}, it follows from (2.17a)
that 4,(0) o(n) as n--> if l+Yk= qkCkk(O)=O. This then implies that {4,(0)} and
{z,(0)} are linearly dependent, so that {b,(0)} is bounded. Thus {b,(0)} is bounded
if and only if 1 + k= qkCkk(O) 0 in which case Yk= kqkg’k(O) O, for otherwise (2.17a)
implies that as n--> ,

Z qkdPk(O)
k=n

+o(1)

<= kJqkJl4’k(O)]+O(1)= 0(1),

contrary to {4,(0)} being a nonzero multiple of {z,(0)}.
In a similar manner it follows that { 0, (0)} is bounded if and only ifY k= qk0k(0) 0,

in which case 1 --Y-k= kqkOk(O) O.
We now examine the behaviour off,(A) as A -0 in C\[0, 4]. First consider f(A)

when 4(0) is not an HBS. Then

(2.18)
f (A) 1 + E eik’qkbk(A

k=l

1+ E qkdpk(O) + eik/
k=l =1

qk[qbk(A)--dk(O)]+ E (eik’-- l)qkdpk(O)
k=l

When 4(0) is an HBS we have

(2.19)
f4,(h) iT E kqkqbk(O)+ E eikvqk[dpk(h)--qbk(O)]

k--1 k--1

-}- Z eik’- 1 -iky)qkdk(O).

In both cases we need estimates on the differences (k(/)- (k(0). The difficult case is
when 4’ is an HBS and we consider this estimate first.

From (2.5) and (2.17a) we have that for n->_ 1,

3’ 1] 4,(0)+ 3’ D(,)(2.20) b,(A)- q,(0)
sin y sin y
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where

sin 3’D(A)= (h)- .(0)

-y n 1 +
k=,

qkdPk(O)

n--1

+ 3’-’ sin (n k)3" qk[4’k(A)-- bk(0)]
k=l

n-1

+ Y 3’-1J-sin n3"+ k3’+sin (n k)3"]qkqbk(O).
k=l

For the sine function we have for some constant c,

(2.22) Isinz zl <- clz[g(Izl) ze Icos z- 11-< cg(Izl) e
yz

on z >- 0, where g(t) t2/(1 + t2). Also, for 3’ _>- 0,

(2.23) I-sin n3’+ k3"+sin (n k)3’[ 3’ [1 -cos
n-k

by application of (2.22). Also by application of (2.22) and g(t)<-1 we have

(2.24)
sin n_______ n <- cng(nl3,1) eynv,

3"

(2.25)
sin (n k)3’[ <_ n + cn es(n-k)v <- n(1 + c) en3

Define 4,(A) ei"vb,(h) and ,(0)= einvb,(0). Further note that for h sufficiently
small, h C\[0, 4], we have for some constant cl,

(2.26) [3’-1 sin 3’[ =< c, [3/(sin )-- 11--< cl,l 2.

Multiplying (2.20) by e i"v and using (2.23)-(2.26) gives that
rl--1

I.(A)-g.(o)l<-_c,lll.(o)l/ccng(nll) 1/ y qkk(O)
k=l

n-1

(2.27) + c, Z n(1 + c)lql Ig(A)
k:l

n-1- Cl ckg(nll)lqll(O)l,
k=l

Suppose now b(0) is an HBS. Then {(0)} is bounded and from (2.27) there is a
constant dl, independent of A, such that (recall that n[1 +n-1k: qkdPk(O)] is bounded
from (2.17a))

(2.28) I.(a)-.(0)1 d, I[=+g(nll)+n Iql I()- (0)l
k=l

To solve (2.28), let a, : Iql I()-(0)1 for n . Then- Iql I(A)- (0)1 a. + b.a._l

where a, :lqldEll=+g(nll)] and b:d,nlql. Hence

a, a, + (1 + b,)a,_,
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and it follows by induction since a 0 that for n => 2,
n--1

a,,<=a,,+ ak(l+bk+l)’’’(l+bn).
k=2

Since (1 + bk) --< e bk, it follows that

Oln C2 ak,
k=l

and thus

(2.29)

c2=exp dl nlqn
=1

In(A)-.(O)l < dl Ivl2+g(nlvl)+cn ak.
k=l

We return now to (2.19). Using (2.29), we obtain

, eiVqk[dpk(A)--dpk(O)]
k=l

E Iql I()- (o)1
k=l

<=dl E Iql[ll:Z+g(kl"/l)]+d,c. 2 klql 2 as.
k=l k=l s=l

le’- 1 ik3,1 - d
kl"/12

1 + kl ’1
for some constant d independent of y. Again by the Lebesgue dominated convergence
theorem, as Y] - 0,

E eik’- 1- iky)qkqbk(O)= o(lY[).
k=l

Substituting these estimates into (2.19) yields (2.15) for A =0 an HBS, as A -0.
For A =0 not an HBS, then equation (2.28) is replaced by

k=l

An analysis like that above applied to (2.18) shows that as h 0, (2.16) holds. This
completes the proof of Theorem 2.1.

Remarks. A similar analysis applies to the solution 0(A) at A -0, and we omit
the details. The result is if 0(0) is an HBS, then as -* 0,

(2.30) fo()=ia?)3/+o([3/[), a01)=-l+ E kqkO(O)#O
k=l

as 13/I - O. Since 3/> O,

The sum

E Iqlq(kl,/I)-Il Y (/Iql)
kl3,l

k=l k=l 1 + k213,12 (I 3/I)

as 13/I-> 0 by the Lebesgue dominated convergence theorem. The sum

Z klqkl Z a, Z dllq, l[l]z+g(sll)] Z k]qk] o(11)
k=l s=l s=l k=l

as I1 0 for the same reason. Hence

2 e’q[&(&)-&(0)] o(11)
k=l
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while if 0(0) is not an HBS, then

(2.31) fo(A):ao)+o(1), a0): q0(A)#0.
k=l

Note that as A 0, series expansions of iT log r (r 1) and -A (r 1) + (r-1 1)
(r- 1) show that y/x/- 1 as A -0 in C\[0, 4]. Thus 3’ may be replaced by x/X in the
equations (2.15)-(2.16) and (2.30)-(2.31) where denotes the branchcut along the
positive real axis. At A 4, the same analysis as above holds where y is replaced in
(2.15)-(2.16) and (2.30)-(2.31) by x/A -4 and the branchcut for v is along the negative
real axis.

We are now ready to state Levinson’s theorem for (1.1)-(1.3), and we do so for
the general operator T,. Let y(A) be the solution of (1.1) satisfying Yo -a and y 1.
Then y (A {y, (A )} satisfies (1.2); furthermore, y(A)=-aO(A)+(l+a)ch(A) and
ei"y,(A)->(l+a)f(A)-afo(A) as n for AC\[0,4]. Inspection of the bound
(2.9) for d(A), and analogously for 0(A), shows that the bound holds as A - Ao (0, 4),
5A 0. Since the tk(A) and Ok(A) are polynomials in A, this means that the formulas
(2.12) have a continuous extension from 5A > 0 to include the interval (0, 4).

Recall from the discussion above equations (2.15) that f(A)- 1 as IA]-->c, A
C\[0, 4].

THEOREM 2.2. Let f, (A) (1 + a)f6 (A) afo (A). Under the condition (1.3), the
number N of eigenvalues of T, is given by

27rN 2[argf (4) argf (0) + Ao+ A4
where f, (4), f, (0) is the limiting argument off (A) as A 4, O, respectively, in (0, 4)
(f(A in (0, 4) is the continuous extension off,(A) from > O) and

-Tr y has an HBS at j=A,
A 0 y does not have an HBS at j A.

Proof For simplicity we consider the ce 0 case; the general proof is similar. We
apply the argument to the contour F F + l-’2, where F is a circle about the origin of
radius R, and Fz consists of two circles of radius e about A 0, 4 and joined by two
intervals above and below the slit 0 < A < 4; orientation ofF and Fz is counterclockwise.
Since To is bounded, for R sufficiently large, all eigenvalues are interior to F. Also
the eigenvalues are exterior to 1-"2 for e sufficiently small. The eigenvalues, which are
zeros off6 (A), must be finite in number, i.e., cannot have zero or four as an accumulation
point, by the asymptotics (2.15)-(2.16). Let & be the circle of radius e at zero. By the
asymptotics (2.15)-(2.16), with 3’ replaced by x/-, it is clear that [change of argument
inf,(A) on &] 7r or 0 as e -0 according to whether or not b(0) is an HBS. Similar
calculations apply at A 4. By the argument principle

2,n’N= fr da-f, f(A) dA"
f+(a) -2 f+(a)

Since f+ (a) -+ 1 as A -+ oo, 5r, f’/fe -> 0 as R -+ oo. Letting R -+ oo as e -+ 0 completes the
proof by recalling f+(a) is analytic on C\[0, 4] with f(X) =f(a).

A simple example is obtained by taking one q, nonzero, say q,, # 0 and q, 0 for
n # m. Then from (2.12) we have

f+(a) 1 + e"’qm4,m(a)= 1 + e’m’qm sin m/sin %

So for a 0 in (1.2), the eigenvalues of (1.1)-(1.2) are the solutions of f+ (a) 0. For
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m= 1 this is the simple equation l+eieql--l+’ql=0 or r=-l/ql. Since I1<1 we
have a single eigenvalue given by A 2--1/ 2+ ql + l/q1 when Iql[ > 1.

The asymptotics (2.15)-(2.16) may be substituted into (2.14) to yield asymptotics
for m(A) at an endpoint of the essential spectrum. At A --0 we obtain that as A 0,

-ao)/a neither 4(0) nor 0(0) an HBS,
m(h)--- ao)/(ia)x/-) th(0) an HBS,

iaox/-/a 0(0) an HBS.

3. An application. In this section we consider the effect of half-bound states on
the large-t asymptotics of a spring-mass system. Such a system is described by displace-
ments u, (t) of the nth mass, where

(3.1) Mii,=u,+-2u,+u,_l, n= 1,2,..., ii=du/dt

with Uo 0. Physically this represents a semi-infinite linear chain of springs (with spring
constants equal to 1) and masses M, where the first mass Uo is attached on the left to
a wall. The horizontal displacement at time of the mass M from its rest position is
uk(t). Let H denote the operator (Hy).=y.+-2y.+y._, yo=0, n= 1,2,..., and
let M be the operator (My). M.yn. Assume Mn 1 + 6., where 6. >-1, and

(3.2) Y n16. <.
rt=l

In 12, H is the self-adjoint operator -To where To is as in 2. Then H has continuous
spectrum on [-4, 0]. Let /2,M be the Hilbert space of sequences with inner product
({y.}, {z.})4 =({y.}, M{z.}) where (.,.) is the inner product in 12. Under (3.2) the
norm 12,4 is equivalent to the norm in 12, and the operator

(3.3) A= -M-H
is a bounded self-adjoint operator in /2,4; furthermore, A=> 0, so A/2 exists. Since
(3.1) is the same as //+Au =0, it can be solved by [10]

(3.4) u(t) (cos A1/t)u(O) + (A-/2 sin A/t)a(O)
where u(0) and ti(0) denote the initial values. For simplicity we assume that

(3.5) ti(0) {0}, u(0) {6,}, 3, Kronecker delta,

for some fixed s. Let a’) denote the vectors with components a")= M,3,,,, and let

E denote the spectral family for A in 12.4. Then we have

(3.6) tlm(t)=(a(m), tl(t))M COS X/-- tdx(a(m),Exu(O))M

By Stone’s formula, for a closed A-interval A,

(3.7) (h’Eag)M=lim l---
27ri

The resolvent of A can be constructed as follows. If 5, 0 and

(3.8) (a-A)y=g,

then

(3.9) (-H-A6-A)y=Mg
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where 6 is multiplication by 6n in each component. The results of 2 carry over in
that the solution b(A) of the homogeneous equation (3.9) (g =0) is given by (2.5)
with qn replaced by -A6n. That is, we have

b,(A)_sin ny
z.%’ sin (n-k)y

(3.10) Atktk (A
’)/ k= sin 3’

Also from (2.12),

(3.11) f6(A)=I-A Y e’kr6k4,k(A).

The Jost solution F(A) of the homogeneous equation (3.9), i.e., the solution satisfying
F, (A) ei"r + o(1) as n c, may be calculated by the variation of constants formula
to satisfy

(3.12) F,,(A) e’v + Z
sin (n k)y

htkFk(h ).
k=n+l sin y

Using the solutions 4(h) and F(A) as a basis, we use variation of constants to solve
(3.9), obtaining

(3.13) y, -b,(h) W(A)-I Fk(h)Mkgk F,(A) W(A)-I y bk(h)Mkgk
k=n k=l

where W(A) is the Wronskian (independent of n),

(3.14) W(A b,(A F,+, (A)- b,+(A)F,(A ).

Using b,(A)= e-i"v(2i sin y)-’[f6(A)+o(1)] and F,(A) e"V[1 + o(1)] asn gives
that W(A -f+ (A). Also note that W(A Fo(A ). Suppose now that A i0 with
0 4. Using F,( i0) F,( + i0), &,( i0) &.( + i0) (recall ,(A) is a
polynomial in A [1, p. 97]) and W(-i0)= W( + i0), we have from (3.13) that

--1 Fk( Fk(
Mkgk([(A-A-/0) -(A-A + io)-l]g)"=-6"() k,= W() ()

IF,()F,()](3.153 () k=l
k()Mkgk

2i sin
,(l qbk(tZ )Mkgk

since by (3.14) and a calculation,

W()F,()- W()F,(#) 6,(#)[F,+I(#)F,(#)- F,+I(#)F,()]

-2i,() sin y.

The last equality follows from letting n- in the Wronskian F,+()F,()-
F,+()F,() and using (3.12). For > 4, f6() is real and the arguments of 2 show
that the spectrum of A on (4, ) consists of at most finitely many eigenvalues.
Substitution of (3.15) into (3.7) for 0 A 4 gives

/o’ siny
(h,Eg)=

lw()l= h()
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and thus (3.6) becomes

14Urn(t) Ms cos (7./’] W(A)I2) -1 sin yb,,(A)b(A) dA
o

(3.16)
N

+ Ms E cos Vk ths(Ak)thm(Ak)llth(Ak)l1-2.

where the sum represents the contribution due to the possible eigenvalues in (4, o) in
(4.8). Below we will show that this sum never vanishes for any m and s when eigenvalues
are present. First we determine the large-t asymptotics of the integral on the right of
(3.16). In the following we only consider the case where {6n} has finite support, i.e.,

(3.17) 6,=0 for n>N,

for some N => 1.
Note that A =0 is not an HBS since 4(0)= n. However A =4 may be an HBS

and the analysis of 2 shows that W(A) -f+ (A) W(4) 0 if A 4 is not an HBS
and (A-4)-I/2W(A)- C S0 if A =4 is an HBS.

First suppose that A 4 is not an HBS. Suppose also that 4m(4)bs(4) 0. Let
2 be nonnegative C functions such that r/(x)+ rt2(x)= 1, rt(x)= 1 in a neighbor-
hood of zero, and r/(x) =0 in a neighborhood of 4. Then u,,(t) Ii(t)+ I2(t) in (3.16),
where

14(3.18) Ik(t)= Ms cos v/- (TrlW(A)l)-l sin y dp,,(A)qbs(A)rlk(A) dA.
o

In 11 put u-- so that

(7---7--1 (A2-4A) 1/2 u(4-u2) 1/2

(3.19) sin y
2i 2i 2

Then I is of the form (for a certain function g)

f0 2)(3.20) I,(t)-- (COS ut)u27ql(U g(u) du.

Under condition (3.17), it follows from (3.11) and (3.19) that W(u2) is C, in fact
analytic, for 0<= u <2. This allows us to integrate by parts twice in (3.20) with the
result that I(t) O(t-2) as .

In 12(t) put u-- again to obtain 12 of the form

(3.21) /(t) (cos ut)(2-u q2(u)h(u) du

where h(2) # 0, because b,,(4)bs(4) # 0 and h is C under (3.17). The substitution
s 2- u gives

/2(t) (cos (2-s)t)sl/2g(s) as, g(s)= rl2(2-s)h(2-s),

which after integration by parts reduces to

(3.22) I2(t) t-l(sin (2-s)t)(2-’s-1/2g(s)+ sl/2g’(s)) as.
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In (3.22) write g(s)= g(0)+ s(s) and then integrate by parts the terms with and g’.
This gives

I2(t) t-l(sin (2-s)t)2-s-/2g(O) ds+O(t-2)

1
g(0) sin2t s -1/2cos stds cos2t s

o

Since

s -1/2 cos st ds -1/2 W-1/2 cos w dw

t-l2 w-1/2 cos w dw W-1/2

=t-1/2 +0(l-1/2)

with a similar expression for s -1/2 sin st ds, we have that

(3.23) I2(t)
g(0)Trl/2 ( )2t3/2 sin 2t- + O(t-2), g(0) 0,

--1/2 sin st ds ] + O(t-z).

cos w dw ]

as t-.
Now suppose A =4 is an HBS. Then near A -4, W(A) is of the form lW(A)l2=

alA-41/ o(-4), a 0. Near 0 the situation is the same as in the non-HBS case
and I(t)= O(t-) under (3.17). For I2 however, we get in place of (3.21),

Ioh(t) (COS ut)(2-u)-/22(u)h(u du

where again h(2)#0 if 6(4)6(4)#0. With s=2-u and h(2-s)=h(2)+h(s) an
analysis as in the non-HBS case shows that as

I(t)=h(2) cos2t s-/cosstds+sin2 s-1/sinstds +O(t-)
(3.24)

t/ sin 2t + + O(t-), h(2) 0.

In both cases u(t) h(t) as .
The case where (4)(4)=0 can be handled in a similar manner. First note

that (I) is a polynomial and its zeros are simple [1, p. 100]. Thus m(I),(I) is
O(4-I) or O((4-I)) near 4. Then two more integrations by pas are possible in
I1() tO show that I(t)= O(t-4). The integral I has the form

(3.25) Iz(t) (cos ut)(2-u)Prl2(u)h(u) du,

in the non-HBS case and

(3.26) /2(t) (cos ut)(2-u)Pn2(u)h(u) du,

3 5
p = or

2’Z

1 3
p =; or

2’

in the HBS case. This implies that I2(t)---t-5/2 or I2(t)" -7/2 in the non-HBS case
and that I2(t)--- -3/2 or 12(t)- -5/2 in the HBS case. Again the large-t asymptotics of
u, (t) are determined by I2(t).
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We now know in what ways the continuous spectrum may affect the large-t
asymptotics of Urn(t). In the following discussion we make our results more precise.
For this we need a lemma. Its proof uses an idea from [13].

LEMMA 3.1. (a) Suppose A has N >- 1 eigenvalues in (4, c) and let h denote the
largest such eigenvalue. Then

(3.27) (-1)n/lbn(hl) > 0, n= 1,2,....

(b) Suppose A has no eigenvalue in (4, c). Then

(3.28) (-1)n+16(4) > 0 n= 1,2,....

Proof. Put w(t)= eatw(O) where w(0)= {8,s} (see (3.5)). Let a (m) be as in (3.6)
so that w,(t)= (a(, w(t)). We proceed to determine the large-t behavior of w(t).
Of course, this can be done by essentially repeating the steps following (3.6) but with
cos replaced by e’. We therefore omit the details and just state the results. In
case (a) we have

(3.29) Wm(t)M e,’6(A)6(A)[I 6(A)II -=

again provided (h)(h) 0. Now we introduce the unitary (in/,) transformation
(Uy), (-1)y, and let = UAU-. Then

(3.30) (y) M(y++2y +y_) (Yo 0).

Moreover,

(3.31) w(t)=(a(, w(t)) =(Ua(, ea’Uw(O)) =(--1)m+S(a (m), ea’w(O)).
It is clear from (3.30) that leaves invariant the cone of vectors with nonnegative
cqmponents. Thus (a(, ea’ w(0)) 0 for > 0 (in fact, we have strict inequality since
eA’y has strictly positive components if y has nonnegative ones). Put s= 1, then
s(h) 1, and compare (3.31) and (3.29). Clearly, if (h) 0 then (--1)m+m(h) >
0. If (hl)=0 then _l(h)=-&+(hl) (0) since A=AI& and so
(- 1)-1(h) (- 1 ++(h) -(- 1 ++(h 1) < 0, a contradiction. In other
words, (h) =0 is impossible. This proves (3.27).

In case (b) we find that

w(t) c(4)(4)t-3/ e4’, h =4 is an HBS(3.32)

and

(3.33) w,(t) c2b,(4)qbs(4)t-1/e e4t h =4 is not an HBS

where cl, c2>0. Comparing (3.32) and (3.33) with (3.31) and arguing as in part (a)
yields (3.28). Lemma 3.1 is proved.

The important conclusion from this lemma is that b(,) and b(4) do not vanish
in the situations described in part (a) and (b), respectively. Therefore we can say the
following.

THZOgZM 3.2. Suppose (3.5) and (3.17) hold. Then:
(a) IfA has N >= 1 eigenvalues 4 < ,n <" < 1, then

N

(3.34) u,(t) Ck COS 4/k + e,(t)
k=l

where cl 0 and e,( t) O( -ale) in the non-HBS case and e,( t) O( -i/e) in the HBS
case.
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(b) IfA has no eigenvalues, then

(3.35) um(t)=celt-3/2sin(2t-)+O(t-2), ce1 O,

in the non-HBS case and

(3.36) u’( t) ce2t-1/2 sin (2t-) + O( t-1),

in the HBS case.
As an example, let 6, (/z- 1)6,., in (3.1). Then by direct calculation, or letting

y- 7r in (3.10), we have

q,,(4) (- 1)’+1 n, n<--m,
th, (4) (-1)"+in (-1)"-.,+l(n m)4(/x 1)(-1).,+1 rn

(-1)"+l(n +4(n rn)m(tx 1)), n > m.

Thus we have an HBS at A =4 if 4m(/x-1)=-l, i.e., Mm=tX 1-1/4m. Then
b,(4) (-1)"+in for n<=m and b,(4) (-1)"+lm for n> m. Also from (3.11)

f,(A) 1-A(/x- 1)

1 +(1-/2)(7-- 1)2(-1).,m7-"-1,
using 7-= e iv and A7-=-(7--1)2. As 7" goes from -1 to 0, A goes from 4 to oo. Hence
there is a zero of f,(A) in (4, oo), i.e., eigenvalue, if f,(4)= 1-4m(1-/x)<0 since
f, (oo) > 0. Thus there is an eigenvalue if
For MI-- we have ckn(4)=(-1)n+l(n-2(n-1))=(-1)n+l(2-n) for n=>2. Thus
42(4) 0 indeed happens, but we also have an eigenvalue in this case.

The -1/2 decay of the oscillations of a single mass also occurs in (3.1) with
n 0, + 1, +2, , i.e., a doubly infinite chain of masses and springs. With no perturba-
tion terms, this system is solved exactly in [7, pp. 385-387] where the solution un(t)=
J2,(2t), J2, the 2nth order Bessel function, also exhibits -1/2 time decay. This is to
be expected since A =4 is an HBS for the full line unperturbed problem (bn(4)
(-1)"+1). We refer to Chapter III of [14, 2.1-2.4] for a discussion of a similar
problem in the continuous case.
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Abstract. By using z-transforms it is proved that every solution of a homogeneous system
of linear difference equations with constant coefficient matrices oscillates componentwise if and only
if its characteristic equation has no positive roots. This result is also applied to obtain necessary
and sufficient conditions for the oscillation of all solutions of a linear system with piecewise constant
arguments.
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1. Introduction. Consider the homogeneous system of linear difference equa-
tions with constant coefficient matrices

(1) Yn+k "+" PlYn+k-1 +"" + PkYn 0

for n 0, 1,... where k is some positive integer, the coefficients Pi are real r x r
matrices, and {Yn }--0 is a sequence of points in Rr.

We associate with (1) its characteristic equation

det(Aki + k-p +... + Pt) O.

Our aim in this paper is to establish the following result and then apply it to
obtain necessary and sufficient conditions for the oscillation of all solutions of a linear
system with piecewise constant arguments.

THEOREM 1. Let k be a positive integer and let P1, Pk be real m x m matrices.
Then the following are equivalent:

(a) Every solution {Yn}n=o of equation (1) oscillates.
(b) The characteristic equation (2) has no positive roots.
A sequence of real numbers {rn}n=o is said to oscillate if the terms rn are not

eventually positive or eventually negative. Otherwise the sequence is called nonoscil-
latory.

For scalar equations, Theorem 1 was stated and proved (for k _< 3) in [15], the
proof being based on a lengthy analysis of the solution space of (1). A simple proof for
scalar equations with positive coefficients was given in [12]. See also [11] for several
applications of this theorem to scalar equations.

Our proof of Theorem 1 uses the method of z-transforms, the discrete analogue
of the Laplace transform which has been recently used in [3] and [8] to establish
the continuous analogue of Theorem 1 for delay differential equations. For more
information about z-transforms, see, e.g., [14].

*Received by the editors January 23, 1989; accepted for publication (in revised form) May 14,
1990.
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2. Proof of Theorem 1. The proof of (a) = (b) is simple. If (a) holds, (2)
cannot have a positive root since if A0 were such a root then there would be a nonzero
vector E Rm such that

But then, y,, A0n is a solution of (1) with at least one nonoscillatory component.
The proof of (b) = (a) uses the z-transform. Assume that (b) holds and, for

the sake of contradiction, assume that (1) has a solution y,, [y,..., y]T with at
least one nonoscillatory component. With no loss of generality we assume that {yn}
is eventually positive. As (1) is autonomous, we will assume in fact that yn > 0 for
n>0.

Clearly, there exists a c e (0, c) such that Yn I1< cn. Then the z-transform of

n--0

exists for Izl > c. From (1) we find that

(3) F(z)Y(z)

holds for Izl > c where, with P0 I,

(4)
k

i--0

and

By hypothesis

(6) det[F(z)] - 0

for z
Let Y1 (z) be the z-transform of y and let M be the modulus of the largest zero

of det[F(z)]. Then by Cramer’s rule, for Izl > max{c, M},

det[F(z)]Y (z) det[D(z)]

where D(z) has components of F(z) and O(z) as its entries. Clearly, the determinants
in (7) are polynomials in z.

Let W(z) Y(1/z) so that W(z) is a power series with positive coefficients
having radius of convergence p > 0. Equation (7) holds for Izl > i/p, equivalently,
det[F(1/z)]W(z) det[D(1/z)] for 0 < Izl < p. Now it is known (see, e.g.,J9, p. 133])
that a power series with positive coefficients having radius of convergence p < c has a
singularity (in the sense of analytic continuation) at z p. But since det[F(1/p)] 0
we see that det[D(1/z)]/det[F(1/z)] is analytic in a disk centered at p and agrees
with W(z) on that part of the disk where Izl < p. This contradiction shows that we
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must have p oc and it follows that (7) holds for Izl > 0. But then yn 0 for all
sufficiently large n since otherwise the left side of (7), but not the right side, would
have an essential singularity at z 0. This contradicts the assumption that (yn } is
nonoscillatory and the proof is complete.

Remark 1. It can easily be seen that the conclusion of Theorem 1 is also true
when k is a negative integer and detPk 0.

Remark 2. It should be observed that we proved a little more than we stated in
Theorem 1. Namely, if (1) has a solution {yn} with one component eventually zero,
then the characteristic equation (2) has a real root.

3. Application to linear systems with piecewise constant arguments. Let
[.] denote the greatest-integer function, N the set of nonnegative integers, and Rrr
the set of all r r matrices with real components.

In this section we will apply Theorem 1 to obtain necessary and sufficient con-
ditions for the oscillation of all solutions of the system of linear differential equations
with piecewise constant arguments

(8) &(t) + E Qjx([t + j]) 0, t _> 0
j---k

where

(9) k, l e N and Qj e Rrr for j -k,...

With (8) we associate initial conditions of the form

(10) x(j)=aj for je{-k,...,0}U{0,...,l-1}

with the convention that if l 0 the last set in (10) is empty.
By a solution of (8) we mean a function x defined on the set {-k,..., 0}

with values in R and which satisfies the following properties"
(i) x is continuous on [0, ).
(ii) The derivative &(t) exists at each point t E [0, oc) with the possible exception

of the points t E N where finite one-sided derivatives exist.
(iii) Equation (2) is satisified on each interval In, n + 1) for n e N.
Let aj Rr for {-k,..., 0} U {0,..., l- 1} be given. Then, as we will show in

Lemma 1, the intial value problem (8) and (10) has a unique solution provided that

(11) if 1=1 then det(Ql+I)0,
if 1_>2 and k=0 then detQ#0

with no restrictions for other values of k and l, where I is the r x r identity matrix.
A solution x(t) [xl (t),..., xr(t)]T of (8) is called oscillatory if every component

xi(t) has arbitrarily large zeros.
During the last few years there has been a lot of activity concerning the oscillation

and asymptotic behavior of differential equations with piecewise constant arguments.
See, for example, [1], [2], [5]-[8], and [10].

Among other things, equations with piecewise constant arguments provide the
simplest examples of differential equations capable of displaying chaotic behavior. For
example, as remarked in [10] the unique solution of the initial value problem

ao
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has the property that

+ n 0, 1,....

If we choose a0 4sin2(Tr/9) then the unique solution of this difference equation is
y(n) 4sin2(2nTr/9) which has period 3 and hence exhibits chaotic behavior by the
results of Li and Yorke [13]. See also [4].

The following lemma is the basic existence and uniqueness result for the initial
value problem (8) and (10).

LEMMA 1. Assume that (9) and (11) hold. Then the initial value problem (8) and
(10) has a unique solution x(t). Furthermore, x(t) is given by

where {an} is a sequence of vectors in Rr which satisfies the difference equation.

(13) an+l + an E Qjan+j for n--0,1,

Proof. Let x(t) be a solution of (8) and (10). Then in the interval n <_ t < n + 1,
for any n 6 N, (8) becomes

(14) it(t) + E Qjan+j o, n <_ t < n + 1

where we use the notation

an--x(n) for ne {-k,...,0,1,...}.

Clearly, the solution of (14) with x(n) an is given by (12). By continuity of the
solution, as t n + 1, (12) yields (13). So far we have proved that if x(t) is a solution
of (8) and (10) then x(t) is given by (12) where the sequence {an} satisfies (13).

Conversely, let {an} be the solution of (13) with initial values a-k,"’, a0,..., at-1.
Note that this solution exists and is unique provided that (11) holds. Now define x(t)
by (10) and (12). The it can easily be shown by direct substitution that x(t) satisfies
(8). The proof is complete.

The characteristic equation associated with the difference equation (13) is

(15) det

The main result in this section is the following theorem. For the scalar case see
[12] and [15].

THEOREM 2. Assume that conditions (9) and (11) hold. Then the following state-
ments are equivalent:

(a) Every solution of (8) oscillates.
(b) Every solution of (13) oscillates.
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(C) The characteristic equation (15) has no positive roots.
Proof. The fact that (b) is equivalent to (c) follows from Theorem 1. The proof

of (b) = (a) is an obvious consequence of the fact that x(n) an. It remains to
show that (a) (b). To this end, assume that every component of every solution of
(8) oscillates but, for the sake of contradiction, assume that (13) has a solution {an}
which is nonoscillatory. Let

an [an, ’’’,am].

Then one of the components of a, is eventually positive or eventually negative. With-
out loss of generality we will assume that the first component aZn is eventually positive;
that is, there exists an no such that azn > 0 for n _> no. From (12) and (13) and the
continuity of x(t) we see that for n <_ t _< n + 1 and n E N

x(t) an (an an+l)(t n) [1 (t n)]an + (t n)an+l.

Hence the first component of x(t) [xl(t), xr(t)] is such that

xl(t) [1 (t n)]aln -- (t )an+ >0.

This contradicts the hypothesis that every component of x(t) oscillates, and the proof
is complete.
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Abstract. The concept of a generalized zero of a prepared solution of a superlinear matrix difference
equation is introduced. Riccati techniques are used to establish necessary and sufficient conditions for all
prepared solutions to be oscillatory.
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1. Introduction. In 1955, Atkinson [3] proved that the second-order superlinear
scalar ordinary differential equation

y"+f(t)y2n+l=o, t>__O

with f(t)> 0 and continuous for each t_-> 0 is oscillatory if and only if

tf(t) cx3.dt

Versions of this result for the m x m matrix differential equation

Y"+(Y"O(t)Y*")Y=O

have recently been obtained by Kura [12], Butler and Erbe [4], and Ahlbrandt,
Ridenhour, and Thompson [2]. In [2], it is shown that, when Q(t) is Hermitian,
positive definite, and continuous for each >_-0, a necessary and sufficient condition
for all prepared solutions of (1) which extend to infinity to be oscillatory is that

t Amax[Q(t)] dt=.

Here, Amax[Q(t)] denotes the maximum eigenvalue of Q(t).
In the past few years, several papers (e.g., [8], [9], [11], [14], and [15]) have

appeared on the oscillation theory of second-order scalar difference equations.
Mingarelli [13] has shown that Atkinson’s superlinear oscillation theorem is valid for
second-order real scalar difference equations. The oscillation of second-order linear
matrix differential equations has been studied extensively (see [5]-[7] and the several
references therein). Ahlbrandt and Hooker [1] have studied the principal solutions of
second-order matrix difference equations.

Our results show that Atkinson’s theorem also carries over to the case of second-
order superlinear matrix difference equations. In particular, we study the difference
equation

(2) Az Y(t- 1) +[ Y"( t)Q(t) Y*" (t)] Y(t) 0,

where 7/+ is the set of positive integers, 6 Z+, Y(t) and Q(t) are tn x tn complex-valued
matrices, Y*(t) is the Hermitian adjoint (i.e., conjugate transpose) of Y(t), and Q(t)

* Received by the editors March 20, 1989" accepted for publication May 14, 1990.
? Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588-0323.
: Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322-3900.
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is assumed to be Hermitian and positive definite for each 7/+. Since solutions are
defined only at discrete points, the first consideration will be in arriving at an appropriate
definition of zeros and generalized zeros of solutions. Once this is settled and a
corresponding definition of an oscillatory prepared solution is made, the main result
establishes that equation (2) is oscillatory if and only if

(3) Y tAmax[Q(t)J=cx3.
t----1

Although we employ Riccati techniques similar to those in [2], the arguments are
different and more subtle. The difficulty presented by the generalized zeros and an
important interplay between two different Riccati variables have no counterpart in the
differential equations case.

2. Preliminaries and definitions. We see from (2) that specifying the values of
Y(t) at two consecutive positive integers leads iteratively to a unique solution Y(t)
defined for all 7//. Hence, solutions always exist on all of 7// even though (2) is
nonlinear.

It is well known (see [2] and the references therein) that a satisfactory oscillation
theory in the matrix case can be given only for the class of prepared solutions. A
solution Y(t) of (2) is said to be prepared if and only if

Y*(t)A Y(t) A Y*(t) Y(t), 7/+.

It is easy to see that, for any solution Y(t) of (2),

A[ Y*(t)A Y(t) A Y*(t) Y(t)] K,

and the solution Y(t) is prepared only when K is the zero matrix.
Given a solution Y(t) of (2), we introduce the Riccati functions W(t) and V(t),

defined by

and

W(t) := A Y(t- 1) Y-l(t- 1)

V(t) := A Y(t- 1)Y-l(t).

Obviously, W(t) and V(t) are defined only at integers t, where Y-(t-1) and y-l(t),
respectively, exist. We have the following important identities relating Y, W, and V:

(4) W(t)+ I Y(t) Y-l(t- 1),

(5) I- V(t)= Y(t- 1) Y-l(t)=[W(t)+ i]-1.

Here, as elsewhere, I denotes the m rn identity matrix. We note that (4) follows from

W(t)=AY(t-1)Y-(t-1)=[Y(t) Y(t-1)]y-l(t-1) Y(t)y-l(t-1)-I

and (5) is proved in a similar fashion.
An absolutely essential fact in what follows is that, for a prepared solution of (2),

Riccati functions W(t) and V(t) are Hermitian at points where they exist. The fact
that W(t) is Hermitian follows immediately from the definition of W(t) and the fact
that Y(t) is prepared. We then see, from (5), that V(t) is also Hermitian.

Let Y(t) be a solution of (2). Using (2), (4), and the elementary formulas

a[A(t)B(t)] A(t + 1)AB(t) + AA(t)B(t) AA( t)B(t + 1) + A(t)AB(t)
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and

A[A-I(t)] =-A-I(t)AA(t)A-I(t+ 1) -A-l(t + 1)AA(t)A-I(t),
we obtain on intervals of integers where W(t) exists that

A W(t) AZY(t 1) Y-I(t)-A Y(t- 1) Y-"(t)A Y(t- 1) Y-l(t- 1)

Y"(t)Q(t) Y*"(t) A Y(t- 1) Y-l(t- 1) Y(t- 1) Y-l(t) W(t)
or

(6) AW(t)=-Y"(t)Q(t)Y*"(t)- W(t)[W(t)+I]-lw(t).
We will refer to (6) as the Riccati equation associated with (2). It will play a central
role in the analysis to follow. We could just as well have derived a Riccati equation
for V(t) that is very similar to (6) and have based our analysis on it; however, either
one of these equations together with (4) and (5) yields all the necessary information.

We are ready to define what we mean by generalized zeros and oscillatory solutions.
DEFNVrON. We say a prepared solution Y(t) of (2) has a generalized zero at

to 7/+ if at least one of the eigenvalues of W(to)+ I is less than or equal to zero. A
prepared solution Y(t) of (2) is said to be oscillatory if, for any n 7/+, Y(t) has a
generalized zero at some to with to> n; otherwise, we say the prepared solution Y(t)
is nonoscillatory. Equation (2) is said to be oscillatory if all prepared solutions are
oscillatory and is said to be nonoscillatory if there exists at least one prepared solution
which is nonosillatory.

At first glance, our definition of a generalized zero seems unnatural. We justify it
below, collecting our reasons under four headings.

I. Real scalar equations. Following Hartman [8], a discrete solution y(t) of a real
scalar difference equation is said to have a generalized zero at if either y(t)= 0 or
y’(t 1) and y(t) are of opposite signs. By (4), this occurs precisely when w(t) + 1 _-< 0.

II. Complex scalar equations. In this case, it follows from (4) and (2) that the
function values of a prepared solution determine a set of points in the complex plane
which all lie on a fixed line through the origin. When W(to)+ 1 <0, the successive
solution values y(to-1) and y(to) lie on opposite sides of the origin, a situation that
agrees geometrically with the notion of a generalized zero.

III. Hermitian solutions. Suppose Y(t) is a prepared Hermitian solution of (2)
and to-1 is a positive integer for which det Y(to-1)] 0. From matrix analysis 10,
p. 229], if A and B are Hermitian with AB BA, then there exists a unitary matrix U
which simultaneously diagonalizes both A and B (i.e., UAU*= D and UBU*= A,
where D and A are diagonal matrices). Since Y(to) W(to) + I] Y(to- 1) is Hermitian,
it follows that there is a unitary matrix U(to) such that

U(to)[W(to)+ I]U*(to)= D(to)=diag (d(to), d,(to))

and

U(to) Y(to- 1) U*(to) A(to) diag (A 1(to),’" ", )t,,(to))

with U(to) U*(to) L Therefore

Y(to) U*( to)D(to) U(to) U*( to)a(to) u(to)

u*(to) diag (d(to)A(to),’.., d,(to),Xr,(to))U(to).

This shows that the eigenvalues of Y(to) are products of eigenvalues of W(to) + I with
eigenvalues of Y(to-1). That is, the unitary transformation U(to) allows "tracking"
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of eigenvalues in that the eigenvalue Ai(to) of Y(to-1) is transformed into the eigen-
value di(to)Ai(to) of Y(to). If some eigenvalue d(to) of W(to) + I is zero or negative,
then the iteration from Y(to-1) to Y(to) either produces a singular matrix Y(to) or
an eigenvalue that changes sign. In a continuous evolution, an eigenvalue that changes
sign must pass through zero yielding a point at which the matrix is singular. Therefore,
a zero or negative eigenvalue of W(to) + I implies the presence of a singularity of Y(t)
in passing from Y(to- 1) to Y(to), thus supporting our definition of a generalized zero.

We now give an example which further illustrates the correctness of our definition
in the case of Hermitian solutions. If there exists a constant unitary matrix U which
diagonalizes Q(t) for all t7/+, say, UQ(t)U*= D(t)= diag (dl(t),’’-, din(t)), then
it is easy to see that Y(t) U*Z(t) U is a prepared Hermitian solution of (2) provided
that Z(t) is a diagonal solution of

AeZ( 1) + Z"( t)D( t)z"+l( t) O.

If Q(t) is the constant matrix given by

1.64
Q

-0.48

this technique can be used to find that Yo(t) given by

(7)
Yo(t)={[-0.28 0.96] [ 0.56 -1.92] [-5.960.96 0.28 -1.92 -0.56 6.72

1681.5

-1275.4 937.5

is a prepared Hermitian solution of

(8) /keY(t 1)+ Y(t)QY*(t) Y(t) -O.

The sequence of eigenvalue pairs of Yo(t) is

{(1,-1), (2,-2), (3,-1), (2638,-19),... }.

Since the eigenvalues of Q are A 1 and A 2 and (3) is consequently satisfied, all
prepared solutions of (8), including Yo(t), ought to be oscillatory. Yet, simply by
looking at Yo(t) as given in (7), or at the sequence of eigenvalue pairs, or perhaps at
something like the sequence {det (Yo(t))}, it is difficult to detect why we ought to
consider Yo(t) oscillatory. However, the sequence { Wo(t) + 1} has

{(-2,-2), (-5.5,-1.5), (-239.82,-6.33),.-. }

as the corresponding sequence of eigenvalue pairs indicating that both eigenvalues of
Yo(t) actually change sign at each iteration; hence, Yo(t) has infinitely many generalized
zeros and is oscillatory by our definition.

IV. The general case. We will prove in the next section that (2) is oscillatory if
and only if (3) holds. Therefore, the above definitions are appropriate for non-Hermitian
as well as Hermitian solutions if the principal aim is to construct an oscillation theory
for matrix difference equations which parallels the known results for matrix differential
equations.

3. Main results. For any m x m Hermitian matrix H, we let AI(H) -<_ A2(H) <-" -<_

A,,(H) denote the eigenvalues. Also, Amax(H) and Amin(H) will denote the maximum
and minimum eigenvalues of H, respectively. We now mention three eigenvalue
inequalities that will be used below. For the purpose of describing these inequalities,
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assume H1 and Hz are any m m Hermitian matrices, P is any m x m matrix that is
Hermitian and positive definite, and A is any m x m matrix. The three inequalities are

Xk(H,) + A 1(H2) A.k(H1 + Hz) <-_ Ak(H1) + Am (H2),

Ak(APA*) >- AI(P)AI(AA*),

Ak(APA*) >- Ak(AA*)AI(P),

all valid for 1 <_-k <- m. The first is due to Weyl [10, p. 181], the second is due to
Ostrowski 10, pp. 224-225], and the third is an immediate consequence ofthe Courant-
Fischer min-max theorem [10, p. 179].

We begin by proving a lemma which gives detailed information about the Riccati
functions.

LEMMA. Suppose Y( t) is a nonoscillatory prepared solution of (2). Then there exists

to 7/+ such that W( t) and V( t) are both positive definite and decreasing for >- to with

(9) lim W(t) lim V(t) 0.

Furthermore, multiplication of W( t) and V( t) is commutative at points where both exist
and W(t) V(t) V(t) W(t) is positive definite for >- to.

Proof. Since Y(t) is nonoscillatory and prepared, we begin by choosing toe 7/+
so that W(t)+ I>0 for t_-> to. Since Q(t) is also positive definite, we see from the
Riccati equation, Ostrowski’s inequality, and Weyl’s inequality that A W(t)< 0 for

->_ to. Hence, by Weyl’s inequality, each eigenvalue ’k[ W(/)], 1 _--< k =< m, is a decreasing
function of for t_>- to. Furthermore, each Ak[ W(t)] is bounded below for _-> to since
W(t)+ I>0. Therefore, limt_,Ak[W(t)] exists for 1--< k-< m. Since the eigenvalues
of W(t)+ I decrease but remain positive, the eigenvalues of W(t)+ 1]-1 are positive
and increasing for t->_ to.

From the Riccati equation and the above-mentioned eigenvalue inequalities we
obtain

Ak[--A W(t)] > Ak( W(t)[ W(t) 4-1]-1W(t)}
(10) >-- Ak[ W2( t)]Amin([ W(t) + I]-1)

{Ak[ W( t)]}2Amin([ W(to) d- i]-1),
valid for 1 _-< k =< m and t-> to. We claim that

(11) lim Ak[W(t)]=O
t-->

holds for 1 _-< k_-< m. Suppose not. We choose ko with 1 -<_ ko-<- m such that

(12) ina Ako[ W(t)] Ao O.

In view of (10) and (12), we then choose an integer t with tl ->- to and a positive number
6 such that

(13) Ako[-AW(t)]> for t>_-

But this leads to (letting tr (A) denote the trace of A)"

Amax[W(t)+W(tl)] max [ tl -AW(r) =>--tr -AW(-)
tl m -r=tl

1 t-1 1 t-1

Y’, tr[-AW(’)] =>- Z Ako[--AW(r)]
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By (13), this implies ,max[-- W(t) d- W(tl)]- and ,min[ W(t)]-- -oo as t- c. But this
contradicts the fact that the eigenvalues of W(t) are bounded below for t_-> to.

This proves that (11) holds and, consequently, that limt_ W(t)-0. Therefore,
W(t) is positive for >_-to, 7//. From (5),

V(t)=I-[W(t)+I]-1,

so the eigenvalues of V(t) are also positive and decreasing for t-> to, with
limt_ Ak[ V(t)] 0 for 1 _--< k -< m showing that (9) holds.

Finally, from (5), we see that

[W(t)/I][I- V(t)]- I-[I- V(t)][W(t)/ I],

from which it follows that

W(t) V(t)- V(t) W(t)-- W(t)- V(t)

at all integers where both W(t) and V(t) exist. Since

V(t)[ W(t) 4- I] V(t) V(t) W(t) V(t) 4- V:(t)

W(t) V(t)] V(t) + V:(t)

W(t) V(t),

we see that W(t) V(t) V(t) W(t) is positive for -> to completing the proof of the
lemma.

The main result is the following theorem.
THEOREM 1. Suppose Q( t) is Hermitian and positive definite for all Z+. Then

equation (2) is oscillatory if and only if (3) holds.
Proof. We first assume n--1 (a cubic nonlinearity) in (2). The general case will

be treated later. Suppose (3) holds but (2) has a nonoscillatory prepared solution Y(t).
Applying the lemma, we choose to+ so that Y(t) is invertible and the matrices
W(t), V(t), and W(t) V(t) V(t) W(t) are all positive definite for -> to 1, 7//.

In the next few steps, we derive an identity relating tQ(t) to Y(t), W(t), and
V(t). First,

A[ Y-l(t 1) y,-l( 1)] y-l( t)A Y( 1) Y-(t- 1) Y*-(t)

(14) Y-(t-1)r*-l(t)AY*(t-1)r*-(t-1)

y-l(t) W(t) y,-l(t)

Y-(t- 1) V(t) Y*-l(t- 1).

Using the product rule

A[A(t)B(t)C(t)D(t)E(t)] A(t + 1)B(t + 1)C(t + 1)D(t + 1)AE(t)

+A(t+ 1)AB(t)C(t+ 1)D(t + 1)E(t)

+A(t+ 1)B(t)AC(t)D(t+ 1)E(t)

+A(t+ 1)B(t)C(t)AD(t)E(t)

+ AA(t)B(t)C(t)D(t)E(t),
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we obtain

A[(t- 1) Y-I(t)A Y(t- 1) Y-l(t- 1) Y*-l(t)]
-tY-(t + 1)A Y(t) Y-(t) Y*-(t)A Y*(t) Y*-(t + 1)

tY-(t)a Y(t) Y-(t + 1)a Y(t) Y-(t) Y*-(t) tQ(t)

(15) tY-(t)A Y(t- 1) Y-I(t)A Y(t- 1) Y-(t- 1) Y*-l(t)
+ Y-(t)a Y(t- 1) Y-(t- 1) Y*-(t)

=-ty-l(t+ 1)W2(t+ 1) Y*-l(t+ 1)

-ty-l(t) V(t + 1)W(t + 1)Y*-(t)
tQ(t) tY-’(t) V(t) W(t) y,-l(t) + y-l(t) W(t) y,-l(t).

Applying the following slightly different form of the product rule,

A[A(t)B(t) C( t)D( t)E t)]

=A(t+ l)B(t+ 1)C(t+ 1)AD(t)E(t+ I)

+A(t+ 1)B(t + 1)AC(t)O(t)E(t+ 1) +A(t + 1)AB(t)C(t)D(t)E(t+ 1)

+A(t+ 1)B(t)C(t)D(t)AE(t)+aA(t)B(t)C(t)D(t)E(t),
we find that

A[(t- 1) Y-’(t- 1)a Y(t- 1) Y-’(t) Y*-’(t- 1)]

-tY-(t) W(t + 1) V(t + 1) Y*-l(t) tQ(t)
(16)

tY-(t) w(t) V(t) Y*-l(t) ty-l(t 1) V2(t) Y*-(t- 1)
q- Y-l(t- 1) V(t) Y*-’(t- 1).

Combining (14)-(16), we have the identity

a[ Y-( 1) Y*-( 1)] -tH( t) 2tQ( t) A[(t- 1) Y-(t) W(t) Y*-(t)]
(17)

A[(t- 1) Y-(t- 1) V(t) Y*-(t- 1)],

where

H(t)= Y-l(t+l)W2(t+l)y*-l(t+l)+ Y-(t-1)V2(t)y*-l(t-1)

+ Y-l(t)[2V(t+ 1) W(t+ 1) +2V(t) W(t)]y*-l(t).

Summing both sides of (17) yields
t--1 t--1

2 , ’Q(’)= ’H(’)- Y-l(t- 1) Y*-l(t- 1)
(18) =to

-(t-1)[Y-(t)W(t)y*-l(t)+ Y-I(t-1)V(t)y*-I(t-1)]+C,

where C is a constant Hermitian matrix.
For to+ 1, all terms except C on the right-hand side of (18) are negative definite

and consequently there is a real constant K such that

Amax rQ(r) K fortto+l.

By Weyl’s inequality, there is another constant K so that

(19) max Q() N g for te to+ 1.
=1
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However,

/max 7"0() -> tr ’Q(’)
"r=l m ,r=l

(20) E tr [’Q(r)]
mr--1

1 t-1

E Amax[TO(T)]
=1

,-1
Amax[7Q(7)] as t, contradicting (19).By (3),

This proves that (3) is a sufficient condition for (2) to be oscillatory in the case
n 1. We now prove the same in the case of a general positive integer n. Suppose to
the contrary that (3) holds but there is a positive integer n such that (2) has a prepared
nonoscillatory solution Yo(t). First, since Yo(t) is nonoscillatory, we choose to Z+

such that Yo(t) is invertible for to and the Riccati functions Wo(t) and Vo(t) are
positive definite for to. We let Qo(t) be defined by

Qo(t) -’(t)Q(t) "-’(t), +.
We note that Yo(t) is also a nonoscillatory prepared solution of

(21) Y(t-1)+ Y(t)Qo(t)Y*(t)Y(t)=o, +.
Now Y(t) Yo(t) and Yo(t) Y(t) have the same eigenvalues; fuhermore, for to
we have

[ (t) Yo(t)] Y(t + 1) Yo(t) + Y(t) Yo(t)
(22)

r(t+l)Vo(t+l)Yo(t+l)+ Y(t)Wo(t+l)Yo(t).

From (22), we see that A[ Y(t)Yo(t)]> 0 for t to so the eigenvalues of Yo(t)Y(t)
are increasing; hence, we choose a positive real number 6 so that Amin[ Yo(t) Y(t)] > 6
for to, Z+. By Ostrowski’s inequality,

Am,[Qo(t)] Xma[Q(t)]. 6"- for to.

Hence, Qo(t) is Hermitian and positive definite for to with

Z tz,[ Qo(t)] .
Even though Qo(t) may only be positive semi-definite rather than positive definite for
< to and Z+, it is clear from the first part of the proof that (21) is oscillatory. Since

Yo(t) is a nonoscillatory solution, we have reached a contradiction.
This completes the proof that (2) is oscillatory if (3) holds. Now we prove that

(3) is a necessary condition if (2) is to be oscillatory.
Suppose that

(23) 2 ,[Qo(t)] <.
We need to show that there is at least one nonoscillatory prepared solution of (2).
Atkinson’s original proof [3] in this direction can be recast as an application of the
contraction mapping principle; our proof is in the same vein with some adjustment
necessary because of the different matrix norms.
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We begin by recalling some facts from elementary matrix analysis [10, Chap. 5].
Let ,,, denote the set of rn x m complex matrices, let Izl denote the modulus of the
complex number z, and let Aij denote the entry in the ith row and jth column of a
matrix a. Further, let Ill" II1, II1" II1,, and Ill" 1112 be the matrix norms on , induced by
the l, 11, and 12 vector norms, respectively. Then II1" II1 is the maximum row sum norm,
II1" III, is the maximum column sum norm, and II1" 1112 is the spectral norm with IIIalll2--
[Amax(aA*)] 1/9- for A ’/m and I[IHIII2-max(H) when H is Hermitian and positive
semi-definite. The inequalities

IIIAIII, IIIAIII2, and IIIAIII, mlllAIIl
hold for all A ,. In addition, the submultiplicativity of matrix norms will play a
key role.

If to is a fixed positive integer, then a direct calculation shows that any rn rn
complex matrix-valued function Y(t) defined for => to and satisfying the equation

(24) Y(t)=I- 2
s=t+l

(s- t) Y"(s)Q(s) Y*"(s) Y(s)

also satisfies (2) for >= to. We will apply the contraction mapping principle to produce
a solution of (24). First, we choose to 7/+ so large that

(25) SAma[Q(s)]<m-5/22-2"(Zn+ 1) -1.

We let -,o denote the set of all m rn complex matrix-valued functions U(t) defined
for integers >= to and such that lim,_. U(t) exists as a finite matrix. For U to, let

III uIII- sup Ill U(t)lllo.
t

Then to equipped with this norm is a Banach space. Let g {U ,o" III u-zlll 1}.
Then is a closed and nonempty subset of Tto. For Y g, define TY by

(26) TY( t) I 2
s=t+l

(s- t) Y"(s)Q(s) Y*"(s) Y(s).

(27)

Take Y M. Then, for s -> t,

I[(s t) Y"(s)Q(s) Y*"(s) Y(x)]ol II1(- t) Y"(s)O(s) Y*"(s) Y(x)llloo

--< sill Y(s)lll+llll Y"(s)lll,lllO(s)lll

smlllY[ll"+’ m[llY"(s)llloo" [llO(s)lll=

22n+lm3/2S/max[ O(s)].

From (27), we see that the series on the right-hand side of (26) is convergent for all
7/+. Moreover, from (25) and (26), we see that, for => to,

IIITY( t)- Ill] <= 22"+1 m5/2 Smax[ Q(S)] < 1.
to+l

Therefore IIITY-zlll 1. Since limto TY(t)= I, we see that T is a mapping from
into .
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For Y and Z in .ff and t=> to, we have

I[TV(t)- TZ(t)]ol<= E slllY"(s)Q(s)Y*"(s)V(s)
to-t-

(28) Z"(s)Q(s)Z*"(s)Z(s)lll.
Shortening the notation in a self-evident way,

--< Ill ynQy.,, y y.Qy,nZlll
/ III YnoY*Z YQZ*ZIII/ III

(29)
-< III YIII - Q)" m III yn Ill--Ill Y zlll

/111Ylll v max(Q) mill Y zllllllzlll
/111Y -zlll 4- mx(Q) mlllZlll+-

Also,

!11 yn Znlll__<__ III Y yn-Zlll/ III Y-Z Y-=Z=III /,,, / III YZ- Zlll
(30) =<IIIYn-’(Y--Z)III+IIIyn-2(Y--Z)ZlII+’’" +III(Y-Z)Z’-’III

__--< n" 2 n-’lll W- zlll.
Combining (29) and (30) yields

(3]) [[IYQY*Y-ZQZ*Z[[I<=(2n+ ) 2. m/2An.(Q)lllY-Z[lloo.
From (28) and (31), we then find

IIIrg- r/Ill--< ms/(,/
to+l

Therefore, from (25), it follows that T’-> is a contraction mapping.
Consequently, there is a solution Y(t) of (24) which is also a solution of (2) for

_-> to. Extending this solution backward to 1, we obtain a solution for all satisfying
(24) for => to. Since

limY(t)=! and limAY(t)=0,
t--->

it follows that Y(t) is a prepared solution of (2). Finally

lim W(t)= lim A Y(t-1) Y-l(t-1)=O,
t-->

so W(t) + I --> I as --> oo, making Y(t) a nonoscillatory solution of (2).
This completes the proof of Theorem 1.

4. Extensions to more general equations. If equation (2) is altered slightly, the
analysis changes somewhat. Let Hn(t) denote a general nth degree product of Y(t)
and Y*(t); that is,

H,,( t) ZI( I)Z2( I) Zn( t),

where each Zi(t), 1 <= i<= n, is either Y(t) or Y*(t). Additionally, take Ho(t)= L
Consider the equations

(32) A2 Y(t- 1 + Y( t)Hn_l( t)O(t) H.*_I (t) Y*( t)] Y(t) 0,

(33) A2 Y(t- 1) + Y*(t)H._l(t)Q(t)H*_(t) Y(t)] Y(t) 0.
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Then (2) is a special case of (32) with Zi(t)= Y(t) for 1 =<i-<_ n- 1 and

A2Y(t 1)+ Y*"(t)O(t) Y"+’(t)=0
is a special case of (33) with Zi(t) Y*(t) for l<-_i<=n-1.

The definition of a prepared solution, the Riccati functions W(t) and V(t), and
the definition of generalized zeros is the same as above. Following a development
along the lines of that in [2] for matrix differential equations, we are led to Theorem
2 below. Since all the ideas that set the difference equations apart from the differential
equations are already presented in the development of Theorem 1, we omit the proof.

THEOREM 2. Suppose Q(t) is Hermitian and positive definite for all 7/+. Then
equation (32) is oscillatory if and only if (3) holds. Equation (33) is oscillatory provided
that

and is nonoscillatory when

t,min[ Q( t)]
t-----1

E tAmax[ Q(t)] < cx3.
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AN H INTERPOLATION RESULT*

S. JENSEN
Abstract. This paper presents a proof of an interpolation result related to the approximation

theory for higher-order finite element or spectral methods when C (or higher) regularity is conve-
nient for the finite-dimensional subspaces. This can be a natural choice, for example, for the Stokes
problem, the biharmonic problem, or higher-order plate and shell models. It is shown that the same
intermediate spaces are obtained whether one (1) interpolates between two Sobolev spaces defined
on a domain with nonsmooth boundary first and then enforces the homogeneous ’boundary condi-
tions afterwards or (2) interpolates between two Sobolev spaces where the homogeneous boundary
conditions are enforced throughout the interpolation process.

Key words, interpolation, Peetre, boundary conditions, nonsmooth domains, small angle ellip-
tic regularity

AMS(MOS) subject classifications. 65N30, 46E35, 35J40, 35B65

1. Introduction. The aim of this note is to prove an interpolation result for
domains in R2 with finitely many corners and otherwise smooth boundary. We con-
sider a bounded open set gt of R2, whose boundary is a curvilinear polygon of class
C (see [6]). We denote each of the C curves which constitute the boundary by Fj
for some j ranging from 1 to N. The curve Fj+I follows Fj according to the positive
orientation, on each connected component of F. We denote by Cj the vertex which is
the end point of Fj and by j the measure of the angle at Cj (toward the interior of
). By a corner we mean a vertex Cj with an angle not in the set {0, r, 2r}. The
result is an extension to H of the one in [2], [1] for H which would be useful in
approximation theory for Sobolev spaces; see [8, Remark 2.2.9], [17, Remark 4.2], [7],
and [14, the line following (III.26) in the proof of Thm. III.2]. For example, consider
solving the Stokes problem via the p version of the finite element method or a poly-
nomial spectral method. Then the discrete velocity Up is an elliptic projection onto a
finite-dimensional subspace Zp of Z [H(t)]2 N Ker(div) centering interest on the
approximation problem. Introducing stream functions ( rote, p rotCp) will
translate this approximation problem to H(t). Now an energy estimate is obtained
for free I1- p112 bounded when e H only and there exist constructive ap-
proximation estimates, I1(-- (p]12 _< Cp2-tllllt when e Ht(2)NH(t) for t > 7/2;
see [17]. Now, one wishes to interpolate between these spaces and hopes to get spaces
that coincide in some sense with the ones predicted by regularity theory, but the
trace constraints on a nonsmooth boundary makes this identification nontrivial. If
the boundary is smooth, the result can be deduced from [13]. In general such an
identification is useful for higher-order finite element or spectral methods when C
(or higher) regularity is convenient for the finite-dimensional subspaces. This can be
a natural choice, for example, also for the biharmonic problem or higher-order plate
and shell models.

Let HS(t) be the standard Sobolev space of order s based on L2 with correspond-
ing norm I1" IIs. For m E Z+, Hn(gt) is the set of functions in Hm(t) for which the
traces of the function and its normal derivatives up to order m- 1 vanish on OFt.
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1990.
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We shall use the interpolation spaces of Peetre (see, e.g., [3]) in the cases 1 N
q g oc and 0 < 0 < 1 where we define [Ht(f)N Hn(f),gn(f)]O,q explicitly: For
u E H H, we set

K(u,s) inf (llvllm + sllwllt
t’-VW

v E Hn, w H Hn

and we define the norm

Then

[ls-X/q-K(u,

[Ht(gt) N Hn(f),Hn(f)]O,q {u e H() Ilull[.,.], <

[Ht(ft),Hm(2)]o,q is defined similarly. Note that this space will be a Sobolev space
if we choose q 2 and in general a Besov space.

2. The interpolation result. We state and prove the following proposition.
PROPOSITION 1. Let 2 C_ l:t2 be piecewise C with finitely many corners of

angles in (0, 27r) \ {Tr}. Then the following identity holds for all 0 e (0, 1), 1 <_ q <_ ec
and t>_m, tCm+{1/2,...,m-1/2},m.Z+"

Proof. We follow the main ideas of [2] but have weights be unity for simplicity;
see also [18] and [1].

The inclusion from left to right follows directly from the definition.
The proof of the reverse inclusion can through a partition of unity be reduced to

considering a domain g/with one corner of angle a e (0, 2r) \ {r}. We shall distinguish
between two cases: whether ( (0, r) or (r, 2).

Case 1. a (0, r). Then there exists a linear transformation from g/to g/with a
corner of angle 5 < rain(w0, r} where w0 will be introduced in the next section as a
sufficiently small angle that a certain shift theorem will hold. Let L be the associated
map of functions defined on to functions defined on . If w H(), then we let

IIw denote the solution to

(2.1) (--/X)m + (--)mw + W in

Thus H is a projection from Hm(f) to Hn(f). As proven in the next section on
regularity, there exists w0, dependent on m and t, such that the following shift theorem
holds provided 5 < w0"

In particular, Pa L o H o L-1 B(Hm(f), Hn(f)) and Pa B(Ht(f), Ht(f)
H(f)). Thus, by interpolation,

Pa e B([Ht(a), H’ (a)10,q, [Ht(a) C Hg(a), Hg(a)]o,q).
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Since PflHn(f) I (the identity),

(2.2) [Ht(f), Hm(f)]O,q N Hn(f) C_ [Ht(f) C Hn(f), Hn(f)]O,q.

Case 2. a E (r, 2r). Let B be a ball centered at the corner and containing
f. By Ea, we denote the Stein extension [16, Chap. VI, 3] of functions on f to
functions on B vanishing at OB. Let fc B \ F/and let Eac be the Stein extension
of functions on fc to all of B. Theorem 5 in [16] states that Ea B(Hk(f), Hk(B))
and Eac B(Hk(fC),Hk(B)), for all k N. Now define

Pa Ea o Pa o Ea + (I- Ea o Ea)

with Pa being the the same operator as Pa was in Case 1. Then PalHg(a) I and

Pa e [H*(a) Hg(a), Hy(a)]O,q)

which ends the proof of the proposition.
Remark 1. We have explicitly excluded vertices of angles 0, r, or 2r. In these

cases it is not possible to map linearly onto a domain of sufficiently small angle. In
case f is a polygon the exclusion only amounts to 2r.

Remark 2. The theorem and proof hold in R3 for conical points with smooth
cross section almost verbatim.

3. Regularity for small angles. In [12] it is stated that, given k N, if
the domain contains only corners of sufficiently small angles and f fi H0, then the
solution (u) of a Dirichlet problem with zero boundary conditions and a 2m order,
elliptic operator (Lu f, u Hn) belongs to Hk+2m. We present a proof here
following and expanding upon the ideas in [12, pp. 292-294] and [4] extending to the
case where f Hk, k >_ -m. We use the notation of [12].

Let L be strongly elliptic of order 2m with Coo coefficients and u fi Hn be the
solution of

Lu= f
in a plane sector with opening 5 > 0 and the corner translated to the origin (a case
of Co sides may be reduced to this by a Coo diffeomorphism). In [12] a technique
is used that involves a combination of (1) looking at (0, O/Ox)" the principal part
of the operator L(x, O/Ox) with coefficients fixed at the origin, (2) changing to polar
variables (r,w), so that u f takes the form:

ril Or2m-il

(3) making the change of the radial variable (0 In l/r) so that/:u f now takes
the form

ok+k.uZ 5kk () OOk&Ok f" e-2m F,
l<_k +k2 <_2m,O<_k ,k2

and (4) taking the Fourier transform with respect to the "radial" variable (0). The
domain then consists of angles w / an interval on S (for R2 in dimension n
a domain on Sn- with smooth boundary). The final form of u f is

(Lo w,i),-w
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The boundary conditions undergo similar transformations. Steps 3 and 4 constitute
a partial Mellin transform with respect to the r variable. Steps 2 through 4 are
sometimes called the Kondrat’ev transform [9]. Let R(A) be the resolvent operator-
a meromorphic function of , associated with the resulting boundary value problem.
In [12], [11], and [4] it is shown that if f e gk, then u e Hm has the expansion

(3.1) u ozjsr-iA logs r Pjsq(r logq r) + w
ho<ImA <h s=o q=0

where ho -1 + m, h -1 + k + 2m, ,j are the poles of R(A) of multiplicity n,
Pjsq are polynomials of degree [h- ImAj], whose coefficients are Co functions of w,
and w E Hk+2m. From this expansion we see that the smoothness of u depends on
the poles Aj of the function R(A) which lie above the straight line ImA -1 + m.
We will show that the following lemma holds.

LEMMA 1. Given any positive h, there exists wo such that, if the angle of the
corner is smaller than wo, then the strip -1 + m < ImA < h contains no poles of

Proof. Let h be given and A0 be a pole of R(A) lying in the strip -l+m < ImA < h.
When A A0, there exists a nonzero solution uo(w) to

Lo w,i,-- uo 0 inD,

OUo om--luo
u0=-- 0 on0D.

Ow Ow"-
Now, Louo Lluo + iL2uo, where the operator L2 contains derivatives of order less
than 2m. Since this system is strongly elliptic for all real A, it is strongly elliptic for
A 0. So L1 is strongly elliptic. Let

I(u) f_(nou) dw
JD

which at uo is zero" integrate by parts

+ +

()
0 0

O<i+j<2m,Oi,jm

+5oo()uo} d

0.

By strong ellipticity of L,

Ouo

where o and Co do not depend on uo or

i+j O’-iuoa,_,,_(w) &o_ Oars_:

2

dw Co jf uol2dw

the diameter of D (= 5).

Omuo 2

dw / C(e)lAl 2(m-) luol2dw
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by intermediate derivative inequalities as sketched in [12] and

where C > 0 does not depend on a. Also

Owm
dw luol dw.

Upon contracting like terms, substituting this last inequality, and cancelling f luo2dw,
we get from iReli 1121 + 1131

+ +

for some l > 0 independent ofa. Since ImA (-l+m,h), if A peio,
[-/2, 3/2), given ny > 0, there exists sulciently smil so that

( (
and thus 2m0 e (-e, e) U (2mr e, 2mr + e) (-e, e) such that Re(Am) > 0. Thus

cos(2m0) cos e for e < r/3 so that for 2 > 0 independent of

If we again contract, substitute, and cancel as before, but now in IReI1 + Relal _< Ihl
(using that o0 and mm are of the same sign and Re(A2m) > 0), we get with positive
C1, C

admitting no solutions A for sufficiently small a. D
Remark 3. Another way of proving this lemma for the biharmonic operator is by

checking that the angle can be chosen such that the roots of the equation

sinh2(TW) T
2 sin2 w

see [6], (7,2,2,1), except for --i and 0 all have sufficiently small (negative, large absolute
value) imaginary value; el. [5]. Note 1 + ir -ii.

We finally employ a recent regularity theorem in [4].
3LEMMA 2. Assume that k >_ -m, k .-m+{1/2,-, .,m-1/2}. Let L be a

strongly elliptic partial differential operator of order 2m with C coefficients and
let f E Hk(5) (5 is defined above). Then, for su]ficiently small (, the solution
u e H(fl) to

(3.2) Lu f in ft

belongs to Hk+2m() and IlullH+: <_ CllillH.
Proof. The statement is really a corollary of Lemma 1 and a recent shift theorem

in [4, Cor. (5.2)] proven in [4, 10]. It is stated for a cone in Theorem (1.11). In order
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to apply this result we select the angle 5 sufficiently small that Lemma 1 ensures that
R(A) has no poles in the strip ImA E [m- 1, t- 2]. This in turn implies Dauge’s
condition (C2") (,, (a2)) as follows: If-iA E N, then [4, Corollary (4.6’)] yields
(C2") and if-iA t N, then Corollary (4.9) along with Corollary (4.15) and the fact
that a- 2 (see [4, p. 39]) concludes the proof.

For the interpolation result we use this lemma with L (-A)m / I.
Remark 4. For the H interpolation to hold, it would have sufficed to quote [6,

Theorem 7.2.2.3]. The H02 interpolation result is thus essentially along with the
reasoning of the proof of the proposition and a localization of the poles of R(A) for
the biharmonic a consequence of the analysis in Grisvard’s monograph [6]. Such an
analysis was first done in [10] and [15] for the Stokes problem (which via the stream
function connects to the biharmonic problem).

Remark 5. For m > 2 it is possible to prove Lemma 2 directly from [12] when
k_> -1, k Z; [12] has the result for f H0 and k N. Then it is possible to
prove for f Hk when k >_ -1 by generalizing the trace Theorem 7.2.2.3 in [6] for
a domain gt with one corner C of sufficiently small angle 5 between the two linear
pieces Fj, j 1, 2. First, by this, one finds v Hk+2m() N Hn() such that

(3.3) + v f e (5).
Then one applies to w u- v Kondrat’evs result (when f H0k) with Lemma

1 choosing 5 sufficiently small that w Hk+2m where v Hk+2m is the solution to
(3.3). In [6] the generalization of Kondrat’ev’s weighted spaces is given for k -1.
It seems difficult, however, to go to all the remaining negative integers.
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AN EXTREMAL PROBLEM CONCERNING A MARKOV-TYPE
INEQUALITY*

Abstract For any polynomial f with complex coefficients let [[f[I be the norm in L2[0, co) with the
Laguerre weight function w(t)= e-t. Let Pn be the set of all complex polynomials whose degree does not
exceed n and 7, := supsP. (I]f’l]/l]f]]). We show that

Key words. Markov inequality, L norm, Laguerre weight

AMS(MOS) subject classifications. 33A65, 41A17, 41A44

1. For any polynomial f with complex coefficients we define the norm

IIf[[ :- If(t)[2 e-t dt

Let Pn denote the set of all complex polynomials whose degree does not exceed n and
consider

(1) yn := sup nN.

In [4] Schmidt obtained estimates for % that are asymptotically sharp. Some years
later, Turfin [5] found the exact value of %"

%= 2 sin
4n +

nN.

In the present paper we show the convergence of %,/n as n--> oe and determine the
limit, which turns out to be 2/rr. This result is an immediate consequence of the
above-mentioned results obtained by Schmidt and Turfin. Now, it is the purpose of
this paper to present a quite different approach to this problem by using a new method
This method is based on results developed in [1] and on some function-theoretic
considerations derived from [2].

If P,, is restricted to certain smaller classes of polynomials, there exist several
results concerning % [6], [7]. For the class ofpolynomials with nonnegative coefficients,
Milovanovi6 [3] computed the exact value of Yn even for the generalized Laguerre
weight.

2. In 1 D/Artier proved that y, is the largest singular value ofthe n x (n + 1) matrix

A(,= ". ..
0 0

i.e., the square root of the largest eigenvalue of (A))’A).

Received by the editors October 10, 1988; accepted for publication (in revised form) April 13, 1990.
t Institut fiir Mathematik und Angewandte Geometrie, Montanuniversitt Leoben, A-8700 Leoben,

Austria.
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Since all the elements in the first row and the first column of (A))’A are zero,
it suffices to consider the eigenvalues of the n x n matrix

1 1 1

1 2 2
B := n !.

1 2 n

First we derive a recurrence formula for the characteristic polynomial of B,

(2) Q,(t):=det(B,-tI,), n,
where I. denotes the n n identity matrix

LEMMA 1. Q,+I=(1-2t)Q,-t2Q,_, n>-2.

Proof Consider B.+- tI,/. If we multiply the nth row by (-1) and then add it
to the last row and, afterwards, multiply the nth column by (-1) and add it to the last

Qn+

column, we obtain

1-t 1 1 0

1 2-t 2 0

=det
1 2 n-t

0 0 1-2t

By expanding this determinant by the last row and expanding one of the sub-
determinants by its last column, the above assertion follows instantly. [3

With the aid of Lemma 1 we can compute Q, explicitly.
LEMMA 2.

nE.

Proof We use induction on n. By definition (2), Q1-1-t and Q2-1-3t+ 2, so
that the assertion is obviously true for n 1 and n 2. Suppose now that the assertion
is also true for all n smaller than or equal to a fixed N_-> 2. By substituting for QN
and QN- in the recurrence formula provided by Lemma 1, a lengthy but straightforward
computation gives the desired result for QN/. [’-]

Remark. y is the largest root of Q,. Although we know Q, explicitly, it is difficult
to determine 7. from it. Its asymptotic behavior, however, can be studied by using
function-theoretic methods.

3. First of all we introduce the rational functions

Q.(n2z)
(3) R,(z) :=-, n,

(-n z)"

which are well defined and analytic for all z C\{0}. By Lemma 2 we have

LEMMA 3. Let n be arbitrary but fixed and let n2w--Z. Then

R.(w)=0 <=> Q.(z) =0.

Proof This is clear by definition (3) and the fact that Q.(0) 0 for all n. [3
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LEMMA 4. Let G
_
C be a region, 0 G. Then

lim R, (z) cos (z-1/2)

in G and this convergence is uniform on compact subsets of G.
Proof. (a) Let kN {0} be fixed. Then

lim n-:k{n+k 1
(5) \ k/n (2k)!

n+k’For k 0 this is obviously true. Thus consider k > 0. If n < k, then (,-k 0 by definition.
For n >_- k we have

(6) n_2k ( n + kk) n + k n + k-1. n k + l 1

n n n n (2k)!

which implies (5) because k is fixed. Since

COS (Z-1/2) k
1

=o(2k) (-z)-k

it follows from (4) and (5) that R,,(z) converges to cos (z-1/2) in G as n
(b) Let k N U {0} and n 1 be arbitrary. Then

For k 0 and n < k, this is evidently true. For 0 < k -< n, equation (6) holds, from which
we derive

n+ 1n-2k(n--kk) [lq-][1-(k-1)2] [1-(1)2] (2k).

and finally (7) follows.
Let K

_
G be compact. Then by (4) and (7)

IR.(z)l =< Izl max e 1/Izl=’. CK
k=O zK

for all z K and all n , where CK is a constant depending on K only. Hence,
{R,(z)} is locally bounded and, by Vitali’s theorem, the convergence of R,(z), shown
in (a), is uniform on compact subsets of G.

Now we are ready to state and prove our theorem.
THEOREM. Let y, be defined as in (1). Then

%, 2
lim

Proof Let zl,,’’ ", z,, be the roots of Q,, the characteristic polynomial of B,.
Since (A,) is positive semidefinite, its eigenvalues are real and nonnegative.
Hence, because Q,(0) 0, for all n J we can introduce the ordering zl, _-> z:, ->. _->

z,, > 0. Let, by Lemma 3, wl, --> w2, -->" --> w,, > 0 be the zeros of R, corresponding
to Zl,," ", z,,, respectively. Then, since

(8) w.= nr.
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Let w denote the (positive) zeros of cos (z-1/2), that is,

4
w 7rZ(2j_ 1)2, J6M,

which, in particular, implies wl > w2 >... > wj >... > 0. Then, by Lemma 4 and the
theorem of Hurwitz we may conclude that for every fixed j

lim w, w, j= 1,2,3,. .
The case j 1, combined with (8), proves the assertion of our theorem.
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MINIMAL EXTRAPOLATIONS OF FILTERS*

BENJAMIN B. WELLS?

Abstract. In this paper the following question is answered for the line and for the circle. When is a
trapezoid the graph of a function whose Fourier norm is smallest among functions whose graphs coincide
with on its intervals of constancy? When such functions are viewed as frequency responses of low-pass
filters, they are optimally stable. In the periodic case this means that their Fourier transforms have the
property that when implemented as digital filters, the least upper bound of all ratios of norms of output
sequences to norms of corresponding input sequences is as small as possible.

Key words, absolutely convergent Fourier series, A-norm, quotient norm, pseudomeasure, low-pass filter

AMS(MOS) subject classifications. 42A16, 42A28

1. Introduction and preliminaries. We denote by [ the group of real numbers
under addition, by T the circle group of real numbers under addition modulo 27r, and
by Z the group of integers. By an A-function we mean either a continuous complex-
valued function f defined on R and expressed as the Fourier transform of an absolutely
integrable function, or else a function f defined on the circle T and having absolutely
convergent Fourier series. In the first case the A-norm off is defined to be the Ll-norm
of the absolutely integrable function giving rise to f; in the latter case the A-norm of
f is defined to be the sum of the absolute values of the terms of the Fourier series
off.

Let E denote a fixed closed subset of the reals R or of the circle T, and let I(E)
denote those A-functions that are identically zero on E. An A-function f is said to be
of minimal extrapolation from E provided

(1) f A inf { f+ g A g is in I E ).

The concept of minimal extrapolation was introduced by Beurling [2].
The expression on the right-hand side of (1) defines a norm on the quotient algebra

A(E) A/I(E). The dual space of A(E) may be identified with those pseudomeasures
that annihilate I(E). For the closed sets E considered in this paper, this class coincides
with the pseudomeasures supported by E. Most of the pseudomeasures treated in this
paper are discrete measures. To emphasize the duality with A, however, we shall use
the term "pseudomeasure" throughout.

PROPOSITION 1.1. The function f is of minimal extrapolation from E if and only if
there is a pseudomeasure S of norm 1 whose support is contained in E such that

(S,f)--I[fIlA.

Proof. Suppose the existence of S. Thus,

(2) (S,f+ g)= (S,f) IlfllA
for all g belonging to I(E). An immediate consequence of (2) is that IIf+ gilA > [IfllA
for all g in I(E), i.e., f is of minimal extrapolation.

* Received by the editors January 29, 1990; accepted for publication May 3, 1990.
? Science Applications International Corporation, 803 West Broad Street, Falls Church, Virginia 22046.
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Conversely assume that f is of minimal extrapolation. Thus, the A-norm of f
equals its quotient norm. By duality, we may select a pseudomeasure S, annihilating
I(E), such that (S,f)- Ilfll. This completes the proof of the proposition.

Let E denote the points of an equipartition of the circle T. A result of Herz (cf.
[6, p. 58]) is that any continuous function that is piecewise linear on the intervals
defined by E is of minimal extrapolation from E. Reference [1, Prop. 1] contains
another proof of the Herz criterion. If the points of the partition E are not uniformly
spaced, we might expect that a piecewise linear function need not be of minimal
extrapolation relative to E. Indeed, it is no longer clear whether minimal extrapolation
functions exist.

To guarantee the existence of minimal extrapolation functions, it is necessary to
make some assumption about the set E. To see this, let E be a countable independent
set having zero as an accumulation point. Let J be an interval containing zero such
that J f)E and jcfq E are both nonempty. Furthermore, let f be a function defined to
be equal to 1 on J f’) E and zero on jc f-) E. The functionf has no minimal extrapolation
from the set E. This is a consequence of the fact that the quotient norm off relative
to E is equal to 1. It is easy to see that there can be no absolutely convergent Fourier
series representing f and having A-norm equal to 1.

Esseen [3] pointed out that Lemma 1 of [2] implies that a minimal extrapolation
always exists if E is the closure of its interior. By a standard convergence argument
it is easy to demonstrate that a sufficient condition for the existence of minimal
extrapolations relative to a set E is that every portion of E (i.e., every nonvoid
intersection of E with an open interval) have positive measure. Thus, certainly, if E
is a finite union of nondegenerate, closed intervals this condition would be met.

The question that led us to this study is the following. Among functions whose
graphs are trapezoids symmetrical about the y-axis, which ones are of minimal extrapo-
lation from their intervals of constancy? This problem is relevant to the subject of
filter theory. For a detailed account of this subject, the reader is referred to the
monograph [5]. A function whose graph is a trapezoid is an example of the amplitude
of a bandpass filter. When such a filter is used as a multiplier, function values are
"passed" in the pass band (where the amplitude of the filter is equal to 1), and function
values in the stop band (where the values of the filter are equal to zero) are made
equal to zero.

A function is said to define a stable filter if the operation defined by convolution
with its Fourier coefficients is a bounded operator from the space ofbounded sequences
into itself. The stability of a filter is determined by what is happening in the transition
bands. In the case of the trapezoid, these are the intervals where the function values
give rise to the sides of the trapezoid. If a function defining a filter is an A-function,
its A-norm is equal to the norm of the operator from the space of bounded sequences
to itself defined by convolution with its Fourier coefficients. Indeed, the A-norm of
the filter is exactly equal to the least upper bound of all ratios of norms of output
sequences to norms of corresponding input sequences. Reference 1] contains estimates
for lower bounds on the A-norms of filters having specified pass, stop, and transition
bands.

For a given pass band and a given stop band, it is desirable to ensure that the
least upper bound of all ratios of norms of output sequences to norms of corresponding
input sequences is as small as possible. That is, we would like to know the minimal
extrapolation of a filter from its intervals of constancy. For the case of trapezoids on
the line, it is shown in 2 that a necessary and sufficient condition is that the length
of the pass band be an integral multiple of the length of the transition band. In 3
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the circle group is treated. It is shown that the only trapezoids that are minimal
extrapolations from their intervals of constancy are those satisfying the Herz criterion.
In the final section of the paper it is shown that in the case of the circle T, the trapezoid
is never a unique minimal extrapolation from its intervals of constancy.

In the remainder of the paper we shall be dealing with extrapolations from the
intervals of constancy of a function. The following definition will help make our
statements more concise.

DEFINITION. We shall say that a function f has the M property if it is of minimal
extrapolation from its intervals of constancy.

2. Filters defined by trapezoids on I. In this section we prove that a necessary
and sufficient condition that a trapezoid on be a minimal extrapolation from its
intervals of constancy is that the length of its pass band be an integral multiple of the
length of its transition band.

For 0 _-< e _-< to _-< to + e < , to, will denote the function whose graph has the shape
of a trapezoid of height 1, which is equal to 1 on the interval [-to + e, to- e] and is
equal to zero outside the interval [-to- e, to + e]"

t,o (x) 1, -w+e<-x<=w-e,
(3)

=0, ,o+--<lxl.

In the present setting, the Fourier transform of the function t,o, is in LI(), and its
Ll-norm is the A-norm of t,o,. Fourier transforms of pseudomeasures are functions
which belong to L().

A straightforward computation yields that the Fourier transform of to, is given by

t,(y) 2(sin wy sin ey)/ ey2, y # O,
(4)

2w, y=0.

THEOREM 2.1. The function t,o, has the M property if and only if to is an integral
multiple of e.

LEMMA 2.2. For positive
Proof The proof is an immediate consequence of the relation

..... (x)=t,o,(X/O),
and the fact that [If(x/)lla-Ilflla)for anyf A().

LEMMA 2.3. For positive a, to, has the M property if and only if ..... does.

Proof Apply Lemma 2.2.
We first prove that t,o, has the M property when w is an integral multiple of e.

By Lemma 2.3 there is no loss of generality in assuming that e/27r 1 and that w/27r
is an integer. Define the periodic function f by

f(y) sign (sin wy).

A straightforward calculation yields that the Fourier coefficients of f are given by

f^(wn/27r)=4i/wn for n odd,

=0 for n even.

Define the pseudomeasure S on by setting its Fourier transform to be the
periodic function

(5) S^(y) sign (sin toy sin ey).
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It is evident from the expressions (4) and (5) of the Fourier transforms that S imparts
its A-norm to t,,. From the calculation of the last paragraph, we see that the nth
Fourier coefficient of S is given by

8
(6) S(n)=- E 1/j(n-jw/2’),

T(.O jA

where A is the set of odd integers j such that n-jw/2.n" is an odd multiple of e/2r.
Since e/2r= 1, this implies that S(n) can be nonzero only when n and w/2 have
opposite parity.

It is easy to see from the definition of A that the support of S misses the intervals
(-w e, -co + e) and (w e, w + e). For, suppose that 2rn =jw + ke lies in the interval
(co-e,w+e) withj and k odd and w=qe, then -e<{(j-1)q+k}e<e. Since (j-
1)q + k is odd, this is not possible. It follows from Proposition 1.1 that to. has the M
property.

To complete the proof of the theorem, it is necessary to show that to, fails to
have the M property whenever w is not an integral multiple of e. Suppose, therefore,
that w/2r and e/2r are relatively prime positive integers, e <_- w, with e/2r 1. At
least one of w/2- and e/2r is odd. If e/2r is odd, it suffices to show that (6) is
nonzero at co/2+ 1. A similar argument shows that (6) is nonzero at co/2r in the
case where co / 2r is odd and e /2r is even. Suppose that co / 2r + 1 joco / 2r + koe / 2"rr
for odd integers jo and ko. Except for the multiplicative constant in front, the sum in
(6) may be written as

1/{(j + 2,e/ 2"rr)( co / 2.tr + 1 (j + 2,e/2.rr)w /2)},

where j is an odd integer such that 1-<jl <2e/2r, and j=-jo modulo 2e/2r. It is
clear that each of the terms of the above sum is negative, except possibly the , 0
term. Now, j cannot be equal to 1, for if jo 1 modulo 2e/2r, it would follow that
e/2 rr 1, contrary to assumption. Therefore, the term corresponding to , 0 is negative
as well, and it follows that S has nonzero support in the transition intervals (-w-
e, -w + e) and (co e, co + e).

Since is zero on a discrete set, S is undefined only on a set of Lebesgue
measure zero. If it were the case that t,o, had the M property, by Proposition 1.1 there
would exist a pseudomeasure So such that S(x)= S^(x) almost everywhere with
respect to Lebesgue measure and such that its support is disjoint from the transition
intervals. That is to say, as L-functions S and S are identical. Therefore, to, fails
to have the M property.

It follows from the last paragraph and Lemma 2.3 that to. fails to enjoy the M
property whenever the quotient cole is rational and nonintegral. Suppose now that
this quotient is irrational. By Lemma 2.3 there is no loss of generality in assuming that
co 2rr. Any function in L(R) of norm 1 which imparts its A-norm to to, must be
equal almost everywhere to the function S^(y) defined by (5). Therefore, it only remains
to check that the support of S is not disjoint from the transition intervals (-co-e,
-co+e) and (co e, co + e).

Recall that the Fourier coefficients of the 2r/e periodic function

f(y) sign (sin ey)

are given by

f^(en/2)=4i/en for n odd,

=0 for n even.
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Therefore, the support of the pseudomeasure S will be at the points of the form
{en/2,rr+ k} where n and k are odd integers. In fact, since e/2r is irrational, the sum
en/2"rr + k uniquely determines n and k, therefore

S(en/2zr+ k)=-8/(zrenk), n and k odd.

Again using the irrationality of e/2zr, we see that the set of numbers of the form
{en/2zr+ k} as n and k range over odd integers is dense in , and certainly cannot
be disjoint from the transition intervals (-o e, -w + e) and (o e, o + e). This
completes the proof of Theorem 2.1.

3. Filters lefinel by trapezoids on T. In this section we shall characterize those
trapezoids on the circle group that have the M property. The class of such trapezoids
turns out to be a more narrow class than that defined on the line and enjoying the
same property. Indeed, beyond those guaranteed by the criterion of Herz, there are none.

Suppose that 0<= e <-w <-w + e <_-,r. The exact statement of the theorem is the
following.

TEOREM 3.1. The function t,,, has the Mproperty on T if and only if either w e

or there are positive integers jo and N, such that w jo/N and e r/ N.
The sufficiency of the condition is the Herz criterion applied to t,,, and an

equipartition of (-r, r] having mesh equal to 2rr/N. If zero is a point of the
equipartition, jo is odd, otherwise jo is even. The remainder of the section is devoted
to a proof of Theorem 3.1.

Let S denote a pseudomeasure defined on N. A pseudomeasure So corresponding
to S is defined on T by specifying that its Fourier transform be the restriction of S
to Z. The pseudomeasure So is defined by

(7) So(x) 2 S((x/2r)+ k).

Convergence of (7) is understood to mean pointwise convergence on evaluation at
A-functions.

Let the pseudomeasure S be defined on by the equality

S (y) sign (sin wy ).

Recall from 2 that S is given by

S(oon/2rr)=4i/wn for n odd,

=0 for n even.

If w/2r is irrational, the pseudomeasure So is given by

So(on) 4i/wn for n odd
(8)

=0 for n even,

where the argument of So is taken modulo 2r. If w ko/N for relatively prime
integers ko and N, using (7) we obtain

(9)
So(on)= 2

4i

=-oo w(n + 2Nk)
for n odd,

=(2i/ko) cot (nr/ZN).

The last equality comes about from recognizing the Weierstrass partial fractions
decomposition of the cotangent function.
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We now let S be the pseudomeasure defined on R by the equality

(10) S^(y) =sign (sin (wy) sin (ey)).

We first consider the case of w!,n" irrational and e/7r ko!N in lowest terms. In this
case S is defined everywhere except at the points NZ where sin (ey) vanishes. The
points {jw + ke} modulo 27r as j and k range over odd integers are distinct and dense
in T. From (8) and (9) we have for odd j and k:

(11) So(jw+ ke)=-(8/wjko) cot (kTr/2N).

It is clear that the right-hand side of (11) is nonzero, except if N is odd and k sen
for odd sc. If/z is a pseudomeasure with spectrum contained in NZ, then/x is 2r/N
periodic, i.e., /z(x)=/z(x+27r/N). It must be shown that no pseudomeasure of the
form So-/z, where the spectrum of/z is contained in NZ, will have support disjoint
from the transition intervals (-w e, -w + e) and (w e, w + e). However, this follows
easily, since if s (o e, w + e), " + 2he belongs to the interval (-w e, -w + e) for
some integer A. The value of/x is the same at " as at sr + 2Ae, although the values of
So are distinct at these two points. Therefore, by Proposition 1.1 t,o. does not have the
M property.

We next consider the case where w/Tr and e/Tr are both irrational with e w.
Since S?(n) is defined at every value of n, it follows that it is only necessary to show
that the pseudomeasure So has nonvoid support in the transition intervals (-w e, -w +
e) and (w- e, w + e). As a first subcase, assume that e is not a rational multiple of w.
Then the points {jw + ke} modulo 27r as j and k range over odd integers are distinct
and dense in T. We have from (8) that

So(jw + ke)=-42/(jooke) for j and k odd integers,

and therefore, the support of So is nonvoid in the intervals (-w-e,-w+ e) and
(w e, oo + e).

Next consider the subcase where e poo/q for relatively prime integers p and q.
Then the points {jw + ke} modulo 27r are not distinct, but are still dense in T, since
w/7r and e/7r are irrational. By using (8), it follows that the value of So at jw + ke
for j and k odd is given by

1 1
So(jw + ke) -42 2 oo(j+2np) e(k-2nq)’

(12)

-4el 1 + 1 ]’ wj + 2nwp ek 2noop’

where the sums are taken over all integers n.
Recognizing the Weierstrass decomposition of the cotangent function, we may

rewrite (12) as

(13) So()=2oop cot p +cot q-q
Note that (13) is equal to zero only when jq + kp =-0 modulo 2pq, i.e., when sr is a
multiple of 2poo. Of course, if w e, then p q 1 and So(sr) 0 for all such sr except
sr 0. Thus, in the present case when e # w, the support of So intersects the intervals
(-w e, -w + e) and (w e, w + e). Again, by Proposition 1.1 we conclude that t,o,
does not have the M property.
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We now consider the final case, namely, where to/Tr and e/Tr are both rational
numbers. In this case the support of So is contained in the finite group TN
{Trk/NI 0 =< k < 2N} for some integer N. For the remainder of the section, the appropri-
ate setting for computations of the Fourier transform is the group

LEMMA 3.2. For relatively prime positive integers p and N, set to/7r p N, and let
S be the pseudomeasure defined by the equality S^(n) sign (sin ton), for n not in NZ.

(a) Ifp is odd and S^(Nk)= (-1)k for k Z, 5; is given by

(_) 4
forkodd,S

1 e i,kp’/N

=0 for k even,

where p’ denotes the multiplicative inverse ofp modulo 2N.
(b) Ifp is even and S^(Nk)= 1 for k Z, S is given by

S (-) 4 [ 1- e i=kp’([ N/2] + l )/
e i’rrkp’/ N for keven,

=0 for k odd,

where p’ denotes the multiplicative inverse ofp modulo N.
Proof The result is a straightforward calculation starting with the Fourier trans-

form of S on the finite group TN. For the proof of part (a) we begin with the expression

sign sin e irkn/ N

Y sign sin e i’rrkmp’/N

m=0

N-1 2N-1

--E ei’rrkmp’/N-- E eikmp’/N
rn=0 N

N-1

2 e i’n’kmp’/N for k odd,
m=0

=0 for k even.

This may easily be expressed in the form of the conclusion of part (a).
For the proof of part (b) note that

S sign sin ei=k"/N becomes
n=0

NI (sin) eS (--) 2 sign

=0 forkodd.

when k is even,

For k even, the substitution n mp’ allows this to be expressed as

N 2
i’rrkmp’/N e i’rrkmp’/NS -2 Y e -2 Z

=0 m=[N/2]+l

which is easily rewritten to conform to the conclusion of part (b).
We first assume that oo/7r=p/N, and e/Tr= q/N, where p and q are odd and

relatively prime to N. Later, we shall indicate changes in the proof to accommodate
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the case of either p or q even and provide a proof for the case when p and q have
common factors with N. Recall that the nth Fourier coefficient of the trapezoid t,o, is
given by

(14)
t,(n) (sin wn sin en)/7ren: for n 0,

=w/r forn=O.

LEMMA 3.3. For A and Npositive integers, let the pseudomeasure So be defined on

Tan. The pseudomeasure S defined by the relation

satisfies

0=< n <2N,

S^(n) S?(hn), n Z

Proof A straightforward calculation gives the result. The Fourier transform of S
is given by

S^(n) =- k:O

S0 (k+2N) e
=o =o

Sa(an).

Take S to be the pseudomeasure defined by

S(n) sign (sin pn/N sin qn/N) for n 0,
(15)

=1 forn=0.

Replace n by nq’ in the right-hand side of (15), where q’ denotes the multiplicative
inverse of q modulo 2N. Let p denote the representative of pq’ modulo 2N, 1 Np<
2N. If 1Np<N set r=p. If N<p<2N, set r=2N-p In the computations
below we shall assume the former case. If the latter holds, except for the zeroth
coecient, the sign of each Fourier coecient is reversed. This change of sign does
not alter the arguments presented below.

The case where r 1 corresponds to p =q when the condition of the theorem
holds. Therefore, assume that 1 < r, and let r’, 1 < r’ < N, denote the inverse of r modulo
N, so that rr’= 1 + IN for some positive integer

Under the above assumptions, for n even we have

S sign sin sin e ivn/N

(16)
sign ].

The constant coeNcient of (16) is defined to be 1. Before proceeding to the evaluation
of S(n/N), we replace N by IN, and evaluate So(n/IN). For n even it is given by

1+ sign sin sin

(17)
=2 1+ ,= sign single
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The term inside the brackets of the right-hand side of (17) may be expressed in blocks
with alternating sign:

r’--I 2r’--I rr’--I

(18) E e’"/au- E e=’"/u+’" "+(--1) r-’ E ei’n/aN"
u=O u=r’ u=(r--1)r’

This may be simplified to arrive at the expression

1 e/ 1 +--J for n even,

which in turn is equal to

(19) cot (Trn/2AN) tan (Trr’n/2AN).

By Lemma 3.3 and (19) it follows that for n even and not zero, except for a multiplicative
constant, S(rn/N) is given by

1 7r n
cot {- (+2j) } tan { 7rr’

(0)

Set x rn/N and let q denote the function defined by (19). The derivative of q
is given by

r’ sin (x/A )-sin (r’x/A
q’(x) =22A sin2 (x/2h) cos2 (r’x/2A)"

When A <r’, q’>0 for 0<x<)tr. Since (20) is a sum of terms like (19), it follows
that it defines an increasing function on intervals whose endpoints are points of
discontinuity of at least one of the terms.

Under present assumptions p and q are odd integers. Furthermore, assume for
the moment that q => 5. In this case we may assume that 1 < r’ < N/2, for, if not, we
replace r’ by N r’, so that r(N r’) 1 + (r A N. Then proceed with the computa-
tions outlined above. In formulas (19) and (20) is replaced by (r- A ), and a 1 is added.

From (16) and Proposition 1.1 it follows that to prove the theorem in the present
N--1

case, it is enough to show that the polynomial Y=o sign (sin (rru/N))X (the constant
coefficient is defined to be 1) does not have each of the four roots of unity e ri(p+l)q’/N

and eri(p:3)q’/N as roots. Assume the contrary. These roots of unity are primitive roots
of unity for some integers N1," ", N4. Since this polynomial has integer coefficients
and q’ is relatively prime to N, it follows that it has e i(p+/-I)/N and e 7ri(p3)/N as
additional roots, since they are primitive roots of unity for the same respective integers
N1," , N4 (cf. [8, pp. 203-208]). Therefore (20) is zero for n =p +/- 1 and for n =p + 3.
In view of the monotonicity of on the intervals of continuity of its terms, and since
(20) is zero at each of these points, there exist odd integers, sol, 2, 3 corresponding
to endpoints of intervals of continuity of such that

p-3 73 p-1 1 p+l (2 p+3
N r’ N r’ N r’ N

Hence 4/r’ _-< (:2- :3)/r’ _-< 6/N, which implies that 2N/3 < r’, contrary to the assump-
tion that 1 <r’<N/2. Hence S is nonzero at one of the four points r(p+/- 1)/N,
r(p+3)/N, and by Proposition 1.1 it follows that to,. does not have the M property.

Assume now that q 3. It must be shown that (20) is not zero at one of p + 1.
Assume otherwise. By the same reasoning applied above, there exists an odd integer
: such that either

(i) (p-1)/N</r’<p/N, or
(ii) pN < /r’ < (p + 1)/N.
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Suppose that 1 < 3p’ < N. Set r’= 3p’, and suppose that case (i) holds. Now, by definition
pp’= 1 + z2N for some integer z. Therefore, (i) becomes

3(1 + -2N) r’ <N< 3(1 + ’2N).

This is clearly impossible in view of the fact that : is odd and 1 < r’ < N. In the case
where (ii) holds, we have

3(1 + -2N) < :N < 3(1 + ’2N) + r’.

If N <3p’ <2N, set r’= 2N- 3p’; if2N <3p’ <3N, set r’= 3p’- 2N; and if3N <3p’ <
4N, set r’= 4N-3p’. In the first and third instances, A is replaced by 2r-A and 4r-A,
respectively, and the proof proceeds as before. In each case the above inequalities (i)
and (ii) result in contradiction, except possibly in the case where 3 + r’> N. The cases
where r’= N-1 and r’= N-2 must be examined separately.

In the case where r’= N-1, we have that r N-1; in the case where r’= N-2,
we have that N must be odd and r=(N-1)/2. In both cases the expression (17) with
A 1 may be evaluated directly. In the first case (17) is constant and equal to 2 for n
even and not zero. In the second case the expression inside the brackets of (17) is
equal to

7rn 11 + ei’/s[ 2

(21) 1 + 2 cos
N I1 / e2=’"/ul"

2It is straightforward to check that (21) is zero only for n/N=+, and therefore is
zero for at most one of n--p + 1. By Proposition 1.1 it follows that t,. does not have
the M property when p and q are odd and relatively prime to N.

If exactly one of p and q is even, the proof outlined above remains unchanged,
except that formulas (16)-(21) are to be evaluated for n odd. If both p and q are even,
but still relatively prime to N, we replace them by N-p and N-q, respectively. Note
that (15) is unchanged by this substitution. The proof then proceeds as above, except
that the roots of unity of the new polynomial are e"rri(p+l)(N-q)’/N and e"rri(p+3)(N-q)’/N.
As in the previous paragraph, we conclude that e i(p+I)/N and e ri(p3)/N are additional
roots and proceed as before. This completes the proof of the theorem for the case
where p and q are relatively prime to N.

We now address the case when p and q have nontrivial factors common with N.
Suppose that w/rr =p/N1, and e/rr q/N2 are written in lowest terms, and let N3
denote the greatest common divisor of NI and N2, so that N oN3 and N2 dN3
with c and d relatively prime and not both equal to 1. In this case the imaginary part
of S(3,) is nonzero. Let A denote the least common multiple of p and q. We shall first
evaluate S when oo/rr=p/AN and e/rr= q/AN_ and later apply Lemma 3.3 to get S
when w rr pN and e/rr q/N2. Set oo/rr M AN/p and M2 ANz/q. By
Lemma 3.2(a) (where p of the lemma is taken to be 1, and N is replaced by MI and
M2) the desired convolution is given by

s(r) E
Oj<2N3-1

4 4

1 -exp (iTr(rl+ja)/M1) 1-exp (irr(rz-j)/M2)’

where y rl/M + r2/M2 (r and r2 odd integers), a cA/p, /3 dA / q, and S(y) 0
for other y. This may be rewritten in the form

(22) 4 E Y exp irr ,+u Y
=0 =0 M2

0j<2N3-1

exp irrj( v u)/ N3).



806 BENJAMIN B. WELLS

Make the substitutions v v + 1N3 and u w + :2N3, where 0 _-< v, w < N3, and 0 _-< 1 --<
a- 1 and 0_-< 2--</3-1. Expression (22) becomes

(23) 4N3 E Z 2 ei"’/exp i’rr--l exp ir 2
i=0 2=0 v=0

The real part of (23) is

F1 ?’2
sin zr-- sin

a

1 cos r 1 cos r

(24)
rl+cot cot.=4N3 cot a - 2

The imaginary part of (23) is

(25) --+ cot4N3 cot- a -We now consider to/zr =p/N1 and e/r= q/N2, where both fractions have been
written in lowest terms. Suppose that e 1. It follows from Lemma 3.3 and (25) that,
except for a multiplicative constant, the imaginary part of S(T) is given by

(26) 11[ 7trip r r2q + 2,N2) ]cot + cot
h=o 2 h c 2 hd

where y rp/N + rzq/N2 (rl and r2 are odd, and rp and r2q are taken modulo N
and N2, respectively, -1-< y < 1). The real part of S(T) has a similar expression.
Furthermore, S(T)=0 for y n/edN3, when n has parity opposite to that of d + c.

Note that S^(n) is not defined for n belonging to the union of the cosets
and N2Z. Therefore, to complete the proof of Theorem 3.1, by Proposition 1.1 it is
necessary to show that for no two pseudomeasures/zl and/z2 with spectra contained
in NIZ and NzZ, respectively, is it the case that S-/z-/.L2 has support disjoint from
the transition intervals. It suffices to show that either the real part of S or the imaginary
part of S has no such representation on the transition intervals. Consider the imaginary
part of S, and assume on the contrary that it may be expressed as /z(y)+ z2(y) for

3’ belonging to the transition intervals. Since the spectra of and/z2 are assumed to
be contained in NIZ and N2Z, respectively, it follows that/z is 2zr/Nl-periodic and

2 is 2r/N2-periodic.
Except in the case where c- 1 and q-- 1 (where the condition of the theorem is

true), it is easy to show that for each :/N1 (-N1 --< c < N1), except for -= p modulo
2 if q-- 1, there are pairs of integers r/o, r/e (the subscripts indicate parity) such that
zr[/N + 7/N2] E (w-e, to + e), where the symbol B stands for those of either odd
index "o" or even index "e." To see this, perform the division

(27) pd-d= Qc+ r,

where the remainder r satisfies 0< r< e. If Q is even, set Be Q and 7o Q+I,
otherwise, set 7o=Q and e=Q+l. It is immediate that r[/Na+/Nz]E
(to e, to + e).
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We shall assume in the following argument that p and q are both odd. Minor
modifications to the proof allow for either p or q to be even. Let q(y) denote the
function defined by (26). Let s: denote an odd integer. Now, by assumption,

(28)

If e and d are both odd, the sum (so:/N1 + r/e/N2) does not have the form rl/N1 + r2/N
for rl and r2 both odd integers. Therefore, tx(rle/d)+ tx2(/e) =0. Hence, (28) becomes

(29) p + =-/x +
Since r[s/N + %/N2] and r[s/N1 + /e/N:] (to e, to + e), it follows that

[(-2p)/N+no/N:] and [(-2p)/N+’qe/N:](-oo-e,-to+e). By
assumption,

(30) q
N1

]J’2 +

Since c and d are both odd, it follows that (-2p)/N+rle/N does not have the
form r/N+r/N2 for r and r2 both odd integers. Therefore, Ix(rt/d)+
tx2((-2p)/c)=O. Hence, (30) becomes

-2p
(31) P N

=--jb l-j

Comparing (29) and (31), we obtain

q + gO
N1

This is the equality

cot cot
A =o 2 Ac 2 Ad

(32)

11[ (:--2p) r (r/o + 2,N2)]cot- +cot-
A =o 2 Ac 2 Ad

Therefore, cot (Tr/2)/Ac=cot (Tr/2)(-2p)/Ac, which is clearly impossible.
We finally consider the case where one of c and d is even. If c is odd and d is

even, the arguments are the same as in the preceding paragraph, since it is still true
that (s/N1 + Te/N2) does not have the form rl/N + r2/N2 for , r, and r2 odd integers.
However, if c is even and d is odd, (s/N1 + r/e/N2) does have the form r/NI + r2/N2
for s, r, and r2 odd integers, namely, (/Nl+rle/Nz)=(-e)/Nl+(rle+d)/N2.
Therefore, for the remainder of the argument assume that c is even and d is odd.

The functional expression analogous to (31) is

@ -It- --q) "It- 1 --fi[’l

which leads to

qO + --gO + q
N1

-go
N1

+
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since (-2p)/N1 + r/N2 belongs to the interval (-to e, -w + e). Using the definition
of q, this is the equality:

(33)

This reduces to

tan
A ,.=o 2 Ac

(’rle + 2pN2) ]+tan - ad

+- cot
A,=o 2 Ac

r (ro + 2vN2)]+cot - Ad

1 Al [ T (-2p)
tan

h ,.=o 2 hc

7r (’qe + 2pN2)]-t-tan
ad

1 ’[ rr (so- 2p)+ cot
h .=o 2 hc

rr % + 2 vN2) ]cot - ad

tan
r : r (-2p) r (-2p)r : +cot --=tan-- t-cot-

2 hc he 2 he 2 he

and hence to sin (TrsC)/hc sin (Tr(-2p)/hc). The latter equality is easily seen to be
false. This concludes the proof of Theorem 3.1.

4. Nonuniqueness of minimal extrapolations on T. In this section we will show
that the trapezoids t,o, on the circle T having the M property are not unique minimal
extrapolations from their intervals of constancy. The proof of Theorem 3 of [4] applies
to show uniqueness of the t,, for the case of the line .

Let q be the function defined by

q(x) =sin (rx/e), -e <-x<-_ e,

=0,  <lxl  r.
Now define

f(x) q(x- to) q(x + to).

It is clear that f is supported on the intervals (-w- e,-w + e) and (w- e, w + e).
Furthermore, the nth Fourier coefficient of f is given by

f^(n) =-(2e/(e2nz-Tr2)) sin en sin ton, n # +r/e,

=0, n=+r/e.

Because n assumes only discrete values, it is easy to check that for sufficiently
small positive A

A]f^(n)]<]t (n)] for alln.

Hence

sign (t;,(n)+ Af^(n))= sign (t;,(n))
-sign (sin ton sin en) for all n.

Since to, has the M property, by Proposition 1.1 there exists a pseudomeasure S with
support disjoint from the intervals (-to- e,-to + e) and (to- e, to + e) such that

S^(n) sign (sin ton sin en) for n # 0,

=1 for n =0.



MINIMAL EXTRAPOLATIONS OF FILTERS 809

Therefore,

t,llA -(s, to,,) (s, t,o,. + Af)

Therefore, both to,, and t,o, + Af have the M property and, of course, have the same
intervals of constancy.
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Abstract. A procedure is presented for obtaining the complete asymptotic expansion of a class of
fractional integrals (of Riemann-Liouville type), in which the integrand contains the product of two

derivatives of the Fermi-Dirac integral. The procedure uses two-sided Laplace transforms and Abelian

asymptotics of the inverse Laplace transform. The fractional integrals considered arise in various problems
from statistical mechanics and solid state physics.
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1. Introduction. This paper is concerned with the asymptotic expansion, as
of the class of integrals

(1.1) Fp (t) dt ( > 0).’P F(k)
(/- t)-I rr(">(t)--P <"

Here m and n are nonnegative integers and m)F, (t) denotes the ruth derivative of
the Fermi-Dirac integral F,(t) defined by [1]

1 fo xedx
(1.2) F,(t) =F(p+ 1 1 + ex-t

(P > -1).

The class of Riemann-Liouville fractional integrals (1.1) is important in a number of
areas of statistical mechanics and solid state physics. Two examples are the exchange
energy of a d-dimensional electron gas [6] (/--(d-1)/2, p=-1/2, m n-0) and the
temperature-dependent gradient expansion coefficients for the interaction functional
of an inhomogeneous electron gas [5] (x 2, p =-1/2, m n 2).

In the special case p =-1/2, m n =0, the asymptotics of the integral (1.1) has
been treated by Glasser and Boersma [6]. Their procedure, which uses the two-sided
Laplace transform, is generalized in the present paper to accommodate the additional
parameters p, m, and n. The Laplace transform method is explained in 2, where it
is also shown that the asymptotic analysis may be restricted to the case m n. Let the
Laplace transform of [F(p’n)(t)]2 be denoted by g(s) (with transform variable s), then
the asymptotic expansion of G(rt) as rt-c can be found by applying Abelian
asymptotics to the series expansion of g(s) around s =0. By starting from a suitable
integral representation for g(s) as derived in 3, the expansion of g(s) around s =0
is determined in 4 and 5. In the final section, 6, the corresponding complete
asymptotic expansion of G(rt), as given by (1.1), is presented.

2. Laplace transform method. Following the procedure of 3 of [6], we first
determine the two-sided Laplace transform of (1.1)"

((m,n)(s)--f_oee-Sn(m,n)(,rl)d,rl=s-xg(prn,n)(s(2.1) ,p

* Received by the editors February 26, 1990; accepted for publication May 1, 1990.

? Department of Mathematics and Computing Science, Eindhoven University of Technology, Eind-

hoven, the Netherlands.
$ School of Science, Clarkson University, Potsdam, New York 13676.
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where

I _x st ]?((2.2) ("’n)(s) e- _p (t)Fn)(t) dt.op

From the known asymptotic behaviour [1]

(2.3) Fp(t)= O(e’), t--o, Fp(t)= O(tP+l), t-->,

it follows that the Laplace transforms ’_,,p ,s) and g’(s) are defined in the strip
0< Re s <2.

Assuming that m n in (2.2) and integrating by pas, we establish the recurrence
relations

(2.4) _(m,m+l) vo(m,m)[ ]gp (s) =p ,
(2.5) g’"(s) sgm’"-l)(s)- gp-(m+l’"-l)(s), n > m + 2.

By repeated application of these relations we are led to
2 _(re,m) ,m+

p (s) s Sv (s)- g+’
(2.6) _(m,m+3) gT,m)(s) 1)(S),

4(m, 2(m+l,m+l) (m+2,
v (s)= )(s) 2 (s)+ +e)(s)

The coefficients in (2.4) and (2.6) are now used to form the polynomials

(2.7)
o() , () , e() -,
p3(s =$3_S, p4(s =1 4s -2s+1,...,

which, by (2.5), satisfy the recurrence relation

(2.8) (s) se_(s) -e_(s), .
The latter recurrence relation is identical to that of the Chebyshev polynomials T(s/2)
(cf. [3, 10.11]). Thus we find

(2.9) p(s) T = k s k 1
=0 l[(k-21)[

whereupon the results in (2.6) generalize to

(2.0) g-m’m+(S) /2 (--)(-- l-- ) S_,(m+.g. m+’(S).
=o l[(k-21)[

Consequently, without loss of generality we can restrict our further asymptotic analysis
to the case m n. Accordingly, we simplify the notation by setting (’m() G((),p ,p

and gm’)(s)
In the Laplace transform method the asymptotic expansion of

is obtained by applying Abelian asymptotics [2, Kap. 7] to the series expansion of
g)(s) around s =0. To determine the latter expansion, we rewrite the integral (2.2)
in a more convenient form by means of Parseval’s formula:

(2.11) gm)(s) f e-’[F=)(t)]2 dt= du

where

(2.12) f(u)= e F=)(t) e dr= e-*’/gg(t) e ’’ dr.
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The second integral in (2.12) is evaluated by inserting the integral representation (1.2)
for Fp (t), interchanging the order of integration, and applying the substitution y ex-’

in the t-integral:

f -oo e-S’/2Fp( t) eiUt dt

(2.13)
foX yS/2-iu-11

F(p+l)
x p e dx

l + y

r(s/Z- iu) -p-1

sin [r(s/Z- iu)]"

The result for f(u) thus found is inserted into (2.11), and we have

f -o (S2/4-t- u2) m-p-1
(2.14) g(pm)(s) r

cosh (2ru)- cos (rs)
du.

Obviously, g)(s) depends only on the difference m-p; this was to be expected from
the basic recursion formula F(t)= Fp_(t). Finally, for brevity we introduce

g(2.15) u=m-p-, g(s) (s);

then the representation (2.14) becomes

(sZ/4+u2)-/
(2.16) g(s) co(s)

du.

3. Integral representation for g(s). The representation (2.16) for g(s) is fuher
reduced by another application of Parseval’s formula. It is convenient to distinguish
three cases.

Case i. <. From [4, Formulas 1.9(6), 1.3(7)] we quote the Fourier cosine
transforms

cos (xu)
du

1 sinh 1 s x/2
(3.1)

cosh (2’u)-cos (’s) 2 sin (’s) sinh (x/2)

(3.2) --+ u2 cos (xu) du
T1/2

where we used that K_(z)=K(z) by [7, Formula 3.71(8)]. Next, by means of
Parseval’s formula applied to (2.16) we are led to

(3.3) g(s) =F(1/2- u) sin rs) sinh (x/2) x-K dx.

It is easily seen that the integral (3.3) is convergent if u < 1/2.
Case ii. u>5, u-1/2N. Let k be the smallest integer greater than or equal to u;

then we set u= k-q, where 0-<q<l and q1/2. To apply Parseval’s formula in (2.16),
we need the Fourier cosine transform

(s2/4 + u2) k
(3.4)

cosh (2ru)- cos (’s)
cos (xu) du

1 (s2

2 sin (Trs) d2)k{sinh[(1-s)x/2]}x-? sinh

obtainable from (3.1), and the transform (3.2) with v replaced by -q. As a result it is
found that the representation (2.16) passes into

(3.5) g(s) r(q+1/2) si (s) x2 sinh (X/2)
xqK-q dx.
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To further reduce (3.5), we would like to integrate by parts so that the differential
operator acts on xqK_q(SX/2). Here a difficulty comes up, since the resulting integral
is divergent at the lower limit x 0 and the intermediate endpoint contributions at
x 0 become infinite. To overcome this, we introduce the "finite part" (in the sense
of Hadamard) of the resulting integral and end point contributions, defined as follows.

For 6->_ 0, let f(6) have an asymptotic expansion as 6 $ 0, that consists of terms
6r(log 3) with real r and integer j. Suppose the expansion contains a finite number
of singular terms (i.e., terms with r < 0 or with r 0, j_-> 1), and let foo(3) denote the
sum of the singular terms. Then we define the finite part of f(3) as 3 $ 0 by

(3.6) fin f(3) lim [f(3)-f(3)].
+o o

Likewise, if o h(x) dx is divergent or convergent at x 0, we define the finite part of
the integral as

(3.7) h(x) dx fin h(x) dx.
850

When integrating by parts in (3.5), the finite part of a typical endpoint contribution
looks like

(x){sinh [(1-s)x/2])(x){(3.8) fin XqK_q
+o sinh (x/2)

where j and are nonnegative integers with j + odd. We expand this in a power series
in powers of x 3. Then the expansion is found to contain terms 32"--, 32n+zq-j-!

and, if q 0, also 32"-- log 3, whereby n 0, 1, 2, . Because q # 5 and j + is odd,
none of the exponents 2n-j-1 or 2n+2q-j-l is zero and the finite part (3.8)
vanishes. In this way we find, through integration by parts in (3.5), that

23./.1/2 s-q sinh[(1-s)x/2](s(3"9) g(s)=-)sinF( (rs) sinh)i 4 x-2 xqK-q dx.

Setting sx/2, by repeated use of the recurrence formula [7, 3.71]

(3.10) 1
dt t

(2,+ 1) +1

we find

(3.11)
4 -x xqK-q F(q-k+1/2)skxq Kk-q

Inserting (3.11) into (3.9) and restoring the notation u k q, we are led to the integral
representation

2,n-/ s sinh[(1-s)x/2] ()(3.12) g(s) =F(1/2- ,) sin (rs) sinh (x/2) x-K dx.

This result is identical to the corresponding representation (3.3) for Case i, except that
now the finite part of the divergent integral is to be taken (as indicated by the notation
). From the original representation (2.16) it is clear that g(s) is an analytic function
of , in the whole complex v-plane. Therefore the finite part integral (3.12) is also the
analytic continuation of the integral (3.3) which is analytic for Re , <--.
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Case iii. u n +, n 0, 1, 2, . In this case the integral (2.16) can be evaluated
by means of (3.4), viz.

(3.13)

Thus for n 0, u 1/2, we have

(3.14) g,/2(S) sin(Trs)(1 s).

To evaluate the derivative in (3.13), we substitute

(3.15) sinh[(1-s)x/2]-e(-s/2)X-eSX/2 () x2’
sinh (x/2) e 1

=-2 B2k+l
=o (2k+ 1)!

where Bz+(s/2) is the Bernoulli polynomial [3, 1.13]. Then we find

2vr (nk)()-t’B2,+l(S/2(3.16) g+,/a(S)=
sin (vrs)

(-1)
=o 2k+ 1

4. Expansion of g,,(s) if 2,7/. To determine the series expansion of g(s) around
s 0, we start from the integral representation (3.12) which includes the representation
(3.3) as a special case. For convenience it is assumed that 2, is not integral. By
substitution of

sinh [(1- s)x/2] -sx/2 () e-x
(4.1)

sinh (x/2)
e 2 sinh

1 e

the representation (3.12) is rewritten as

27rl/2 s o ()g(s)
F(1/2- v) sin i-vrs) e-SX/2x-K dx

(4.2) 4vr’/2 s () () x-’e-x
-Z(1/2- , sin irs) sinh K

l-e-
dx.

From [4, Formula 6.8(28)] we have

(4.3) e-’X/x-K dx
l/F(1-2p) _
r(-

valid for Re ,<5. By analytic continuation the result (4.3) also holds for Re ,->5,
2, N, provided that the finite part of the integral is taken as in (4.2). To evaluate the
second integral in (4.2), we expand the product sinh (sx/2)K(sx/2) in a power series.
Starting from the definition

(4.4) K(z)
2 sin (,7r)

[I_(z)-I(z)] (,:77)

we employ Watson’s expansion [7, Formula 5.41(1)] for the products J(z)J+/-(z) with
isx/2. As a result, we obtain/z:, z:

(_) (X.) ’T/"1/2 [ [’(2k- , +)
sinh K =2sin(,) ,,:o(2k+l)!F(2k-2,+2)

(sx)2"-+
(4.5) r(2: + +) ]

:o (2k+ 1)!r(2k+2,+2)
(Sx)2k++I
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The latter expansion is inserted into the second integral in (4.2) and we apply a
term-by-term integration using the auxiliary integral

(4.6) joo x e-X
1 e-"

dx F(a + 1)’(a + 1) (Re a > 0)

where ’(a + 1) denotes Riemann’s zeta function [3, 1.12]. By analytic continuation
the result (4.6) also holds for Re a _-< 0, ce 77, provided that the finite part ofthe integral
is taken.

Finally, by compiling the previous results we are led to the desired expansion

g(s) =F(-" v) sin (urr) sin (rrs) kk=0-- F(Zk+2v)
C(2k)s+-’

(4.7)
2
r(-+(_+s

k=O (2k+ 1)!

valid if 2v 77. It is readily seen that the expansion (4.7) is convergent for 0< [sl < 1.

5. Expansion of g,.(s) if 2v7/. Since g(s) is a continuous function of the para-
meter u, the series expansion of g(s) when 2v N 77 can be found by taking limits
in (4.7) as v + N/2. We distinguish four cases.

Case i. v n, n 1, 2, 3,. .. Rewrite the expansion (4.7) as

2rr s 1
g(s)

F(1/2 v) sin rs sin (urr)

[_2 F(Zk- u+-32) (2k_2v+2)s2k

k=O (2k+ 1)!

+ y F(2k-2n+v+)
k=,-1 F(2k-2n+2v+2)

(2k-2n+2)s2k-2"+2

F(2k-v+) (2k_2v+2)s2k} ](2k+l)!

where it is noted that the terms of the finite sum and of the infinite series vanish when
u n. By properly taking limits as u- n, the expansion (5.1) passes into

(-;) ,
g.() =4 r ,, +

7r sin (zrs)
2 F(2k- n +)

’(2k 2n +2)s2k q- E
F(2k- n +)

r(2k 2n +2)s2k(5.2)
t.k=O (2k+l)! k=.-, (2k+l)!

logs+q 2k-n+ -q(2k+2)+
’(2k-2n +2)}]sr(2k_2n +2)

valid for n 1, 2, 3, here, q,(z) denotes the logarithmic derivative ofthe F-function,
i.e., q,(z)= F’(z)/F(z). By means of [3, Formula 1.12(23)] we have

,(2k_2n+2)=(_l)._k_ (2n-2k-2)!
2(2rr) F2_-gK:-_: ’(2n-2k- 1)

(k=0, 1,..., n-2),

which is used in the finite sum in (5.2).
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Case ii. u =-n, n =0, 1, 2,.... Rewrite the expansion (4.7) as

2rr s 1
g(s)

F(1/2 u) sin (rrs) sin (vrr)

[ +
=o F(Z+2v)

(2k)

(5.4) r(2+2n++)
=o ,F(2k + 2n +2+ 2)

(2k + 2n + 2)s++

(+

and take limits as -n. Then, as in Case i, we are led to the expansion

g_.(s) ;3 sin (s) =o

(5.5) + E
F(2k + n +)

(2k + 2n + 2)s2k
=o (2k+l)

{logs+(2k+n+)-(2k+2)+’(2k+2n+2)}(2k+2n+2)

valid for n =0, 1,2,. . For n =0, the expansion (5.5) agrees with [6, Formula (33)].
Note that the expansion of g(s) contains logarithmic terms in the case where v is
integral.

Case iii. v n +, n 0, 1, 2, . When taking limits in (4.7) as v- n +, proper
care should be taken because some of the F- and -functions become singular. First
consider the case v ; then we find

2s 1 [Z}) 2-2 ()g’/2(S) =sin (s) 2F(- p) k F(2v)
ff(O)s -F v ff(2-2v)

(5.6)

sin (s)
1

in accordance with (3.14). Generally, for n +5, n 1, the expansion (4.7) passes into

2s
g"+l/2(s)=(--1)nsin (s)

lim
1 [_,-)/2 F(2k- v+)

ff(2k- 2v+2)s2k

(5.7)
F(Zn- v+)
(n+

(n +s

2[_ ,t{"-l)/2( n ) (n’)2

-sin(s) (1) Z ff(Zk 2n+l)s2 s2"
=o 2k+ 1 2(2n+ 1)

valid for n 1, 2, 3, . In the final line of (5.7) we may set, by [3, Formula 1.12(22)],

B2n-2k(5.8) (2k-Zn+ 1) =-2(n_k) (k=0, 1,..., n-l)

where B2,-2 is the Bernoulli number. It can be shown that the expansion (5.7) agrees
with (3.16).
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Case iv. v -n -, n O, 1, 2, . In this case the expansion (4.7) remains valid,
provided that the ratio F(2k+ v-1/2)/F(2k+2v) is handled with proper care. Thus by
means of

F(2k+v-1/2)_{2(2k-2n-1)n, k<=n,
(5.9) -.-n-liml/2 F(2k + 2v) (2k 2n 1)n, k > n + 1

we obtain the expansion

g_._,/(s) n
(5.10)

sin (Trs)
-2

k=o
(2k-2n- 1),r(2k)s2k-2"-3

+ (-1)k(k)n(k+2n+l)sk-2

k=l

valid for n 0, 1, 2, . In the special case n 0, v -1/2, the expansion (5.10) reduces
to

(5.11)

2rs s_3+ 1)ksr(k+ 1)sk_g-1/2(S)
sin (7’FS) k=l

sin (Trs)

by use of[3, Formula 1.17(5)]. The same result can also be found by a direct evaluation
of the integral (3.3) with v .

Finally, it is pointed out that the infinite series expansions of g(s), as presented
in (5.2), (5.5), and (5.10), are convergent for 0<ls[<l. In Case iii the infinite series
reduces to a finite sum; see (5.6) and (5.7).

6. Asymptotic expansion of ,-(m)(..,p,/). The asymptotic expansion of ,p, r/) as
is determined through a term-by-term conversion, based on theorems of Abelian

asymptotics 2, Kap. 7], ofthe series expansion of s-"g(s) around s 0. The conversion
is most easily carried out by use of the "dictionary" in Table 1. The left column of
the table shows a specific term of the expansion around s 0; the right column shows
the corresponding term of the asymptotic expansion as r/- o.

In the expansions of g(s) as determined in 4 and 5, replace 7rs/sin (Trs) by

7r_______s 2 2 (1 --21-2k)f(2k)s2k, Is < 1(6.1)
sin (7rs) k:O

f(s)

TABLE
Inverse Laplace transforms.

c+ic

(1/27ri) f(s) e nS as

[1/F(-A)]r/-’x-, A0,1,2,...

0, A =0, 1,2,.

s log s
-[ 1/F(-A)]r/-’x-[log r/- p(-A)], A 0, 1, 2,..

(-1)’+A!r/-’x-, A =0, 1,2,...
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and multiply the series involved. Then for 2u 77, the expansion (4.7) of g(s) takes
the form

(6.2) g.(s)= Aks2k+2"-2+ BkS2k, 0<ISI<I
k=0 k=0

with coefficients

4 k F(21 + u-1/2) 1-2k+2/Ak F(1/2- u) sin (vrr) =o F(2/+ 2)
(21)(1 2 )ff(2k 2/),

(6.3)
-4 r(2/- +)

Bk F( u) sin (u) l=0L (21 + 1 ).
(21-2+ 2)(1- 21-2k+l)(2k 21).

Similar expansions hold in the case where 2 Z. From (5.2) and (5.5) it follows that
the expansion of g(s) contains logarithmic terms if is integral.

Staing from (6.2) multiplied by s-, we find by use of Table 1 the desired
asymptotic expansion

AkV -2v--2k+lr(-2-2k+2)=0

(6.4)

+ B
=o r( 2k) n--’ m)’

valid if 2vZ. It is pointed out that the first (second) asymptotic series in (6.4)
terminates to a finite sum if -2v () is an integer. Similar asymptotic expansions
hold in the case where 2v e Z. If v is an integer, it is found from (5.2) and (5.5) that
the asymptotic expansion of )_,,p,) contains logarithmic terms [1/F(-2k)]x
,-2k-1 log , with k g max (v 1, 0).

As an example, we determine the asymptotic expansion of the integral [5]

<2 f" 2(6.5) ,_,/(n) j_ (n t)[F:,/(t)] dr,

for which u 2. In the expansion (5.2) with n 2, replace rrs/sin (rrs) by (6.1), and
multiply the series involved. Then the expansion of g2(s) takes the form

(6.6) g2(s) E Cks2k log S + E dks2k, Isl < 1
k=l k=0

with coefficients

Ck 6rr-3/2 y. r(2!-1/2) ’(2/- 2)(1 21-2k+2t)(2k 2/),
,=1 (2/+1)!

(6.7) dk=67r_3/2 F(21-1/2)(21_2)[(21_)_(21+2)+’(21-2)]/=o (21+1)! (2/--2)

(1 2-2+2’)(2k_ 2/).

Next, by use of Table 1 in a term-by-term conversion of the expansion of s-Zg2(s),
we are led to the asymptotic expansion

(6.8) (2) -2k+1 o0).t-r2,-1/2t r/) don E (2k 2)!ckr/ (r/-+
k=l
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By evaluating the leading terms in (6.8), we find

2) 3st(3) 1 -1 57r -3G2,-,/2(rl) ="2,n. r/+-- r/ 4-192
(6.9) 433 323

+--5+--7+ O(n -9) ).
1920 7168

The asymptotic expansion (6.8) can also be derived in a more elementary manner.
To that end we sta from the two-sided Laplace transform

(6.10) e-’tFl/2(t) dt=sin (s)’
obtainable from (2.12) and (2.13). Using (6.1) and Table 1, we expand (6.10) in a
power series around s 0, whereupon a term-by-term conversion yields the asymptotic
expansion

(6.11) _,/(t)---- (1--2 ’- F 2k+ (2k)t--3/ (t ).
k=0

By squaring (6.11) we find

(6.12) [F",/2(t)]2"" 2 bkt-2k-3

with coefficients

(6.13)

Next it is observed from (6.5) that (2)2,_1/2,’1"]) is the repeated integral of order 2, of
[F",/(t)]2. As it has been shown in the Appendix of [6], the asymptotic expansion

,-,.-/2’0) can now be derived by a twice repeated termwise integration of the
expansion (6.12). Thus we find

(6 14) (2) ff b -2k-, )G2,_1/2( T C n "+" Co + (--)
--o (2k + 1)(2k + 2) n r/

where the constants Co and C1 are yet to be determined. By dividing (6.14) by r/ and
taking limits as r/- c, it readily follows that

(6.15) C IF,,
3st(3),/2(t)]2 dt g(0) 2yr3

where g2(0) has been evaluated by means of (2.16) and [4, Formula 6.6(4)]. In a similar
manner it is found that

(6.16) Co -f_ t[F"l/2(t)]2 dt=g’2(O)=O.

The asymptotic expansion (6.14) does agree with (6.8) provided that

b(6.17) -(2k)!c+,
(2k+l)(2k+2)’

k 0, 1,2,

The latter identity can be proved by a generating function technique.
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CONTIGUITY RELATIONS OF AOMOTO-GEL’FAND HYPERGEOMETRIC
FUNCTIONS AND APPLICATIONS TO APPELL’S SYSTEM F3 AND
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Abstract. Aomoto-Gel’fand hypergeometric functions (Z, a) [K. Aomoto, Sci. Papers, College of Arts
and Sciences, University of Tokyo, 27 (1977), pp. 49-61], [I. M. Gel’land, Soviet Math. Dokl., 33 (1986),
pp. 573-577] are functions of z defined on the Grassmannian Gk, the set of k-dimensional subspaces of
an n-dimensional linear space, and with complex parameters (a). Such a class of functions contains certain
classical hypergeometric functions (HGF), such as the HGF of Gauss, the generalized HGF p+Fp., and
Appell’s HGF’s F1, Fa, F3. On the other hand, W. Miller [J. Math. Phys., 13 (1972), pp. 1393-1399; SIAM
J. Appl. Math., 25 (1973), pp. 226-235; SIAM J. Math. Anal., 3 (1972), pp. 31-44] has given contiguity
relations for several HGF’s, including the HGF’s mentioned above, and has shown the Lie-algebraic structure
of the equations satisfied by these functions. This paper first presents a principle of obtaining contiguity
relations for Aomoto-Gel’fand HGF’s and clarifies the Lie-algebraic structure among them. The contiguity
relations for Lauricella’s HGF Fo are known easily from this principle. The second part of this paper is an
application to get complete tables of contiguity relations for F and 3Fa, which complement the tables for
these functions given by Miller in the papers cited above.

Key words, contiguity relations, Aomoto-Gel’fand hypergeometric functions, Appell-Lauricella hyper-
geometric function Fo, Appell’s hypergeometric function F3, Goursat’s hypergeometric function 3Fa
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Introduction. This paper is aimed at defining the contiguity relations of the
Aomoto-Gel’fand hypergeometric functions and providing, as applications, a complete
list of contiguity relations of Appell’s hypergeometric function F3 and that of Goursat’s
generalized hypergeometric function 3F2. We use a short term HGF for "hypergeometric
function."

Let us recall the contiguity relations of the Gauss HGF:

n)(fl n)
F(,/3, V; x)=

:o (% n)nt

where (a, n) denotes the factorial function

(a, n)
a(a+l)(a+2)...(a+n-1),

Functions such as F(a + 1, , 7; x), F(a,/3 + 1, 3/; x),. are called contiguous to
F(a,/3, y; x), and linear relations among contiguous functions and their derivatives
are called contiguity relations. The following are typical examples:

d
aF(a + 1,/3, 3/; x)= aF(a, fl, y; x)+ Xx F(a,/3, y; x),

(0.1) (a-y+ 1)F(a,/3, y;x)=(y-a-l-x)F(a+l,, y;x)

d
+ x(1 x) xx F(a + 1,/3, T; x).

* Received by the editors June 7, 1989; accepted for publication (in revised form) December 11, 1989.
? Department of Mathematics, Faculty of Sciences, Kobe University, Rokko, Kobe, 657 Japan.
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Define differential operators H and B which appear in the right-hand sides by

d d
(0.2) H=X-dx+a and B=x(1-X)x+(y-a-l-x),
and denote by S(a,/3, 3’) the space of solutions ofthe Gauss hypergeometric differential
equation (HGDE):

(0.3) x(1-x)
d2u du
dx--+ { y a + fl + 1)x} xx- a/3u =0.

Then these operators define linear homomorphisms:

H: S(c, fl, y)-> S(o + l, fl, y ),
(0.4)

B S(a + 1, , 3,)-> S(a, , "),),

which are isomorphisms when a (ce + 3’- 1) # 0. The differential operator

d
xx: S(a,/3, 3’)-> S(a + 1,/3 + 1, 3,+ 1),

which has been basic in the study of the Gauss HGF in [GA], also reflects a contiguity
relation

d
F(a,/3, y,x) aF(c+l /3+1 y+l’x).

dx y

As we have seen in [SY3], such relations form a part of the symmetry of the Gauss
HGDE (0.3), and symmetry plays a fundamental role in the study of the HGF. It is
thus important to understand how the contiguity relations arise for several HGF’s.
Refer also to [IKSY].

In this paper we first present a general principle of getting such relations and
differential operators for a wider class of HGF’s, i.e., a class of HGF’s defined by
Aomoto [A1 and Gel’fand [GE], which we call the Aomoto-Gel’fand HGF’s (see 1).

We next apply this principle to classical HGF’s. Contiguity relations for the
Appell-Lauricella HGF, denoted by Fo, are completely known by Miller [M1] in
relation with the Lie-algebraic structure of the system of differential equations satisfied
by these functions. Contiguity relations for Appell’s HGF F3 of two variables and
those for Goursat’s HGF pFq are partly known by Miller [M2], [M3]. On the other
hand, these functions Fo, F3, and pFq (p q + 1) belong to the class of the Aomoto-
Gel’fand HGF’s. Therefore, as applications, we can reproduce contiguity relations of
Fo by a simpler principle and complement those relations of F3 and 3F2 by Miller to
yield a complete set of contiguity relations. The Lie-algebraic structure of the associated
differential operators is also clarified by the same principle.

Here we give some remarks. Miller et al. in [M1]-[M4], [KMM1]-[KMM3] have
determined the symmetry of Horn’s two-variable systems. To each system they associ-
ated a constant coefficient system, called the canonical system, on a manifold that has
fibering over the original two-manifold. In this instance they used (some) contiguity
relations. Our present context is, put simply, in the opposite direction; we start with
systems which are full of symmetry and then restrict our consideration to base manifolds
to get contiguity relations of classical HGF’s. This concept itself is not new. Hrabowski
[H] introduced the canonical systems, which are generalizations of HGDE’s, associated
with certain simple Lie groups and classified the Lie-algebraic content of such systems.
He also gave a principle, essentially the same as ours, for getting contiguity relations
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(recurrence relations, in his terminology) for such systems. Recently, Gel’fand, Zelevin-
skii, and Kapranov [GZK] gave a precise description of algebraic structure of canonical
systems, generalizing that by Hrabowski. So, by a method similar to that exhibited
here we may find contiguity relations explicitly for several other HGF’s. Appell’s F4,
for example, is one such HGF since the function Fc that is a higher-dimensional
generalization of F4 is a special case of this general setting, although the actual
computation needs some elaborate working. The author does not know, however,
whether F4 has a representation as one of Aomoto-Gel’fand HGF’s. Refer to IT],
where Takayama has given another method of obtaining contiguity relations for F4.

It should be noted that Sato [SA] has already given a different approach to get
a generalization of HGF’s by referring to prehomogeneous vector spaces and b-
functions.

In 1 we recall the definition of the Aomoto-Gel’fand HGF and the system
E(k, n) of differential equations satisfied by this function. In 2 contiguity relations
for this system will be defined. From these relations we obtain generalized Gauss
relations, namely, hypergeometric difference equations with respect to parameters. We
treat in 3 the system E(2, n + 3), which is associated with the Appell-Lauricella HGF
Fo, and reproduce contiguity relations due to Miller (see Table 1).

In 4-10 we deal with the system E(3, 6), whose explicit expression is given in
4. It is noteworthy that, while the system E (3, 6) is defined on CP4 and of rank 6, it

includes, as subsystems, Appell’s systems F1, F, and F3, Gousat’s system 3F, and
the Gauss HGDE. This will be recalled in 6. Moreover, this fact enables us to derive
contiguity relations for these systems from the contiguity relations of E(3, 6). Refer
to [MSY2] for the algebraic-geometric implications of this fact. In 5 and 8 we give
two representations of contiguity relations of E(3, 6) (see Tables 2, 4). In 7 we
complete enumerating contiguity relations for Appell’s F3 (see Tables 3.1, 3.2). The
list of those relations for 3F2 will be given in 9 (Table 5). Section 10 gives proofs of
two technical lemmas.

1. The Aomoto-Gel’fand hypergeometric function. We recall the definition of the
Aomoto-Gel’fand HGF following [GE] and [GG]. Fix integers n and k so that k < n.
Let Zk, denote the space of k x n complex matrices of rank k such that any column
vector is nonzero; Gk, the Grassmannian manifold of k-subspaces in Cn. Since each
point in Zk, defines an imbedding of Ck into Cn, there is a natural projection Zk, "-> Gk,
We let (t i) be coordinates of Ck and define a (k-1)-form to by

k

to= (-1)i+ltdt ^ ^ dt-l ^ dti+l

^ ^ dt k.
i=1

For a set of complex numbers a (al,... ,a,.)with the property Y aj=n-k and for
(E--a point z=(zij) in Zk.. we put ’=I-I=x zot’) to, which can be seen as a

(k- 1)-form on the projective space CPk-1. Then we take a suitable (k- 1)-cycle C in
CPk-l- S, where S is the union of n hyperplanes -,k

i--1 zt =O,j 1,. ’’, n, and define
a function by the integral

(1.1) (z, ce)= f -,
c

which will be called the Aomoto-Gel’fand hypergeometric function.
This function is invariant under two kinds of group action. Since Zk,, is a principal

GLk-bundle over Gk,,, g GLk acts on Zk,, on the left. Under this action the integral
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changes as

(1.2) (gz, a)= (det g)-l(z, a).

On the other hand, the Cartan subgroup Hn, consisting of diagonal matrices, acts on

Zk,, on the right. Under this action, transforms as

(1.3) Cb(zh, a)= I-I (hj)J-’O( z, a),

where h =diag (hi," ", h,).
Two points " and " in Gk,, are said to be equivalent if dim (P ’) dim (P 71 sr’)

for any coordinate planes P={(yi)eC"; yi,=y2 yS=0} (l_-<j_-<n). Sets of
equivalent points define a stratification of G,,. Note that each stratum is invariant
under the action of the group H,. It is of particular importance to study the restriction
of the integral to each stratum; combinatorial information on the configuration of
strata plays an essential role.

It is easy to see that the function , viewed as a function on Z,,, satisfies the
following system E(k, n)= E(k, n; a) of differential equations:

(1.4)
i=1 OZij

(1.5) z + ,, 0,
j----1 O Zlj

02 02-=0.(1.6)
Oziv Ozq Oziq Ozv

Equations (1.4) and (1.5) reflect the invariances (1.2) and (1.3), respectively. It is
_1) and is equalknown [KN] that the rank of E (k, n" a) is generally not greater than (,-2

to this number when z lies in the unique open stratum and when any a takes no
integral value.

For the precise presentation of the above materials, refer to [A1], [A3], [GE],
[GG], [KN].

2. Contiguity relations and Gauss relations. On the space Zk,, acts the general
linear group GL, on the right. We are interested in the associated infinitesimal
transformation, which induces the vector fields L/ on Zk,, given by

k 0
(2.1) L/- zo for j, l= l, n.

O Zil

The next lemma is a key to understanding what follows.
LEMMA 2.1. The Lie algebra generated by vector fields Lt is isomorphic to the Lie

algebra flln of general linear matrices.

Proof We have only to associate to Lj the n x n matrix with 1 in the (j/)th
component and zero in the others. [3

Applying these differential operators on the integral (1.1), we easily see the
following proposition.

PROPOSITION 2.2. The integral satisfies relations

(2.2) L;l(Z, a)=(al-1)(z, a+ 1-- 11),

where 1 denotes the vector with 1 in the jth component and zero in the others.
While these identities are infinitesimal expressions of the right action, they can

be seen as differential-difference relations among a solution of the system E(k, n; a)
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and a solution of another system E(k, n; a + 1.j-1/). So we introduce the following
definition.

DEFINITION. We call the relations (2.2) the contiguity relations of the integral
or of the system E (k, n).

We now look closer at these relations by the invariance (1.2). Take a point
z (Z1, Z2) in Zk, where Zl is a nonsingular k x k matrix and Z2 is a k x (n k) matrix.
Put

(2.3) u (U,p) z-lz2,
which can be seen as a point in Gk, The ranges of indices are supposed to be

l<--_i,j,. .,<--n, l<-a,b, ..-,_-<k, k+l<-_p,q,. .,<-n.

We define

(2.4) q(u, c)= ((I, u), a).

The invariance (1.2) implies

(2.5) (z, a)= (det zl)-lq(u, a).

Hence the action of L on induces a differential operator X;t- (det zl)Lt(det zl) -1

acting on o; o satisfies contiguity relations

(2.6) Xjq(u, a) (a- 1)q(u, a + 1- 1).

LEMMA 2.3. The operators Xt are given by the formulae

(2.7)

0
tab lgbp

p=k+l Oblap
o

Xjl 0 gap

Uap Uaq gpq
q=k+l

Upq,

j a, b,

j a, p,

j p, a,

j p, q,

where

k 0
Upq 2 Uap

0Haq

Proof Denote by (Vab) the inverse matrix of zl. Assume 1-<j, <= k. Then the
derivation of (2.5) by Ljl gives

0
Lj, Z zaj ((det Z1)--l (49 U,

OZal

(2.8)

0 OblbpZ zj (det Zl) -1
Oz,l

q + zj(det Z1) -10Zal OblbP

-Z zoj(det Zl)-2(the (a/)-cofactor)0 +E z,i(det Z1)--I( Vbabllp)

-Y (det Z1)-ljl(9 --" (det Z1) -1 U/p

Hence we get the first formula. Other formulae are similarly shown.

0Ubp
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It is easy to see that these operators Xl are linearly independent and form a Lie
algebra isomorphic to gln, which we denote by g. The subspace go=C{Upq} is a
subalgebra isomorphic to gln-k. The algebra g is decomposed into the sum of go and
three subspaces.

1--C{O/OUap}, -1---C{Uap"-E uaqUpq}, and O’o=C{Sab+ Ubp O/OU,p}.

The triplet {g-l, g09, 91} gives a gradation of 9.
The identity (2.6) for each Xi gives
PROPOSITION 2.3. The contiguity relations with respect to coordinates (Uap) of Gk,

are

E (a)= (ab 1)q(a + 1, lb),(2.9) --6,b(a)
p=k+l UbPUap
O (a)= (ap-- 1)(a + 1-- 1),(2.10)

(2.11) --Uap(a Uaq Ubp
q=k+l b=l Obq

(a) (ao- 1)(a + lp- lq),(e.le
=,q

for lNa, bNk, and k+lNp, qNn.
In [A2] and [A3] Aomoto has given a general theory on the system of linear

difference equations satisfied by the integral (z, ) viewed as a function of . In our
case the difference equations are obtained from the above formulae: it is enough to
get rid of differential terms by using the second identity (2.10). Namely, we have the
following proposition.

PROPOSITION 2.4. e Aomoto-Gel’fand hypergeometric function (u, ) satisfies
the system of difference equations with respect

(.3 (u, 2 u(u, + ,
a=l

(.4 (u,+ (-u(u, + =0,

pUap@ U +
(2.15)

q=k+l,qp

+( -(u,+-=0,

where l N a N k and k + l N p N n.

Proo By inseing (2.10) into (2.11), (2.9), and (2.12) we have (2.15) and

(. e(u, +2(-u(u, + +( (u, + =0,

(2.17) @(U, + lp-- lq)--

respectively. Replacing + 1-lq by in (2.17) we get (2.13). Replacing + 1-lb
by in (2.16) we get (2.14).

Remark Equations (2.13) and (2.14) have been given in [GZ].
DEFINITION. We call three systems of difference equations (2.13), (2.14), and

(2.15) generalized Gauss relations (cf. [GA], [GZ]).
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Example. The Goursat HGF kFk_l is given by an integral associated with the
one-dimensional stratum in Gk,2k/H2k consisting of points

1 1 1

1 -1 1

1 -1 1

1 -1 -x

In fact it is by definition

kFk-l(a, ak; ill,’’’, fl,-; X)

(2.18)
F(flj)

t7’-/3x H t-/3+ltL-i’-’( 1 t,)
= r()r(-)

k-1

l] (t_,- t)--’(1 --Xtk_l)- dt ^’’" ^ dtk-1
j=2

3,F aF(a+’y+) "y a F( y+) O,

TF- flF(fl+7+) 3" fl F( 7+) O,

vF- vF(+) + axF(a+fl+7+ 0,

rF- vF(+) + flxF(+fl+y+) O,

where F= F(, , y; x) 2F(, fl; y; x) and (a +) (a + 1, fl, y), (+y+)
( + 1, fl, y+ 1),.... The remaining four relations follow from these with ceain
translations of parameters. From the last two relations we have a well-known formula"

( a)F-F(+) + aF(a+) O.

Another coordinate system on the stratum gives different relations; namely, because
of the symmetry (1.2), we get relations transformed by so-called Kummer’s identities.
For example, consider a stratum of points

1 1 1

in a,4. It is easy to see that the integral also defines the Gauss HGF with respect to
the coordinate x. Then, in addition to the above relations, we have

In this way we can find 15 relations by Gauss [GA, p. 130].

four of them are

integrated over the cycle 1 >- t >- >= tk_ O. The Gauss relations in Proposition 2.4
now consist of k2+ 2k difference relations, each of which contains three terms. Note
that Rainville [R] has given a list of such relations; his list consists of 2k-2 relations,
each connecting three contiguous functions, and k + 1 relations, each containing k + 1
contiguous functions.

In the case k 2, where the integral is the Gauss HGF F, we have eight relations;
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The structure of the difference system for k-3 has been studied extensively by
Aomoto in [A4]. Refer also to the definition of a generalized beta-function introduced
in [GGR3]. The study for general k is interesting.

3. The Appell-Lauricella hypergeometric function Fo. The integral can be deter-
mined by its value on the quotient space F/H. of each stratum F by the invariance
(1.2) and (1.3). We describe in this section contiguity relations (2.6) for the system
E(2, n + 3) on the quotient of the open stratum.

We introduce coordinates on the open stratum by

1 0 /’/13 /’/14 Ul,n+3(I2, U)--
0 1 //23 /’/24 U2,n+3/’

where no 2 2 subdeterminants are zeros; to each point u (Uap) we associate a point
in C" with coordinates (x4, x"+3) by

X
U13U2} for 4--<j--< n + 3.
//23 b/lj

The integral q(u, a)= ((I2, u), a) is by definition

Define 4 by

Then the integrand is

I n+3

t’-lt2-1 H (Uljtl + u2jt2)%-l(-t dtl + tl dt2).
j=3

n+3
2+ce3--1t(U, t)-- U13 (--U23) -t2 H

j=4

n+3

th(u, a)t2-1(1 t) a3-1 H (1 -xJt)%-1 dt
j:4

for -u23t2/u3t Here recall the Appell-Lauricella HGF in n variables (y,... yn).

FD(a, fl, fln, y; yl, y ")

(3.1) F(y) fo 1t) y-a-1 (1-yJt)-3 dt.

Then, from the above consideration, if we take the interval (0, 1) as a cycle in t-space,
we have

(3.2)

where

, u, u, w x, ),

w(x, )=
(3.3) F(y)

X
n+3FD(c, /4, , n+3, ’)/; X4, ),

0=02, fl-l-aj (4_-<jNn+3), and ’-.--02-0
Now it is easy to compute the action of X./. In the following we use the notation

0
(3.4) Oj

Ox
6j xJOj, and i4.qt_. _1_ ln+3.

Define YI by

(3.5) Yjlw I --1Xj/(4 /23__"/gI3 "14 /Al,n+3 :|"
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We can see

(3.6)

where Ml(U) oh(u, o + 1- ll)/p(U, O), that is, equal to 1 when u23 u13
Ul,n+3 1. The computation of Y! will be straightforward: we treat, for example, the
case (j/)= (13). Since X13---0/0u13

Xl3((u )-" "-T--r ((O2"- O 1)W’+" W).
U13

The definition of b implies

1
(qbw)(a + 1- 1)=--:--- qb(ce)w(a + 1/- 1,).

U13

Hence

Y13w--(o2+o3-1)w-k-w--(o3-1)w(o-l-lj-ll) and M13--1/u13.

Thus we have the following proposition.
PROPOSITION 3.1. The Appell-Lauricella HGF w(x, a) satisfies contiguity relations

in Table 1. The diagonal operators Y.i, 1 <-j <- n / 3, induce scalar multiplications by a 1.

TABLE

Index Y a. a Y M

Each line reads as Yw(x, oz)--ayW(X, ogY). The first column denotes indices of

YI. We use parameters (a,/3, y) instead of (a) to make the formulae easy to refer to
in classical notation. The notation (a +) in the last column implies that the parameter
a is increased by 1 and other parameters are unchanged. The range of indices in Table
1 for j, 1,... is from 4 to n+3.

Remark. When n 1, Fo is the Gauss HGF. The operators H and B defined-in
(0.4) are Y23 and Y32, respectively.

Remark. The Lie-algebraic structure associated with the above operators given
by Miller [M1] is the same as that of C{X} (cf. the proof of Proposition 7.2).

Remark. Kametaka and Okamoto [O] introduced the notion of ladder structure
and formulated a connection of this structure with the Toda equation. In the present
case, their theory can be applied to subalgebras C{X, Xt/, X- Xn} for j 1, each of
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which is isomorphic to 12. For example, when n 1, the algebra for j 2 and 3
associated with H and B as remarked above is used to give solutions of

( (1- X) -x) 21Og Xm Xm_lXm+l/X2m meN.

This remark works for each pair (k, n).

4. The system E(3, 6). In this section we derive an explicit form of the system
E(3, 6) on the quotient of the open stratum of G3,6. We fix coordinates as follows
Consider the set of points

(4.1) (I3, u) tl U14 U15 U16
/’/24 ///25 /’/26
U34 U35 U36/

in Z3,6 Assume u14 /,/15, /,/16, /,/24, and u34 are not equal to zeros and define

(4.2) X
/’/14/’/25

X2-
//14/’/26

X
U14U35

X4-
/’/14/’/36

U15U24 U16/,/24 /,/15/’/34 //16/,/34

Then x (xi) is a system of coordinates around the single H6-0rbit {u25 u26 u35
U36--0}. It defines a local section of the projection Z3,6--> GL3\Z3,6/H6 by associating
a matrix

1 1 1 1 1(4.3) 1 1 X X
2

1 1 x x4

Remark here that this choice of coordinates is by no means the unique one. In 8 we
introduce another choice in order to study Goursat’s HGF 3F2, although the above
choice is useful in the study of Appell’s HGF F3.

Put

(4.4) b(u) u ce234-1
14 /’/2ce2 /3ce3/’/7 /’/16ce6-1

where 234--O2 "3t" O3 " O4, and define a function w of (x i) around the origin by

w(x, c)=c(a)F(x, c),

where

c(ce F( 1 c234)F(a)F(.)/r( 1 04)

and

(1-a5, k+/)(1-ce6, m+ n)(a2, k+ m)(a3, l+ n)
F(x,)=E

(4.5) (0234, k+ l+ m+ n)(1, k)(1,/)(1, m)(1, n)

(xl)k(x2)l(x3)m(x4)n"
Summation is taken over nonnegative integers and (a, k) a (a + 1) (a + k 1).
Since the integral is

ctc-lt2-1t3-1(tl q- t2+ t3)4-1(tlq-Xlt2q-x3t3)a5-1(tlq-X2t2q-x4t3) c6-1 dt,

where dt tl dt2 ^ dt3- t2 dtl ^ dt + t3 dq ^ dt:, the function w b-lq is a function
only of x. Take { tl + t: + t3 1, t => 0} c R as the range of integration. Assume that the
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real parts of O2, 03, O5, 66, and 1--O234 are positive and that 0234 and a4 are not
integers. Then, by use of the binomial expansion (1-y) Y ((-a, m)/(1, m))y’, we
get the identity

(4.6) (u, a)= 49(u, a)w(x, a).
We next rewrite the differential equations (1.4)-(1.6) with respect to w. Since

equations (1.4) and (1.5) are trivial for w, thanks to the invariance (1.2) and (1.3), we
deal with (1.6). Put

0
Oap=Uap for 1_--<a_--<3 and 4-<p_-<6,

6i xi0 for 1 < < 4 and 6 61 _it_ 62 _. 63 ql_ 64
ON

LEMMA 4.1. The vectorfields Oap (1 <- a <- 3, 4 <= p <- 6) acts on w ch-dP as differen-
tial operators listed below:

014 a234 1 + 6,

024-- --a2-- 61 62,

034 --0 63 64,

Proof See (4.1)-(4.3).

015 as- 1 61 63, 016 o6 1 62- 64,

025 61 026-- 62
035 63 036-- 64

Assume l_-<a, b-<3, and 4_-<p, q-<6. Then the identity (2.8) shows that the
equations (1.6) become

02 02
(4.7) -=0, l<-a,b-<3, 4 _-< p, q -< 6.

Ollap OUbq OUbp OUaq
It is not hard to see that the equations (1.6) for another set of indices reduce to (4.7).
Notice that this presentation of the system is called the canonical system in [H]. In
terms of Oap, (4.7) is written as

UaqUbpOapObq UapUbqOaqObp O.

So we have the following proposition.
PROPOSITION 4.2. The system of equations for w consists of the following nine

differential equations"

(6234-1 + 6)61- xl(as- 1-61- 63)(-a_-61- 62)= 0,

(6234-1 + 6)62- x2(66 1 &_- 64)(-ce2- 61- 62) =0,
(6234-1 + 6)63- x3(65 1 61- 63)(-63- 63- 64) 0,

(ce234-1 + 6)64- x4(66 1 62- 64)(-63- 63- 64) 0,

xl(a5-1 61- 63)62- x(a6 1 62- 64)6! 0,
X3(O5 1 61 63)64-- X4(0.’6 1 62-- 64)63 0

x(,2 + ,51 + 62),%- x3(c3 + 63 + a4)a, o,
X2( O2 -’i- 61 "l- 62)64 X4( O -}" 63 + 64)62 O,
X2X 6164 Xlx46263 0.

Since this system is of rank 6, by the general theory [SY2] for a system whose
rank is greater than the number of independent variables by two, a conformal structure
is attached to this system. The associated conformal tensor has an expression such as
gij dx dx when the equations are written in the form

02W 02W
+terms of lower degree of differentiation.

OX OX
go

Ox OX4
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It is known that the conformal class does not depend on the choice of variables. By
an easy calculation we have the following proposition.

PROPOSITION 4.3. The conformal tensor go dxi dx associated with the above system
is given by

(X4- X2)X (X4- X3)X2 X2X X
4

gll
(X X3)X4 (X X2)X4 -+-

(1 xl)x4’

(X4- X3)X2 (X X3)X2 (xlx4- 23)22

g22--
(x1_ x2)x4 (I4_X2)21 --(x4- x2)x (x 1- x2)x

g33
(x I3)I4 (I4._ x3)x
(x1- x3)x2 (x1- x2)x

g44 (X4__ X2)X (X4__ X3)X
(X4 X3)12

(1 --X2)X4X
(xlx4--X2)X
(1__X3)X4X
X2X X

(1 --X4)X 1’

(X4--X2)X
g2 g21

(x X2)14, g13 g31
(X X3)X4, g14 g41 1,

X2X (X X3)X2 (X1- X2)X
g3 g32-

xlx4’ g24 g42--
(x4 x2)x g34-- g43

(x4 x3)x 1-

Remark. This tensor is conformally flat because of the following argument. Con-
sider the mapping defined by six independent solutions of the system. When ai 1/2 for
1_-<i_<-6, this mapping is, as we have seen in [MSY1], the period map of a four-
dimensional family of K3 surfaces. Since the period map satisfies Riemann’s equality,
the image is contained in a quadratic hypersurface in CP5. On the other hand, it was
shown in [SY2] that the associated tensor is conformally flat if the image is contained
in a quadratic hypersurface. Hence, the above tensor, which is independent of values
of ai, is conformally flat.

The system of differential equations for the integrals on the stratum {x= 0} of
codimension 1 is computed similarly.

PROPOSITION 4.4. The system of differential equations on the stratum {x2-- 0} is of
rank 5 and consists offive equations:

(a234 1 + 6’)6- xl(o5 1- 61 -63)(--a2 6)= 0,

(O234 1 + 6’)63 -x3(15- 1 61 63)(-o -63 64) 0,

(t234 1 -- 6t)64 x4(6 1 64)(-i 63 64) 0,

23(1 1 61 63)64 x4(of6 1 64)63 0,

x1(o2 -- 61)63 23(3 -- 63 -1
t- 64)61 0,

where 6’= 61 + 63 "Jr" 64
5. Contiguity relations of E(3, 6). We will compute the contiguity relations of

E(3, 6) with respect to the function w(x, a). For simplicity we use the notation
to denote the parameter a + 1- It as in 3.

Our task is to express (2.6) in terms of the operators Oap. Note that X, is a scalar
multiplication and that this yields a trivial relation. Define Yl by

(5.1) YjlW (-lXjl((W)lu14=u24=u34=u15.=u16=
We can see that

(5.2) 6-’x,(w) M,(u) ,w,
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where M./(u)= b(u, c + lj-l)/b(u, c). For the subspace 61 generated by O/Oblap one
of the contiguity relations is

0. ((W)(U, )= (4-- 1)(6w)(a)=(4-- 1)O(u,
014 14

By Lemma 4.1, this yields
+Y4w=(34-1+3)w(x,)=(4-1)w(x,l2) and Ma=l/u4.

Similarly, for Xpq in go, the identity

Xpq ul Olq + u2 Ozq + u3 03q
lq N2q 3q

in Lemma 2.3 shows, for example,

X45(W) 1 (5--1)W+ u24
1 + 03 3--1 (1 + 2) W.

5 25 35 5 J

On the other hand, this is equal to (s-1)(4w)(). Hence we have

g4sW (5- l)w+ {(l xl)01 + (l -x3)O3}w (5-

M45 u14/ u15.

As for the operator Nab in g, the identity

-X 6+ Ub 04+U Os+ Ub 06
04 05 a6

gives, for example,

U14 U15 UI6

which yields

Y12W --{234 1++11(5 1 1 3)+X2(6 1--2 4)}W (2

M u4/ u4.
We can similarly carry out the computation for the elements in g_. Thus we have the
following proposition.

PROPOSITION 5.1. e Aomoto-Gel’fand HGF w for the system E(3, 6) satisfies
contiguity relations listed in Table 2. e diagonal operators , 1 Nj N 6, are scalar
multiplications by - 1.

Each line reads as w(x, )=(j-1)w(x, f). The first column denotes
indices of . The third column denotes the factor M(u) that appears in equation
(5.2). Oi denotes O/Ox .

6. Strata in 03,. In the study of HGF’s associated with 03,6, Gel’fand and Graev
[GGR1] gave explicit expressions of the integrals (1.1) for each stratum of G3,6. They
have shown that the space 03,6 has 15 types of strata: one is the open stratum discussed
in previous sections and the others are denoted by A, B1, B2, B3, B4, C1, C2, C3,
C4, I, II, Ill, IV, and V. We do not cite their definitions here (refer to [GGR1, p. 299]),
but we give a few remarks.

The dimension of a stratum belonging to respective types is 3 for A, 2 for B’s, 1
for C’s, and 0 for I-V. A stratum belonging to A is given by the equation u4=0 in
the coordinates (4.1) and the corresponding system of differential equations has been
given in Proposition 4.4. Appell’s system F, which is the system Fo in two variables,
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TABLE 2

Index Y M

12] -( 6234 + 3) x(a 3 33) x2( o 2 64) /-/24//’/14
[21] Ol2-’-(X1- 1)01 -t-(X2- 1)02 U14/U24
13] -(o/234 3)- x3(o/5 6,- 33)- x4( o/6 32 4) /.’/34//,’/14

[31 o -q- (x )03 (X4- )04 1514//’/34
[23] Of -lt-(xl--x3)O q-(X2--X4)02 U34/U24
[32] 03 q" X3 xl)03 q- X4- X2)04 U24//’/34
[14] O234 +/5 1///14
[15] a5-1-6-63 1lug5
[16] Ce6-- 1--32--34 1/U16
[24] --IX2-- 31-- 32 1//,/24
[25] 01 //14//,/15/124
[26] 02 //14//’/16/224
[34] --0;3--33--34 1/1,/34
[35] 03 /,/14//dl U34
[36] 04 //14//,/16/134
[45] a +(1- xl)o1 +(1- X3)03 "-’: Y45 U14/U15
[54] O234 + 3 xl(o.2-t 31 -- 32) x3(o/3 -- 33 -t- 34)--: Y54 /,/15//,/14
[46] a + (1 x2)02 + (1 x4)04 =: Y46 Ul4/u6
[64] O234 t_ 3 X2(O/2__ 3l _lt_ 32) X4(O:3 nt_ 33 _lt_ 34)--: Y64 //16//’/14
[56] C "--(XI--x2)O2q"(X3--X4)04"--: Y56 U15/U16
[65] a- q-(x2-xl)o1 ’-(x4-x3)03 =: Y65 u16/u15
[41] 234-1 ’}- Y’ t4= (xi-1)Oi //14
[42] --04-- X1 Y45 X2 Y46 1’/24
[43 --04-- X3 Y45 x4 Y46 /,/34

[51] -as- Y54- Y56 //15
[52] --05xl- Y54-x2Y56 l15U24/ld14
[53] --Ce5x3- g54-x4Y56 U15 b/34//,/14
[61] -c6- Y64- Y65 u6
[62] -a6x2 Y64-x Y6s u6uz4/ u4
[63] --C6x4- Y64- x3 Y65 U16/’/34//’/14

and Horn’s system G2 (cf. [E, 5.7]) appear both for strata of types B1 and B2. Appell’s
systems F2 and F3 and Horn’s system H2 [E] appear for strata of type B3. The definition
of F3 will be recalled later. The system associated with a stratum of type B4 is a tensor
product of two Gauss HGDE’s with different parameters. Systems for C1, C2, or C3
are known to be the Gauss HGDE’s. The final system associated with a stratum of
type C4 is Goursat’s (so-called generalized) HGF 3F2 (cf. 9). Refer to [GGR3] for
these matters and to [MSY2] for another aspect of G3,6.

The fact that HGF’s F2, F3, and H2 belong to the same type is remarkable. In
view of the invariance (1.2) and (1.3), it says that the associated systems are related
by certain transformations of coordinates and unknown functions. See [AK, p. 51] for
the relation between functions F2 and F3 and [SY1, 5.3] for the relations among
systems F2, F3, and H2. Moreover, one and the same function may appear on different
strata of the same or different type and may have different expressions depending on
the choice of coordinates; this fact explains certain transformation rules for this function
such as Kummer’s identities for the Gauss HGF. However, because we are concerned
only with functions or systems and not with relations among their different expressions,
we can restrict our consideration to the systems associated with strata chosen arbitrarily
from each type, i.e., to the systems G, F3, 3F2, and the Gauss HGDE for types B and
C. Since we have treated F and the Gauss HGDE in 3, we will consider F3 and 3F2
in the following sections.
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Remark. A relation between the systems F1 and G2 is given as follows. Let
Fl(a, , ’, 3/) and G2(al, a, 1,) denote the systems of differential equations just
given in [E, eq. (9), p. 233, and eq. (14), p. 234]. Then, for any solution w(x, y) of G2,
the function z(x, y)=y";w(-x,-l/y) is a solution of F1 and vice versa with the

’+/3’ and 3/=correspondence of parameters given by
1--fll+l.

7. Contiguity relations of Appell’s F3. Appel’s HGF F is given by the series

F3(a a’,/, fl’, 3/; X, y)=
(a, m)(a, n)(fl, m)(fl, n) xmyn.

,,,,=o (3/, m+n)(1, m)(1, n)

The definition of F(x, a) in (4.5) shows

F(x 1, O, O, X4; al, a6)-- F3(a a’, fl, fl’, 3/; X 1, X4)
and

c((al, ", a6) r(1 + 1),
where

(7.1) a a2, a t= a3, 1 aS, fl’= 1 a6, 3/-- a234.

We have seen in 5 that the contiguity relation with respect to w= c(a)F(x, a) is
written in the form

(7.2) Y(c(a)F(x, a))= awc(aV)F(x, a Y)
for an operator Y; ar is a linear form on a and a v a + 1 Ii-- (a;ai-) for some j
and 1. If we can restrict both sides of this identity to the stratum {x2= x3-0}, then
this readily gives a part of contiguity relations of F(x 1, O, O, x4; a) and thus of F3. In
reference to Table 2, the indices of such operators are

(7.3) 12, 13, 14, 15, 16, 24, 25, 34, 36, 52, 54, 63, 64.

Other operators contain terms like 0_F or O3F, whose restrictions will be examined later.

TABLE 3.1

Index Y ay ol
Y

[14]
[15] --6
[16] -t- ty
[24] -a-6x y-a-a’-I a

[25]
[34] -a’- ty y a a’- a

[36] Oy -fl’ a’+fl’+ y
[52] 1-y+(a + fl-1)x +(x-1)6x-tSy a-1

[12] 1-y+x+(x-1)6x-6y a-1 a

[54] y- 1-ax-(x- 1)8x+6y y-a-a’- E-y-
[64] y-l-a’y-(y-1)6y+6x y-a-ce’-I fl’ y
[13] 1- y+ B’y + (y 1)ty t a’- a’-y-
[63] y+ (a’+/3’- 1)y + (y- 1)ty- a’- a’-fl’-y-
[11] /3+fl’-y fl + fl’- y
[22] a-1 a-1
[33] a’-I a’-I
[44]
[55] - -[66] -fl’ -fl’
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PROPOSITION 7.1. The operators with indices listed in (7.3) yield the following
contiguity relations in Table 3.1 with respect to the function (F(a)F(c’)F(1-y)/F(c 4-

a’ y 4-1)F3(c, a ’, , ’, y; x, y). Trivial relations for the operators Xii are also listed.
We use the notation 0x- O/Ox, Oy--O/Oy, x-" XOx, and 6y- yOy.
Proof. Transformation from Table 2 to Table 3.1 is done by taking care of the

identity (7.1) and the relation ci- 3. The operator X14, for example, increases (ai)
at i- 1 and decreases at i- 4. This implies the decrease of y by 1, which is denoted
by 3’-. The multiplier t4 1 is equal to y-a- c’-1. This shows the first line. [3

The Lie-algebraic structure of the set of operators in this table will be recovered
in the following way. Introduce supplementary variables v14, v15, v16, v24, v34 and
define operators % vj(O/Ovij). Put

Ell -7"1- 7"16-7"14-1, E22 --7"24-- 1, E33 --7"34-- 1,

E44 7"14 4- 7"24 4- 7"34, E55 7"15, E66 7"16,

/)24
{-7"14- tx ay 4- x(-T15 4-

/)14

(7.4)

/334
El3 {--7"14-- tx ty 4- Y(--7"16 4-

/314

1 1 1
4 {14+ + ,l, G, {-, e {-,,

/314 /315 /316

1 /314
E4 { 7"24- tx }, E25 O

/324 /315/324

1 /314
E34 { 7"34 3y }, E36 0y,

/334 /316/334

E52
/324

/314

E54 =/31---55 {7"14 4-
/314

/316/334
E63 {y(1 + 7"16

/314
7"34 4- y 7"14- tx y},

E64-- 131---66 {7"14 4- ax 4- y Y(-7"34 4- y)}.
/334

Then we have the following proposition.
PRoPOSrrioN 7.2. Differential operators Eo listed in (7.4) generate a Lie algebra of

dimension 19 with relations

Eq, EiT,] tji,Eij, tj,iEiT

Proof Let X be one of Xjl with indices in Table 3.1 and Y be the corresponding
operator in Table 2. Then (5.2) says &-lXb w MxY" w for the corresponding factor
M. The set of operators th -1X4 for such X certainly forms a Lie algebra of dimension
19. Hence the proof will be completed by expressing th-Xb in terms of variables
/’/14,’’’, //34 and x and by restricting them onto {x2--x3---O}. While (-IxI)---
X(log 4)+X as an operator, the operator M:IX acts on functions of x as a vector
field _X with respect to variables x and MlX(log t) is seen to be written as Ox (log b),
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where Ox is a linear combination of Tjl defined above. Here we use v for u to avoid
confusion. Namely, we have -1X MxOx(log 49)+ MxX_ 49 -1. Mx(Ox +X_ 4).
Explicit expressions of Ex Mx(Ox +_X) are easily computed to get identities in
(7.4). fq

Remark. Miller in [M2] has already found nine contiguity relations in Table
3.1: 14, 15, 16, 24, 25, 34, 36, 52, 63. Relations with indices 12, 13, 54, and 64 follow
from the Lie algebra structure; for example, [E15, E52] E2.

We next deal with the operators including 0x and/or Oy. Define two operators by

(7.5) U26 aft’-/3’(1 x)Ox a(1 y)Oy -k- AOxOy

(7.6) U35=a’-a(1-X)Ox-(1-y)Oy+AOxOy,
where A =xy-x- y. Then we see the following lemma.

LEMMA 7.3. These operators give contiguity relations of second order:

U26{F3} ’( ce ’- 3" d- ){ cF3}(a+fl’+y+),

U3{cF3} a ’([3’- + a ){ cF3}( ce’+fl +3"+).
A proof will be given in the last section. Now assume

(7.7)

and define operators by

1 1
(7.8) Z26--- U26 and Z35 U35.e-.’-3
Then we have the remaining contiguity relations by the use of Table 2:

PROPOSITION 7.4. Appell’s HGF {F(a )F(a’)F( 3’)/F(a + a’- 3’ + 1)}
F3(a, a’, , ’, 3’; x, y) satisfies the contiguity relations listed in Table 3.1 and Table 3.2.

Each line reads as Z(cF3) aT" (cF)(az). The first column in Table 3.2 gives the
correspondence with Table 2.

TABLE 3.2

Index Z az az

[21] o+(x-1)Ox-126 [3 d-/3’- T ce+T
[31] a’+(y-1)Oy-Z35 fl+fl’-y a’+y
[23]
[32] a’
[45] -/3 + X)O 2r" 235 --/3 /3+ /+
[46] --/3’+ (1 y)Oy + Z26 -/3’ /3’+
56] -/3’- yOy q- xZ26 -/3’ [3-/3
[65] -/3 XOx + YZ35

[26]

[35] (/3a’-a’(1-X)Ox-/3(1-y)Oy+AO2xy)=: Z35/-/3’-
[41]
[42] a + a ’- y + fix + x(x )0 xZ35 Ol a-
[43]
[51] /3 nt- /3’ "y nt- ox nt- x(x -1)C3 xZ26 /3+/3’--3/ /3-
[61]
[53] 1- y + ax + /3’y + x(x -1)Ox + y(y -1)Oy xyZ26 a’- a fl
[62] 1-y+ /3x + a’y+ x(x-1)Ox + y(y-1)Oy-xyZ35 a -1



838 TAKESHI SASAKI

Proof From [26] in Table 2 we see

0

0X2 (F)(ol) (06 1)(cF)(a2 o-).

Restriction to {x2= X3"-- 0} then shows

0

oxz (CF)(ce) ---(O16--1)C(O201.6)F3(O206 x, Y).
X2=X3=0

The change of parameters (a-a-) is equivalent to (a+/3’+y+) by (7.1). Hence, by
Lemma 7.3, the restriction of the function (O/oxZ)(cF) onto the stratum {x2=x3=O}
can be replaced by the function Zz6(cF). The same applies for [35]. Then, with reference
to Table 2, we obtain whole relations.

Remark. The relations in Tables 3.1 and 3.2 form a complete set of contiguity
relations in the sense that every contiguous function of F3 is representable as a linear
combination of the original F3 and its derivatives up to order 2 by a certain combination
of differential operators appearing in these tables. See the last columns of these tables.

8. Different expression of contiguity relations of E(3, 6). The coordinate system
(x i) introduced in 4 is not appropriate for the study of the system 3F2. In this section
we define new coordinate system (yi) on the quotient of the open stratum in G3,6.

Consider the set of points (I3, u) defined in (4.1). Assume in this section that u4,

u6, u24, u25, and u35 are not equal to zeros and define

(8.1) yl U25U34 2 U14U26 y3 UlSU24 y4 U14U25U36y
/,/24/,/35 /,/16b/24 /,/14//25 /,/16b/24U35

Then y (yi) is a system of coordinates around the single H6-0rbit stratum {u5 u26
u34 u36 0}. It defines a local section of Z3,6-* GLa\Za,6/H6 by associating a matrix

l

(8.2) 1

1

The connection of y with x is seen to be

X
(8.3) y,=__, y2

X3 X2
We use the notation

1 y3 1 \
1 1 y2).y 1 y4

1 xlx4

y3 y4__
X X

o o
i yi-- and Oi 1 < <4,

Oy Oy i’

which should not be confused with that defined in 4. The integral o(u, a)=
((I3, u), c) has the expression

(8.4)
where

(8.5)
and

(8.6)

q(u, a)= oh(u, a)w(y, a),

ce35-- a6--12345-2u-’235u u3u(U, )-- U14 25 16

w(y, a)= f i:1
II tTi--l(tl q- t2+ y’t3)4--’(y3tl + t2q- t3)%-1

(t +y2t2q-y4t3)6-1(t dr2^ dt3-t2 dt ^ dl3q- dt ^ dr2).
Here t;2345 O2

q O -- C4 -t- C and so on.
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Recall operators O,p Uap(O/Olgap defined in 4. We denote the operator (--10ap)
acting on w by the same letter Oap. Then we see the following lemma, similar to Lemma
4.1.

LEMMA 8.1. The operators Oap are given as follows:

014 02345 2 "[’- t2 t3 -’1- t4, 015 t3, 016 06-- 1 t2-- t4,

024 1 0235 (1 62 + (3- t4, 025 ce35- 1 + 61 t3 q- t4, 026 (2,

034 (1, 035 --O3 61 4, 036 64.

We next define operators Yl by

(8.7) 6-’x,(6w) M,(u) ,w,
where Ml(U) b(u, a + 1j- ll)/b(u, a). Then, similar to Proposition 5.1, we get the
following.

PROPOSITION 8.2. The Aomoto-Gel’fand HGF w for the system E(3, 6) relative
to the coordinate y satisfies the contiguity relations listed in Table 4. The diagonal operators
Y, 1 <-j <= 6, are scalar multiplications by a- 1.

The table is read in the same manner as Table 2.

TABLE 4

Index Y M

14] a2345 2 + 62- 63 + 64 1///14
15] 03 /’/24/u14//25
16] a 62- 64 1///16

[24] a235 61 62 + 63 64 1/u24
[25] 035 4- 61 63 + 64 1///25
[26] 02 //14///16//24
[34] 01 Uzs/U24U35
[35] -03- 61-64 1/u35
[36] 04 u14u25/u6u24u3
12] 2 a234 + a6)y + (y2 )(2 + 64) + (y3 )03 u24/u4

[21] a23 + aas)y + y3)(6 + 64) + (y2 )02 + (y3 )63 u14/ u24
13] (2- a234)y + a6)y + (y4_ yl)(62 + 64) + (yly3 )03 ue4u35/u14u2

[31] Ceay3 + (yly3_ 1)01 + (yay4_ 1)04 //14//5///24u3
[23] ce35 + (az35 )yl + (yl )( 61 63 + 64) + (yly2_ y4)02 u3/u2
[32] a3 + (yl 1)0 + (y4 y2)04 u2/u3
[45] a35 aay + y)(61 + 64) + (1 y3)03 u24/u25
[54] c23 + (ce2345 2)y + (y3 )( 62 + 64) + Y)01 + y3)63 u2/ u24
[46] a + (1 -y2)02 + (y -y4)O4 u4/ u6
[64] a234 2 + (1 a235)y + (y4_ YY2)01 + y2)(62_ 63 + 64 u6/u4
[56] (a 1)y + y2y3)O + (1 y3y4)O u14u25/ u6u24
[65] (a3 )y2 aay4+ (y y4)(61 + 64 + y2y3)O u6u24/u14u25
[41] -a4-y3 Y4 Y46 u4
[42] --O4-- Y45-y2y46 /,/24

[43] -a4Y Y4s y4 Y46 u4Uas/u2s
51 -asY Y54 Y56 u14u2s/u24
[52] -as- Y54- y2 y56 //25
[53] -Ces-Y1Y54-y4y56 //35
[61] --O6-- Y64-Y Y65 //16

[62] --o6y2- Y64- Y65 //16//24///14
[63] --o6y4-Y Y64- Y6s //16//24u35///14//25
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9. Contiguity relations of Goursat’s 3Fz. Goursat’s HGF 3F2 is given by the series

3F2(al, a2, a3; bl, b; y)= , n)(a3, n)

We use the abbreviation (a)= (al, ae, a3; bl, b2). This function has an Euler integral
representation (2.18) with a trivial change of notation. Hence the restriction of an
integral ofthe form (8.2) to the one-dimensional stratum F := {y ye y3 0} gives 3F2"

W(Ce; 0, 0, 0, y4): f t2-t3-1
1+t2o,t2+ t3o,t2o

(9.1) (1 + t)a4-(t+ t3)%-(1 +y4t3)a6- dt dr3

where

y(ce) 3Fe(a; y),

’)/(O)-- (--1) a25-1F(235 1)F(ce3)F(a4)F(as)

(9.2)
F(02345 1)F(o35

Y __y4,

a 0235 1, ae ce3, a 1 06, bl O2345-- 1, be O35.

With this notation the procedure of determining contiguity relations of 3F2 is the
same as that used in 7. We first note that the operators Yt with indices

(9.3) 14, 16, 24, 25, 35, 36

can be restricted to the stratum F. Namely we have the following proposition.
PROPOSITION 9.1. The restriction ofthe differential operators Yji with indices in (9.3)

to the stratum F yield the six contiguity relations of the function 3Fe:
[14] (O+bl-1)aFe=(bl-1)aFe(b-),

[16] (0+ aa)aF a3" 3F2(a3 ),

[24] (0+ al)3F2 a,. 3F2(a, ),

(9.4) [25] (0 + be 1)3Fe (b2 1)3Fe(b-),
+[35] (0 + a2)3Fe ae 3Fe(a2 ),

[36]
0 ala2a + + + + +y 3F2- i2 3F2(al a2 a ;bl b2 ).

We next deal with the remaining operators. The key operators are Y5, Y26, and
Y34; namely, 03, 0, and 01. We denote y(O/Oy) by 0 and define three operators by

1
{(1 y)02 + (b2 2 a23Y)0 a2a3y + (b 1)(be 1)},(9.5) ZI 1 a

1
(9.6) Ze6=(a2_bl)y{(1-y)Oe+(b2-1-a3y)O-aa3y},

1
(9.7) Z34 (a3_be)y{(1 y)O2+(b 1 a2y)O ala2y},

with the assumption

(9.8) (a 1)(ae- bl)(a be) 0,

and with abbreviations such as b12- bl + be, ae3- a2 + a3. Then we can see the follow-
ing lemma.
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TABLE 5

Index Z Cz az

[14] O+bl-1 bl-1 b-
[15] Z,5 -(b,- 1)(b2-1)/(a,- 1) a-b-b
[16] -O-a -a a

[24] -O-a -a a

[25] 0 + b b b-
[26] Z26 ala3/b a a 01
[34] Z34 al a2/ b a+a 2+’+19
[35] -O-a -a a

[36] -0 -ala2a3/blb a a a 01 0

[12] 1-b,-O-Zs (al-bz)(1-b)/(a- l) a b-
[21] a + 0 Z26 -a,(a3- b)/b a-b-
[13] -y(a + 0)-Zs (bl- 1)(b2-1)/(a- 1) a a2 b-b
[31] 0-Z34 aa2(a3-b)/blb2 a abl b2
[23 b 0 YZ26 b a b
[32] a + 0 Z34 -a2(al b2)/ b2 ab
[45] b2 + O+ Z15 (a-b)(b 1)/(a 1) a b-

/b-[54] -a 0+Z34 al(a2 bz)/b2 a
[46] -a3 0 + Z26 a3(a- b)/bl a3 b
[64] b- + 0- YZ34 b a3 b

+b[56] -O-it-Z26 -ala3(a2-bz)/bb a a b
[65] y(az+O)+Zl -(bl-1)(b2-1)/(a-I aa3b-(b
[41] a + a b + 0 Z26 --(a b)(al- b)/b b+
[42] + a- b,- b 0-Z (a,- b,)(a b2)/(a 1) a-
[43] b 0 y( a q- O) Z15 q- YZ26 a, b,)( b2)/ a, a, a b
[51] a +(1 + y)O-Z26 Z34 a(a2 b2) (a3 bl)/bb2 al bl
[52] a + a2- b2+ 0-Z34 -(a-bz)(az-bz)/b2 b-
53] a b 0 q- YZ26 a b a-
[61 a b 0 + YZ34 a b a
[62] bl 0 y(a + O) Z5 d- YZ34 a b2) (1 bl)/ a a a b
[63] (1-a3)y-y(a2+O)-Zs (b-l)(b2-1)/(a-I) ala2aab-b

LEMMA 9.2. These operators yield the contiguity relations of second order for w_ :=

73F2"
ZlsW (as 1)w(a + +- +-O), Z26_w (06 1) Z34 (04 1)_w(ce o 4 ),_w(o2 c6 w

Proof will be given in 10. Then, similar to Proposition 7.4, we have the following.
PROPOSITION 9.3. Goursat’s HGF 3F2(al, a2, a3; bl, b2; y) satisfies the contiguity

relations listed in Table 5.
Each line reads as Z(3F2(a" y))= Cz" (3F2)(a z’, y). We use parameters (a) in this

table. Recall 0 y(O/Oy) and 0 (O/Oy). This set of relations is complete in the sense
explained in the last remark of 7.

10. Proof of Lemmas 7.3 and 9.2. We first prove Lemma 7.3. Restricting the system
in Proposition 4.4 to the stratum {x3=0} we see that Appell’s HGF
F3(a, a’, fl, fl’, y; x, y) satisfies the system

(10.1)
(6x + 6y + y- 1)6xu-x(3x + a)(6x + fl)u =0,
a -- ay "JV "}1-- 1)6yU -y(ax + a’)(ax + fl’)u O,

where u is an unknown function and a x(o/ax), G y(o/oy). This system can be
written in a Pfaffian form" put

eo u, el 3xu, e2 tyU, e3 r3xyU
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and define a column vector e by

e t(eo, e,, e2, e3).

Then the above system is equivalent to the equation for e:

(10.2) de toe,

where

/ o dy
x y

-aft dx {1-Y 6 }. dx 0
x-1 x x-1

y y-1
dy

a,,{dx A} a {dyx y

dx+-dy
x-1 y

dy+-dx
y-1 y x

--+6dY+e
x y

6=a++l-y, 6’=a’+/3’+l-y, e=y-a--a’-fl’-l.

To denote the dependence of the vector e on the parameters we use the notation
e(a, a’, , ’, y); in the sequel we use abbreviations such as (a +) for (a + 1, a’, fl, fl’, y),
(a+fl’+y+) for (a+l,a’,,fl’+l,y+l), and so on. Hence e(a+) means e(a+l,
a’, fl, ’, y). The notation e always stands for e(a, a’, , ’, y). We need the following
lemma.

LEMMA 10.1. Each solution u of (10.1) satisfies the equations

XaUxxy ey a + fl + 1)A)Uy + fi(1 y)Uy a’’Ux,

yAUxyy (ex (a’+ fl’+ 1 )A) Uy + a’fl’(1 -y)Uy aflu.

The proof is straightforward and omitted.
The operator L(+fl’+y+) will be found by the following process. The relations

[15], [16], and [25] in Table 3.1 provide us with relations expressing e(fl+), e(fl’+),
and e(a++y+) by e e(a, a’, , fl’, y), respectively. From the first relation we get a
relation for (-), i.e., a relation expressing e(fl-) by e. Then the composition

e(c, /3, /3’, y) ’+ e(a,/3,/3’+l, 7’)

8- e(a, fl-l, fl’+l, y)

a+/3+Y )e(a/l, fl, fl +1,

gives a required operator.
Now let us follow this process. Put

(10.3)
e0 c(a, a’, y)F3(a, a’,/3,/3’, y; x, y),

c(a, a’, v)= r(1-)r()r(=’)/r(, + ’-+ 1).

The relation [15] in Table 3.1 reads

1
eo(/3 +) eo(fl)+ el(fl).
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Hence (10.2) shows that we have

where

e(+)=Ae(),

/1 1

ax 1 {1
x-1 /3

0 0

The determinant of this matrix A is

x m)
o o

1

,8(x- 1)
1

1

ox(y 1) ’ ex(y 1)
1++

A A

f
eo(/3-) 1 +

provided that

(ce’+/3 + 1-3,)(/3 +fl’+ 1 3’)y
/3(x_ 1)a

Hence, taking the inverse of this matrix and decreasing the value of/3 by 1, we get

ce(/3 + 6’- 1) ] /3 +6’- 1 cex(y- 1) A

xj Co+ (x- 1)el + e2+ e3,
A A Ay ]y

x := (e- -/3’)(- ’-/3) o.
Namely, if we define a differential operator U51 by

(10.4)

then

U,- A + a(/3 + 6’- 1)x +(/3 + 6’- 1)x(x- 1)0 + ax(y- 1)Oy + AXOxOy

(10.5) U5leo= Aeo(-).

We next define an operator U by

1
(10.6) U2,-----" U51(O,++3,+) Y25,

where Ys 0 in Table 3.1 and U(a+/3+T+) denotes the operator U with parameters
a,/3, 3, increased by 1. By using Lemma 10.1, we see

U2, a (c’ +/3 +/3’- 3,) (ce’+/3 +/3’- 3,)(1 x)O, a(1 -y)Oy AOxOy

and we have

(10.7) U21eo Aeo(a+3,+).

We finally compute the composition U26 of U21 and Y16 in Table 3.1. A calculation shows

1
U26-- U21( t+) Y16,

3,-/3-/3’-1

and we have

U26eo =/’(ce’ + 3,)eo(a+/3’+3,+),
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which is the first assertion of Lemma 7.3. Note that we can forget the condition A 0
in the final step. The second assertion in Lemma 7.3 is obtained from the first one by
the symmetry a - a’,/3 -/3’, and x-y.

We next prove Lemma 9.2 by a similar method. The function z 3F2(a; y) satisfies

(10.8) 0(0+bl- 1)(0+ b2-1)z-y(O+al)(O+a2)(O+a3)z=O.

Put eo z, el Oz, and e2 02z. Then e ’(eo, el, e2) is a solution of a Pfaffian equation

de we,

where

o 1 o
Y

0 0

aa2a3y Ay-B
1 -y 1 -y

A aa2+ a2a3+ a3a,

a23Y b12 + 2

/1-y

B=(b-l)(b2-1).

Recall the convention a123 a -k- a + a and b12-- bl + b.
We will derive three operators (9.5)-(9.7) by the use of (9.4). Let us denote

differential operators in (9.4) by Y4, Y6, and so on. If we find the inverse U42 or
Y4, then the composition of Y4, U4, and Y25, in this order, yields Z5. Similarly,
denoting by U53 and U61 the inverses of Y3 and Y16, we have Z26 and Z34 by certain
composition of operators.

We follow the first case: By [24] of (9.4), we see

1
1 0

al

0 1+e(a,)
1

Ay-B a23y-b+2
1+

a,(1-y) al(1-y)
a2a3y

1-y

Then, inverting this identity, we see

[{(al-b + 1)(a, b+ 1)-a2a3y}eo(a)

{a23Y + a, b12 + 2}el(a-) + (1 y)e(a-)].

1
e= (a,- b, + 1)(al- b:+ 1)

[{ (a, bl)(al b2) aa3y} { a23Y + a, b12 + 1 } 0 + (1 y) 02],

Hence, by putting

1
U42-- (a-bl)(a-b)
we have

Uaeo eo(a-).

Now define Us= Y5(a-b-). Ua(b-) Y14. Then a simple calculation shows

U5 (1 y)O2 + (-a23Y + b12 2)0 a2a3y + bl 1)( b2-1)

and

U,seo (bl- 1)(b:- 1)eo(a-b-b-).
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By multiplying a suitable constant, we get the operator Z15, which satisfies the first
relation in Lemma 9.2 in view of the relation of parameters (9.2).

For the second case look at the symmetry al a2 of (10.7). Then for the operator

1
U3 (a2- bl)(a2- b2)

[{(a bl)(a2- b) a a3y} (a13Y + a2 bl2 + 1)0 + (1 y) O],

the composition U36 := Y36(ab)" U53(b-) Y25 gives

a2 1
U36= (a2- b1)y

{(Y 1)02 + (a13y- b2 + 1)0 + ala3y}

and

ala3(a2- 1) + +.+g36eo eotal a3 ol

This is equivalent to the second identity of Lemma 9.2.
The third case can be treated similarly and we complete the proof.
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MEAN CONVERGENCE OF EXPANSIONS IN FREUD-TYPE
ORTHOGONAL POLYNOMIALS*

H. N. MHASKAR AND Y. XU$

Abstract. Let {pn } be the system of polynomials orthonormal with respect to a weight function
of the form exp(-2Q(x)). Under some technical conditions on Q we prove certain norm inequalities
for the partial sums of the orthogonal expansion of a function in a suitably weighted Lp- norm. These
results are valid, in particular, when Q(x) xm, where m is an even positive integer.

Key words, orthogonal polynomials, mean convergence, Freud polynomials, Fourier orthogonal
expansions

AMS(MOS) subject classifications. 41A25, 42C15, 33A65

1. Introduction. A classical result of Riesz (cf. [21]) states that if f is a 2r-
periodic function, 1 < p < , and Sn(f, o) is the nth partial sum of its trigonometric
Fourier series, then

(1.1) I&(f, t)lpdt <- c If(t)lpdt

where c is a constant depending only on p. In the aperiodic case, the situation is quite
different. Thus, for example, if fl If(t)lpdt < and we consider the nth partial
sum of its Legendre expansion instead of Sn(f, "), then an inequality of the form (1.1)
holds only when 4/3 < p < 4 [16]. Furthermore, if f_ ]f(x)lp exp(-x2)dx < , and
s(f, .) denotes the nth partial sum of the expansion of f in Hermite polynomials,
then

(1.2) Is(f,x)lp exp(-x2)dx <_ c2 If(x)lp exp(-x2)dx

(with c2 depending only on p) can hold only when p 2 [16], [lr]. Nevertheless, when
4/3 < p < 4, then

[sn(f,x) exp(-x2/2)[Pdx <_ ca [f(x)exp(-x2/2)[pdx

where c3 depends only on p [1]. In 19r0, Muckenhoupt [14] showed that an inequality
of the form (1.1) can be proved for the Hermite expansions for all p in the range
1 < p < if we take different weights on the two sides of the inequality. More
precisely, he proved the following theorem.

THEOREM 1.1 [14]. Let 1 < p < ,
U(x) := exp(-x2 /2) (1 + [xl)

*Received by the editors October 22, 1989; accepted for publication (in revised form) May 3,
1990.

Department of Mathematics, California State University, Los Angeles, California 90032.

:Department of Mathematics, University of Texas, Austin, Texas 78712.

847



848 H. N. MHASKAR AND Y. XU

and
V(x) := exp(-x2 /2) (1 +

where 1 if [3 and p 4/3 or 4, and 13 0 otherwise. Assume that

(1.4a) < 1- i/p, 1 < p <_ 4,
_< + 4 <

(1.4b) / _> -1 + 1/(3p), 1 < p < 4/3,
> -l/p, 4/3

(1.4c) <_/ + 1 -4/(3p), 1 < p < 4/3,
_/, 4/3 _pg 4,
_</ 1/2 + 4/(3p), 4

and if equality occurs in (1.4c) then equality does not occur in (1.4a) or (1.4b). Then
there exists a constant c4 independent of f and n such that

(1.5) Isn(f,x)U(x)lPdx

_
c4 If(x)V(x)lpdx

where sn(f,’) denotes the nth partial sum of the orthogonal expansion of f in terms
of the Hermite polynomials.

The proofs of these results concerning Hermite expansions utilize a very detailed
knowledge about the asymptotic behavior of the Hermite polynomials.

In this paper, we obtain an analogue of Theorem 1.1 for expansions in Freud poly-
nomials, i.e., polynomials orthogonal on the whole real line with respect to a weight
function of the form exp(-2Q(x)) where Q is a suitably chosen function. While several
results concerning the asymptotic behavior of such polynomials and related quanti-
ties have been proved recently [6]-[9], [15], [18], [20], our knowledge concerning Freud
polynomials with a general weight function is still limited to a few relatively imprecise
estimations. Our interest, then, is not only in proving an analogue of Theorem 1.1,
but also in exploring the extent to which various polynomial inequalities can be used
in the study of orthogonal polynomial expansions.

We discuss our main results in 2 and prove them in 3.

2. Main results. Let Q be an even and convex function on ], differentiable on
(0, c), and let xQ’(x) c as Ixl --. c. We consider a weight function of the form

w(x) exp(-2Q(x)) and the sequence of polynomials {Pn } orthonormal on R with
respect to w. Thus, denoting the class of all polynomials of degree at most n by 1-In,
we have

(2.1a) pn(x)’=p,,(w,x)=ynxn+...eHn, %,:=/n(W)>0, n=0,1,2,’’’,

(2.1b) pnpmwdx 5urn, n, m 0, 1,...

If f is Lebesgue measurable function on R, we define, when possible,

(2.2a) ak(wQ, f) := f(t)p(t)w(t)dt, k O, 1,...
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n-1

(2.2b) sn(wQ, f,x) E ak(we’f)pk(x)’ n= 1,2,....
k--O

As usual, we also write

Ilfllp :=
ess suplf(x)l, p (:X:)

and the space Lp(R) then denotes the space of all Lebesgue measurable functions f for
which Ilfllp < , two functions being considered equal when they are equal almost
everywhere.

Our main theorem can now be formulated as follows.
THEOREM 2.1. Let Q be an even, convex function on ]t,, differentiable on (0, oc)

and xQ(x) c as Ix[ c and with suitably chosen constants c5, c6,

1 < c5 <_ Q’(2x)/Q’(x) <_ c6 < c, x>O.

For every integer n > 0, we let qn be the least positive number satisfying the equation

(2.4) qnQ’(qn) =n.

Suppose that the orthogonal polynomials {Pn} satisfy each of the following inequalities
where K(>_ -1/2), A*, c7, cs, c9 are suitably chosen constants depending on Q alone:

Ip (x) Q(x)l K, x e n-

(2.5b) Ipn(x)wQ(x) <_ csq1/2 Ixl < A*qn n 1 2

(2.5c) IPn+l(x) P,-I(x)IwQ(x) < cgqn 1/2 xE, n=l,2,....

Let 1 < p < and b, B be constants satisfying

(2.6a)
(2.6b)
(2.6c)

b < min{1- 1/p,-K + 1/2- 1/p},
B > max{-1/p, K + 1/2 1/p},

B-b>2K+I.

Then, for any Lebesgue measurable function f such that (1 + [xl)BwQf LP(]R), we
have

(2.7) I1(1 + Ixl)b vQ(x)  ( vQ, f,  )11 o c oll(1 + Ixl)B vQ( )f(x)llp

where clo is a constant depending only on Q,p, b, B.
An estimate of the form (2.5a) can be proved easily using Nikolskii-type inequal-

ities under very mild conditions on Q [11]. However, the constant K obtained in this
way is usually not sharp. A sharp estimate of this form is known, at the time of this
writing, only when Q(x) xm where m is an even integer. In this case, K (m-3)/6
[3]. In particular, in contrast to the Hermite polynomials (ra 2) Freud polynomials
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for such weights are not uniformly bounded if rn _> 4. This fact is partly responsible
for our inability to generalize Muckenhoupt’s result completely.

Condition (2.5b) has been a subject of great interest in recent years [2], [3], [5],
[7], [10]. In [7], it has been proved for the case when Q(x) Ixl when c > 3. Lopez
and Rahmanov have claimed to have proved it under very general conditions including
the case of these weights when c > 0.

Condition (2.5c) is currently known only in the case where Q(x) xm, m even
positive integer [5]. The known proof requires an asymptotic expansion of quantities
")’n-1/’)’n. Thus, our theorem is currently valid only for the case when Q(x) xm,
m even positive integer. Using the results in [7] and [8], it seems possible to obtain
stronger results in this case. We hope to return to this in the near future, concentrating
in this note on the general principles involved. It is conjectured that the inequalities
(2.5) are true more generally, including the case where Q(x) -Ixla, > O.

The conditions on Q imply that

Q(x)
dx

l+x2

It is known [19] that expressions of the form (1 / Ixl)’wQ(x)P(x), where P is a
polynomial, are dense in Lp(R). Therefore, (2.7) easily implies that

An inequality similar to (2.7) with an Ll-norm on the left-hand side and an
L log+ L norm on the right-hand side can also be obtained using our techniques, but
we do not intend to pursue this further since the proof does not add any deeper insights
to the study of Freud polynomials.

3. Proof. In the sequel, we adopt the following conventions concerning con-
stants. The letters c, c,.., will denote constants depending only on Q and other fixed
parameters involved, but their values may be different at different occurrences, even
within the same formula. The notation adopted in 2 will be continued except for
the constants c, c,..., etc. We also adopt the notation

(3.1) 7n(x) :-pn(x)wQ(x), x e , n O, 1,....

To begin with, we recall certain facts concerning Freud polynomials and the Hilbert
transform.

LEMMA 3.1. (a)[4] We have

(3.2)

n--1

(3.3) K,(x,y) := Zpk(x)pk(y)=
k=O

x-y

(b) [10] For the Freud polynomials, we have

(3.4) -qn g Pn g 4qn
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where qn is defined in (2.4).
(c) [12] Let 0 < p, r < oc. Then there exists a constant n := L(Q,p, r) with the

following property. For every integer n 1, 2,... and P

(3.5a) IwQ(x)P(x)lP g cexp(-cln) I IwQ(t)P(t)lpdt, Ixl > Lqn,

(3.5b) ]wQ(x)P(x)]rdx < cexp(-cln) ]wQ(t)P(t)]Pdt.
I>_Lqn

(d) [14] If 1 < p < oc, r < 1- l/p, R > -lip and r < R, and is Lebesgue
measurable, then

(3.6) F p F(Y) dy (1 + Ixl)dx <_ c I(x)(1 / Ixl)nldx,

where the singular integral is taken in the principal value sense.
We would like to warn the reader that the notation in Lemma 3.1(d) is different

from the one used in Lemma 8 of [14]. As in [14], the starting point of our proof is
the following lemma.

LEMMA 3.2. We have, for n 1, 2,...,

Kn(x,y)wQ(x)wQ(y) hl(x,y) + h2(x,y) + h3(x,y)

where

(3.8a) hi (x, y) "=
P’ Pn-1 (x)P,-I (y),

Pn "F Pn-

(3.8b) h2(x,y) "=
Pn-lPn

7)n-l (y) [7:n(X) n-2(X)]
Pn H- Pn- X y

(3.8c) h3(x, y) "= h2(y, x).

Proof. Writing

(3.9) Dn(x, y) "= Kn(x, y)wQ(x)wQ(y),

we see from (3.3) that

(3.10)

2D,(x, y) Dn(x, y) + Dn-l(x, y) +
Dn(x y) +Pn- 1

Pn Pn-

+ Pn Pn-lDn(x,y + n_l(X)Tmn_l(y).
Pn
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Transferring the middle term to the left-hand side and simplifying, we get

PnPn-1 Dn y) + +(3.11) Dn(x,y)
Pn + Pn- Pn- Pn + Pn-

Using (3.3) and the notation in formulas (3.8), we get (3.7).
We write

(3.12) ur(x) "= (1 + Ixl)r, g(x) "= wc2(x)f(x).

Then (cf. [14]) with Dn as in (3.9),

Ub(X)WC2(X)Sn(WQ, f,x) Ub(X) g(y)Dn(x,y)dy.

Therefore, in order to prove Theorem 2.1, we need to show that

(3.13) g(y)Dn(x,y)ub(x)dy dx < c Ig(y)uB(y)lPdy.

In view of Lemma 3.2, we see that it is enough to show that

(3.14) ; p ;g(y)hk(x, y)ub(x)dy dx <_ c Ig(y)uB(y)lPdy, k 1,2,3.

The following lemma gives certain estimates on {Pn} which will be needed in the
sequel. We note that our assumptions on Q imply that {q2/qn} is bounded from
above and below by positive constants, and also that K > -1/2.

LEMMA 3.3. Let cr E , 0 < r < oc. There exists a constant A depending only
on or, Q such that

(3.15) [uz(x)TPn(x)l < cexp(-cln), Ix[ _> Aqn.

Moreover,

< ql: (log n)/," q a -l/r,(3.16a)
[, qTn otherwise

K -1/2,

where

(3.16b) T "= max{K + cr + 1/r,-1/2}.

Proof. Let be the least positive even integer greater than a. Then, applying
Lemma 3.1(c) to the polynomial (1 + xt)pn(x) Hn+t with p 2, we get, for Ixl >
Lqn+l,

(3.17)

< I(1 +
_< cexp(-cln) f (1 + tt)2p2n(t)w(t)dt

I<_Lqn+l

< cqn+ exp(-cn)
o

p2n (t)w (t)dt

< cexp(-cn).
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Since qn+t < cqn, (3.15) is now proved. Applying (3.15) with a replaced by a larger
number, we deduce that

(3.18a) jx >_A q
lua(x)Pn(x)lrdx < cexp(-cln)

for a suitably chosen A1. Using (2.5a), we find that

(3.18b) lu(x),(x)ldx < cq,a+Kr+

Using (2.5b), we get

(3.18c)

lu(x)P(x)ldx

<- cqr/2 Jlxl<_A*qn
log

< cqgr/2 1
q+

u(x)dx

if a -l/r,
if a < -i/r,
if a > -1/r.

The estimate (3.16) can be deduced from (3.18a), (3.18b), and (3.18c). [:]

Proof of Theorem 2.1. As we observed earlier, it is enough to prove (3.14). Using
HSlder’s inequality,
(3.19)

F p

g(Y)Pn- (x)Pn- (y)ub(X)dy dx

g(Y)’Pn- (Y)

where

(3.20) q := p/(p- 1).

Next, we observe that u u(-B) and qn- < qn. If K > -1/2 then we may use
(3.16) and the assumptions (2.6c) to conclude that

(3.21) // F p

g(y)7)n-(x)7n-(y)ub(x)dy dx <_ cllgullg.

If K -1/2, then the estimation can be done by considering four simple cases. We
omit these details. Thus, (3.14) is proved for k 1.

Next, we let

(3.22) R "= B 1/2- K.

Then, in view of (2.6) and Lemma 3.1(d), for any with uR e Lp(),

(3.23) // / (Y)dy p

Ub(x)Pdx < cllu llpp,
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So, using (2.5c) and (3.23), we get
(3.24)

Next, we apply (3.16) with r and a R- B and then use (3.22) to see that
for y e (0, ), _

aq/2]u(y)].

Substituting from (3.25) into (3.24), we get

(3.26) g(y)h2(x, y)ub(x)dx
p

We prove the estimate for h3 in exactly the same way or by using a duality
argument.

Note added in proof. The authors have recently obtained more precise results
similar to Theorem 1.1 in the case where Q(x) xm (m an even integer).

Acknowledgments. The authors thank Professor Dr. Doron Lubinsky for point-
ing out a mistake in the original version of the paper and making various useful sug-
gestions towards the improvement of the presentation in the paper.
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REPRODUCING FORMULAS AND DOUBLE ORTHOGONALITY IN
BARGMANN AND BERGMAN SPACES*

KRISTIAN SEIPt

Abstract. It is observed that the reproducing kernels of the Bargmann spaces in C act reproducingly
over any polyball (apart, of course, from positive constants depending on the radii of the polyball). It is
noticed likewise that the reproducing kernels of the Bergman spaces over the unit ball in C act reproducingly
over any ball (that is, ball in the Bergman metric). From these observations the eigenvalues and eigenfunctions
of certain concentration operators are found. These eigenfunctions can be viewed as analogues to the prolate
spheroidal wave functions in the Paley-Wiener space, but they are simpler and have nice properties which
the prolate spheroidal wave functions do not have. Such expansions are exploited to yield analogues to
results on sampling of bandlimited signals: necessary density conditions for sampling and interpolation,
and jittered sampling. These results can be interpreted as results on irregular discrete representations of
particular short-time Fourier and wavelet transformations.

Key words, reproducing formula, double orthogonality, concentration operator, Bergman space,
Bargmann space, wavelets, sampling, interpolation, jittered sampling

AMS(MOS) subject classifications. 94A05, 41A05, 44A15, 30C40

1. Introduction. Let be a reproducing kernel Hilbert space being a subspace
of L2(X, dm(x)) where X is a measure space with positive measure m. We denote the
reproducing kernel of by K (t, x). This is the unique Hermitian function defined on
X X with the following properties. K(., x) belongs to Y( for each fixed x, and for
each f L2(X, dm(x)) we have

gf)( t) I K t, x)f(x) am(x),

where P denotes projection onto Y(.
Let next q be some nonnegatively valued and essentially bounded function on X.

We denote the inner product of L2(X, dm(x)) by (.,.) and that of L2(X, q(x) dm(x))
by (., .)q. A sequence of elements in Y( will be said to be doubly orthogonal if it is
orthogonal both with respect to (.,-) and to (., .)q. Along with q we define the
operator Q on L2(X, dm(x)) by

(Qf)(x)=q(x)f(x).

We prove the following easy proposition.
PROPOSITOr 1. Let {fk} be an orthonorrnal basis of. Then {fk} is also orthogonal

with respect to (.,.)q if and only if the functions f are eigenfunctions of PQ.
Proof. Assume first double orthogonality. Then for any k,

0 (f,f)q (f, POf)

holds for all # k, which by the assumed completeness of {f} means that PQfi, A,f.
Assume next that f are eigenfunctions of PQ. Then

(f,fi,)q (f, Paf) (f, Akf),

which equals zero whenever i# k. [3

* Received by the editors January 25, 1989; accepted for publication (in revised form) June 11, 1990.
t Division of Mathematical Sciences, University of Trondheim, N-7034 Trondheim-NTH, Norway.
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A necessary and sufficient condition that possess a doubly orthogonal basis is
thus that the positive operator PQ have a purely discrete spectrum. This is definitely
the case if PQ is compact. A sufficient condition that PQ be compact is

(1) Ix K (x, x)q(x) am(x) <.
Indeed, by the reproducing property of K(t, x) we have

fx fx lK t, x)q(x)12 dm( t) dm(x) fx K (X, x)q(x)2 dm(x),

which shows that (1) ensures square integrability of K (t, x)q(x). Of course, (1) also
implies that PQ is trace class.

If q is the characteristic function of some subset Y of X, PQ may be called a
concentration operator. In the case that PQ is compact, eigenvalues and eigenfunctions
can then be found by successively maximizing the concentration

y If(x)[ 2 dm(x)

< II;ii am(x)

over the orthogonal complement in 9 of the linear span of the previously determined
eigenfunctions.

The first to consider such doubly orthogonal bases seems to have been Bergman
in his study of the spaces that now commonly bear his name 4, pp. 14-18]. A later
example are the celebrated prolate spheroidal wave functions of Landau, Slepian, and
Pollak [40a-c]. By the work of Daubechies and Paul [11] we recognize a rather close
connection between these two examples, both giving eigenfunctions of time-frequency-
limiting operators.

Daubechies and Paul’s problem of finding the eigenvalues and eigenfunctions of
certain concentration operators is essentially the same as that of Bergman, but they
formulate it in other spaces of functions than Bergman did. Being unaware of the
connection to Bergman, they solve the problem in the same way as the prolate spheroidal
wave functions were found, that is, by finding a differential operator commuting with
the concentration operator.

We shall see below that in Bergman’s formulation such problems are solved very
easily in a direct manner. This will lead us to expansions with some rather nice
properties. In addition to the double orthogonality and the concentration properties,
the eigenfunctions will have certain reproducing properties, and the expansions are
simply a kind of Taylor series. In the last part of this paper we present applications
of such expansions yielding analogues of certain results on irregular sampling of
bandlimited signals. These analogues are relevant for the theory of short-time Fourier
and wavelet transformations.

We start our discussion of Bargmann and Bergman spaces in Cn. We have chosen
to treat the Bergman spaces over the unit ball. We could just as well have chosen the
unit polydisk or more generally any unit polyball. To what class of symmetric domains
in C our results can be extended we do not know. Our primary interest in these
problems has been the above-mentioned applications, and for that purpose considering
the ball has been more than sufficient.

It should be mentioned that what we have chosen to call concentration operators
constitute a special class of Toeplitz operators, which in recent years have been studied
quite extensively (see [6], [36] and the references therein).
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Before turning to the main discussion, let us remark that some of the results of
this paper are reported in [39].

2. Reproducing formulas and concentration operators. Below are listed some basic
definitions and notational conventions that will be needed. For readers not familiar
with the Bargmann and Bergman spaces [17] (Bargmann case) and [26] (Bergman
case) might be good background references.

Notation. B will denote the unit ball in C’, B(R) the ball of radius R centered
at zero, D(R1,’’’, R,,) the polydisk of radii R1," "’, R, also centered at zero and S
the unit sphere in C", n a fixed positive integer./x will denote Lebesgue measure on
C", normalized so that/x(B) 1, and o- will mean the rotation-invariant positive Borel
measure on S for which o-(S)= 1. We use standard multi-index notation. If/3 is any
multi-index then Dz is the corresponding differential operator, with the index indicating
with respect to which variable one is differentiating.

We next introduce some symbols that will have different meaning depending on
which case we have under consideration.

We start with the Bargmann case. We introduce the Bargmann kernel of C which
is the function

K z, ) e<z’c>

defined on C"x C". We will use the weighted measure

cl.,. z I.; z. z)-" cry(z).

where a > 0 is some fixed real number. We let H(C") be the class of all functions
holomorphic in C" and define the Bargmann spaces

and

We define

F" H(C’) f) L’(C’, dw.(z))

v".(c") 4(c’) :(c’, cl.,.(z)).

Tz() z-C.
We next turn to the Bergman case. The Bergman kernel of B is the function

K(z,C)=(1-(z,)) -’-’

defined on B B. We introduce the weighted measure

d,,.(z) K(z. z)-" cl().

where a >-1/(n + 1) is some fixed real number. We let H(B) be the class of all
functions holomorphic in B and define the Bergman spaces

A’(B) H(B) CI LI(B, doo,(z))

and

A"’2(B) H(B) 0 L2(B, do(z)).

The restriction on c is put to make these spaces nontrivial.
We shall denote the automorphism of B that interchanges z and zero (see [38,

p. 25]) by Tz.
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The Bargmann case. It is easy to show that the following holds.
THEOREM 2.1. For any f H(Cn), any multi-index , any z C, and any R > 0

we have the following formula:

(2) {Df[f(T=)K(, z)]}c=o C I f(w)(Tzw)t3K(w’ z) dw(w)
TzB(R)

with

C C(R’ II’ a)=(n+l’-l)’ (fo2
Iff F, the formula is also valid for R c.

--1
,+ltl-1 e-r dr

Proof For arbitrary fm H(C"), we use the Cauchy formula [38, p. 39] for the
function f(rz) yielding

rlt31{[Dtf]()}c==
(n- 1)!

f(rw)t3 dcr(w).

We then multiply each side by 2nr2-Ir1/31 e -r2 dr and integrate over r from zero to
R. Using the formula for integration in polar coordinates gives

(3) {[Dt3f]()}c=o C f f(w)wt3 dto(w).
dB(R)

We apply this formula to f(T)K(, z), then make a change of variables in the
integral, and the result follows.

THEOREM 2.2. For any f6H(C"), any multi-index , any zC, and any
R1, , R, > 0 we have the following formula:

(4) {D[f(T=)K(, z)]}=o C f f( w)( Tw)t3K w, z)" dw(w)
dTzD( R,’",Rn)

with

C C(R1,"" ", R., I1, rt3 e-ark drk
k dO

Iff F, the formula is also valid when at least one Rk is infinite.
Proof The proof is the easy and obvious variant of the proof of Theorem 2.1

where we use the Cauchy formula for polydisks.
Remark 1. Note that when /3 =0 the above theorems reduce to the following

statement. The reproducing kernel of F’2 acts reproducingly over any ball and over
any polydisk, apart from positive factors depending only on the radii.

Remark 2. There is of course an obvious generalization of the statements above
to "any polyball," which we have not made explicitly.

We shall now relate the discussion of the Introduction to the reproducing formulas
above. This amounts merely to a simple extension of an observation made by Bergman
[4, pp. 14].

Here I shall mean the operator of multiplication by the characteristic function
of the set 12.

THEOREM 2.3. For R < 00 the operator PF,,2ITzB(R) has eigenvalues

C(R, It l ,) 1
| rn+l/31-1 e dr.All(g)--C(oo,[/31, a) (n+l/3[-1)!ao



860 KRISTIAN SEIP

For R1, ", R, < oo the operator PFa,2(B)ITzD(R,,...,Rn) has eigenvalues

A/3(R1,""" ,R.)=
C(R,, R., fl, a) 1 f aR

rk+]/31-1 e dr.
= ! o

In either case the corresponding eigenfunctions are

f(’) pZt3K(, z)( Tz)t3,

the normalizing factor p being

Proof. The operator in question is clearly compact and trace class since, with the
obvious definitions, (1) is satisfied.

For any f F’2(B), any z B, and any multi-index fl, we have by Theorem 2.1

AII(R)P; {{Df[f(Tz)K(, z)]}=o-{Dg[f(Tz)K(, z)]}c=o}

fc.f(){A(R)f;()-(Pv,Irz.(.)f;)()} d(),
and consequently

In the case of polydisks, we use Theorem 2.2 in the same way.
The proof is completed by recalling that the set {f(’)} constitutes an orthonormal

basis for F’2 (the normalizing factor p is easily found using (2)). [3

Remark. It may be observed that we have obtained the solutions to the eigenvalue
problems considered in 11, I] avoiding the use of commuting second-order differential
operators. Actually, we have gained a bit since 11, I] only covers the case of polydisks
and not that of balls.

The Bergman case. Here we must work slightly harder. We find it convenient first
to collect a few auxiliary facts.

Regarding the group of automorphisms of B and their relation to the Bergman
kernel we note the following.

LEMMA 2.4. For any z, , w B and for any automorphism of B we have

(6)

(7)

TzO= z, Tzz=O,

T-1-- Tz,

K(z,) det ’z det ’ff= K(z, ),

(9) K Tw, Tsr)

(10)

K(z,z)K(w,)
K(w,z)K(z,)’

det ’(-’z)= (det ((I)--l)t(Z)) -1.

Proof Equation (10) follows by the chain rule

I (-’)’(z) ’(-’z) ((I)--l)t(Z),

The rest are standard results which can be found in Chapter 2 of [38].
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(11)

with

We next note the following.
LEMMA 2.5. For any multi-index fl, any f H B), and any 0 < R < 1, we have

{[Dtf](sr)}c=o C(R, Il, a) f f(w)#t3 dw(w)
dB(R)

R2

r"+ll-l(1 r) dr.(12) C(R, Ifl] a)
(n+]/31- 1)!

Proof This is proved in exactly the same way as formula (3).
We are now ready to prove the following.
THEOREM 2.6. For anyf H(B), any multi-index , any z B, and any 0 < R < 1,

we have the following formula:

(13) {Df[f(Tz{)K({, z) 1+]} c=o C f(w)(Tzw)K(w, z) l+" doo,(w)
dTzB(R)

with C C(R, ]fl], a) as in Lemma 2.5. Iff A (B), theformula is also validfor R 1.

Proof. Given f/-/(B), z B, we form the function

g(sr) -f( T’)(det T’ )
An application of Lemma 2.5 to g yields

(14) D[f(T)(det T’)I/] f=o C(R, I1 o) g(u)utK(u, O) l+ce doo(u).
dB(R)

We make the change of variables u T,w. By (8) you see that

dw,(u)=ldet T’zwlK(Tw, Tw) d/x(w) Idet T’wl+ drop(w).

So we have

g(u)uK(u, 0) l+a do(u)
B(R)

(15) f f(w)(Tw)3K(Tw, o)l+"(det r’w) 1+ dog.(w)
TzB(R)

=(det r’z) 1/
f(w)(Tw)K(w,z)1+ drop(w),

r(l

where we have used (6), (7), (8), and (10). By (7), (10), and (8), we have

(16) det T’z (det T’0)-1= g(z, z) det r’0.
By putting (16) into (15) and then (15) into (14), we get

{Dg[f(Tz)K(z, z)l+"(det Tz’sr) 1+ (det T’0)l+]}c=o

C(R, Itl, ) f f(w)(Tzw)/3K(w,z) 1+ dw(w).
dTzB(R)

We finally use (8) and (9) to conclude that we have obtained the desired result. If
f AS(B), the validity of the formula for R 1 is obvious.

Remark 1. The above proof is based on a technique originally used by Bers [5],
[29].
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Remark 2. Note that when/3 0 the theorem reduces to the following statement.
The reproducing kernel of A’2(B) acts reproducingly over any ball (ball is now to be
understood in the Bergman metric), apart from a positive factor depending only on
the radius of the ball.

As in the Bargmann case we shall relate the discussion of the Introduction to the
reproducing formulas that we have found.

THEOREM 2.7. For R < 1 the operator PA,E(B)ITB(R) has eigenvalues

C(R, I1, ) ( / 1)... (a + n +1/31) fRAII(R) rn+l/31-1(1 r) drJo
with corresponding eigenfunctions

f() pK(, z) a+l(Tr),
the normalizing factor p being

(!K(z, z)’+-’/(17) P= C(I [3[i i /
Proof The proof is exactly like the proof of Theorem 2.3. [3

Remark 1. It may be observed that we have obtained the solutions to the eigen-
value problems considered in [11, II], avoiding the use of commuting second-order
differential operators.

Remark 2. To get a feeling for the behaviour of the eigenvalues it is instructive
to consider the case a 0 in which they are particlarly simple: AII(R) R2( +1’1). For
a general discussion on the asymptotics the reader should consult [11, II].

Both in the Bargmann and in the Bergman case the functions f provide us with
a useful tool for a local analysis. We obtain "Taylor expansions," and we have the
double orthogonality, the concentration properties, and the fact that the first function

f acts reproducingly over any ball centered at z. In the next sections we shall present
two examples of how these features may be exploited.

3. Preparation for two applications. For the sake of simplicity we restrict ourselves
to the case where n 1 for the rest of this paper.

We start by introducing some notation which, for much of the discussion that
follows, will enable us not to distinguish between the Bargmann and the Bergman
cases. From now on, unless otherwise specified, all statements should thus be read
with respect to either of the two cases.

We should warn the reader that in doing this we will make some minor changes
from the notational conventions of the previous section. This will be very convenient
and should not cause any trouble if care is taken to note the differences.

We consider the Bargmann spaces F"’2 and the Bergman spaces A"’2(A) (we
denote the unit disk in C by A). The reproducing kernels of these spaces will all be
denoted by R(z, ), that is, for F’2 we let

R(z, )= a e

and if we consider A’(A), we put

R(z, sr) (2a + 1)(1 )-2,-2.

We put dto(sr) dtoa(’), (.,.) will mean the corresponding inner product and I1" the
corresponding norm. Let distance d (., mean the Euclidean distance in the Bargmann



REPRODUCING FORMULAS AND DOUBLE ORTHOGONALITY 863

case and the hyperbolic distance in the Bergman case. Define

anr Bargmann case,
cn (2a + 1)(2a + 2) (2a + n + 1)/zr Bergman case,

I --z- I e-’ dt Bargmann case,
J.oA.(R) ]c tanh2R/2

[Jo t(1-t)"dt Bergman case,

a(R) {: d(z, ) < r}.

Note that in the Bergman case the argument R in , (R) is now a hyperbolic distance.
With this notation (2) (or (4)) and (13) can be written compactly as

(8) dw(f(Lw)(z, w))
w=o x(r) z

f()(rz)(C, z) a().

Note in paicular that this means

l I f(,)R(,,z)dw(,).(19) f(z) -Ao(R) )

The eigenfunctions of the concentration operators will now naturally be denoted

f() pR(z, )( L)"

so that p is modified by a factor of 1/ or 1/(2a + 1) from the definitions (5) or (17).
Let us now indicate the motivation for the applications that will be discussed in

the last two sections of this paper. Our Bargmann spaces can be associated with the
range of the sho-time Fourier transformation when applying a Gaussian window
function, as first proposed in 18]. For a discussion of this fact and for a short historical
review of the impoance of the Bargmann space in signal analysis and in different
contexts in mathematical physics, see 12]. Another source of much information is [25].

By making the standard transformation from the upper halfplane to the unit disk,
our Bergman spaces can be associated with the range of the wavelet transformation
when choosing as wavelet the function g(t) with Fourier transform

() .+1/2 e-e
[22]. During the last few years there has been a great deal of interest in such transforma-
tions, and interesting applications have been found in signal analysis, quantum
mechanics, applied mathematics, and harmonic analysis 19], [21], [22], [32], [8]. This
paicular choice of wavelet has been studied extensively by Paul from a quantum
mechanical point of view [33], [34]. It leads to coherent state representations related
to the radial harmonic oscillator and the Coulomb potential problem for the hydrogen
atom.

Discrete representations (or discrete transformations) are, of course, of great
impoance for various practical and theoretical reasons. In our formulation a discrete
representation will be associated with some discrete set of points either in C or in .
For regular lattices we have now reached an almost complete understanding 1 ], 13],
12], [9]. We urge the reader to consult [9], which should give the necessary background

for the present discussion.
A related story should be mentioned here. Different ohonormal bases of wavelets

have been discovered recently [41], [32], [2], [10], [30], which have quite amazing
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mathematical properties and which have turned out to be of interest for many applica-
tions. There is also a recent discovery of a class of orthonormal bases that is related
to the Bargmann case [14].

The kinds of lattices that are chosen for discrete representations for short-time
Fourier and wavelet transformations may be compared to the usual regular sampling
of bandlimited signals. The question has been raised to which extent analogues to
results on irregular sampling of bandlimited signals can be found. It seems natural to
start such an investigation in a situation which is similar to that of bandlimited signals
in the sense that we have available spaces of holomorphic functions.

Returning to our Bargmann and Bergman spaces, let us make precise what we
mean by "discrete representations." We say that {zn} is a set of uniqueness if

f(zn)=0 for all z, f--0.
This is equivalent to saying that the set {R(z,, z)/R(z,, z,) 1/2} is complete in the space
at hand. {z,} is said to be a set of interpolation if to any square-integrable sequence
{e,} there exists an f such that f(z,)/R(z,, zn)l/2= c, for all n.

If the sequences {f(z,)} are to represent the vectors f, we should obviously require
{z,} to be a set of uniqueness. But we should also require the inversion problem to be
well posed. This means that we need the operator f--> {f(z,)/R(z,, z,) 1/2} into 12 to
be bounded and to have a bounded inverse. We state this by requiring that for all f
in the space in question we should have

[/(z.)l 2

<(20) AIIfII2-<-E R(z., z.) BIIfll2

with 0< A=< B < oo. Following Landau [27] we shall say that {z,} is a set of sampling
if this is satisfied, which is seen to be equivalent to saying that the set
{R(z,, z)/R(z,, z,) 1/2} is a frame [16], [42]. The numbers A and B will be denoted
the frame bounds of {z,}. We observe that a set of sampling is in particular a set of
uniquenesses.

There exists a kind of duality between sets of sampling and sets of interpolation,
which was clearly formulated by Landau [27], [28] in connection with bandlimited
signals. This will also be made precise by Theorem 4.4 of the present work. We observe
that if {z,} is both a set of sampling and a set of interpolation, then the sequence
{R(z,, z)/R(z,, z,) 1/2} constitutes a Riesz basis in the space at hand [42, p. 188].

4. Necessary density conditions for sampling and interpolation. For a discrete set
of points F to be one of sampling, must the "density" of points in any part of the
domain in question exceed some lower bound? Such a lower bound would correspond
to the Nyquist rate of information theory. From what we know about sampling of
bandlimited signals [27], [28] we might expect this to be the case. Were it not, we
could, at least theoretically, find discrete representations that were more economic
than the ones used now. Similarly, for F to be a set of interpolation, we would expect
that the "density" of points in any part of the domain under consideration could not
exceed some upper bound.

Guided by the work of Landau [27], [28], we shall search for such necessary
conditions. But first we should know if the word "density" can be given a reasonable
meaning.

Following Beurling [28, p. 47] we shall only be concerned with uniformly discrete
sets, those sets which are separated by some least positive distance (in the Bergman
case that is hyperbolic distance). In the Bargmann case we can easily borrow the
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concept of density used by Landau [28, p. 47]. We thus fix some "nice" two-dimensional
set I of measure 1, like the unit square or the unit disk/r. To any uniformly discrete
set F we define n+(r) and n-(r) to be the largest and smallest number of points of F
to be found in a translate of rI. We define upper and lower (uniform) densities of F,

n+(rI) n-(rI)D+(F) lim sup r2
and D-(F) lim inf

r2

Landau shows that if the boundary of I has measure zero this definition is independent
of L If the upper and lower densities are equal, we define F to have (uniform) density
D(F) D+(r)= D-(r).

We shall prove an analogue of Landau’s result for bandlimited L2 functions [27]:
If F is a set of sampling then D-(F) => m(S)/2r, and if F is a set of interpolation then
D+(F) -< m(S)/2r (here S denotes the frequency band which can consist of any finite
number of intervals and m(S) denotes the measure of S).

In the Bergman case the above density definitions are not well suited. If we chose
the disk of unit area as the basic set I, and defined upper and lower densities as above,
we would find that the sets constructed below would not have densities, that is,
D+(F) > D-(F). But our intuition tells us that, if any, these "regular" sets should have
densities.

Similar problems have been pointed out in slightly different contexts in [9, p. 69]
and in 11, I]. It seems to be an interesting challenge to find a suitable density concept
in the hyperbolic case.

In both the Bargmann and the Bergman cases we shall exploit the similarities
with the Paley-Wiener case to use the ideas contained in [27]. It will be shown that
for the Bergman case we can at least find analogies to two of Landau’s important
auxiliary results, and we will point out the difficulty in finding a "complete" analogy.

Before stating the results, let us quite informally explain the idea of connecting
concentration operators to our sampling/interpolation problem. For some large com-
pact set the number of eigenvalues of the corresponding concentration operator
significantly different from zero gives us the "dimension" of the space of functions
"concentrated" on . Thus if the number of points in from some discrete set F was
much smaller than this "dimension," we could find a function which was zero at all
the points in , and which was essentially zero outside 1. If this were the case for
arbitrarily large , we would expect that the left inequality in (20) could not be satisfied.
A similar argument can be made for interpolation.

The following lemmas give estimates reflecting this rather loose statement.
LEMMA 4.1. Suppose {Zk}k=l is a set of sampling. Let be any point (in C or in

A) and let {ZCk}=I denote a reordering of this set such that

0 < d(z, ) <- d(z, ) <-....

Furthermore, let r be any positive number and let n n(r, ) be the number such that

60a(zn, ) < r+-- d(zn+l, ’)
2

(if such a number does not exist, define n n(r, )=0). Then there exists a constant
y < 1, independent of r and , such that

(21)
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where k=l (Z-- T(Z)) and

(k_l) 1/20’ Bargmann case,

ff=
( k, )1/22(a + 1)" (2(a + 1)+1)’’" (2(a + 1)+k-l) a Bergman case.

Proo Let 4(z)= R(z, ;) H2=, (T;(z)- T;(z)). Then

a][[[, R(----k 2

By (19) and the Schwarz inequality we thus get

--Xo(ao/2 I111- I(z)l dw(z)
d(z,)<r

From the definitions of and of the eigenfunctions we may write

We put this into the integral of (22) and invoke the double orthogonality and the
concentration propeies of the eigenfunctions to obtain (21) with =

Aao(o/2).
Due to the simplicity of the eigenfunctions we have here obtained a sharpening

of Lemma 1 of [27], that is, we observe that the above lemma implies the statement
analogous to Landau’s result.

LEMMA 4.2. Let the conditions and definitions be as in Lemma 4.1. en we have

(23) Z(r)e
with as in Lemma 4.1.

To prove a sharpening of Landau’s corresponding result on interpolation seems
harder, and we confine ourselves to prove an analogue of Lemma 2 in [27].

LEMMA 4.3. Suppose {z}= is a set of interpolation. Let be any point (in C or
in ) and let {z}= denote a reordering of this set such that

O a(f ) a(, )
Furthermore, let r be any positive number and let n n(r, ) be the number such that

od(,
2

(if such a number does not exist, define n n(r, )=0 and 1_l(r)= 1). en there exists
a constant > O, independent of r and , such that

(24)

Proo First we note that it is possible to perform the interpolation in a stable
way. This happens if we interpolate in E, the orthogonal complement to the space
Eo of functions vanishing on {z}. Hence there exists a constant A < such that to
any square-summable sequence {a} there is a function e E with (z)/R(z, z) a
and

(25)
R(z.,z)"

For a proof of this fact, see the proof of Proposition 1 in [27].
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Second, we need the following form of the Weyl-Courant lemma

(26) An-l(r) => inf
IId(z,c)<r I(z)l = do(z)

o Ilzlaooz
with C, any subspace of dimension n. A proof can again be found in [27].

Next, let E be the function whose value is 1 at z and zero at every z,
j k, and let , span {&}=. For any 6 , we thus have

By (19) and the Schwarz inequality we find

a[t[]2 ffa ’(Z)]2 dw(z)-
o(6o/2) ,y<,

Now the result follows from (26) with 6 AAo(6o/2).
We are now prepared to prove the following general result for the Bargmann case,

stating that the Nyquist rate is a critical density both for sampling and for interpolation.
TEOREM 4.4. In the Bargmann case we have thefollowing. Ifthe uniformly discrete

set {z, } is a set of sampling, then D-({z, }) / . If the uniformly discrete set { z, } is a
set of interpolation, then D+({z,}) /.

Proof We make use of the asymptotic behaviour of the eigenvalues (0 < 6 < < 1)

{()" ()< r} o(-),
R2

{(). ()} O(R-’)

(see [11, I]). Thus

=---t- O(R-1),
R2 r

and so for n(R, ) of Lemma 4.2 we have

n(R,)>_+O(R-1
7"1"I2 71"

proving the first part of the theorem. The second part follows in the same way by
applying Lemma 4.3.

Remark 1. We may ask if the inequalities above can be substituted by strict
inequalities.

Remark 2. The above result can be viewed as a generalization of what is known
for regular lattices [9].

The situation is more delicate in the Bergman case. From the fact that

#{A(R)" 6=<Ak(R)< Y}-O(1)-(27)
IAo(R)I

(see [11, II], [. here meaning hyperbolic area) we realize that an attempt to copy the
proof of Theorem 4.4 will fail. In view of (27) it is clear that Lemma 4.2 is too weak
in this case, and we may ask what can be deduced from Lemma 4.1. At least to indicate
the complexity of this problem we construct a special family of point sets below, to
which Lemma 4.1 applies.
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Note, however, that by Lemma 4.2 and (33) we can conclude that the number of
points in any disk D must be

A family of point sets in the Bergman ease. In this paragraph we will construct a
point set depending on a parameter M which is to represent a characteristic distance
between the points. The purpose is to show that this set cannot be one of sampling
for M larger than a certain critical bound.

The basic idea of the construction is to place the points regularly in distance M
at concentric circles of radii M, 2M, 3M,.... We choose ’=0 as the center and
number the circles accordingly 1, 2, 3, (the choice of the origin as the center is for
convenience only, the construction works equally well with any point " A playing
this role). In Fig. 1 we have drawn the points at the four first circles for M 1.1 with
the outer circle indicating the unit circle. How to determine the number of points at
each circle is explained below.

Of course, the distance between the points cannot in general be equal to M. We
show how to approximate the number of points at circle k. For this purpose, we recall
the cosine rule of hyperbolic geometry [3, p. 148] (see Fig. 2)

cosh e cosh a cosh b- sinh a sinh b cos a.

In our case we get

cosh2 kM cosh M cosh M- 1
cos ak

sinh kM
1-

sinh kM

FIG. 1. An example of a point set in the Bergman case.

FIG. 2. A hyperbolic triangle.
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k denoting the angle between the lines passing through two adjacent points at circle
and the origin. Since ak -- 0 as k-* we put

v/2(cosh M- 1)
sinh kM

The number of points at circle k should therefore be approximately 2r/ak. We define

(28) n(k)=[C(M) ekM],
where

C(M)
v/2(cosh M- 1)’

__1and where we have defined [x] to be the integer such that x- [x] + t5 with < t5 =< 1/2.
For computational ease we shall deviate a bit from the construction above. Let

circle k have radius (k + ek)M, where ek is the solution of the equation

1 e-(k+ek)M) [C(M)
TM

1 -t- e -(k+,)M
e-2C(M)"

It is easily seen that ek 0 as k o.
The introduction of the sequence {ek} makes the polynomials associated with

Lemma 4.1 comfortably simple. For a sufficiently large m, the polynomial pro(Z)
corresponding to sr 0 and r mM takes the form

pro(Z) 1-[ Zn(k)- e-2c()+’3)

with 0_---/3k < 27r, depending on where we have chosen to arrange the points on each
circle.

We next perform an ordering of the terms in this polynomial determined by the
order of the exponents. We have

elM
(29) n(j) C(M) e

-1
+O(1)= O(n(1)).eM-1j=l

Hence we see that the largest n (ki) appearing in the exponent ofa term ofthe polynomial
decides the order of this exponent. We add the coefficients (or rather the squares of
the absolute values of the coefficients) of the terms of which n(k) appears as the largest
number in the exponent

(30) la/] kl(k-l) e-4C(M)(rn-j-1) e-4C(M)(m-1)(lnt_e4C(M))k-1,
(k) largest j=0 j

For future use we note that the total sum of the coefficients is

m( )(31) 2 lail:= 2 2 ICell 2 e-4C(M)m((1 d- e4C(M)) 1).
k=l n(k) largest

The scaling factor (cf. Lemma 4.1) of a term with exponent n can be approximated
in the following way (0 2a + 1)"

1.2... n 1 "2"." n. n o
--0

(32) (O+l).(O+2)...(O+n) (O+l).(O+2)...(O+n)

=(F(O+l)+e,)n-,
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with e, =>0 and e, O(n-1). Thus we have for terms with exponent of order n(k)

Y 1,]2=O(exp(-4C(M)m+k(ln(l+e4C(M)-MO))).
(k) largest

This indicates that if our point set is one of sampling, we have

M < 0-11n (1 + e4c(M))

(otherwise the "larger" eigenvalues would dominate the left-hand side of (21) which
then could not be expected to be bounded away from 1). We proceed to show that
this is indeed the case.

We have

C 7"1" f tanh2 r2

A,(r) =-n--.l |ao
(33)

t"(1- t) -1 dt 1-
n! tanh r/2

t"(1- t) -1 dt

-->1 c"’rr(1-tanhZl )-On! r
From this we find

(34) 2 ]’i[2Ai (1) 2 10i12
y ii] 2

-_> 1-cosh-2 r
E I,1"

From (30) and (32) we find

(35) Itll2>-a(M, O) exp(-4C(M)m+(k-1)(ln(l+e4C(M))-MO)),
n(k) largest

where we can choose

4;- e4C(M)-MOA(M, 0)=F(0+ 1)
eM- 1 2

Here we have used the following estimate for the exponents in (35)"
k --1 1 (C(M) eMI_M)kM<- n(j)<=C(M)eMekM +-k < + e

j=l eM-1 2 eM-1 2

Thus we have

m-1

Z IiI2 >= A(M, O) e-4c(M)m 2 exp(k(ln (I+e4C(M))--MO)),
k=O

in other words,

(36)

A’(M, O) e-4C(M)m(1-exp (m(ln (1 + e4C(M)) MO))),

E It’ll2 In (1 + e4c’(M)) MO,

A(M, O) e-4CM)m rn, In (1 + e4c) MO,

where

A’(M, O)=A(M, 0)(1-exp (In (1 +e4CM))--MO))-1.

The radius corresponding to p,,(z) is mM, and consequently

cosh-2 (1/2r) _-< 40 e-’M.
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We are now ready to draw the desired conclusion. For the case In (1 + e4C(M)) < MO
we have from (34) and (36) (with B(M, O)=4(A’(M, 0))-1)

E I,,l=x, exp (m(ln (1 + e4C(M)) MO))- e-mM

Elil:
>=I-B(M, O) l_exp(m(ln(l+e4C,a4))_MO)

,1

as m, contradicting Lemma 4.1.
For the case M0=ln (1 +e4C(M)) we find from (34) and (36) (with B(M, 0)=

4(A(M, 0))-1)

as m, again contradicting Lemma 4.1.

1 e-mMO

m

We conclude that if a point set as constructed above is a set of sampling then we
have M/ln (1 + e4C(M)) < (2tx q- 1)-1.

We remark that in a similar manner it can be proved that inequality (21) with

" 0 is indeed satisfied when MO < In (1 + eaC(M)). This indicates that what has been
found above is the sharpest result that can be deduced from Lemma 4.1.

We now prepare for an interesting observation on the asymptotics of the above
inequality. First, we have

yielding for small M

27"
C(M)

sinh (M/2)’

M2

(37) M/ln (1 + e4C(M)) --q- O(M3).
47r

Next, as pointed out in the introduction of [23] the Bargmann case can formally be
considered as the limiting case a- c. To see this we look at the scaled disk RA, put
2a cR2, let R- and make use of the fact that (1-Izl/R) ’--, e-e’ll. Finally,
observe that close to zero we have, loosely speaking, a Euclidean distance E correspond-
ing to M with M 2E.

We bring these remarks together, rewrite the necessary condition on M as

1 d
ER 2 > -+ O(E

and observe that formally we recapture the first part of Theorem 4.4.
The interest in the above calculation is not the fact that M cannot be too large

since this is well known (for large M there are nonzero functions vanishing on these
sets, see [20], [35]). What is interesting is the exact bound, the significance of which
is indicated by our formal passage to the Nyquist density.. ,littered sampling. The purpose of this section is to show that the family of sets
of sampling is in a sense an open set. This we will do by deducing estimates for the
frame bounds for jitters of actual sets of sampling.

We should remark that there are available existence results of the following kind
(incompletely quoted) [7], [37], [23], [31]. There exists a number Lo>0 such that if
{z} is any L-lattice (to be defined below) and L < Lo, then {z} is a set of sampling.
But we would like to know what is the value of Lo and how we could estimate the
frame bounds.
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We shall borrow an idea from the theory of nonharmonic Fourier series [15]. It
was used in the proof of one of the forerunners to Kadec’s -theorem [24]. In [15] it
is shown that {e "-e} is a Riesz basis for L2[-Tr, 7r] if supn Itn-nl<log2/Tr-0.22 (by
[24] the best possible constant is -). We combine this idea with the local analysis
provided by our eigenfunction expansions.

We consider again uniformly discrete sets {zn} of complex numbers. Let us measure
the distance between two such sets by

p({z.}, {st.}) sup d(z., .).

We say that {st.} is an M-jitter of {z.} if p({z.}, {’.}) M <.
Suppose {z.} has separating distance 26o>0 and let {’.} be an M-jitter of

with M < 6o. In the Bargmann case define

(38) D(M, 60, A) (a6o)2 (1 AAo(3o)) 1 1

and in the Bergman case

(39) D(M, 6o A)
min {1, csh-4 (6o/2)} ((tanh2(M/2)) -2 )(2ce + 1) tanh2 (60/2)

(1 -a,o(6o)) 1
tanh2 (60/2)

1

With this notation we have the following theorem.
THEOREM 5.1. Suppose that {z,} with separating distance 290 is a set of sampling

withframe boundsA and B. Let Mo (< go) be thepositive number such that D(Mo, go, A)
A. Then .any Mjitter { } of { zn } with M < Mo is a set of sampling, and for its frame
bounds A and B we have

(40) > { e-IVt2("/---/D(M’ go, A))2

cosh-4’+4 (1/2M)(,,/--4’D(M, go, A))2

(41) <= (’-+v/D(M, go, A))2.

Bargmann case,
Bergman case,

Proof Let {st.} be an M-jitter of {zn} and f any function in the space at hand.
The key to the proof is the following estimate:

R(z,,,z.)l/Zf(.) f(z,,)
(42) 2 R(.,z.) R(z.,z.) ’/

Let us first show that (42) proves the theorem.
In the Bargmann case we have the identity

yielding

(43)

2

<= D(M, go, A)llfl[ =.

R(z, z) ’/2 exp (1/2lz- ffl =)
IR(L z) R(,)/2

1 R(z. z.)’/2 exp (1/2aM2)
R(’., ..),/2- IR(K., z.)l -R(K., ’n) 1/2"

In the Bergman case we use the identity (see [3, p. 132])

R(z, z) ’/2 cosh2’+21/2d(z, )
IR(L z)l R(Lff) ’/2

which leads to

(44)
1 R(z., z.) ’/2 cosh2+21/2M

R(n, n)1/2= IR(’., z.)l R(’., st.)
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By (43) or (44) and Minkowski’s inqeuality, (42) implies

2 {: C,,)i
<-vlD(M’ 60, A)II/II + I2 R(z., z.)l

By the definition of B we arrive at (41). Similarly, by (43) or (44) and Minkowski’s
inequality we see that (42) implies (40).

We next turn to the proofof (42). To this end we expandf(z) into the eigenfunctions
associated with zn,

(45) f(z)= (ff[,.)f[,.(z).
k=0

By the double orthogonality and the fact that f- acts reproducingly this gives

If(z’)l
If(z)l d,,(z)= o(6o)

R(z. z.)
/ y X(6)l(f’fb)l"

Zn (60) k

On summing over n and using the definition of A, we get

(46) Z ,t,<(o)l(f, fb)l_-< (1-A,to(o))llfll.
k=l

Let us now put z ’n in (45). This yields

(47) f(’n)
R(,, z,)

f(z,,)+ R(,,, z,,) Y pk"(ff[,")(Tz n) ’.
R(z,,,z,,) #,=l

At this stage we split the discussion and treat the two cases separately.
In the Bargmann case (47) implies

R(zn, zn)ll2f(n) f(zn .lOk-1
R(n, Zn) -g(zn, Zn) 1/2-- =1 l k.i

(ff[’")(T"n)t’"

To estimate this sum we multiply and divide the kth term by 6o/v/k + 1 (k 1, 2,.. ).
By HSlder’s inequality we then get

R(z,,, Zn)’/2f(,,) f(z,,) Olk-l)k
< L I(f f;")l 2 2 (J + 1) Iz" sr"lzx(48)

R(’., zo) R(z., z.) ’/ =, iik -1
t- 1) j:l "By the identity

Z (J+ 1)x- 1
1

j=l 1 -x

the last sum in (48) is found to be bounded by (1- M2/)--1.
We next sum (48) over n. To apply (46) we use the estimate

1
e- dt >)t’i’=k!(--ao k!(k+l)

and we find we have arrived at (42).
The argument is exactly the same in the Bergman case. Here (47) implies

R(z,,, zn)llZf(n f(z,) [ c,r

R(n, Zn) -R(zn, Zn) 1/2= k=l /k!(2c + 1)
(f’ f/’") Tz. ’, ).
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We use the estimate

!(2 +1)x(8o)

and the identity

(2a + 1) f tanh2(60/2)

dO

t(1- t)2 dt

_--> (2a + 1)min { 1 csh-4} tanh2{k+’(8/2)k+l

ITzl =tanh (1/2d(z, ))

(see [3, p. 132]) and obtain (42) in the same way as above.
A slight modificaiton of the argument above shows that the frame bounds depend

continuously on the jitters.
Let us now say that a uniformly discrete set {srn} is an L-lattice if to any point z

(in C or in A) there exists an n such that d(z, )<-L. With this notation we note the
following, which gives us a numerical estimate for the number Lo mentioned in the
introduction to this section.

COROLLARY 5.2. Let

Lo sup {L: L < 6o({Z.}) and A({z.}) D(L, 6o({Z.}), A({z.}))},

where the supremum is taken over all uniformly discrete sets {z.} (each with separating
distance 26o({Z.})) and where

2 (If(z.)lZ/R(z., z.))
A({z.}) inf

Ilfll#0 Ilfll z

Then any L-lattice with L < Lo is a set of sampling.
Proof Let {r, } be any L-lattice with L < Lo. By definition { st, } is uniformly discrete,

say with separating distance 260. So by (19) and the Schwarz inequality we have

If(z.)l 2 1
Z R(z., z))- o(o)

Since L (Lo we can find a set z such that

(49) A- A({z) D(L, o, A)

and L (6o where we have assumed z to have separating distance 26o. Since r is
an L-lattice we can pick a subsequence r) such that

We have

o({C.}, {z})--< L

and since {’.<k)} is an M-jitter of {zk} with M =< L, the existence of a lower frame
bound follows from (49) and Theorem 5.1.

We should remark that the existence of Lo > 0 and the possibility of estimating it
are ensured by the results in [9].

Acknowledgments. The author takes pleasure in thanking Henrik H. Martens for
stimulating discussions throughout this work. Among the various valuable comments
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of the referees the author is especially grateful for the one that led him to the formal
passage from the Bergman to the Bargmann case at the end of 4.

Note added in proof (Remark to Theorem 4.4.). Recently R. Wallst6n and the author
have proved that D-> a/r and D+ < a/r are also sufficient in the respective cases,
a result that will appear in a forthcoming publication.
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ERRATA:
Sur une classe de fonctionnelles non convexes et applications*

RABAN TAHRAOUIt

Page 45, une 15 : I1 faut lire rdr a la place de dr.

Page 50: Il manque une partie de l'hypothèse (2), i .e ., rajouter

ah3
x

	

~ c p-1 +d.
a7) i

Page 51, line 18 : II faut lire pl E Wiô"(f) au lieu de p l E W", p' étant le conjugué
de p.
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ERRATUM:
A Simple Wilson Orthonormal Basis with Exponential Decay*

INGRID DAUBECHIES’, STIPHANE JAFFARD$, AND JEAN-LIN JOURNI

The following equation was printed incorrectly in the March issue. The correct
equation should read

fm()f,.(s+ k)
m=l

(2.4)

=4()4(+k) +- Y Z [4,(:-t’)+(-)e+4,(:+’)]
2e=1K=0

[b(:- {+ k) + (--1)e+Kb(sc+ {+ k)] e-ir’k

b(:)b(+ k) + 2
gZ,gO

1
4(ff+ g)4 (so: ++k) (1 +(-1)k)

1(-1)eb(+ g)b(s-+ k) (1 (--1)k).

SIAM regrets the error.
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LONGTIME BEHAVIOUR OF STRONGLY DAMPED WAVE EQUATIONS,
GLOBAL ATTRACTORS AND THEIR DIMENSION*

J. M. GHIDAGLIA? AND A. MARZOCCHI$

Abstract. This paper contains some results on asymptotic behaviour of solutions to strongly damped
abstract nonlinear wave equations. After reviewing sufficient hypotheses for existence and uniqueness,
uniform time estimates are given and a global attractor for the trajectories of the associated dynamical
system is constructed. Finally, applications are made to nonlinear wave equations such as Sine-Gordon
equation, proving the finite dimensionality of the corresponding attractors.

Key words, nonlinear wave equations, attractors, asymptotic behaviour

AMS(MOS) subject classifications. 35L70, 35B40

Introduction. In this paper we study the longtime behaviour of strongly damped
wave equations. We address the case where an external excitation drives the solutions
and where nontrivial attractors occur. One of our main results concerns the dimension
of these sets that we show to be finite. Let us begin by mentioning two applications
that have motivated this work. Firstly, the perturbed Sine-Gordon equation

o2U OU 19(AU)++f,(0.1) c9t2
Au +sin u fl Ot Ot

where u(x, t) is the current in a Josephson junction (see, e.g., [1]), x is the space
variable and (0.1) is posed in a bounded domain 12 in En (with appropriate boundary
conditions). The parameters a and/3 are nonnegative and correspond to loss effects.
We are concerned in this work with the case where a > 0 (refer to [2], [3] for the case
a =0). The function f,f(x, t), is time-periodic and figures the external current that
drives the device. Another example reads

02U
(0.2)

"ou o(au)
3t Ot

which is also a perturbed wave equation occurring in quantum mechanics.
These partial differential equations can be seen as infinite-dimensional dynamical

systems, and the questions we address in this paper are related to determining whether
or not these systems depend on a finite number of degrees of freedom after a transient
period. A mathematical approach to this type of problem has been introduced for
dissipative parabolic equations, motivated by the study of turbulence in fluids. It was
proved that a global attractor exists and captures all the solutions as time goes to
infinity, and that this set was finite dimensional. A bound on this dimension provides
an estimate on the number of degrees of freedom in the longtime behaviour.

This point of view has been developed for many other types of partial differential
equations such as (weakly) damped wave equations, coupled systems, etc. (see Temam
[5] for a recent review), and more recently for nonlinear dispersive equations ([6], [7]).

* Received by the editors March 30, 1990; accepted for publication August 28, 1990.
t Centre de Math6matiques et Leurs Applications, Ecole Normale Sup6rieure, Cachan, 94235 Cachan

Cedex, France.
$ Dipartimento di Matematica, Universit Cattolica del Sacro Cuore, Via Trieste 17, 25121 Brescia, Italia.

879



880 J.M. GHIDAGLIA AND A. MARZOCCHI

In this article, we shall consider an abstract evolution equation which can be
written as

(0.3)
d2u du
at---+ aA --d-i+ Au + g(u) + h(u,) f

where A is a linear positive operator (see below) and show, under several hypotheses,
that its longtime behaviour is also described by a global attractor. Results in this
direction were derived by Massatt [8] and Webb [9] under quite restrictive hypotheses
on the nonlinear terms (g and h). Our techniques are completely different from those
in [8] and [9] and we are able, for example, to handle nongradient systems or
periodically driven equations. Then, in 4 we give sufficient conditions on the nonlinear
terms g and h that insure the finite dimension of this attractor.

1. Review and complements on the Cauchy problem.
1.1. Functional setting and the linear semigroup. Let H be a real Hilbert space

and A a positive linear self-adjoint unbounded operator with domain D(A)=
{v HIAv H} which is dense in H. The space D(A) is a Banach space when endowed
with the graph norm v - v , / ]lavll We will suppose furthermore that A" D(A) H
is an isomorphism and that A-1 is a compact operator. Under these hypotheses it is
possible to define the power A of A(s R) and to see that the spaces

V2s D(As) (seE)

are Hilbert spaces with scalar products and norms:

(u,v)2s=(ASu, AsV)H,
/2

respectively.
For the sake of notational simplicity we will write throughout the paper

(.,.) for(-,.),,

12s for

for l" [o,

Furthermore, we identify H with its dual, which leads to identify V_s with the dual
of Vs, and denote also by (.,.) the duality pairing between these spaces.

Let I c be an interval and X a Banach space with norm [1" IIx. Let p 1, o] and

LP(I; X)= {f]f: I- X such that I]fllx(t) LP(I)}

be the space of all X-value functions and LP-integrable on I. These spaces are Banach
spaces when endowed with the norms

]}/II Lp,;)= (}l/I]x (t))p dt if 1 _<- p <

Ilfllc,;x) ess sup {llfllx(t)} if p .
tl

Moreover, let C(I; X) be the space of all continuous functions from I into X and
C(I; X)= C(1; X) L(I; X) the subspace of the bounded ones
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When inserted in the abstract framework introduced above, the strongly damped
wave equation we will consider generalizes as (u, denote the time derivative)

u, + ceAu, + Au + g(u)+ h(u,)=f(t),
(1.1)

u(O) Uo, u,(0) u,,

where a /, f is a given function I - H, and g, h represent given nonlinear mappings
whose properties are to be specified later.

As it is well known (see, e.g., [5]) in the linear case, i.e., the case where f, g, and
h vanish, (1.1) defines a linear semigroup on V1 x H which we denote by E(t):

(t) (Uo, U,)-(U(t), Ut(t)), t>=O.

When a 0 we recover the usual wave propagator (which is a unitary group) while
when a > 0 (the dissipative case), the Z(t) are no longer invertible and the trajectory
tends exponentially to zero as t- +c, as we will see in Proposition 1.1.

1.2. The nonlinear semigroup. In this section we give sufficient conditions that
ensure the existence and uniqueness of solutions to (1.1). Although it seems well known
that the hypotheses below lead to the desired results, we have not been able to locate
them in the literature (see, e.g., [8], [9] for related conditions). The results rely on the
classical energy method, i.e., on some a priori estimates on the solutions of (1.1). We
consider a smooth solution of (1.1), and assume that the nonlinear interaction term
can be split as

(1.2) g(v) G’(v)+p(v),

where G CI(v, ) satisfies G(0) =0 and pc C(V, V-l). The scalar product of (1.1)
with u, in H leads to the "energy relation"

1 d
(1.3) -t-"-"d-7(lu’l+llull+zG(u))+llu’ll+(h(u’)’ u,)+(p(u), u,) (f, u,).

In order to deduce from this relation some estimates on the solutions we make the
following hypotheses:

(H 1) lim inf
G(v)

> 0"

(H2) ]Cl>0 0-1>0 such that Ip(v)l_C,(l+lG(v)l)- Vv V;

(H3) EIC2>0, 0-2>0 such that (h(v), v)-f=(l+llvll=)’- vv v.

Assuming that the external force term f satisfies f L2(0, T; V_l) for all T> 0, it
is straightforward to derive from the above hypotheses an a priori bound on the smooth
solutions of (1.1). Existence of solutions can be then obtained via the usual Faedo-
Galerkin method. However, supplementary hypotheses are needed in order to pass to
the limit in the nonlinear terms. Hence we will assume furthermore that g and h are
locally Lipschitzian in the following sense.

There exists 6 ]0, 1] such that for every R >0, there exists C3 C3(R) and
C4 C4(R) satisfying

(H4)

(H5) Ih(v)-h(w)l_,fa(llvll+llwll)lv-wl_ vv, w v IIv[I, IlwllR.
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Under these hypotheses (i.e., (H1)-(H5)), for everyf L2(0, T; V-l) for all T> 0 and
Uo V, u H there exists an unique function u(t) such that

u C(R+; V), u, C(R+, H) (q L2(0, T; V) VT> 0

that satisfies (1.1).
Moreover, iff is time independent, i.e., f(t)=f V_, the mappings

S(t)= {Uo, Ul}{u(t), u,(t)}

form a semigroup on V x H" that is, for fixed > 0, S(t) is continuous on V H and

S(0) =/, S(tl + t2) S(t) S(t2), t,, t2 > O.

2. Bounded absorbing sets and attractors.
2.1. Time-uniform estimates in V H.
2.1.1. The linear case. In this section we show the decay to zero of the linear

operator Z(t) as t- +c, as we have announced before.
PROPOSITION 2.1. Let A be the first eigenvalue of A and set Co=

min (1/a, aA1/(2(1 + A))). Then, for every e ]0, eo[,

I{u, v}l= (1- )llull=/ e2lul2/lv /
induces a norm on V H, equivalent to the usual one, and for every {Uo, u} V H,
we have

(2.) I(t){Uo, u,}l<-e-’l{uo, u}l Vt_->0.

Proof Actually we are going to show a slightly stronger result than (2.1). We take
g= h =0 and f6 V_I and denote by {u(t), u,(t)} the solution of (1.1). Then

(l_e-z’)
(2.2) [{u,/)}12 < I{Uo, /90}12 e-2et+

2ce

In order to prove (2.2) we set v u, + eu, where e-< Co. Thus

(2.3) v, u,, + eu, u,t + e(v- eu ),

and making use of (1.1) we find

v, + (1 ec)au + eZu + (aA- e)v f
(2.4)

lg I)

Taking the scalar product of (2.4)1 with v we have

1 d
2((2.5)

2 dt
Ivl=+(1-ea)(Au’ v)+e u, v)+((crA-e)v, u)=(f v),

and using (2.4)2, we can deduce that

1 d
(Au, v)= Ilull=/ llull 2,

("’ )= 2--/lu +

Substituting in (2.2) we get

(2.6)
1 d

[( )11 u = / Ivl + lul] + e(1 )11 = / ((erA- e)v, u)+ e31ul=-- (f, v).
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Now, we have that

Allvl=-< Ilvll =

Thus, thanks to the hypotheses made on e, it is easy to see that

(2.7) ((aA-e)u, v) Ilvll=+ lvl=,
so that by (2.6) we get, setting y [{u, v}[ 2

ldy+ey+ [Ivll=< Ilvll <(2.8)
2 dt =lfl(+’v-) = Ilvll=

By this and Gronwall’s lemma it is straightforward to derive (2.2).
By (2.2) the following result also follows:

(2.9) II(t)kuo. Ul+euo}llv..e-2’llkuo. Ul+euo}llv.. VtO, Ve]0, Co].

2.1.2. The nonlinear case. In order to obtain estimates similar to those of the
preceding paragraph we need two more assumptions on the nonlinear terms. Hence
we assume that there exists C5 > 0 such that

(H6) lim inf
v, g(v)) CsG(v)

0
+ Ilvll 2

and there exist C6 > 0 and 3 > 0 such that

(H7) Ih(v)l_. C4(1 + Ilvll) ’-3 v
This last hypothesis is somewhat restrictive but we shall relax it below; see Remark
2.2. We are now in position to prove the following.

PROPOSITION 2.2. Let f H and g, h satisfy hypotheses (H1), (H2), (H3), (H6),
and (H7). en there exists a bounded absorbing set Bo in the space V1 x H for the
dynamical system represented by (1.1).

Proo We are going to prove the following result: For every e ]0, e[, where
e =min (l/a, a/3A) there exist positive constants k k(e) and p (independent of e)
such that the solution u(t) of (1.1) satisfies

(2.10)
/(1 )llu011=+ =luol=+ lu + uol=+2G(uo)3 e

1
+ (l-e- +- Ifl=

Proceeding similarly as in Proposition 2.1, it is easy to get

1 d
--E(1 )llu 12+ =lul=+ Il] + e(1- )ll u 112+ =lul2

(2.11) 2 dt

+ I[ll 2- l12 ( )-(g(u), )-(h(u),

By (2.4)2 and the decomposition (1.2), we have

d
(g(u), v)= (u)+ ((u), v,)+ (g(u), u),

(2.12)

(h(u,), v)=(h(u,), u,)+(h(u,), u).
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Therefore equality (2.11) can be rewritten as

d
d- [(1 ,)11 u

(2.13)
+ e[(1-et)llull2+2(g(u), u)]+2allvllZ-Zelvl2+Z(h(u,), u,)+ e31ul 2

2(p(u), u,)-2e(h(u,), u).

Now hypotheses (H2), (H3), (H6), and (H7) imply that for every choice of a>0
(i= 1,..., 4) there exist corresponding constants k > 0 (i 1,..., 4) such that

E2
(2.14) (g(u), u)

(2.15) (p(u), u,) IIp(u)[[,llu, [6:(1 +lG(u)[)l/2+

(2.16) (h(u,), u,)- 1+ Ilu, 2 k3,

(2.17) -(h(u,), u) Ih(u,)l-,llull C4( 1 + I[u, ll)llu II.
Making use of the Cauch-Schwarz inequality and the fact that Ilu, ll= 211112+ 2211u 2,
it is easy to deduce from (2.15)-(2.17) that

(2.18) 2(h(u,),u,)-(l+llll2+Zllul]=),
(2.19)

where k5 and 65 depend on e, k4, 63,

(2.20) -2(p(u),

where k6 and 6 depend on e, 62, k, 64.
Inserting all these inequalities in (2.13) and setting z=(1-ea)u[[2+

=lu12+l12+2G(u) we have

dz

dt
(2.21)

+

+(2 -2-2-6)1l112-212 2( )+ k7,

where k7 k + 3 + k5 + k4.
Now we note that if e <min (l/a, a/3A), then we can find 6, 63, 64, 65, 6v such

that

1 e(a + 61 + t3 + 64 -k- 66) 0,

1 3e

so that we can forget the term in { } and that

(2a 6:- E2a a6)ll vii2 I1,11+ lvl2.

By this inequality and (2.21) we can deduce

(2.22)
dt
+ epz <= k7 +

a
0 < p < min { 1, C3},
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and using Gronwall’s lemma, (2.10) follows. Now hypothesis (H1) implies that for all
67 > 0 there exists k8 > 0 such that

2G(u) + u 112_-> -ks,

sothat from (2.10) we deduce that if e < e2=min (1/2a,

(2.23) 1/21In 112/ 21ul=/ Ivl=_-< k9-l- z(0) e-t’,
where

k7 1
k9 -k+--+ Ifl-ep epo

Now from (2.22) it readily follows that for every choice of Uo, Ul, e < e2, and G (of
course restricted by (H1) and (H6)), there exists to to(e, IlUoll, lu,I, G) such that for
t>=to
(2.24) (u(t),u,(t)+eu(t))e{(x,y)e VxH" II(x,y)ll2VH<=Zk9+l}=-Bo,
i.e., Bo is absorbing for the dynamical system (1.1).

Remark 2.1. It is possible to assume f6 Cb(R/; H) and easily modify the above
proof so that Ifl is replaced by

Remark 2.2. The hypothesis (H7) is somewhat restrictive with respect to the
applications we have in view. We relax this assumption by writing h h, + h2, where
h, satisfies (H7) and h2 is such that there exist 68 e ]0, 1/2] and C5 such that

(2.25) ]he(v)]_, <- Cs(h2(v), v)

Now Proposition 1.2 can be extended to this case.
PROPOSITION 2.3. The conclusions ofProposition 1.2 hold true if we replace the fact

that h satisfies (H7) by the assumptions h hi + h2 where hi satisfies (H7) and h2 satisfies
(2.25).

Proof. From (2.24) it follows that

el(h2(u,), u)l <- elh(u,)l-lllull <- eCs(h2(u,), u,)-I-

with 2q 1/68, q => 1. Then (2.22) reads as

dz I/I 2 2q 2q--+ epz <- k7++ C6E U
dt

But, since for e-<_ 1/2a we have z 1/21lull 2, it follows that

dz
rant- 8p2 <= k7 n

t- C7E2qz2q.
dt a

Now, if we take e sufficiently small, we can suppose

ECi/q(k7_.,alf [2) (fl2 l/q

<=

We choose Zo and e such that

l lfl 2(2.26) C7e2qzo<= 7. 0<= t<= T,
Z

so that

(2.27) CTe2qz( t) q Ifl2, O<-t<__T,
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and it can be that either

Ifl 2(2.28) T< and C7e2qzq(T)

or

(2.29) T=.

In the interval 0 =< t-< T, by the previous assumption on e, we have

dz 2lfl 2

+ epz <--_ k7+dt a

and therefore

z( t) <= Zo e-’ + k7 + (1 e-t), O<_t<_T.

Now, since x- xq is convex for q >-1, we obtain

z( t) q <<- Zg e-’ +
e qp q k7 q- 1 e-p’),

so that

c7q(C7E2qz(t) q C7E2qzff) e-Pt + pq kT+ 2lfl2)a (1 e-"’), O<=t<__T.

But from the assumptions (2.26) and (2.28) on Zo and e, it follows that

C7e2qzq(t) <
2 a

O=<t__< T.

From this we deduce that (2.28) is impossible and T= +c, giving us

(2.30) z(t) =< Zo e-t +-- k7+ (1 e-’), 0-< <- c,
ep

and

C7e2qzg- for e_<- e0.2 ce

Now we still need to prove that there exists an absorbing set in V1 x H, since in the
previous argument e depends on Zo.

Then, if Izol_-> kl with R1 >-(1/e)((1/2C7)(Ifl2/a))2/q, it follows that

z( t) <_ zo e-O’ + CsTo(1- e-’) f >--_ O, e <--_ eo.

Now, if R= 16C8, and R >-R1 + Re, it is easy to see that

R
e eptz(t)<=zoe-P’+--(1 ),

4

so that for t-> q(R), z(t)<-R/2. At this point, if R/2>-R2, we can continue the
argument until R/2<= R2. Thus {Izl _-< Re} is absorbing.
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2.2. Construction of the global attractor. We will assume that the nonlinear map-
pings g and h, introduced in 1.1-1.2, satisfy the following hypothesis:

:16 ]0,1/2] such that V(, r/) Vx V and Vp=>O,

(H8) I111 p and Ir/I =< p==>:lC9(p) such that

Ig()l-, + Ih(n)l-, C9(p)(1 + n I1-).
This section will be devoted to the proof of the following theorem.

THEOREM 2.1. The w-limit set of Bo,

s4=to(Bo)= fq>o cl(Ut>_ S(t)Bo),
where cl stands for the closure with respect to the topology of V1 x H, which is the global
attractor for S( t) in that space, i.e.,

(i) ,91 is a compact nonempty connected set in V1 x H;
(ii) 4 is invariant under S(t); S(t) s4 4 V --> 0;
(iii) is globally attracting: for every bounded set

tends to zero as t--> o.
Remarks 2.3. (i) A similar result was obtained by Massatt [8] under more restrictive

hypotheses on the nonlinear mappings g and h. We also notice that our techniques
are completely different from those in [8].

(ii) We have denoted dist (X, Y) =supxx infyyd(x, y).
(iii) The proof below will also show that 4 is bounded in the norm of V/ x V,

where 6 is given in (H8).
Proof The proof will be an easy consequence of the following abstract result

[2], [4].
PROPOSITION 2.4. If a semigroup S(t) on a metric space possesses a bounded

absorbing set B andfor every bounded set B in , there exists a compact set K in such
that lim,_,+ dist (S(t)B, K) =0 then the w-limit set w(B) is the global attractor ofS(t).

Therefore let R_->0 be given with Uo V, uH such that IlUoll<-R and lul<-R.
We know from Proposition 1.2 that there exist Co, To(R), and Ko(R) such that

(2.31) Ilu(t)l[2+lu,(t)[<- Co Vt >= To(R),

(2.32) Ilu(t)l[+[u,(t)12<=go(R) Vt>=O.

Let us write now u v + w, where

(2.33)

(2.34)

(2.35)

and

(2.36)

(2.37)

Vt 1_ aAvt + Av q( t),

v(0) =0, v,(0) =0,

qg( t) f g(u( t)) h(ut( t)),

Wtt AI- aAwt 4- Aw O,

w(0) Uo, wt(0) u,.

Proposition 2.1 shows that there exist C > 0 such that

(2.38) [[w(t)ll=/lw,(t)l=< C e-tR2 Vt >--O.

Now hypothesis (HS) and (2.31) imply that

(2.39) Ig(u(t))+ h(u,(t))l-I <-- c9(g)llu, 2,
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and integrating (2.21) between and + 1 it is easy to deduce that
t+l

(2.40) u,(t)ll 2 d’r<=Clo(R)

so that, by virtue of (2.35), we have

Iq(r)]2a_l dr=<2 ]flea_, dr+ ]g(u(r))+ h(u(r))l_, dr

(2.41)
c,,().

Suppose now that there exists C2(R) such that

(2.42) [v(t)12+, + Iv,(t)l= C2(R);

then U ,o,11-011 {v(t), v,(t)} is bounded in V2a+ x Va and being the injection Va+ x
Va V x H compact, we have

U {v(t),v,(t)}=K is compact in VxH.
t0

But from (2.38) it follows that U to,tlottR {u(t)- v(t), ut(t)- vt(t)} is contained in the
ball Bv,(O, C e-tR) which tends strongly to zero, so that U,o S(t)Bv, is compact
in V x H and the theorem is proved.

It remains to prove (2.42). Setting (= Aav, by (2.26) we have

(2.43) ,, + aA, +A Aa,
from which, setting , + e and y I{, }l, it is easy to derive

a
A(1/2))(2.44)

2 dt

so that

(2.45)

with

-t + 2ey <= C131qgla_l "
t+l

(2.46) ’(r) dr =< C14(R).

Integration of (2.45) now yields

y(t) e’ -<_ y(O) + (r) e" dr,

by which

n<=t<-n+l,

k+l

y(t) e2t <- y(O) + (7") e2" dr
k=O dk

=<y(0)+ e2(’+’) (r) dr
k=O dk

e2e(n+2)- 1=< y(0)+ C14(R)
e2e 1

e2e(t+2)
--<y(0)+ C4(R) e2

_
1’
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and, remembering that y(0)=0 by (2.35),

t
4e

Y(t)<- C,4(R) eZe_l Vt=>0,

which rewrites as

(2.47) II:(t)l12+ I:t(t)-F e,7(t)12<= C5(R);
but v A-s, so (2.47) implies (2.42) and the proof is complete. D

3. Applications to wave equations.
3.1. Model problems. We want now to restrict ourselves to a class of model

problems which fits in the abstract framework introduced in 1 and to state sufficient
conditions on the nonlinearities to guarantee that hypothesis (HS) and its subsequents
be satisfied. Namely, we are going to set A---A with Dirichlet boundary conditions
and consider the mappings g, h as realfunctions acting on u(x, t) and ut(x, t), respec-
tively. Therefore let l) be an open bounded connected domain in E" with Lipschitz
boundary. The model problems that will be considered are of the form

Ot2 (x, t)+aA-(x,Ot t)-Au(x, t)+g(u(x, t))+h -(x, t) =f(x, t),

(3.1) u(x, t)lo. 0,

Ou
U(X, 0) U0(X), - (X, 0) Ul(X ).

In this case H=L2(12), V=D(A’/Z)=H()), D(A)=HZ(I)f-IH() and [.[,][.][
will denote the L2(I)) and Ho(I)-norms.

We assume that the functions g and h are such that (H1)-(H6) and (2.25) hold
true. This will be the case if, e.g., g(s)= A[s[-s and h(s)= ixls[-s with A => 0,/x-> 0,
/3 >0, y>0, and (for n->3), % /3 < l+(n2/n-2). Of course much more general
functions g and h could be considered but we have restricted the exposition to
homogeneous ones for the sake of simplicity.

It is merely worthwhile to note that the following results can be obtained in the
general framework; we have left that framework only for a better readability of the
proofs and theorems.

3.2. Further smoothness properties of the limit sets. The aim of this section is to
prove that if the data are more regular, then so is the solution of (3.1), and that there
exists an absorbing set for the system (3.1) in the space VI V2=H()x
(H2() (] H()).

To prove what follows let us make two supplementary hypotheses:

VR-> 0::10-4=> 0, :!C6= C6(R) such that
(H9)

IIll-<_Rlg()l -< C,6(]-i-lA1)1-’4/2 V V;

VR->0:Io’5> 0, =1C7 C7(R) such that
(H10)

Ilvll<-Rlh(v)l<-C,(l+lXvl)’-’, Vve V.

We then have the following proposition.
PROPOSITION 3.1. Letf H and g, h satisfy (H9) and (H10). Then there exists an

absorbing set B in the space V x V2 for the dynamical system (1.1).
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_Proof. We begin to show that if Uo V2, u V1, then for every R >_- 0 there exists

Ko Ko(R) such that, for 0 < e < e,

(1- ea)lAul2+ [In I1=+ Ilu, + u I]=-< [(1 )lAuol=+ uoll=+ I[Ul + uoll =] e-’t

1(3.2) +- (1 e-’)[Klo(R) + Ifl].

Taking the scalar product of (3.1) with v ut + eu in V, we easily get

1 d
(( 1 ea )lAul = / = u = / v =) / 1 ea )lAul = / u = / ((- A )v, av

2 dt
(3.3) (f, Av)+ (g(u), Av)+ (h(ut), Av).

We choose now R >- 0 such that Iuol= + e=llull =_-< XR= so that, by Poincar6’s inequality,
we have

(3.4) Uoll 2 + lull = _<-- 82,
and then, according to the existence results we know that there exists M M(R) such
that

Ilu( t)ll= / lu,( t)l= <= M(g)

From (3.4) and the hypotheses made above it follows that

(g(u), zXu) _-< Ig(u)l IAvl =< C,6(M(R))IAvI(1 / IAul) -4/=

a CT(M(R))2

(3.5) _-<-IAvl= / (1 + IAul)2-z
4

4
C(M(R))

61olAU]2 +g(6o, R)

for every 610 > 0, and

-(h(ut), Av) < Ih(u,)l Izvl < C17(M(R))(1-4-lavl)’-,/=lavl

<a 12 Cs(M(R))2

(3.6)
lay +

a
(1 + IAutl)2-1

C,7(M R :z

,,lau,l=+ K12(611 R)

for every 611 > 0.
Inserting these inequalities in (3.3) and using the fact that IAu, 2 _--< IAvl 2 + 2e21Aul2,

we get

d
d-- [(1 ea )[Aul2 -+- 8211 lg

2 -[-I[ {) 2] ’’[- 8[(1 ea )[AR[ 2 ---[- 82[[ lg 2]

(3.7) + 8 {[ 1 8( O -I- 69)31/ /,/12 - (20 610)IA/)I2 28 II/)112}

_<-lavl= + (f, Av)+ K,(R) < IAvlz +’+
-2 2a

where 69, 610 depend on 8, C16 C17 but can be otherwise chosen arbitrarily small. It
is evident now that proceeding exactly as in Proposition 1.2 with the same bound on
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e, one can find (3.2). The proof of the existence of an absorbing set on V2 x V1 of the
form

(3.8) Bl={(x,y) Vx V" II(x,y)llvv<-2Ko+l}
is exactly similar to that of the preceding proposition. D

Remark 3.1. If we assume f,f, Cb(/; H) it is easy to prove the same result
using the equality

d
(3.9) -(f, Av) -- (f, Au) + (f, au) e(f, Au).

3.3. Sufficient conditions on the nonlinearities. Let us now investigate the meaning
of the abstract hypotheses (HS)-(H10) in the case of wave equations of the form (3.1).

We will suppose that the real function g(sc) satisfies the following conditions:
There exists CI8 > 0 such that

(Hll) Ig()l Cls(1 + Il)/,
with

0=</3 <c if n =2,

0=</3 <5 if n =3,

n+2
0<_--/3< if n_-->4,

n-2

no such assumption is needed if n 1.

Concerning h(), we will assume that there exists C19 > 0 such that

(nl2a) Ih(n)l <- C19(1 + Inl)/,
with

0=< y< if n =2,

7
O-<_y< if n=3,

3

n+4
O=<y_-< if n->2.

Now we want to show that (Hll), (H12) imply (H9), (H10). We will distinguish
four cases, always supposing that Ilull--< R and lu, I--< R.

(i) n 1. Since H c L in this case, we have

and similarly

Then

IlullRlulf’lg(u)lC"-- sup Ig(w)l,
wl LO<= C

lu,lRlh(u,)lC’".

(ii) n 2. By the Sobolev imbedding theorem, we have H , L2, for every/3 > 0.

Ig(u)l C,8(1 + lul=) c9(1 + cll u II) c(1 + CR)
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and

[h(Ul)[2 C19(1%-Iut]2) C,o(1%- R2’).

(iii) n --3. By the Sobolev imbedding theorem, we now have that if/3 < 5,

I.. I--< c. II,-,’--< MlJu[14/slu[/s <= MR4/SIAul 1Is (M > 0),

]8( U)] C9( 1%" M3R4/51Au]2/s) C8(R )( 1%" IAul) 2-"4/2,

As for h, we have similarly that if y < 7/8,

so that

]h(u,)l= C19(1%" MsR4/VIAu,]3’/7 C9(R)(1%"

so that

2

(iv) n->4. We omit the calculations since they are exactly similar to the case
where n 3.

As for hypothesis (H8), we will show that a stronger requirement on h is needed,
namely,

Ih(n)l < C(1%"1:12) ’/2 VI(H12b)

with

)’<_-6 ifn=l,

)’<l+6/n if n->2.

More precisely, (Hl l) and (H12b) imply (H8). To show this, the reasoning is similar
to that used previously as concerns the part on g(s), having noted that (Hll) implies
]g(:)[ < C(R) (that is, 6 =1/2) for n 1, 2 and that, since H-1 c L6Is, fl < 5 implies

Ig(se)l_,+zs_-< C2o(R) for some 6 > 0.

The result for n 4 follows readily. As for h(B) we will distinguish two cases:
First, n 1: We have

Ih(n)l-, sup
I1111

Since (n=l) [[LC[[/[[[[/ the right-hand side is bounded by
C]](/2+[]][ (/2-. Hence (H13) implies that [h()[_ ](1 + lIB[[2).

Second, n 2: For every e > 0, there exists C such that

]h( n )1-1 Glh( n )] (.+,/(.+2,

with n+2/(2n+e)y=-(s/n). Now, since y<l+(6/n), one can choose e so that
sy 2. Therefore

Ih(n)l-1 C(1

and (H8) follows.
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4. Finite dimensionality of the attractors. We consider a subset X c V1 H, which
satisfies the two following properties"

(4.1) X is included and bounded in VI+ x V for some > 0,

(4.2) X is invariant under (1.1), i.e., S(t)X X V >_- 0.

We shall supplement the previous hypotheses on g and h with the following ones.
For every R>0, and (u, r/) VI+ V with lul,+/lnl_-< R there exist oh [0, 1[

and C >- 0 such that

(H13) I(g’(u)v, Clvl ,ll tl v, v;
there exist o- [0, 1[ and C _-> 0 such that

(H14) I(h’(n):, >1 < Cllll: V V.

With these notations and hypotheses we can state the following theorem.
THEOREM 4.1. Let X be a subset in V x H which satisfies (4.1) and (4.2). Then X

has finite Hausdorff and fractal dimensions.
COROLLARY 4.1. The global attractor constructed in Theorem 2.1 hasfinite Hausdorff

and fractal dimensions.
This corollary is obvious since the global attractor satisfies (4.2) by construction

and we have noticed in Remark 2.3(ii) that it is bounded in VI+ V where 6 > 0 is
given in (HS). Concerning the proof of Theorem 4.1, we will rely on an abstract result
of Ghidaglia [7], which extends that of Constantin, Foias, and Temam [4]. First, we
consider the linearized flow

v,, + oAv, + Av + g’(u)v + h’(u,)v, O,

and introduce the quadratic forms (0< e < 1/24)

(4.3) q{v, v,)=-(1-)llvll/=lvl2/lw/vl.
We immediately see that

1 d
---q{v,

(4.4) 2 dt

-(g’(u)v+ h’(u,)v,- e2v, v, + ev).

Second, we use (H13) and (H14) in order to bound the right-hand side of (4.4) by

(4.5)  21vllv,+ vl+Cllv,+ vlllvl.,+clv,+ vl  + cllvlliiv,+ vll.
We have written (h’(u,)v,, v, + ev) (h’(u,)(v, + ev), v, + ev)- e(h’(u,)v, v, + ev) and
make use of (H14) in order to bound the last term.

Then combining (4.4) and (4.5) we deduce thanks to the Cauchy-Schwarz
inequality that there exists eo < 1/24 such that for 0 < e _-< e,

d
(4.6)

where r max (r, tr:) < 1.
Third, using the interpolation inequality

4’ --< I,bl 1-">/(:-")o--1 14’1
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we deduce that (from now on e eo is fixed)

so that (4.6) reads

d
(4.7)

dt
qo + Yqo --< c[Ivl

where 3’ min (l!2a, aA!2) and we have used the fact that

AllWl2_--< Ilwll =.
Introducing the linear operator on V x H

K{v, w}= {A-’v, A-’w},

we can rewrite (4.7) as

dqeo
dt

F yqo<= C(K{v, v,}, {v, V/})VIX H,

Finally, since the operator K is compact, we deduce from this inequality [7, Appendix]
that X is finite dimensional. [3

5. Applications, continued.
5.1. Time-periodic perturbed Sine-Gordon equation. In 1 the following equation,

modelling the current in a Josephson junction, is introduced:

-Au +sin u=-+a+f(x, t),
(5.1) Ot2 Ot Ot

a>0, /3>0, u(x,t)R,

Since sin u is a bounded function, we can apply the results of the preceding paragraphs
to obtain the following theorem.

THEOREM 5.1. Equation (5.1), together with initial and boundary conditions, defines
a dynamical system which has a global attractor offinite dimension.

5.2. The power nonlinearity ease. The following perturbed wave equation also
occurs in quantum mechanics:

(5.2)
O2u Ou p Ou O(Au)
Ot---- AU + lUlqU --[3 - --+Ot ot+

For this equation, bounds on p and q are required by the number of independent
variables involved. Thus we have Theorem 5.2.

THEOREM 5.2. Equation (5.2), together with initial and boundary condition, defines
a dynamical system which has a finite-dimensional global attractor in thefollowing cases:

n 1, p <_- 5, q arbitrary,

n 2, p < 3, q arbitrary,

n=3, p<4/3, q<4,

n>-4, p<4/n, q<.4/(n-2).
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A STRONGLY COUPLED SINGULARLY PERTURBED QUASILINEAR
SECOND-ORDER SYSTEM*

JOHN S. JEFFRIES?

Abstract. A constructive existence proof is given for solutions of boundary layer type for the singularly
perturbed quasilinear second-order system e(d2x/dta) F(t, x)(dx/dr)+ g(t, x) subject to Dirichlet boun-
dary conditions. The required assumptions involve only natural conditions that are induced by the O’Malley
construction. In particular, restrictive conditions on the structure of F(t, x) which seek to decouple the
components of the system are avoided.

Key words, singular perturbations, boundary layer, strongly coupled

AMS(MOS) subject classifications. 34, 54

1. Introduction. We consider solutions exhibiting boundary layer behavior at one
endpoint for the following vector differential equation:

d2x dx+(1.1) e--.:F(t,x)-7; g(t,x) for0<t<l
at-at

for small values of e (e 0+) subject to the Dirichlet boundary conditions

(1.2) x(0, e)= a, x(1, e):/3,

where x and g are real n-dimensional vector-valued functions, a and fl are real
n-dimensional vectors, and F is a real n x n matrix-valued function.

The vector Dirichlet problem (1.1)-(1.2) has been considered in Hadlock [9],
Chang [1]-[3], Habets [8], Freedman and Kaplan [7], Flaherty and O’Malley [6],
O’Donnell [16], O’Malley [17], Chang and Howes [4], Kirschvink [15], Kelley [14],
Smith 19], and Jeffries and Smith 11]. However, these works have either made rather
strong restrictions on the size ofthe boundary layerjump or they have placed restrictions
on the structure of F(t, x) that effectively require the components to be only weakly
coupled. In the present study we avoid these restrictions and thus allow the components
of the system to be strongly coupled. It should be noted that the approach we use can
be easily modified to handle the case in which F(t, x), g(t, x), a, and fl are also
functions of e, i.e., F= F(t, x, e), g= g(t, x, e), a c(e), and/3 =/3(e). However, to
ease the notational burden, we have assumed that F, g, a, and/3 are independent of
e. (See Smith [19] or Jeffries and Smith [11] for the required modifications if F, g, a,
and/3 are not independent of e.)

To prove the existence of a boundary layer solution to the problem (1.1)-(1.2)
we use, with the aid of a Riccati transformation, the O’Malley construction to obtain
an approximate solution. An additional Riccati transformation leads to an explicit
construction of a suitable fundamental solution for the linearization of the problem
about the proposed approximate solution. A resulting integral representation for the
linearization provides directly the existence of a locally unique exact solution for the
original problem along with error estimates of the difference between the exact solution
and the approximate solution, thereby yielding precise information on the exact solution
throughout the interval 0_-< =< 1 as e 0+.

Received by the editors March 28, 1990; accepted for publication August 28, 1990.
? Department of Computer Science and Mathematics, New Mexico Highlands University, Las Vegas,
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Section 2 contains a discussion of our assumptions, and 3 discusses the approxi-
mate solution provided by the O’Malley construction. A Riccati transformation is used
in 4 to obtain a fundamental solution for the linearization of the problem about the
given approximate solution, resulting in an existence and local uniqueness theorem
for the original problem along with error estimates.

2. Assumptions.
ASSUMPTION 1. There exists a continuous solution Xo(t) to the reduced equation

dXo(2.1) F(t, Xo(t))---+ g(t, Xo(t))=0

such that the real parts of the eigenvalues of F(t, Xo(,,t)) are negative.
ASSUMPTION 2. There exists a decaying solution Xo to the boundary layer equation

d22 F(0, Xo(0)+ 2o(’r))d2o 2o(0) a Xo(0)(2.2)
dr d--7’

It can be shown (see the discussion following formula (3.7)) that if Xo decays
then it must decay exponentially. Before stating our next assumption, we must first
consider the following 2n-dimensional linear system"

(2.3) dr- (r) /(r)
where

dXo,k

(2.4)
Ai,j(r)= L OFi’k (0, Xo(0)+2o(’r)) d---7-’k=l OXj
B(r) F(0, Xo(0)+ Xo(r)).

It is shown in Lemma 1 that there exists a fundamental solution , to the above linear
system which satisfies the following dichotomy:

112()P2-’(u)ll-<- K e-(’--), r > u,
(2.5) 112()(- P)2-1(u)[[--< K, u => r,

where K and v are positive constants and P (, o). Essentially, this says that there
are n linearly independent solutions to the system (2.3) that decay exponentially and
n linearly independent solutions that are bounded in norm away from zero. Defining
P1 (0)p-l(0) we make the following assumption.

ASSUMPTION 3. The columns of (I 0)P1 span R
The above assumption implies that the solution Xo(r) to the boundary value

problem (2.2) is stable with respect to perturbations in the initial conditions. Assumption
3 is independent ofthe fundamental solution chosen provided the fundamental solution
satisfies the dichotomy (2.5). (This follows from using arguments analogous to those
given in Lemma 6.4 of [11] and letting e--> 0+.) Furthermore, if there exists a real
n-dimensional vector-valued function f such that F(t, x) Vxf(t, x) then Assumption
3 is always satisfied (see the discussion following formula (3.20)).

ASSUMPTION 4. The given data functions F and g are of class C N+l, where N >_- 2.

3. The approximate solution. In this section we construct an approximate solution
to the problem (1.1)-(1.2) using the O’Malley construction. We write the approximate
solution XN(t, e) as the sum of an outer solution and a boundary layer correction
function of the form

(3.1) xN(t, e)=X(t, e)+f((r, e), r:= t/e,
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where X(t, e) and ’(r, e) possess expansions in e of the form

3.1. The outer solution. The outer solution coefficient functions Xk(t), k=
1,"" ", N, are determined by requiring that the outer solution satisfy the differential
equation (1.1) and the right boundary conditions to Order (eN), i.e.,

(3.3)
d 2X dX_ke---= F( t, X) at

g( t, X) +( t, e) X(1, e)= [3-l,N(e),

where /5(t, e) and b-(e) are of Order (eu+l). A straightforward calculation shows
that the outer coefficients functions must satisfy

(3.4)
dXodXk --[Xk(t)" VxF(t, Xo(t))] -F( t, Xo( t)) --ffi-=

Xk(1) =0,

gx( t, Xo( t))Xk( t) + Pk-l( t),

where Pk-l(t) is known successively in terms of the preceding coefficient functions.
Since F(t, Xo(t)) is nonsingular (see Assumption 1) there exists a unique solution to
each of the above linear terminal value problems.

3.2. The boundary layer correction functions. The boundary layer correction func-
tions are determined by requiring that the approximate solution Xn(t, e) satisfies the
boundary value problem to Order (e N), i.e.,

d2X dXN
(3.5) e

dt2
--F(t, xS(t,e))

dt
+g(t’Xn(t’e))+P(t’e)’

(3.6) x(o, ) =.- 6(e),

where p(t, e) is a continuous function of and satisfies olp(s, ds-<Cnst-en+’
and [bv(e)[, Ipn(e)[_<-Const. e N+I.

Using the results of 3.1, changing variables from to r, andexpanding about
e- 0, we find that the leading boundary layer correction function Xo must satisfy

2

(3.7)
d Xo F(0, Xo(0)+o(r)) dXo Xo(O)=a-Xo(O)
dr2 dr

In Assumption 2 we assumed that there exists a decaying solution Xo to the above
problem. It follows, since dXo/dr is a solution to the linear system

(3.8)
dr\ dr/ \ dr/’

where D(r):= F(O, X.o(O)+ Xo(r)) and the real parts of the eigenvalues of F(O, Xo(O))
are negative, that dXo/dr must be exponentially decaying. This, in turn, implies that
Xo is also exponentially decaying, i.e., there exists a positive constant vo such that

(3.9) [[.,o(’r)l -< Const. e-"oL
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The higher-order boundary layer correction terms must satisfy the following linear
differential equations"

2d X_ F(0, Xo(0) + o(r)) dXk
dr2 dr

(3.0) +[x() VxF(O, Xo(O)+Xo())]T +p,_l(),

x(0) -x(0),

where k-l(r) is known in terms of the previous boundary layer correction terms and
is exponentiall decaying providing thprevius terms are exponentially decaying.

Defining Y := dX/dr, and using A and B as defined in (2.4), we can rewrite the
differential equation (3.10) as the following inhomogeneous linear system"

o
(3.11) d / (r) B(r)] Y/ _,(r)

Using the fundamental solution Z(r) (see Assumption 3) an exponentially decaying
solution is given by

(r) Z(r)nz-’(O)d + Z()P-’(u)
_,(u)

(3.2)
2((-ez-(u

_l(U
u,

where d is a 2n-dimensional vector. It follows from Assumption 3 that there exists a
vector d such that X0)=-X(0). We now turn to the proof of the existence of a
fundamental solution Z(r), satisfying the dichotomy (2.5).

LEMMA 1. ere exists afundamental solution Z to the linear system (2.3) satisfying
the dichotomy (2.5).

Proo The strategy we use is to construct a fundamental solution on an interval
of the form [o, ), o a positive constant, that satisfies the dichotomy (2.5). We then
extend this fundamental solution to the interval [0, ). It follows from Coppel [5, p. 13]
that the extended fundamental solution satisfies the dichotomy on the interval [0, ).

Defining

(3.13) 2(r):= () I+ T(r)() 0 ()

(314) _l()=(-’() 0 )(I+()()-())0 g-l(, _(,
for r to, the linear system decouples

(3.15)
d 0 B

provided and satisfy the following differential equations for o"

(3. at_
_

#+A,
dr

(3.17) d_ +[_]+i.
dr
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PROPOSITION 1. There exists, for ro sufficiently large, a bounded solution " to the
differential equation (3.16). Furthermore, there exist positive constants Ko and 3/0 such that

(3.18) (r)- (r)ll <--_ ,o e-o(-o), r>--_ o,

(3.19) II0ll Ko e-oo

Proof Letting f(z)=/(z)+/(z), we find that/(z) must satisfy

(3.20)
d/ // 2+ d
dr dr

(Note that if there exists an n-dimensional vector-valued function f such that F
then -(d/dr)=O and so T= is a solution to (3.16), and we may set to=0.)
From Assumptions 1 and 2 it follows that there exists a fundamental solution to

--1 --l(U--Z)the linear system d/dz= (z) such that [[(u) (z)[[ K e for u
where K and are potive constants. Using the fundamental solution and imposing
the terminal condition E() O, we find that satisfies the following integral equation:

d , (u),(u) ) du.(3.2) ()= G-A l(U) ()au+

Letting yo<U,/2K, and choosing ro large enough so that ]](r)-(d/dr)(r)]]
yoU,/2K, for u o. (This is possible since ]](r)-(d/dr)(r)]]Cons. e-o for
r 0.) By the Banach-Picard fixed point theorem there exists a solution E such that

(r)] o for o. Fuhermore, using repeated substitution starting with o() :=

((dB/du)-)l(U)fil(r du, it can be shown that [](r)]] Toexp (-o(r-ro))
for r to, and since ]]A-(dB/dr)]] Const. e-o for 0, o can be chosen so as to
satisfy (3.19).

PROPOS,T,ON 2. e fundamental solution satisfies ]](u)-’(u)]]Const. for
r, U ro.

Proo This follows from the boundedness of ]]-]] du.
PROPOS,T,ON 3. efundamentalsolution () satisfies ](r)-’(u)] K2 e-a-"

for u o, for some positive constants K2 and 2.
Proo This follows from Assumption 1, the estimates (3.18)-(3.19), and Proposi-

tion 1 of [5].
PROPOSITION 4. ere exists a bounded solution () to the differential equation

(3.17).
Proo Imposing the initial condition S(ro) 0 and using the fundamental solutions

and we find that

(3.22) (-) (7")--l(u)(U)--’(7) du.

It follows from Propositions 2 and 3 that (z) is bounded for r => to. Having shown
that is bounded we may express as (z)=o (r)-l(u)[I + (u)/(u)] du. This
observation will be helpful later in the proof of the nonsingularity of S(1/e, e). The
proof of Lemma 1 now follows from Propositions 1-4.

4. Existence and local uniqueness. In this section we use a Riccati transformation
to construct a fundamental solution for the linearization of the problem about the
approximate solution XN(t, e). An integral representation for the linearization is then
used to prove the existence of an exact solution for (1.1)-(1.2) along with error estimates
and local uniqueness.

THEOREM. Assume there exists a continuous solution Xo( t) to the reduced equation
such that the eigenvalues of, F( t, Xo(t)) have negative real parts (Assumption 1). If there
exists a decaying solution Xo to the boundary layer problem (Assumption 2), the columns
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of (In O)P span R (Assumption 3), and the given data are sufficiently smooth
(Assumption 4), then there exist constants eo and CN such that (1.1)-(1.2) has an exact
solution x( t, e), satisfying the estimates

(4.1) ix(t e X rV e)]< CNerV, dx d
-(t, e)---xN(t, e) CNe-’

uniformly on the region 0 t 1, 0< c Co. Moreover, x(t, c) is unique subject to (4.1).
Proof Defining

d
(4.2) g:=x(t,c)-X(t,c), :=c d’
a straightforward calculation (see Smith [18]) shows that and must satisfy

d 1 0 I,
+(4.3)

fi e eA(t, e) B(t, e) H(t,, (1/e), e)+p(t, e)

subject to the boundary conditions

(4.4)

where

L
37(0 e) 37(1, e) 4,(e)

(4.5) L :=
I,,

R :=

(4.6) a,d(t e):= OF.,k dXl +Ogi (t, XU(t, e)),
k: OXj

(t’X(t’e)) dt Oxj

(4.7) B(t, e):= F(t, X(t, e)),

H(t,u,v,e):= f(t, (t,e)+su) v+(l+S)
ds

(,x(,+su+(,x(,+sux(, s.

Note that H(t, u, v, e) satisfies the inequality

(4.9) IH(t, u, v, e) N Const. (e-lu+ ev)
uniformly as e 0+, for all v e R and for all u in a fixed compact subset of R.

We now construct a fundamental solution to the homogeneous potion of (4.3).
Changing variables from to r we therefore consider the following linear system:

(4.0 z(,, = (,, (,,

As in Lemma 1 we employ a Riccati transformation so as to decouple the exponentially
decaying solutions from the solutions bounded away from zero:

(4. z(, := r(, + r(,, s(, 0 (,,

(4. z-(,, = (’
0 -(, -r(,
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It follows, using the method of analysis used in Lemma 1, that Z(z, e) satisfies the
following dichotomy

IZ(,r, e)PZ-l(u, e)l<= g e-"(’-’) r>= u,
(4.13)

]Z(’, e)(I- P)Z-’(u, e)l =< K, u => "
for positive constants K and ,. We now show that S(1/e, e) is nonsingular for
sufficiently small e. Using the fundamental solution r/(r, e) it follows that

(4.14) S(r, e)= r(’, e)r-(u, e)[I + S(u)E(u, e)] du,

where E(u, e)= T(u, e)-B(u, e). Since S(r, e) is bounded,
Const. (e-o(’-o)+ e), and In(z, 8)P/-1( u, e)l<--Ke-’(’-’) for z_>u, we find that

(,’-) r(4.15) S ,e T] ,e T-I(u, e) du + O(e).
dl/e-1/t, In 1/e

Since (d/du)r#-=-rl-(u, e)B(u, e) and B(u, e)= F(1, Xo(1))+ O(e In l/e) for
1/e-1/uln 1/e<=u<- l/e, it follows that S(1/e, e)=-F(1, Xo(1))+O(e(ln 1/e)).
Assumption 1 implies that F(1, Xo(1)) is nonsingular and hence, for all sufficiently
small e, S(1/e, e) is also nonsingular.

We may now use Z(-, e) to construct a fundamental solution (-, e) to the linear
system

(4.16)
dr A(r) /(r) e’

a sufficiently large positive constant, satisfying the dichotomy

112,(",, e)P2-?l(u, e)ll K4 e-’4(r-u) U ’r : In l/e,
(4.17) 1121(’r,e)(I-P)2-f’(u,e)ll<-K4, ,r<=u<=tclnlle,

where K4 and 14 are positive constants, and the estimate

(4.18) 2,(0, e)P2-1(0, e)= Z(0, e)PZ-’(O, e)+ O(e(ln l/e)).
The proof follows from the argum,ents used in Lemma 6.3 of [11], Proposition 2 of
[5], and the estimate ]]eA(er, e)-A(’)[], []/(r)-/(r)]] =<Const. (e In l/e) for 0=< -=<

In 1/e.
We may now apply the arguments used in formulas (6.42)-(6.54) of Lemma 6.4

of [11] to conclude that there exists a bounded matrix J(e), with bounded inverse,
such that

(4.19) Z(O, e)nz-’(O, e)= P,J(e)+ O(e(ln l/e)2).
Using the fundarffental solution Z(t, e):=Z(t/e, e) we may write the problem

(4.3)-(4.4) as the following integral equation:

((t, e))= ,(t, e)PZ-’
f(t, e)

(0, e)Cc(Y, :, e)+2(t, e)(I-P)2-1(1, e)CR(:, , e)

(4.20) + 2(t, e)PZ-’(s, e)
H(s,(s, e), (1/e)f(s, e), e), e)+p(s, e)

ds

2(t, e)(I-P)2-’(s, e)
H(s,Y(s, e), (lle)f(s, e), e)+p(x, e)

ds,



A STRONGLY COUPLED SYSTEM 903

where CL(, )7, e) and CR(, fi, e) are determined bythe boundary conditions. Imposing
the boundary conditions we find that Ct and CR must satisfy the following linear system:

(4.21)

where

(4.22)
ME(e) := L,(0, E)P2-1(0, E)--R(1, e)P,-l(0, e),

MR(e):= g(o, e)(I-P)2-’(1, e)+R2(1, e)(I-P)-l(1, e),

and

),(, ) e):=
(e) + L 2(0, e)(I- P)2-1(s, e)
() o

( o )(4.23)
H(s,(s, e), (1/e)fi(s, e), e)+p(s, e)

ds

-R
o
(1, e)p-l(s, e)

H(s,(s, e), (1/e)fi(s, e), e)+p(s, e)
ds.

Since ]R(1, e)P-’(O, e)Const, e{/)’ the columns of (I, 0)(0, e)P-’(O, e)=
(I, O)PJ(e)+O(e(ln (l/e)2) span R" (see Assumption 3 and (4.19)), and

R2(1, e)(I-n)2-’(1, e)

-F(1, Xo(1))T(1/e,e)T(1/e,e) F(1, Xo(1))
+0 e In

it follows that for sufficiently small e there exists a solution CL and CR to the above
linear system. We may now apply the Banach-Picard fixed point theorem to conclude
that there exists a fixed point to the integral equation and hence a solution to the
problem (1.1)-(1.2) satisfying the estimates of (4.1). For the details of such a proof,
including a discussion of local uniqueness, see 11, pp. 26-30].
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EXISTENCE, UNIQUENESS, AND CONTINUOUS DEPENDENCE
FOR A SYSTEM OF HYPERBOLIC CONSERVATION LAWS

MODELING POLYMER FLOODING*

ASLAK TVEITO AND RAGNAR WINTHERt
Abstract. The problem of well-posedness for a system of nonstrictly hyperbolic conservation

laws is studied. A finite difference scheme is used to prove the existence of an entropy solution with
bounded variation. It is proved that the entropy solution of the system is unique, and that the
solution depends continuously on its initial data in a proper topology. The analysis is based on a
smoothness property of one of the Riemann invariants of the system.

Key words, conservation laws, existence, uniqueness, continuous dependence
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1. Introduction. The purpose of this paper is to study the Cauchy problem for
the hyperbolic system of conservation laws

(1.1) st + :(s, c)x --0,

+

This model arises in enhanced oil recovery when oil is displaced in a porous rock
by water containing dissolved polymer. The variable s denotes the saturation of the
aqueous phase, consisting of water and polymer, while c denotes the concentration of
polymer in the aqueous phase. The function f f(s, c) is usually referred to as the
fractional flow function. For a discussion of the application of (1.1) as a model for
polymer flooding, we refer to Pope [21], Isaacson [5], and Johansen and Winther [7].

The characteristic speeds of the system (1.1) are given by f8 and f/s. The system
will be analyzed in regimes where the ordering of the characteristic speeds depends
on the location in the state space. The hyperbolic problem (1.1) is therefore not
strictly hyperbolic. Furthermore, the characteristic field associated with the speed
f/s is linearly degenerate.

Riemann problems for the nonstrictly hyperbolic system (1.1) have been analyzed
by Keyfitz and Kranzer [8] and Isaacson [5]. Temple [25] used these results to estab-
lish existence of a solution for the Cauchy problem by the random choice method. A
parabolic regularization of the model (1.1) is studied in [29]. In [28], existence of a
solution to the Cauchy problem was proved by applying finite difference approxima-
tions. However, the analysis given in [28] was limited by rather restrictive assumptions
on the fractional flow function f. In particular these assumptions implied that the
system was strictly hyperbolic, and they excluded physically relevant fractional flow
functions. Generalizations of the problem (1.1) were studied by Serre [23].

It was observed in [28] that if the variable c is smooth initially, then c remains
smooth for all time. This property is due to the fact that one of the characteristic
fields is noninteracting, i.e., it does not generate discontinuities. This observation
should be compared with the result of Keyfitz and Kranzer [9] that global smooth
solutions of (1.1) can occur only if the variable f/s is constant for the initial data.
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Hence, in general, discontinuities will develop, but in such a way that the variable c
remains smooth.

In the present paper we significantly generalize the theory developed in [28]. The
results derived in [28] is based on a simple form of the fractional flow function. In
fact, for the model studied in [28], we could formulate the finite difference scheme
equivalently in conservative variables and in the Riemann invariants. This simplified
the derivation of the bounds on the approximate solutions. In the present paper
we generalize the results to physically relevant fractional flow functions, for which we
cannot formulate the finite difference scheme in Riemann invariants. In fact, since the
system is nonstrictly hyperbolic, the Riemann invariants do not constitute a global
coordinate system in the state-space. We also generalize the analysis presented in [28]
by including uniqueness and continuous dependence results.

As in [28] the smoothness property of c is utilized. Existence of an entropy
solution is derived under rather general assumptions on the fractional flow functions

f. The existence argument uses finite difference approximations derived from the
nonconservative form

(1.2) st + f(s, c)x O,
ct + g(s, c)c 0

of the system (1.1). Here g g(s, c) denotes the function f(s, c)/s. In order to prove
convergence in Lo of a subsequence the family (s, c) of approximate solutions
generated by the finite difference scheme, it is sufficient to establish three estimates:
(1) a uniform L bound, (2) a uniform total variation bound, and (3) L-continuity
in time of the approximate solution. From these estimates we obtain convergence of
a subsequence of the family (s, c) in Lo (cf. Oleinik [19] or Smoller [24]). Glimm
[4] applied this strategy in his famous existence proof for strictly hyperbolic systems
of conservation laws with "small" data. He established the proper estimates for his
random choice method. This scheme has also been applied by other authors in order
to prove existence of weak solutions for special systems. In [15] LeVeque and Temple
used this strategy to prove convergence of the Godunov scheme for strictly hyperbolic
systems of conservation laws with "line fields." Serre [22] also studied such systems
and proved convergence of the Godunov scheme, the random choice method, and the
Lax-Friedrichs scheme.

For the present model, the estimates (1) and (3) are straightforward, whereas (2)
depends strongly on the smoothness property of czx derived in [28]. Having established
the convergence, proving existence of an entropy solution is a matter of verifying that
the limit satisfies the proper entropy condition. We remark that, to the author’s
knowledge, this is the first convergence result for a classical finite difference scheme
applied to a nonstrictly hyperbolic system of conservation laws. Convergence of the
random choice method for such system has been proved by Temple [25] and Liu and
Wang [18].

However, the main contribution of this paper is a proof of uniqueness and contin-
uous dependence results for the system (1.1). We show that, if the initial saturation
s is a function of bounded variation and if the initial concentration c is sufficiently
smooth, the entropy solution is unique. Furthermore, the solution depends continu-
ously on the initial data in the proper topologies. These results should be compared
with an observation done by Isaacson and Temple [6]. They observed, by combining
two Riemann problem solutions, that if both the variables s and c are allowed to be
discontinuous initially, then the solution would not depend continuously on the initial



EXISTENCE, UNIQUENESS, AND CONTINUOUS DEPENDENCE 907

data in L1. Hence, a smoothness condition on c seems to be necessary in order to
obtain a well-posed Cauchy problem.

We remark that, as a consequence of the uniqueness result, we obtain convergence
of the entire family of approximate solutions, not only a subsequence of it. We hope to
be able to investigate this convergence, with an eye to error estimates, in the future.
We also remark that the method of proving the smoothness property of the c variable
used in this paper also formally applies to more general systems of the form (1.2).
The function g may depend on x, t, and other quantities in a model.

Our uniqueness and continuous dependence results are derived by introducing a
"Kruzkov-form" for the saturation equation of (1.2). The results obtained from this
form are combined with results obtained with the method of characteristics for the
concentration equation. We recall that the "Kruzkov-form" for scalar conservation
laws was introduced by Kruzkov [10] and used in [10] and Kuznetsov [11] in order
to establish uniqueness and continuous dependence results for such problems. For
systems of hyperbolic conservation laws there are, however, very few results addressing
the question of uniqueness and continuous dependence. Some uniqueness results for
rather general systems are derived by DiPerna [2] and Liu [16], and a uniqueness
result for the p-system in gas dynamics is established by Oleinik (cf. Smoller [24]).
Stability of the constant state for general systems is studied by Temple [26], [27].

The precise assumptions on the model and the main results are stated in 2. In
3 we derive the desired properties of the finite difference approximations, while the
convergence arguments are given in 4. The uniqueness and continuous dependence
results are proved in 5.

2. Preliminaries and statement of the main result. We begin by introduc-
ing some notation. If/E is a domain in R, then LP(I), 1 <_ p <_ oc, will denote the
classical Lp spaces of real valued functions on K:. Instead of LP(R), we will simply
write Lp, and the norms on Lp are denoted by I[" []p. The localized versions of Lp,
consisting of functions on R which are in LP()) for any compact subset K: of R, are
denoted by Loc.

Furthermore, BV BV(R) denotes the subspace of Loc consisting of functions
with bounded variation; i.e.,

BV {v e Lo TV(v) <

where

TV(v) sup]
h0 [hi

[v(x + h) v(x)l
dx.

The class of Lipschitz continuous functions on a domain/ C R is denoted by Lip(K:).
More precisely

Lip(K:) {v

where

[[VI[Lip(K: sup

As above, we will simply write Lip instead of Lip(R).
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If u is a function on a grid A {jAx}jez, with values uj at the grid points jAx,
we define an associated piecewise constant function UA on I by

 )ZXx).UA(X)-=Uj forxe [(j-1/2)Ax,(j4-5

The "discrete" L1- and L-norms of u are equal to the corresponding "continuous"
norms; i.e.,

For a grid function u, we also let TV(u) denote the associated "discrete" total variation
given by

TV(u) =- E lu uj-1 I.

It can easily be seen (cf. [1]) that TV(u) is finite if and only if UA e BV, and that

TV TV

Consider now the flux-function f f(s, c) which defines our model (1.2). It will
be assumed throughout the paper that there exists an So, 0 < So < 1, such that

(2.1) f(So, c) =_ 0 Vc e [0, 1].

Furthermore we assume that

(2.2) f(1, c) _= 1 Vc c [0,1]

(cf. Fig. 1). The associated state-space S of the model is given by

[So, 1] [0, 1].

In addition to (2.1) and (2.2), we will also assume that f(s, c) is an increasing and
smooth function of s for all c E [0, 1]. In order to simplify our notation we introduce
a positive constant Mf which bounds all the partial derivatives of f of order 1 or 2;
i.e., we assume that My > 0 satisfies

(2.3)

for all (s, c) E 8.
We emphasize that no assumptions are made concerning the sign of fc or f88.

Hence, the conditions here are more general than what has been assumed in some
earlier papers on the model (1.2) (cf. [25], [5]).

The initial functions (s,c of (1.2) are assumed to be given such that
(s(x),c(x)) e ,.q for all x e . In particular, this implies that s(x) >_ So > 0
for all x R. In addition we will assume that co is a smooth function in the sense
that co Lip N BV. We recall that this assumption implies that c exists almost
everywhere and, since co is continuous, cox E L1. Hence, for any bounded interval
of R, the restriction of co is an element of the Sobolev space W1,1() (cf. [30]).
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s=S s=l

FIG. 1. A fractional flow function f as a function of s for two values of c.

0Finally, it will be assumed that the functions so and cx are elements of BV.
To be able to state the assumptions on the initial functions in a compact manner

we introduce a subset/30 of (L)2. A pair of functions (u, v) is said to be in the class
B if

() (u(x), v()) e s
(b) veLipfqBV,

(c) u, vx E BV.

Vx E ,

With this notation our assumptions on the functions so co can simply be written
(s, c) /3. We also introduce a class B consisting of functions of two variables x
and t; a pair of functions (u, v) is said to be in the class/3 if

(a) (u(., t), v(., t)) E B for t e [0, To],
(b) I1(’, t) u(., -)11 / I1(’, t) (-, -)I1
for 0 < t,T < To <
(c) v(x, .)

Here K is a finite constant. Throughout the paper To will denote a fixed finite time.
The main reason for introducing this notation is that we will show that

(s,c) E

Establishing this fundamental property of the solution of (1.2) is an essential part of
our existence argument presented below.

Let us now turn to the precise formulation of the initial value problem for the
model (1.2). Since we are working with a nonlinear system of hyperbolic conservation
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laws, we expect that discontinuities in the solutions will occur. As indicated above,
this is only the case for the saturation function s. The concentration function c will
remain Lipschitz continuous for all time. Since c is continuous, the shocks in s can be
considered, locally in space and time, as a shock of a scalar conservation law. We will
therefore require these shocks to satisfy the proper generalization of a scalar entropy
condition. This condition is formulated weakly by a modification of the Kruzkov form
(cf. [10]).

DEFINITION 1. Let (s, c) E B be given. A pair of functions (s, c) is called an
entropy solution of (1.2) if they satisfy the following requirements:

1. (s,c).
2. For all nonnegative C-functions with compact support in R x [0, To], all

q e [So, 1] and all T [0, To],
T

] {Is qlCt + sign(s q)(f(s, c) f(q, c))z sign(s q)f(q, c)} dx dt

+f 8(x) ql(x, O)dx L Is(x’ T) ql(x, T) dx > O.

3. For almost all (x, t) e R x [0, To], (s(x, t), c(x, t)) satisfies

ct + g(s, c)c O.

Furthermore,

lim I1(’, t) c I1 o.
t-,O+

This solution concept is a combination of a weak and a classical formulation. The
inequality 2 is a generalization of the Kruzkov form (cf. [10]) for a scalar conservation
law

st + f(s, c)x O,

when c is a given function of x and t, while 3 is a classical formulation of the second
equation of (1.2).

By using a finite difference approximation, we shall be able to prove the following
existence result for the model (1.2).

THEOREM 2.1. For any pair of initial functions (s,c) 13, there exists an

entropy solution of (1.2).
By assuming some extra regularity on the initial functions, we shall also prove

that the entropy solution is unique. Recall that for (s, c) S we have 0 < So < s < 1;
hence the function k cx/s is well defined whenever cx is. We also define k c/s.
Assume that the initial data (so co satisfies the following requirements:

() (0,0) e 0,
(sL, cL) x<L,(2.6) (b) (s(x)’ c(x)) (sR, cR) x > R,

(c) k E L,
where sL, 8R, cL, 8R, L, and R are finite constants. Let (0, c-0) be another pair of
initial functions satisfying (2.6) with the same constants; then we have the following
uniqueness and continuous dependence result.
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THEOREM 2.2. Let (s, c) and (o, c-O) be two pairs of initial data as described
above, and let (s, c) and (, ) be the corresponding entropy solutions of (1.2), coin-
ciding for Ixl sujficiently large. Then there is a finite constant M such that

t [0, To].
This theorem shows that the system is well posed in the proper topology. We

remark that, in view of the example given by Isaacson and Temple referred to above,
the system is not well posed in the Ll-norm applied to the variables (s, c).

Theorem 2.1 will be proved in 4, while Theorem 2.2 will be proved in 5.
3. Properties of the approximate solutions. In order to prove the existence

of a solution to the system (1.2), we generate a family (SA, CA) of approximate so-
lutions to the system and prove that a subsequence of this family converges in Loc

and that the limit is a solution. The family of approximate solutions is generated
by a nonconservative finite difference scheme (cf. [28]). The purpose of this section
is to establish some bounds on these approximate solutions. First we prove that the
approximate solutions remain in the state-space 8, and that the total variation of CA
is nonincreasing in time. Then, following [28], we show that CA has a certain smooth-
ness property. All these properties of the approximate solutions are used to prove
that the total variation of SA remains bounded for all finite time. As a corollary to
the TV-estimates we establish the usual L1-continuity in time for the approximate
solutions. Finally we establish a discrete entropy condition.

Let Ax and At be the meshsize in space and time, respectively, and let (s, c)
denote an approximation to (s(jAx, nat), c(jAx, nat)) for all (j, n) E Z Z+. The
approximations are generated by the following finite difference scheme:

(3.1) 8j

Cr+1 C # C cjn_

where # At/Ax, f f(s, c), and g g(s, c). Recall that g(s, c) f(s, c)/s.
We assume that the mesh parameters satisfies the following CFL-condition:

(3.2)
At

sup (Of)Ax (8,c)s ss’ g _< 1.

The iteration is started by putting

o 1 f((j+l/2)Ax S
o (X) dxs5 x (5-1/2)/xx

1 ((jW1/2)Ax co (x) dx.and c- Ax (5-1/2)Ax

The family of approximate solutions (SA, CA) is defined by extending the finite
difference solutions {(s, c)} to a function on [0, To],

(3.3) (SA(X,t),cA(x,t)) (S2, C2)
for (X, t) e [(j 1/2)AX, (j + 1/2)AX) X [nAt, (n + 1)At).

We start by showing that the finite difference solutions remain in the state-space,
and that the total variation of c is nonincreasing as a function of time.
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LEMMA 3.1. Suppose that (s, c) e $ Vj e Z and that TV(c) < oc then

(a) (sy, cy) e S V(j, n) e Z Z+,
0( n(max 0(b) minci cj ci V(j,n) eZZ+

(c) TV(c) TV(c) Vn e Z+.

Proof. Assume, for a fixed n, that (s, c) e , for all j e Z. Since

it follows by the CFL-condition (3.2) that cy+1 is a convex combination of c and
nc_1. Hence

n< +1 <maxc VjEZ,min c

and

TV(c’+) <_ TV(cn).

It remains to prove that

(.4) + e [0, 1]

Define the function a a(8L, 8R, cL, cR) by

VjEZ.

for (sL, ci), (sR, c) . Then, by the CFL-condition (3.2) and the properties of f,
we obtain

Oa #fs(sL, cL) >_ O,OSL
Oa

1- #fs(sn, cR) >_ O.

Consequently,

a(sL sR, ci cR) <_ a(1, 1, ci cR) 1,
s’, c _> S0, s0.

n n c) we have established (3.4), and the proof of theSince s2+l (8_1,8j, -1,
lemma is completed by induction on n.

In [28] we established a smoothness property for the variable corresponding to
our c-variable. In the present paper this property is of fundamental importance both
for the existence and the uniqueness of a solution to the Cauchy problem. We will
therefore, for completeness, briefly review the discussion of smoothness here.

Let us start by deriving this regularity in the ce of clsical solutions. We
assume that (s, c) is a smooth solution of the system

+ o,
ct + gc O,
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and that (s(x, t), c(x, t)) e S for all (x, t) e [0, To]. By differentiating the second
equation of (3.5) with respect to x, we obtain the equation

(a.) () + (a) 0.

Now, let

k Cx/8

and recall that for (s, c) E S, we have 0 < So _< s < 1. Then, by using (3.6), we get

0 () + (k) ( + ()) + (k + k),

and then, by the first equation of (3.5), we obtain

(.) + 0.

This equation is easily seen to satisfy the following maximum principle"

and consequently,

(.8) 0II(-,t)lloo _< IIIloo/0.

Thus we have established a uniform bound on the spatial derivative of the c-variable
under the assumption of classical solutions. However, this is merely formalism since
the solution of the system in general only exists in a weak sense, but these calculations
clearly motivate a similar result for the approximate solutions. Using the regularity
of the approximate solutions we prove, rigorously, that the function c obtained as the
limit of CA is Lipschitz continuous.

We remark that the method of deriving a uniform bound on the spatial derivative
of c for smooth solutions outlined above is applicable for any systems that can be
written on the form (3.5). It is not necessary for the function g to be a function of s
and c only; it might also depend explicitly on x, t, and other quantities in a model.

To prove the regularity property for the approximate solutions, we introduce an
auxiliary sequence

n cn+l -c2 V(j,n) 6 Z Z+.(3.9) kj AX 8nj+l

Again we recall that 0 < So <_ s _< 1 whenever (s, c) S. We have the following
result.

LEMMA 3.2. Suppose that (s, c) , for all j Z; then

0 0 1 C+ --C 7/,+C+ Cj < Cj+ C < Vn
Ax oo- Ax o --o Ax8j+ oo oo

Proof. We first observe that (s, c) E for all (j, n) Z Z+ (cf. Lemma 3.1).
By using the finite difference scheme (3.1) for (s+X,cy+), we obtain the following
scheme for the auxiliary sequence {k}:

n sin+ n
n

(3.10) k+ (1 #gi+),.+ ky + #g ..n+18J kJ-ln
j+l j-t--1
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(we refer to [28] for the details). By the CFL-condition (3.2), the coefficients of the
scheme (3.10) are positive, and it follows from (3.1) that their sum is 1. Hence k+1

is a convex combination of k_ and k, and then, by induction, we have

k _< k oo.

By (3.9), this proves the lemma. [:]

From the proof above we collect the following results concerning the properties
of the auxiliary sequence {k}.

COROLLARY 3.3. Suppose that (s, c) E q Vj Z, and that TV(k) < oo, then

() IIkll _< IIkll W e Z+,
(b) TY(kn) <_ TY(k) Vn e Z+.

Both of these properties follow from the fact that k2+1 is a convex combination of
kj

_
and n

Next we prove that the total variation of SA is bounded. We remark that this
result depends strongly on the regularity of CA.

LEMMA 3.4. Suppose that (s, c) ,.q for all j Z, and that there is a finite
constant Mo such that

Then

TV(s), TV(k), TV(c), IIkll M0,

TV(s) <_ (2Mo + 1/2)e2M’Mat,
where MI is defined by (2.3).

Proof. From the finite difference scheme (3.1), we obtain

nq-1 8q-1 8
n n n n

j+l j+l 8j #(f(Sj+l Cj+I f(sr n
c:i+ + f(sy, C+l) f(2,

-t-#(f(sr, cry) f(sL1 cy) + f(sL1 cy) f(sL, c)))
8j 82 .fs(Sjl/2. C)l)(Sj 82)- .(f(8. C1)- I(2, ))

+.f(sL1/, c2)(s2 8jl) + .(f(sL1, c)- f(L, L)),
where s/e e int[s2, s]. Here int[a, b] denotes the interval [min(a, b), max(a, b)].
By using a Taylor series expansion in the c-variable we get

TV(sn+I) E laJ-I-11"nq-1 8]-]-1"
J

I(1 .I(G1/. G1))(2+ ]) + .I(L/. 2)(Y L1)

-#f(s’], c’)(c)n+ c’]) + #f(s_l, c)n--1)(C c)n-1)
n n n n n n nf(,+1/)(+1 c ) + gf(-l, -/)(2 -)12

where c+1/2 int[c],c+]. From the CFL-condition and the properties of f, we
have

TV(8n+1) TV(s) + # Ifc(s2, c2)(ci+ c2) fc(sjn_l, cjn_l)(y Cjl)
J

+,MII . _-=
j+l C) IIooEIC)+I Cl Tv(sn) +I+II"
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Here we bound I by using the properties of the auxiliary sequence (k}.

At

n n n

J

+

t[]kn]](MfTV(sn) + MfTV(sn) + MfTV(cn)) + MfTy(kn)].

Consequently, we have

I MoMf(Mo + 1)At + 2MfMoAtTV(sn).

The term II is bounded by applying Lemm 3.1 and 3.2:

II &tMf][
cjl c ]]TV(ca) < &tMf]kO]]TV(cO < MfM&t.X

By using the bounds for I and II, we get

TV(+) (1 + 2MMo)TV() + MMo(2Mo + ),
and consequently we obtain, using induction, that

TV() (TV(,) + Mo + )( + 2MMo*) -(Mo + ).
Now the proof is completed by observing that

e2MMon&tTV(sn) (2M0 + )
An immediate consequence of Lemmas 3.1 and 3.4 and Corollary 3.3 is that the

approximate solutions and the auxiliary sequence {k} are L1-Lipschitz continuous
in time. For a proof of this fact we refer to [28].

LEMMA 3.5. Suppose that (s, ) e S for all j e Z, and that there is a finite
constant Mo such that

TY(s), TY(k), TY(c), ]]k]] Mo.

Then there exists a finite constant K depending only on Mo and Mf such that

]]sm sUb]l, ]]cm -cn]]I, ]]km kn]l g]m-

for m, n 0 satisfying mat, nat To < .
We will conclude this section by proving that the approximate solutions satisfy

a discrete entropy inequality. By using this discrete entropy inequality we will, in
the next section, prove that the pair of functions (s,c), constructed as the limit of
the family of approximate solutions, satisfies the entropy inequality formulated in
Definition 1. In the discrete entropy condition, we will need a smooth approximation
to the signum function. Let a a(s) be a family of nondecreasing C-function
satisfying a(s)= sign(s) for s > e.
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LEMMA 3.6. Suppose that (s, c) E S for all j Z. Let be a nonnegative
C-function with compact support on N x [0, To], and let N be a positive integer such
that NAt <_ T <_ To. Then

N-1

At n=OE AX jEZ
{ (jAx, (n + 1)At)At (jAx, nat)

+ ((j + 1)Ax, nat) (jAx, nat)
Ax (f(s], c2) f(q, c2))sign(sj q)

I(q, c2)
z

I(q, Cl) + q) (jz, nt) }
jz

N-1

t X O(s2+l q)(jx, nt),
n=O

where

Proof. From the finite difference scheme (3.1), we have the following identity:

(3.11) s+ -q s -q- t(l(s2, c2) I(q, c))
+ #(f(sjn__i, cjn__x) f(q, cjn--1))

#(f(q, C2) f(q, c)n_))
for any q e IS0,1]. By multiplying this identity by a(s+ q), we get

ae(s]+1 -q)(s]+1 -q) on the left-hand side of (3.11). By the definition of O, this

equals Is2+1 -ql + O(s2+1-q). To estimate the resulting first term of the right-hand
side, we introduce the function

a(s) s-q- #(f(s, c) f(q, c])).
By the CFL-condition (3.2), we have

a’ (s) 1 #f8 (s, c]) _> 0,

hence sign(a(s)) sign(s q). By using this property of a and the fact that a,(s) <
1, we obtain

a(s)a,(s2+1 q) <_ la(s)l a(s)sign(s q).

Consequently, we have

(s2 q #(f(s2, c) f(q, c)))cr(s+ q)
< Is ql #(f(s2, c’) f(q, c))sign(s q).

Since f is a nondecreasing function of s, the resulting second term of the right-hand
side of (3.11) can be bounded in a similar manner:

f(q, ,-1))(:re (8+1 --q)

8
n n n,(Y(
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To summarize, we have derived from (3.11) the following pointwise discrete entropy
inequality:

(3.12)
[s+l ql Is ql + Oe(8+1 q) < #(f(s, c’]) f(q, c))sign(s q)

+ #(f(s_i, c_1) f(q, c__l))sign(s_ q)

#(f(q, c’]) f(q, cin_l))ae(s’]+ q).

By multiplying the inequality (3.12) by (jAx, nat), we obtain, after summation in
space and time, that

N-1 18+i
At (jAx, nAt)

n=0 jEZ

(f(s, c) f(q, c))sign(s q) (f(sjn_l, cn_l) f(q, Cn_l))sign(sjn_l q)
AX

f(q, c) f(q,
(jAx, nat) +

N--1

__< --At AX e(8+1 q)(jAx, nat).
n=0 jZ

a(s+ q)(jAx, nat)

By applying summation by parts in time and space for the first and the second term,
respectively, we get

0Axy Is ql(jAx, NAt) Axy Is ql(jAx, O)
jEz

N-I

--At Ax (jAx, (n + 1)At)At (jAx, nat) Is q]
n=0 jZ

N-1

-At Ax ((j + 1)Ax, nat) (jAx, nat) (f(s, c) f(q, c))sign(s q)
n----0 jZ

ix

N-I n

+At Axy S(q, cy) f(q, c_)
Ax

n=0 jZ
ae(s+ q)(jAx, nat)

N-1

_< --At 2 AXEOe(8+1 q)(jAx, nat).
n=O jEZ

which concludes the proof.

4. Existence of an entropy solution. In the previous section we established
some properties of the family of approximate solutions. In this section we will use
these properties to prove that there exists a solution of the problem (1.2) in the sense
of Definition 1. We start by showing that a subsequence of the family of approximate
solutions (SA, CA) converges in Loc to a pair of functions (s, c), and that this limit
inherits the properties of the approximate solutions. Then we prove that in conserva-
tive variables, i.e., (s, sc), the limit is a weak solution of the Cauchy problem. Using
this fact, and the regularity of c, we prove that the pair (s, c) is a solution according
to Definition 1.
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We start by stating the convergence result.
LEMMA 4.1. Suppose that (s,c) is in the class 130 (cf. (2.4)). Then, as the

meshsize tends to zero, there is a subsequence of (SA, CA), the family of approximate
solutions generated by the finite difference scheme (3.1), converging in Loc to a pair

of functions (s, c) E B.
Proof. In the previous section, we established the following properties of the

approximate solutions:

(1) (SzX(x,t),cA(x,t)) e S V(x,t) e [0, T0],
(2) TV(szx (’, t)), TV(czx (’, t)) <_ K,
(3) 118A(’,t)- 8A(’,T) II1 q-IICA(’,t)- CA(’,T) II1 g(It--T + At)
for 0_<t,T_<T0<c,

where K is a finite constant independent of A. Here (1) follows from Lemma 3.1,
(2) follows from Lemmas 3.1 and 3.4, and (3) follows from Lemma 3.5. From these
properties, it follows by an argument presented by Oleinik [19] (see also Smoller [24,
Chap. 16]) that a subsequence, also denoted by (s/x, c/x), of the family of approximate
solutions converges in Loc for all t [0, To] towards a pair of functions (s, c) as the
meshsize tends to zero.

It remains to prove that the limit (s, c) is in the class B of functions (cf. (2.5)).
Since convergence in Loc implies pointwise convergence almost everywhere of a subse-
quence, we can deduce the properties of the limit (s, c) by appealing to the analogous
discrete results. It might, however, be necessary to redefine (s, c) on a set of measure
zero.

The fact that (s, c) remains in the state-space (cf. (a) of (2.4)), i.e.,

t), t)) e s t) e x [0, To],

follows from Lemma 3.1. The bound on the total variation and the Lipschitz continuity
of c (cf. (b) of (2.4)), i.e.,

c(., t) e Lip N BV for t e [0, To]

is a consequence of Lemmas 3.1 and 3.2. A detailed proof of (4.1) based on Lemma
3.2 is given in [28]. In a similar manner we deduce that

c(x, .) e Lip[0, To] for x e I

(cf. (c) of (2.5)), where in addition we have used the scheme (3.1) to derive an obvious
bound on

At

The Ll-Lipschitz continuity in time,

I1(’, t) s(., )11 / lie(-, t) c(., T)I[1 <_ Kit T[ for 0 _< t, - _< To < oo

(cf. (b) of (2.5)) is a consequence of Lemma 3.5. From Lemma 3.4, it follows that

s(., t), e BV for t e [0, To]



EXISTENCE, UNIQUENESS, AND CONTINUOUS DEPENDENCE 919

(cr. (c) or
To show that (c) of (2.4) are satisfied for almost all t, we define the family

of functions by

n [nAt, (n + 1)At)ka(x,t) kj for (x,t) e [(j- 1/2)Ax, (j + )Ax) x

Then, by the properties of ka (cf. Corollary 3.3 and Lemma 3.5), there is a further
subsequence, still denoted by kA, converging in Loc for all t E [0, To] to a function
k satisfying k(., t) BY r L for t [0, To]. Let be a smooth test function with
compact support, and observe that

N N n n

AtE AxEks+I(jAx’ nat) AtE AxE c+l c (jAx, nat)Ax
n=O jEz n=O jEZ

N

n=O jZ

((j + 1)AX, nat) (jAx, nat)
nx

where N IT T <_ To. Here [.] denotes the truncation operator. By Lebesgue
dominated convergence theorem, we get

Since cx exists and is well defined almost everywhere, we have

Consequently,

ks dx dt cdx dr.

k8 cx,

where we, if necessary, have redefined k on a set of measure zero. This proves that
(s, c) satisfies (c) of (2.4).

Thus we have verified that (s, c) is in the class B. D
We have seen that a subsequence of the approximate solutions converges towards

a pair of functions (s, c), and we will show that this limit is in fact an entropy solution.
First, we will show that the limit is a weak solution of the system. Then, by using the
smoothness of c, we prove that the second equation of (1.2) is satisfied in a classical
sense almost everywhere. Finally, we prove that the limit is an entropy solution of
the system.

We first establish that the limit is a weak solution of the system (1.2), i.e., a
weak solution in the conservative variables (s, sc). The main difficulty in proving
this is that our finite difference scheme is in nonconservative form. Hence, we cannot
appeal to the classical theorem of Lax and Wendroff [18], stating that if a family of
finite difference approximations generated by a conservative finite difference scheme
converges boundedly almost everywhere, then the limit is a weak solution of the
system. For our nonconservative scheme we proved a similar result in [28], taking
advantage of the smoothness of the variable corresponding to ca. In fact, the following
proposition is a direct consequence of Lemma 2 in [28].

PROPOSITION 4.2. Suppose that (s, c) is in the class 13 (cf. (2.4)). Then the
pair of functions (s, sc) generated as the limit of the proper subsequence of the family
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of approximate solutions (cf. the previous lemma) is a weak solution of the system
(1.1), in the sense that

(set + f(s, c)x) dx dt / s(x)(x, O) dx s(x, T)(x, T) dx O,

(seCt + cf(s, c)x) dx dt + s(x)c(x)(x, O) dx

f s(x, T)c(x, T)(x, T) dx 0

for any smooth test function of compact support and any 0 <_ T <_ To.
We next prove that (s, c) satisfies the second equation of (1.2) in a classical sense

almost everywhere.
LEMMA 4.3. Under the assumptions ofLemma 4.1, the pair offunctions (s, c) E B

generated as the limit of the proper subsequence of (SA, CA) satisfies

c, + g(s, c)c, 0 a.e.,

and

lim I]c(. t) cll O.
t---O+

Proof. Let be a C-function satisfying (x, t) 0 for Ix >_ R, t 0, t _> T,
where R is a finite real number. Then it follows from Proposition 4.2 that

T jr,(Set + f(s, C)x) dx dt 0

and

(4.3) (scCt + cf(s, c)x) dx dt O.

Assume, for the moment, that

(4.4) (s(c)t + f(s, c)(c)) dx dt O.

Then, since (s, c) B, ct and c exist almost everywhere,

(sect + f(s, c)c) dx dt + (scCt+ cf(s, c)) dx dt O,

which, by (4.3), implies

i
T

s(ct + g(s, c)cx) dx dt O.

Since s(x, t) _> So > O, and is arbitrary, we have

ct + g(s, c)c 0 a.e.
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It remains to prove (4.4). Let Cn be a sequence of C-functions with supp(n) C
supp() converging towards the function c in W1,1 (I-R, R] [0, T]); such a sequence
exists since C is dense in W1,1 (cf. [30]) and c is easily seen to be in W1,1. Con-
sequently, by (4.2), we have

as n ---. (x.

We remark that W1,1 denotes the Sobolev space with one derivative in L1.
The second part of the lemma follows from the Ll-Lipschitz continuity in time of

c (cf. property (b) of (2.5)), and the fact that Ilczx(., 0)- c111 --, 0 as A 0, by the
construction. [:]

We finally prove that (s, c) satisfies the entropy inequality.
LEMMA 4.4. Under the assumptions ofLemma 4.1, the pair offunctions (s, c) E B

generated as the limit of the proper subsequence of (s/x, cA) satisfies

o

T

]{]s q[t + sign(s q)(f(s, c) f(q, c))x sign(s q)f(q, c)x} dx dt

+ (x) ql (x, o) x I (x, r) _> 0

for all nonnegative Cc-functions with compact support in N [0, To], all q [So, 1],
and all T [0, To].

Proof. Let be a nonnegative C-function with compact support on N [0, To]
and let N IT/Ate. Then, by Lemma 3.6, we have

At
N-1

n=OE Ax jezE { (jAx, (n + 1)At)At (jAx, nat) 18]+1 ql

+ ((j + 1)Ax, nat) (jAx, nat) n

Ax (f(sj c’) f(q, c2))sign(s q)

fc(q, +1 q) (jAx, nAt)}Cj )kj_lSja xsj

o+AxE IsJ ql(JAx’ O) AxE Is ql(jAx’ NAt)
jez jz

N-1

> At Az O(s]+- q)(jAx, nAt)
n=0 jZ

where we have used (3.9), and where c2 int[c2_l, c2].
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Since IO(s)l <_ e for all s, the right-hand side is greater than

N-1

-eAt Ax (jAx, nat).
n=0 jEZ

By the proof of Lemma 4.1, a subsequence of the family (SA, C/x, kA) converges point-
wise almost everywhere towards (s, c, k), where ks cx; thus by passing to the limit
in (Ax, At) we obtain, using the Lebesque dominated convergence theorem, that

.T .(]8 q[, + sign(s q)(f(s, c) f(q, c)) a(s q)f(q, c)} dx dt

+ . ]s (x) q(x, O)dx . ]s(x, T) q[(x, T) dx

2 -e (, t) t.

Now the lemma follows by passing o the limi in e and again using the Lebesgue
dominated convergence theorem. S

Proof of Theorem 2.1. We can now summarize the proof of Theorem 2.1. We
have constructed a pair of functions (s, c), which by Lemma 4.1 satisfies (s, c) e B.
By Lemma 4.a he second equation of (1.2) is satisfied in a classical sense almost
everywhere, and the solution converges in 1 towards the initial condition as ghe

time tends to ero. inally, we proved in Lemma 4.4 that (s, c) satisfies our entropy
condition. Consequently, (s, c) is a solution according to Definition 1. S

g. Uniqueness and eonginuous dependence. he purpose of this section is
to prove uniqueness of the entropy solution of (1.2). This result will be established
under an extra smoothness sumption on the initial data (s, c). The technique
we shall apply uses characteristics for the concentration equation of (1.2) together
with a modification of the analysis given by Krukov [10] and Kunetsov [11] applied
to the saturation equation. As a consequence of our uniqueness argument, we will
also obtain a continuous dependence result for the solution with respect to the initial
data (s,c). Another consequence of he uniqueness is that the entire family of
approximate solutions converges, not only a subsequence of it.

Before we consider the question of uniqueness, we will establish some elementary
properties of an entropy solution of (1.2). These properties are based on the simple
observation that the characteristic speed 9 of c is also the particle velocity of the
aqueous phase.

Let (s, c) denote an entropy solution of (1.2) with initial data (s, c). Throughout
this section it will be assumed that there exist two constant states (s, c) and (s, c)
such that for 0 N t T, we have

where and are linear functions of t of the form

xL(t) L + g(sL, cL)t, R +

(cf. Fig. 2). In particular, we observe that the solution constructed above satisfies the
condition (5.1) if the initial data is constant for Ixl sufficiently large.
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L R

FIG. 2

Let x(t), 0 < t < T, be a smooth curve such that xL(t) < x(t) < xR(t). From
the entropy condition, it follows in particular that (s, c) satisfies the first equation of
(1.2) weakly; hence (cf. Oleinik [20]) we have the following conservation relation:

s(, t) d fXjL
(O)

so () d
JxL(t)

where

v/ + (x()):

For any t e [0, To] and x e [xL(t), xR(t)], define

re(x, t) s(, t) d.
’(t)

For each t E [0, To], m(., t) is a strictly increasing function of x with

(, t) (x, t) > So > o.

Furthermore, (5.2) implies that

m(x(t), t) (R, 0).



924 ASLAK TVEITO AND RAGNAR WINTHER

Also, for t e [0, To], we define a strictly increasing function y(., t) from [L,R] onto

IxL (t), xR(t)] by

(5.4) .((, t), t) .(x, 0).

Since mx exists, yx exists and

(x, t) .(x, 0)
.(,t)

The identity (5.2) implies in particular that

(x)
s(y, t)

> o > o.

m(x, tl) --m(x, t2) f(s(x,t),c(x,t))dt.

Hence, since the function f(s(x,t),c(x,t)) is bounded and measurable as a function
of t for almost all x, it follows that mr(x, t) exists for almost all x and t, and

.,(x, t) -((x, t), (x, t)).

From (5.4) we therefore obtain that Yt exists for almost all (x, t), and

(x, t) "(’ t) ((, t), (, t)).
.(,t)

Note also that y(x, O) x. Hence, the well-defined function y(x, t), which is differen-
tiable almost everywhere, corresponds to the desired characteristic for the concentra-
tion equation. In particular,

(.) ((x, t), t) O(x).

By differentiating this identity with respect to x, we obtain that

(.6) k((x, t), t) k(x),

where k c/s and k c/s.
Assume now that (,) is another entropy solution of (1.2) with initial data

(o, c-O). Furthermore, we shall assume that ($, ) satisfies the condition (5.1), with
the same boundary states (sL, cL) and (sR, cR) as the (s, c), and with the same curves

xL(t) and xR(t). The difference between c and can now be estimated by using the
associated characteristics.

LEMMA 5.1. Let (s, c) and (, ) be two entropy solutions of (1.2), with initial
data (s,c) E 130 and ($,c-) E Bo, respectively, both satisfying the condition (5.1).
Then there is a finite constant M such that

II(c )(., t)lll <_ M IIc c-111 + (11(s $)(’, -)11 + [1(c )(’, T)II) dT

Io t e [0, To].
Proof. Let S and C denote the differences s- $ and c- , respectively. Then C

clearly satisfies the following equation:

c, + (, e)c F(x, t),
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where F cx(g(,5)- g(s,c)). Hence, if (x,t) represents the characteristic
associated the solution (, ), then

Since

C(9(x, t), t) C(x, O) + F(9(x, -), -) dT.

lC(f(x, t), t)l dx >_ SollC(., t)lll

and

I(( ) )l dxd < MoIIll(iO,rol) (llS(.,)lll +llC(’,)ll)d,

the desired result follows.
Recall that k c/s, and let 5/. Similarly, k c/s and 0 /0. By

assuming some extra regularity on the initial data, we obtain the following bound for
the difference c -x.

LEMMA 5.2. Let (s, c) and (, ) be two entropy solutions of (1.2) as above, and
assume in addition that kx E L. Then there is a finite constant M such that

II(cx x)(., t)lll _< M{ IIs 111 -- IIcx c-xlll -- 118(., t) $(.,

+ (11(8 $)(’, T)[[1 + II(C e)(’, T)II1 dT

fort e [0, To].
Proof. From (5.6), it follows that

kt + g(s, c)kx O.

A similar relation holds for . Since k is bounded by (5.6), an argument analogous
to the argument given in the proof of Lemma 5.1 leads to the estimate

I[(k-)(.,t)ll _< M [Ik-l[l/ (ll(s-)(’,r)ll /[[(c--e)(’,T)lll)dr

Therefore, since

(k ) +( ),

the estimate follows by a proper modification of the constant M.
Finally, we estimate the difference s- in L1.
LEMMA 5.3. Let (s, c) and (, ) be two entropy solutions of (1.2) as above. Then

there is a finite constant K such that

118(’, t) (’, t)[ll 1180 $0[I -- K {llc(., T) x(’,

-t- IlC(’, T) e(’, T) II1 -- 118(’, T) g(’, T) III} dT

for t e [0, To].
The proof of this lemma is given in the end of this section.
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Proof of Theorem 2.2. We are now in position to prove Theorem 2.2. Define

By Lemmas 5.1, 5.2, and 5.3 we obtain

( /0 )O(t) <_ M (0) + O(T) dT

for a finite constant M. Hence, by a proper modification of M, we get

(t) _< M(I)(0)

for t E [0, To], which is the stability result stated in Theorem 2.2. In particular, this
implies the uniqueness result. D

As a consequence of the uniqueness of the entropy solution, we obtain convergence
of the entire family (s/x, CA) of approximate solutions.

5.1. Proof of Lemma 5.3. We will now prove Lemma 5.3, i.e., the stability
estimate for the saturation variable s. The proof is motivated by the work of Kruzkov
[10] and Kuznetsov [11] for scalar equations.

We introduce a nonnegative function w e C satisfying w(a) w(-a), w(a) =_ 0
for lal _> 1, and fR w(a)da 1. For > 0, let

then

(b)

(c)
(d)

where M is a finite constant independent e.

We will need the following auxilary result concerning bounded and measurable
functions of compact support.

LEMMA 5.4. (i) Suppose v v(x) is a bounded and measurable function of
compact support on ; then

Iv(x) v(y)ldy dx O.

(ii) Similarly, suppose v v(x, t) is a bounded and measurable function of compact
support on ; then

lim
1 I+It+

I(x, t) (y, r)l d dy dt dx O.
e--+O - + X--e J t--

We refer to Kruzkov [10, Lemma 2, p. 222] for a proof.
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As above, (s, c) and (, ) are two pairs of solutions, in the sense of Definition 1,
of the problem (1.2). Recall that

s(x, t) (x, t) and c(x, t) (x, t) for x [xL (t), xn(t)], t e [0, To].

For q E [So, 1], we define

F (s, c, q) sign(s q)(f(s, c) f(q, c))

and

F2(s, c, q) sign(s q)y(q,

Then the entropy condition for (s, c) reads

T {Is qlCt + FI (S, c, q)x F2(s, c, q)} dx dt

/ Is (x) ql(x, O)dx Is(x, T) ql(x, T)dx >_ 0

for all q E [So, 1], and all nonnegative C-functions of compact support. We
introduce the test functions

Co(x, t, , ) ,(t ),(x u)

for (x, t, y, T) e ( [0, To])2, and the form

P,(w,z) gf gfw,(x y)lw(x) z(Y)l dxdy.

By putting q g(y, T) in the entropy condition for (s, c) and integrating with respect
to y and T, we get

(.s) 0 < {l(x, t) (u, )1 (,), + l((x, t), (x, t), (u, ))(,)

-F2(8(x, t), c(x, t), g(y, T)),} dx dt dy dT

+ p(s, (., T))W(T) dT- p(s(., T), (., T))w(T T) dT

for any T [0, To]. Similarly, by the entropy condition for (, 8), we obtain

0 < {l(x, t) (, )1(,) + FI((u, ), e(, ), (x, t))(,)

-F2 (g(y, T), 8(y, T), S(X, t)),} dx dt dy dT

+ p(o, s(., t))w(t) dt p(r(., T), s(., t))w(T t) dr.

We observe that

()t=-() and
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Taking this into account, we obtain, by adding (5.8) and (5.9), that

p(s(., T), (., T))we(T T) d7 + p((., T), s(., t)we(T t)) dt

_< (F((, t), (, t), (, -))

-F1 ((y, T), e(y, T), S(X, t))) (e)x dx dt dy dT

(F2(s(x, t), c(x, t), (y, ))

+F2((y, T), 5(y, ), S(X, t))) dx dt dy dv

+ p(s, (., r))(r) dr + p(o, s(., t))(t) dr.

or notational convenience we write this inequality as

(5.10) L(e)

where

L() n()+ n(e) and R() RI() + R2() + R3()+ Ra(e).

Observe that

Ll (e) s(x, T) (x, T) dx

s(x, T) (,)I(T )(x ) dxdd

IT Z ’s(x, T) $(x, T)’w(T )w(x y) dx dy dT

[(y, T) (y, T)lw(T T) dy dT

I(, ) (,m)l + I(, m) (,m)l.
li D,()

i
I( m) ( m)l .

By applying similar argument for L2, R3, and Ra, we obtain

(5.11)

(5.12)

lim(Ll(e) + L2(e)) I1(" T)- (. T)II1
-’-0

lim(R(e) + R4(e)) II. 11.e----+O
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It remains to estimate R1 and R2, and we start with the latter,

where K is a finite constant, depending on IlCyll, but independent of e. Observe
that

by Lemma 5.4. (For simplicity, we have defined (x, t) c- (x) for t < 0.) In a similar
manner, we obtain

limsup Ic(x,t)-ey(y,T)l,dxdtdydT <_ Ic(x,t)-(x,t)ldxdt
--+0

and

lim sup IS(y, -)- s(x,t)ldxdtdydT <_ Is(x,t) $(x,t)ldxdt;
e--+O

consequently

(5.13)
T

lim sup [Re(e)l <_ K {llc(., t) (., t)[ll
--+0

+llc(., t) (., t)lll + IIs(., t) (., t)[ll } dt.
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Next, we estimate R1. We have

R() IF1 ((x, t), (x, t), (, ))

-F1 (3(y, T), 5(y, r), s(X, t))]()x dx dt dy dT

=__ Q(x, t, y, T)()x dx dt dy dT,

where

Q(x, t, y, T) sign(s(x, t) 3(y, T))[(f(s(x, t), C(X, t)) f(s(x, t), 5(y, 7")))
-(f((, ), (, t)) f((, ), (, )))].

Observe that

’Jjfo’jfQ(y, T, y, T)() dx dt dy dr=0

for all e > 0. Define the function

g(s, c, 3, 5) sign(s 3)[(f(s, c) f(s, 5)) (f(3, c) f(g, 5))].
Then

]Q(x, t, y, T) Q(y, r, y, )1
[H(s(x, t), c(x, t), 3(y, T), 5(y, T)) H(s(y, T), c(y, T),

<_ IH(s(x, t), c(x, t), (y, T), e(y, T)) H(s(y, T), c(x, t), g(y, r), 5(y, r))
+[H(s(y, T), C(X, t), 3(y, T), 5(y, T)) H(s(y, T), c(y, T),

< IH(g, c(x, t), 3(y, T), 5(y, T))IIS(X t) s(y,
+ln(s(y, T), 5, r(y, T), 5(y, ))11C(X, t) c(y,

where g e [So, 1] and 5 e [0, 11. Since

Hs(s, c, , 5) sign(s )(fs(s, c) fs(s,
for almost all s, and

H(s, c, 3, 5) sign(s 3)(f(s, c) f(, c)),
we obtain

[Q(x, t, y, T) Q(y, T, y,
<_ Ms{Ic(x, t) e(y, )ll,(x, t) ,(y, )1 + I*(y, ) a(y, )11(, t) (y, )1}.

Hence,

I11 ()1 (Q(x, t, y, T) Q(y, T, y,

< My Ic(x,,t) 5(y, r) lls(x, t) s(y, r)l

Ico,’(x y)loa,(t- r)dxdtdydr

+My is(y, w) (y, w)llc(x,

Ioa,’(x y)lo,(t T)dxdtdydT
_= () +
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By using the Lipschitz continuity of , we get

I(e) Ms (Ic(x, t) (y, T)IIS(X, t) s(y, T)I

IW’(X y)lw(t- T) dxdtdyd

< M (Ic(, t) e(x, t)l + le(, t) e(,

M Ic(, t) e(, t)l(l(m, t) s(, t)

I(, ) (, )1 .
e tends o eo &s < eds o eo. bese is bounded b usi he bound

LTLLTL,C(X, t) (X, t) i(iS(X, t) s(y,

+s(y, t) s(y, T)])W’(X y)w(t T) dx dt dy dT

( )11(’, ) (’, )11 I.(, ) .(> )11’( )1

f+ t)
/

(t )11(’, t) e(., t)ll I’(z)l I.(, t) s(x z, t)l dx dz

2M }
I1(’,) e(’,)ll I’(z)lTY(.(.,))lzldz d

+ lie(., t) e(, t...
g T

w(t v)lt 1 d dt

where K and K are finite constants independent of e. Since

we obtain, by a proper modification of K, that

limsupI(e) K IIc(’,t)- e(.,t)l dr.
gO

inally we estimate II(e) by using the Lipschit continuity of c,

ss() Ms I.(, ) (, )ll(x, ) (, )1
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Consequently,

(5.14)
T

limsupRl(e) _< K (llcx(., t)- 5x(.,t)lll + IIs(.,t)- $(.,t)lll)dt.
e---0

By applying (5.10)-(5.14) we obtain

T

IIs(., T) (., T)II _< IIs 0111 -- K {llc(., t) 5(., t)ll

+llc(., t) (., t)ll + IIs(., t) (., t)ll }dt,

which concludes the proof of Lemma 5.3.
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DIFFUSION OF PENETRANT IN A POLYMER:
A FREE BOUNDARY PROBLEM*

BEI HUf

Abstract. A free boundary problem arising in modeling diffusion of a penetrant in a polymer
is studied. The asymptotic behavior of the solution for short time and long time, for small and large
physical parameter e, and for small and large driving law exponent n are proved. Some explicit error
estimates are also given.

Key words, free boundary, variational inequality, asymptotic behavior

AMS(MOS) subject classifications. 35B40, 35R35

1. Introduction. A model describing the diffusion of a penetrant in a glassy
polymer is given by

(1.1) eut--uxx for0<x<s(t), t>0,

(1.2) u(0, t) 1,

(1.3) [1 + eu(s(t), t)]. s’(t) -ux(s(t), t),
(1.4) s’(t) ?.tn(8(t), t),
(1.5) s(0) -0,

where u is the penetrant concentration over its equilibrium value, s is the penetrant
front driven by u. The driving law (1.4) expresses the kinetics of swelling and is
assumed to be n-order type. 1/e is the diffusivity in the swollen polymer (see [1], [3]).
In special examples in [3], n takes values varying from 10-2 to 102, e need not be
small, and it is an interesting problem to study the dependence of the solution on the
parameter e.

The problem with e 1, (1.3) replaced by [q + u(s(t),t)], s’(t) -u(s(t),t)
(q _> 0) and (1.4) replaced by s’(t) f(u(s(t),t)) was studied in [4] by Fasano,
Meyer, and Primicerio. Their results imply, in particular, the following theorem.

THEOREM 1.1. Problem (1.1)-(1.5) has a unique classical solution (u, s) such that
s e C2[0, )N C(O, c), u e C(D)N C2’1(D), where D {(x,t) 0 < x <
s(t), 0 < t < }; furthermore,

(1.6) 0 < u(x, t) < 1 for (x, t) e D,
(1.7) -1 -e < u,(x, t) < 0 for (x, t) e Do,
(1.8) ut(x, t) > 0 for (x, t) e n,
(1.9) s"(t) < 0 for 0 <_ t < c.

They also studied the long time behavior of s(t) (t -- +c) and proved (for e 1)
that

(1- o(t)) <_ <_ for t -- c.
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5, 1990. This work was partially supported by University of Minnesota Graduate School dissertation
fellowship.
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More recently, Cohen and Erneux [3] obtained more precise asymptotic behavior

(1.10)

M2

lim s(t)s’(t)=
t- 2

lim u(ys(t), t) 1 fo
My

exp (_2)d/fo
M

exp (__2)d,
where M is given by

exp (_M2) _1M M

=2 fo exp (--2) d;

note that (1.10) implies that

(1.11) lim
s(t)

t- -- M.

They also obtained similar formulas for the asymptotic behavior of u(x, t) and s(t) as
t - 0 and as e -- 0:

(1.12) uo(x, t) Cle < u(x, t) < u0(x, t) + C2e for 0 < x < s(t),
 0(t)(1.13) 1-C3e< s(t) <1+C4e for0<t<,

0 <t < cxz,

where (u, s) denotes the solution of (1.1)-(1.5); u0, so are indepedent of e. However,
all these results were obtained by formal power series expansions.

In 1-4, we shall give rigorous justification to these facts. In 2 we consider the
short time behavior for (u, s) and give explicit error estimates. In 3 we study the
long time behavior and prove (1.10) and (1.11). In 4 we establish (1.12) and (1.13)
with C1 5 max(n, 1), C2 0, C3 0, and C4 4 max(n, 1). And in 5 we shall
prove that lim_ s(t) O.

Sections 6 and 7 are devoted to studying the effects of the driving law exponent
n in (1.4). Denote by (Un, Sn) the solution of (1.1)-(1.5). In 6 we shall show that
Sn(t) --* 0 when n cx. In 7, we investigate the case n 0. We shall prove that
there exists a critical value T* > 0 such that

(1.14) lim (un(x, t), Sn(t)) (z(x, t), t) for t e [0, T*]
n--0

and

(1.15) lim (Un(X, t), Sn(t)) (Uo(X, t) So(t)) for t
n--0

where (u0, so) is the solution of an appropriate Stefan problem, and the formulas for
z(x, t) and T* will also be given.

Consider next the case where condition (1.2) for maintaining constant concentra-
tion at x 0 is replaced by flux control, namely,

(1.16) us(0, t) g(t).
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THEOREM 1.2 (Anderucci and Ricci [2]). If
(1.17) geC[0, oc), g(t)<_O fort>O, g(0)<0,

then the problem (1.1), (1.16), (1.3)-(1.5) has a unique classical solution (u,s) with
s e C1[0, oo), u e C2’1(Do)C C,(D), where Do {(x,t) 0 < x < s(t), 0 <
t < oo}; furthermore,

(1.18) u(x, t) > 0 for (x, t) e boo,
(1.19) ux(x, t) < 0 for (x, t) e D.

If in addition to (1.17), g’(t) > 0 for t > O, then

(1.20) s"(t) <_ 0 for 0 <_ t < oc.

It was also proved in [2] that if fo g(t)dt > -oo, then limt-+oo s(t) exists; the
limit was also computed.

In 8 of this paper, we shall study the long time behavior of s(t) when the con-
dition fo g(t)dt > -oo is dropped. We shall prove that x s(t) approaches the free
boundary of a Stefan problem; in particular, it follows that limt-+oo s(t) oo in the
case fo g(t)dt -oo, in contrast to the case fo g(t)dt > -oo, where limt-+oo s(t) is
finite.

2. Short time behavior.
THEOREM 2.1. For the solution of (1.1)-(1.5), we have

(2.1) 0_<u(x,t)-[1-(l+e)x]<_Ct2 forO <_ x <_ s(t),
1

0<t<
2(1+ e)’

( n
(1 + e)t2) < C2(1 + e)2t3(2.2)-C1(1 -()2t3 s(t)- t-

1
forO<t< 2(1 + e)’

where C (1 + e)(2ne + e + 2n), C1 0 if n
_

1 and C 1/6 if 0 < n < 1, and C2
is a constant depending only on n.

Proof. Let w(x, t) 1 (1 + e)x; then obviously ewt wx 0, w(0, t) u(0, t)
and

(2.3) w(s(t), t) + [1 + ew(s(t), t)]wn(s(t), t) <_ -(1 + e) + (1 + e) 0.

Hence, by maximum principle, w(x, t) <_ u(x, t) for 0 _< x _< s(t), t _> 0.
Next, let (x, t) 1 (1 + )x + Cxt; then et Cex >_ 0 for x >_ 0 and

(0, t) u(0, t). Since s’(t) un(s(t), t) E (0, 1), we have 0 < s(t) < t, and hence

{x + (1 + ?)t.n}

For 0 <_ t _< 1/[2(1 + e)],

a’(t)

>_ -1 e + Ct + [1 + e e(1 + e)s(t)][1 (1 + e)s(t)]n

>_ -1 e + Ct + [1 + e e(1 + e)t] [1 (1 + e)t]
1

=_ a(t) forO<_x<_s(t), 0<t<
2(1+ e)"

C e(1 + e)[1 (1 + e)t]n n(1 + e)[1 + e e(1 + e)t][1 (1 + e)t]n-

_> C-e(l+e)-n(l+e)2.2
0
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and thus a(t) _> a(0) 0 for 0 _< t <_ 1/[2(1 + e)]. Now (2.1) follows by maximum
principle.

By (2.1),

_> [1- (1 + e)s(t)]n

>_ 1 n(1 + e)s(t) 3C1 [(1 + e)s(t)] 2

>_ 1 n(1 + e)t-- 3C1[(1 + e)t] 2,

where we can take C1 0 if n > 1 and C1 1/6 if 0 < n < 1. Hence

n
(1 + e)t2 C1 (1 + e)2t3s(t) >_ t--i

Next, using (2.1) again, we get

_< [1 (1 + )s(t) + C[(1 + e)t]2] ’
_< 1 n(1 + e)s(t) + C[(1 + e)t] 2,

where the constant C depends only on n. Solving the above inequality we obtain

(t) _< 1 exp[-n(1 + e)t] jon(1 + e) + C(1 + e)2 exp[-n(1 + e)(t T)]T2dT

< t-n(1 + e)t2 + C(1 + )2t3. [3

3. Long time behavior. Define (x, t) to be the corresponding solution of the
Stefan problem, i.e.,

et=xx for0<x<h(t),
(0, t) 1,

h’(t) -x(h(t),t),
(h(t), t) O,
h(0) =0.

t>O,

It is well known that

(3.1)

(x,t)if/ Ji
M

oxp/- 

h(t) Mv/,

where M M() is such that

1 ]o
M

(3.2) exp (-M2) M exp (__2)d.
The main result of this section is Theorem 3.1.

THEOREM 3.1. Suppose (u,s) is a solution of (1.1)-(1.5). Then

M2

(3.3) lim s(t)s’(t)=
t--o 2
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which implies that

(3.4) lim
s(t)

Furthermore,

(3.5) lim sup
t-C O<x<s(t)

V(X,t) U(X, T)- (St(T)) 1In dT for x < s(t)(3.6)
0 for x_> s(t),

where s-l(x) is the inverse function of s(t); it is C1 since s’(t) > 0. A calculation
shows that v satisfies the following variational inequality:

(3.9)

(3.7) evt-vxx=-l-e(s’(t))/n forO<x<s(t), t>O,
(3.8) v=v=O onx=s(t), t>O,

v-- 1--(S’(T)) 1/n dT onx--0, t>0,

(3.10) v=0>--l--e(s’(t)) 1/n forx>s(t), t>0,

(3.11) v>0 forx<s(t), t>0 (by usingvx<0and(3.8)).

LEMMA 3.2.

s(t) <_ Mv for all t > O.

Proof. Let

w(x,t) (X,T)dT for X < MV
/M

----_ 0 for x >_ Mx/.

Then w satisfies the variational inequality:

(3.13)
(3.14)
(3.15)
(3.16)

ewt -wx -I for0<x<Mv/,
w=w=0 onx=Mv/, t>0,
w=t onx=0, t>0,
w=0>-i forx>Mx/, t>0,
w>0 forx<Mv/, t>0.

t>0,

Therefore, by comparison principle for variational inequalities (see [7], for example)
we get v(x, t) <_ w(x, t) for 0 < x < cx), t > 0, and hence s(t) <_ MV. v1

Next, we prove Lemma 3.3.

where is given by (3.1). v1

In order to prove (3.3), we need to prove (3.4) first. We shall compare the solution
(u,s) of (1.1)-(1.5) to the solution of the Stefan problem. Let us first transform
our problem into a variational inequality. Set
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LEMMA 3.3.

(3.18) lim
s(t)

t-o -- --Mo

Proof. By Theorem 5.2 of [4], we have

(3.19) lim s’(t) 0;

therefore for any /> 0, there exist T > 0 such that

(3.20) 0 < e(s’(t)) 1/n <_ l for t _> T.

Let Nu be the solution of

1 fN 2(3.21) (1- /)exp (-N2) (1 + 7)N J0
exp (-)d;

it is then clear that Nv < M and Nu M as /- 0. Next, set

(3.22) b(x,t)=(1-/) 1- a0
N, fort>T.

J0 exp (_2)d
Then

eCt-xx for0<x<Nv/t-T, t>T,
(0, t)=l-/ fort_>T,

=0, -x--(l+r/) N,v/t-T onx=N,v/t-T.

Repeating the proof of Lemma 3.2 we find that

(3.23) s(t) > Nv/t-T fort>T;

it follows that

(3.24) lim inf
s(t)

and we conclude the lemma by letting -- 0.
LEMMA 3.4.

(3.25) lim sup [u(x, t) (x, t)l O,
t-X O<x<s(t)

where is given by (3.1).
Proof. Set

k(x,t)= (2-x2)
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where a > 0 is to be determined. Then

ek k t+ 2
s2(t +

_>
ta+l -ec+

> 0 fort>0,0<x<s(t)

1 2
t- (t)

(by Lemma 3.2)

if a is small enough. For T > 0, we set

w(x, t) (x, t) + sup(s’(T)) 1/n + T"k(x, t).
->T

Then ewt-wzx > 0 for 0 < x < s(t),t > T; w(O,t) >_ 1 u(O,t) for t >_ T;
w(s(t), t) >_ sup>T(S’(T)) 1/n >_ U(S(t), t) for t _> T and w(x, T) >_ 1 >_ u(x, T) for
0 <_ x <_ s(t). Therefore by maximum principle,

w(x,t) >_ u(x,t) for0<_x<_s(t), t >_ T.

Hence

limsup sup [u(x,t) (x,t)]

_
sup(st(T)) 1In

t o<x<s(t) ->T

Letting T oc, we obtain

(3.26) lim sup sup [u(x, t) (x, t)]

_
0.

t- o<x<s(t)

Next, by Lemma 3.3,

lim (s(t) t) 0.

Thus by using the subsolution

(, t) (, t) su ((), ) T"(x, t),
-r>T

to estimate u from below and letting T c, we get the complement of (3.26), which
completes the proof. D

LEMMA 3.5.

M2

(3.27) lim sup s(t)s’ (t) <_
t--, 2

Proof. By (1.8), u eut > 0 for 0 <_ x <_ s(t), t > 0. Hence (as in [3, Prop.
.1)

(x,t) >_ u((t), t) + ((t), t)(x (t))
>_ -(1 + u(s(t), t))s’(t)(x s(t)).
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Letting x "s(t) (0 < " < 1) in the above inequality and letting t -o oo, we obtain

(1 -) lim sup s(t)s’(t) < lim sup
u(’s(t), t)

t--.o t-,o 1 + eu(s(t), t)
<_ lim sup (s(t), t) (by Lemma 3.4)

1--o’rMexp(--2)d/oMexp(--2)d
(by Lemma 3.3).

Dividing by 1-- and then letting " 1-, we immediately obtain (upon recalling
(3.2)) the estimate (3.27). V1

LEMMA 3.6. There exist positive constants C and T such that

C
(3.28) ut(x,t) <_ 7 for O <_ x <_ s(t), T <_ t <

Proof. It is clear that eutt- utxx 0 for 0 < x < s(t), t > 0, and
ut(O, t) 0 for t > 0. Differentiating (1.4) and using s"(t) < 0 we get that ut(s(t), t)+
ux(s(t), t)s’(t) < 0. Hence

Next, let

ut(s(t),t) <_ -u(s(t),t)s’(t)
(1 + eu(s(t), t))(s’(t))2 (by (1.3))
C*< for0<t<c (by Lemmas 3.3 and 3.5).
t

0(x, t) f(+)/v exp (-)d.
J0

Then cot 0 for t > 0; and by Lemma 3.3, there exist T, co > 0 such that

((s(t)+l)2) s(t)+lOt(s(t), t) exp
4 t 2tv

> co fort>T.
t

It is obvious that 0t(0, t) > 0 and

inf Ot (x, T) inf
O_x_s(T)

Therefore by maximum principle,

e(x+l)2) x+l
exp

T 2T
: Cl > 0.

ut(x,t) <_ COt(x,t) for0<_x<_s(t), t >_ T

if C is large enough so that Cco >_ C* and Ccl >_ maxo<x<s(T)ut(x, T). It follows
that (3.28) holds.

Proof of Theorem 3.1. Since we have already proved (3.4), (3.5), and (3.27), it
remains only to show that

M2

(3.29) lim inf s(t)s’ (t) >
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By Lemma 3.6,

u(s(t), t) + ux(s(t), t)(x s(t)) + ( x)ux(, t) d

c x)<_ u(s(t), t) + u(s(t), t)(x- s(t)) + 2
for T

Similarly to the proof of Lemma 3.5, we can now obtain, for 0 < "y < 1 (note that
limt_+ u(s(t), t) O)

Since s2(t)/t is bounded from above, the above inequality implies, after dividing by
1--y and letting -y -+ 1-, that (3.29) holds. [

4. Small e. As in [3], by formally letting e -- 0 in equations (1.1)-(1.5), we
obtain equations for the limit functions (u0, so)"

(4.1)
(4.2)
(4.3)

Uo(X, t) 1 B(t)x,
nso(t (1- B(t)so(t)) B(t),

B(0) 1, s0(0) 0.

From this, we can uniquely determine B(t) and s0(t); in particular B(t) satisfies

n-11 n- 1 1B 2(4.4) t++ 1-2n-- + 1-2n
B(1/n)-2

1 1 1 1
(4.5) t+=B-2+log ifn=.

1

It easily follows that

(4.6) 0 < B(t) < 1, 0 < so(t)B(t) < 1,

(4.7)
dB B3

dt -1 + [(1 -n)/n]B1/n < O.

It is also clear that limt_, so(t)/x/ x/. Now we shall prove that the solution
(u, s) of (1.1)-(1.5) converges to (uo, so).

THEOREM 4.1. We have, for e > O,

(4.8) u(x,t) < l B(t)x forO < x S s(t), O < t < cx,

(4.9) <  0(t) 0 < t < oo.

Proof. (i) First we show that if (4.9) holds true for 0 < t < to, then (4.8) must
be true for 0 < t < to. In fact, the function w 1 B(t)x satisfies wt
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-B’(t)x >_ 0 for 0 < x < s(t), t > 0, and w(O,t) u(O,t) for t >_ 0. Since
1 B(t)s(t) > 1 B(t)so(t) > 0 for 0 < t < to,

+ + >_ -B(t) + (1 B(t)s(t))n

(4.10) >_ -B(t) + (1 B(t)so(t))n

0 for0<_t<_t0.

Therefore, by maximum principle, u(x, t) <_ w(x, t) for 0 _< t _< to, i.e., (4.8) holds for
O<_t<_to.

(ii) Next, we prove that (4.9) holds for small t. In fact, from (4.1)-(4.6) it follows
that

4(0 > 1 nB(t)so(t) C[B(t)so(t)] 2

1 nt Ct2;

therefore so(t) >_ t-(n/2)t2 -Ct3. Hence, by (2.2), (4.9) holds for small t > 0.
(iii) It now follows that if the theorem is not true, then there exists a T > 0 such

that

(4.11)
(4.12)

s(t) < so(t) for0<t<T,
s(T) so(T).

From (i), we obtain

(4.13) n ns(t) u (s(t), t) <_ [1 B(t)s(t)] for 0 _< t <_ T.

Note that 1 B(t)s(t) >_ 1 B(t)so(t) > co > 0 for 0 <_ t _< T, and the function
f(u) u is Lipschitz continuous for u _> co. Therefore, by using (4.2), (4.13), and
(ii), we can apply the comparison principle of ODE and get

(4.14) s(t) < so(t) for 0 < t <_ T,

which contradicts (4.12) at t- T. D
THEOREM 4.2. There exists a eo > 0 such that, for all 0 < < o,

(4.15) u(x,t) >_ l B(t)x- 5max(n, 1)e forO <_ x <_ s(t), O <_ t

(4.16) [1 + 4max(n, 1)else(t) > so(t) for 0 <_ t

Proof. (i) Set

(4.17) w 1 (1 + C*e)B(t)x -B(t) s(t) s(t)

where C* 4 max(n, 1), then

-1
wt . Wxx

-(1 + C*e)B’(t)x ’(t) (s(t) x2
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if e is small enough so that C*e + C’e/4 < 1.
Now we show that if (4.16) holds for 0 < t < to, then

(4.18) u(x, t) >_ w(x, t) for o < x _< so(t), o < t < to,

which implies that (4.15) is valid for 0 _< t _< to. Clearly, w(O, t) u(O, t) and

{w+ + (1 + ew)(w+)"}

< -( + C*e)B(t) + B(t) + (1 + e){[1 (1 + C*e)B(t)s(t)]+}’

<_ 1 + B(t) + (1 + e)[1 B(t)so(t)] (by (4.16))

1+ B(t)+(l+

< 0 for 0 N t N to.

It follows by maximum principle that (4.18) holds.
(ii) It is clear that (1 + C*e)s(t) (1 + C*e)t + O(t2) as t --. 0, and therefore

(4.16) holds for small t. As in the proof of Theorem 4.1, if the theorem is not true,
then there exists a T > 0 such that

(4.19)
(4.eo)

From (4.18), we obtain

(4.21)

Clearly,

(1 + C*e)s(t) > so(t) for 0 < t < T,
(1 + C*e)s(T) so(T).

(1 + C*e)se(t) > s(t) u (s(t), t) >_ [1 (1 + C*e)B(t)s(t)]+

max B(t)so(t) ) < 1;
o<t<T

therefore, we can take A < A < 1. Set

(4.22) G- {t c [0, T]" (1 + C*e)B(t)s(t) >_ A}.
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Then for t E G, we have

(1 + C*e)s(t) > ,./. > so(t),

whereas for t E [0, T] \ G we have

(4.23) 1 -(1 + C*e)B(t)s(t) >_ 1 A > O.

The set [0, T] \ G is open and hence consists of open intervals with endpoints in G.
The function f(u) un is Lipschitz continuous for u > 1 A. Therefore by (4.2) and
(4.21), we can apply the comparison principle of ODE and get that (4.19) holds also
for t [0, T] \ G, which is a contradiction to (4.20) at t T.

Remark. Similar result of this section is obtained in [11].
5. Large e. The diffusivity is small if e is large. Therefore the penetrant front

s(t) should move very slowly when e is large. This property is described in the
following theorem.

THEOREM 5.1. For the solution (u, s) of (1.1)-(1.5), we have

(.1) (t)
x/

0

uniformly for t (0, oc).
Proof. By Lemma 3.2,

V/ _<M(e) for0<t<cx,

where M(e) satisfies

M2 1M(e) fM()(5.3) exp (-- ()) 0
If we set K, v/M(), then

1 Ke

It follows that

(5.5) K _< 2v/log(2) for

where e* > 1 satisfies

2v/log(2e*
(5.6)

dO
exp (--2)d _> 1.

We can easily check that ** 1 would satisfy (5.6). Therefore

K 2v/og(2)
(5.7) M(e) _< _<

x/
for e _> 1,

and (5.1) follows.
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6. The case n --* (x). In the next two sections, we investigate the effects of
the driving law exponent n. We shall fix e and denote the solution of (1.1)-(1.5) by
(Un, sn). The main result of this section is Theorem 6.1.

THEOREM 6.1. For any t* > O,

(6.1) lim sn(t) 0
n---o

uniformly for t E [0, t*].
We first list the available estimates for the solution (Un, S) in the following

lemma. Set

D {(x,t) 0 < x < s(t), 0 < t <

LEMMA 6.2.

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)
(6.7’)
(6.8)

0 < Un(X,t) < 1

Ou (x, t) < o
Oun (x, t) < 1 + e0<-

102Un (X, t) < - 10 < Ox2

O < s(t) < t fort>O,
0<s(t)<l fort>O,
s(t) < O fort > O.

for (x, t) Dn,

for (x, t) e Dn,

for (x, t) e D,

for (x, t) D,

Proof. (6.2), (6.3), and (6.6)-(6.8) are copied directly from Theorem 1.1. Formula
(6.5) is equivalent to (6.4) by using the equation. We also know that (un)t > 0. To
prove (6.4), it suffices to note that s(t) < 0 implies

(6.9) OUn OUn
Ot (s(t),t)+ -ffx(S(t),t)s(t) < 0 for t > 0,

and therefore by (6.3) and (6.7)

(6.10) Oun Oun
Ot (sn(t),t) <_ o(Sn(t),t)s(t) < 1 + e for t > 0.

Now (6.4) follows by maximum principle.
Next, we shall prove that Sn(t) is monotone decreasing in n.

LEMMA 6.3. If nl > n2, then

(6.11) Snl(t) < Sn2(t) for t > O.

Proof. The transformation (see [4], for example)

(6.12)
s(t)

v(x, t) (eu(, t) + 1)d for 0 < x < s(t), t>0
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reduces (1.1)-(1.5) to the following problem:

evt=vzz for0<x<s(t),
vz(0, t)=-e-1 fort>0,
v(s(t), t) 0 for t > O,

t)
=0.

t>0,

fort >0,

We shall denote by vn (x, t) (i 1, 2) the functions obtained from Un (x, t) by formula
(6.12).

It follows from (2.2) that (6.11) holds for small t. Therefore if (6.11) is not true,
then there exists T > 0 such that

(6.14)
Snl(t) < Sn2(t) for0<t<T,
sn, (T) s=. (T).

This implies that

(6.15) s, (T)> s=. (T),

and thus

(Vn
Ox (s (T), T)

On the other hand, by the maximum principle, the maximum of w =_ Vn --Vn2
in the region G {(x,t)" 0 < x < Snx(t),0 < t < T} can only be obtained on x

sn (t), 0 < t < T. Clearly,

(6.17) w(0, 0) W(Snl (T), T) 0,

and

(6.18) W(Sn (t), t) --Vn2 (Sn (t), t) < 0 for 0 < t < T.

Hence w takes its maximum in G at (x, t) (Sn (T), T), which contradicts (6.16).
Therefore (6.11) holds. D

Proof of Theorem 6.1. By Lemma 6.3 and (6.6)-(6.8), we get that, for any t* > 0,

(6.19) lim 8n (t) 800 (t) uniformly for t e [0, t*],
n---+oo

where so(t) is some Lipschitz continuous function with the following properties:

(6.20)
(6.21)
(6.22)

soo(t

_
1 a.e.,

soo(t)

_
0 in the distribution sense,

soo(t)<sn(t) fort>O, n>O.



948 BEI HU

We claim that

(6.23) There exists 6 > 0 such that so(t) =- 0 for 0 _< t _< 5.

Note that (6.20), (6.21), and (6.23) imply that so(t) 0 for t > 0, and then the
theorem follows.

If the claim (6.23) is not true, then in view of (6.20)

(6.24) so(t) > 0 for t > 0.

Set

Do {(x,t)" 0 < x < so(t), 0 < t < t*}.

By Lemma 6.2 and the embedding theorem (see [10]), there exists a subsequence nk’s
and anyh>0,of n’s (nk - cx) such that, for any 0 < a <

OUnk(6.25) unk, Ox * Uo, Ox

(6.26) Oun 02u Ouo
Ot Ox2 Ot

in C(Do N {t > 5}) norm,

O2Uo
Ox2 weakly in Lp(Do n {t > 5}) for any p > 1,

where uo is some function in W2..
Passing the limit in the equations in (1.1)-(1.5) as n nk - c, we obtain

(6.27)
(6.28) uo(0, t)=l for0<t<t*.

Next, we compute

in(t)
1 + tn(8(x(t), t)

q- ((Un)x(so(t), t) (Un)x(Sn(t), t)
1 --u(---(tii-t 1 - "-u:t)i-t))"

The first term of the above equality converges to (uo)(so(t), t)/(l+euo(so(t), t))
uniformly in any compact set of (0, t*], while the second term converges to zero uni-
formly for t E (0, t*] since (Un), (u)x are uniformly bounded. This shows that

s (t) converges uniformly in any compact set of (0, t*] and the limit is continous.
Hence we must have

(6.30) 8n (t) 8o(t uniformly in any compact set of (0, t*] as nk --* ;

so(t is continuous and furthermore,

(6.31) (1 + eUo(So(t),t))s(t) -(uo)(so(t),t) for t e (0, t*).

By (6.24) and (6.20),

(6.32) s(to) > 0 for some to e (0, t*).

It follows from (6.21) that

(6.aa) so(t)>_so(to > 0 forte(0,!0).
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By virtue of (6.30) and concavity of s, there exists N > 0 such that

> 1/2 s(to) forO<t_<t0, nk>N.

Since s(t) < sn (t),

(6.35) 1

_
Unk (Scx(t), t)

_
Unk (8nk (t), t) (Snk (t)) 1/nk

_
(8c(t0))1 link

for 0 < t <_ to, nk > N. Letting nk --+ (x:) in the above inequality, we obtain

u(so(t), t) _-- 1 for 0 < t <_ to.
Recalling (6.27) and (6.28), we get

u(x,t) =_ l for O <_ x <_ s(t), 0<t<_t0,

(0, towhich contradicts (.31) since so (t) > 0 for t The proof of the theorem is
now complete. D

7. The case n 0. We may guess that limn-0 sn(t) t at the first glance of
the driving law (1.4). However, this is not true when t is large enough by Lemma 3.2
(note that the constant M there is independent of n). The interesting result is that
there exists a critical value T* > 0 such that

(7.1) lim Sn(t) t uniformly for t e [0, T*]
n--+0

and

(7.2) lim s(t) so(t) uniformly for t e [T* t*]
n--,O

for any t* > T*, where so(t) is the free boundary of an appropriate Stefan problem. In
order to make the above statement more explicit, we consider the following problem:

(7.3) ezt=zx for0<x<t,
(7.4) z(0, t) 1 for t > 0,

(7.5) 1 + ez(t, t) -z(t, t) for t > 0.

It is clear that this problem has a unique smooth classical solution z C2,()3
C(A \ {0}), where A {(x,t) 0 < x < t < cx}. The next lemma determines the
critical value T*.

LEMMA 7.1. There exists a unique T* (0, 1] such that

(7.6) z(t,t) >0 for O

_
t < T*,

(7.7) z(t,t) < O for t > T*.

Note that by Lemma 7.1 and maximum principle, z(x, T*) is smooth and z(x, T*)
0 for 0 < x < T* and z(T*, T*) -0.

We shall postpone the proof of Lemma 7.1 and first consider the solution (u0, so)
of the following Stefan problem:

(7.8)
(7.9)

(7.11)
(7.12)

e(uo)t (uo)x for0<x<s0(t), t > T*,
u0(0, t)=l fort>T*,
S’o(t =-(uo)(so(t),t) for t > T*,
uo(so(t), t)- 0 for t > T*,
Uo(x,T*) z(x,T*) for 0 < x < T*.
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The main result of this section is Theorem 7.2.
THEOREM 7.2. Denote by (Un, Sn) the solution of (1.1)-(1.5). Suppose that T*

and z(x,t), (no, so) are determined as above. Then T* > 1/2(1 -4-e) and for any
t* > T*, we have

(7.13) lim sn(t) t uniformly for t e [0, T*],
n---+0

limn-+0 Un (X, t) Z(X, t)
uniformly in any compact set of { (x, t) 0 < x < t, 0 < t < T* };

(7.15) lim sn(t) so(t) uniformly for t e [T* t*]
n-+O

(7.16) limn_o u(x, t) Uo(x, t)
uniformly in any compact set of {(x, t)" 0

_
x < so(t), T*

_
t

_
t* }.

Proof of Lamina 7.1. The linear function w(x, t) 1 x satisfies

(7.17) wx+ew_>-I for0<x=t<l.

Thus by maximum principle

(7.18) z(x,t) <_ w =_ l x for0<_x_<t<_l,

which implies that

(7.19) z(1,1) <_ 0.

It is clear that z(t,t) > 0 for t small.
(0 < T* _< 1) such that (7.6) holds and

Hence in view of (7.19), there exists T*

(7.eo) z(T*,T*) =0.

By maximum principle z(x, t) < 1 for 0 < x < t < oo. Therefore

(7.21) t) _< o.

Let zt + zx. Then

et--z forO<x<t<c,

and, by (7.4)and (7.21),

(7.23) t) _< o.

Differentiating (7.5) in t, we obtain

(7.24) for 0 < x t < oo.

Therefore by maximum principle

<_0 for 0 <_ x <_ t < cx,
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which implies that

(7.26)

Thus if (7.7) i8 not true, then

(7.27)

for 8ome # > 0. Hence

(7.8)

Using (7.24), we get

(7.ae)
(7.33)
(7.34)

By (2.1),

d
t)_<0 z(t, for 0 < t < cx.

z(t,t) --O forT*_<t_<T*+#

t) _= o forT* <t<T*/#.

(7.37) s#(t)=_t for0<t<

It follows by letting n 0 that

(7.36)

Un(Sn(t), t) 1 (1 + )Sn(t)
_> 1- (1 +e)t

1> for0<t<
2 2(1 + e)"

t _> 8n()d

fOtnUn(Sn(),)d
_> t for 0<t < 2(1 + e)"

2(1 +

Therefore

(7.35)

(7.29) x(t, t) _= 0 for T* < t < T* + #.

By (7.25) and (7.28), takes its maximum on (x, t) (t, t), T* < t < T* + #. Now
it follows from strong maximum principle that

(7.30) (x, t) zx(x, t) + zt(x, t) =_ 0 in A {t < T* + #},

which implies that z(t, t) z(0, 0) 1 for 0 < t < T* + #. This is a contradiction to

Proof of Theorem 7.2. By Lemma 6.3 and (6.6)-(6.8),

(7.31) lim Sn(t) s#(t) uniformly for t e [0 t*]
n--,0

where s#(t) is some Lipschitz continuous function such that

0 _< s; (t) _< l a.e.,
t!s#(t) <_ 0 in the distribution sense,

s#(t) > Sn(t) for t > 0, n > 0.
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Define

(7.38) T# sup{b s#(t) =_ t for 0 < t < b}

and

(7.39) D# {(x, t)" 0 < x < s#(t), 0 < t < t*}.

Then T# >_ 1/2(1 + e). By (7.32) (7.33) and the definition for T#,

(7.40) s#(t) t for 0 <_ t < T#,
(7.41) s#(t) < t for T# < t < t*.

Next, we introduce a scMing in the x direction so that the solutions un are defined
in the sme domain in the new variables. Let

Then by Lemma 6.2 and (7.a2),

(7.43) IIvl[w(D{t>}) C

for any 5 > 0. Thus, for an appropriate subsequence nk’s of n’s, we have, as nk 0,

OVn Ov# uniformly in D# {t > 5} for any 5 > 0,(7.aa) ’ Ox v, Ox
Vnk(7.45) Ov 0 Ov# 02v#

Ot Oxe Ot Ox
weakly in LP(D# {t > g}) for any p > 1, 5 > 0,

for some function v# W(D#).
Note that

(n)((t), t) (t)(.4) (t)
1 + ((t), t) (t)"

Therefore, by using the same argument used in the proof of Theorem 6.1 we obtain

(7.47) s (t) s(t) uniformly in t e [5, t*] as nk O, for any 5 > 0;

furthermore, s(t) is continuous and

(.as) (1 + ((t), t))(t) -(v)((t), t)).

A direct computation shows

(;)2 ( 8;)(Vn) for(x,t)D,.(7.49) () () +
8n 8

By (7.31) and (7.47),

(7.50) lim
n=nk---,O 8n

=0 uniformly in t E [6, t*] for any 6 > 0.
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Therefore, by letting n nk 0 in (7.49), using (7.31) and (7.50), we obtain

e(v#)t (v#)zx for (x, t) e D#,
v#(0, t)=l for0<t<t*.

Since s#(t) 1 for 0 < t < T#, (7.48) implies that

(7.53) 1 + ev#(s#(t), t) -(v#)x(s#(t), t) for 0 < t < T#.

Clearly also,

(7.54) v#(s#(t), t) lim Vn(S#(t), t) >_ 0 for 0 < t < t*.
n---,0

Recall that z is a solution of (7.3)-(7.5), and by uniqueness we have

v#=z forO<t<x<_T#.

Therefore (7.54)and (7.7)imply

(7.56) T# _< T*.

Next, we shall prove that

(7.57) v#(s#(t),t)- 0 for T# < t < t*.

Note that (7.57) implies v#(s#(T#),T#) 0, by continuity; and hence T# T* by
Lemma 7.1.

Since s(t) is continuous, (7.33), (7.40), and (7.41) imply that

(7.58) s#(t) <1 forT# <t<t*.

Now we fix t e (T#, t*) and take with s (t) < < 1. By virtue of (7.47),

(7.59) s, (t) _< if 0 < nk < no

for some sufficiently small no. It follows that

(7.60) 0 <_ Vn(S#(t), t)= (Sn(t)) 1/n <_ l/n.

Letting nk --* O+ in the above inequality, we obtain (7.57). Thus we have proved

(7.61) T# T*.

Equations (7.51), (7.52), (7.57), (7.48), and (7.55), (7.61)imply that (v#,s#) for

T# < t < t* is a solution of the Stefan problem (7.8)-(7.12). Therefore by uniqueness

(7.62) v# u0

(7.63) s# so
for T# < x < s#(t), T# < t < t*,
for T# < t < t*.

Now the limits in (7.44) and (7.45) are unique and independent of the choice of
subsequences. And hence the whole sequences themselves converge. This implies that
(7.13)-(7.16) hold. The theorem is proved. [:]
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(8.1)

(s.a)
(8.4)

It is shown in [2] that if

8. Neumann boundary condition. In this section we consider the Neumann
boundary condition at x 0. Taking for simplicity e 1, the system becomes

ut=ux for0<x<s(t), t>0,

t)
[1 + u(s(t), t)]. s’(t) -u(s(t), t),
s’(t) =u(s(t),t),

=o.

(8.6) gEC2[0,x)), g(t)<_O fort>0, g(0)<0; g’(t)>_O fort>_0,

then (1.18)-(1.20) hold. The asymptotic behavior of s(t) as t --. c is also studied in
the case

We shall study the asymptotic behavior in the general case. Define 7 v(x, t),
hv hu(t) to be the solution for the Stefan problem:

(8.7) t= forO<x<h(t), t>0,

(s.s) t)
(8.9) 0, - (1 + )h’(t) on x h(t),
(8.10) h(0) 0,

where g satisfies (8.6) and >_ 0.
THEOREM 8.1. Assume in addition to assumption (8.6) that

(8.11) lim g(t) O.

Then

lim
s(t)

1,(8.12)
t--. ho(t)

where x ho(t) corresponds to the free boundary of the Stefan problem (8.7)-(8.10)
with O.

We first establish several lemmas.
LEMMA 8.2. For 7 and hv defined in (8.7)-(8.10), we have

(8.13) (1 + )h,(t) >_ ho(t) for t > O.

Proof. Let wu (x, t) be defined as

(8.14) w,(x, t) n(, r)dr for < hn(t)
(

0 for z hn(t)

(hl(x) exists since h’(t) > 0). Then

(8.15) (w)t-(w)xx=-l-r for0<x<hu(t), t>0,

(8.16) w=(wu)=0 onx=hu(t), t>0,

(8.17) (wv) g(T)dT on x 0, t > 0,

(8.18) W=0>--l--7 forx>hv(t), t>O.
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Introducing the change of variables y (1 + )x and n(Y, t) (1 + )wn(x t), we
find that (8.15) is equivalent to

(8.19) ()t ()yy -1+((1+7) lr)(w)t(x,t)
for0<y<(l+)h,(t), t > O.

Since (w,)t(x,t) ,(x,t) 0, it follows from the comparison principle for varia-
tional inequalities that

(8.20) (y, t) wo(y, t) for all y > 0, t > 0.

Hence (8.13) holds.
LEMMA 8.3. For any T > 0

lim h,(t- T)
1.(8.21)

t h(t)
Proof. We have h(t) h(t-T) since h 0. Equation (8.21) is obviously valid

if h(t) h a finite limit t . If, however, limt h(t) , then

(8.22) h(t- T) T]h()]
h(t)

1
h(t)

where (t) (t- T,t). It is clear that h(t) is bounded as t since g(t)
is bounded. Therefore, the right-hand side of inequality (8.22) converges to zero as

Proof of Theorem 8.1. First we prove that

(8.23) lim s’(t) O.

Since s"(t) 0, limt s’(t) c0 exists. If c0 > 0, then

lim
s(t)=co>O.

However, by the mass balance

(s. 41  (tl

and hence

s(t) < 1 foot -- g(T)dT----* 0 as t --. cx

by (8.11), which is a contradiction.
Now, by using (8.23), Lemmas 8.2 and 8.3, we can proceed in the same proof as

in Lemma 3.3 to finish the proof of this theorem.
Having proved Theorem 8.1, we now reduce the asymptotic behavior of s(t) near

cx to that of the corresponding Stefan problem, which is well known. Therefore,
using, for example, [6, Thm. 3, Chap. 8], we immediately get the behavior of s(t)
near cx if g(t) is like t- (1/2 _< 5 < 1) near .

Acknowledgments. The author thanks Professor Avner Friedman for his di-
rections and help. The author also thanks the referees for several helpful suggestions
and comments.
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THE ONE-DIMENSIONAL WIGNER-POISSON PROBLEM AND ITS
RELATION TO THE SCHRIDINGER-POISSON PROBLEM*

H. STEINRCK

Abstract This paper shows the existence of a solution of the Wigner-Poisson problem by expanding
the solution into a series of solutions of the Schr6dinger equation, and proves the convergence of the
solutions of the Wigner-Poisson problem to a generalized solution of the Vlasov-Poisson problem in the
classical limit.

Key words, quantum transport, nonlinear evolution equations
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1. Introduction. In this paper we consider the one-dimensional Wigner-Poisson
problem

(1.1) V(x) I Ix- yln(y) dy,
R

n(y) I w(y, v) dv,
R

(1.2) w,+v.wx-O[V]w=O, xRx, vR,

(1.3) w(x,v,t=O)=wt(x,v).

Equations (1.1)-(1.3) govern the temporal evolution of the Wigner function w, defined
on the (x, v) phase space under the action of a self-consistent Coulomb potential V(x).
The particle density n(x) is the mean value of w with respect to the velocity variable
v. The pseudoditIerential operator (R)[ V] is defined by

(1.4) II.
e in(v-v’) dr’ dq.

Note that (1.1)-(1.3) are already in dimensionless form and that the parameter e is
the scaled (dimensionless) Planck constant. The Wigner function for a pure quantum
mechanical state 4 (a solution of the SchriSdinger equation) was first introduced by
Wigner in 1932 [14] and is defined by

1
w4,(x v, t)- | 4(x + en/2, t)dp(x-err t) e inv drt.

An easy calculation shows that w6 solves the Wigner equation (12) Therefore the
SchrSdinger and the Wigner equation are equivalent with respect to the temporal
evolution of a pure state.
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The advantage of the Wigner function is that it is defined on the (x, v) phase
space and is therefore amenable to a comparison with the phase space formulation of
classical mechanics. On the other hand, there are qualitative differences between the
quantum and the classical case. While in classical mechanics the distribution function
of particles in the phase space evolves according to the Liouville equation

(1.5) w,+v" Wx-Vx" w=0,
which preserves the positivity of the initial function, the Wigner equation is in general
not positivity preserving. That means that the solution w of (1.2) might assume negative
values, though the initial function is nonnegative. Therefore the Wigner function cannot
be interpreted as a distribution function of particles in the phase space. For a pure
quantum state the mean values with respect to v (respectively, x) of w6 are the
probability densities to find a particle, which is described by its wave function 4 at x
(respectively, to have the velocity v). Therefore the Wigner function is referred as a
"quasi distribution."

Note that for a harmonic oscillator (quadratic potential) the Wigner equation is
identical to the classical Liouville equation. Considering the classical limit (e - 0) the
Wigner equation tends at least formally to the Liouville equation. The pseudodifferential
operator (R)[V] then becomes the differential operator Vx O/Ov.

Up to now, we have discussed the Wigner equation only as an equivalent alternative
to the one particle Schr6dinger equation. But starting with the many-body Schr6dinger
equation, using the density matrix formulation and an appropriate ansatz to get
self-consistent equations we derive the Wigner-Poisson problem (1.1)-(1.3) (see [3]).
Taking again the classical limit (e 0), the Wigner-Poisson problem becomes at least
formally the Vlasov-Poisson problem, which is a coupled system consisting of the
Liouville and the Poisson equation.

The recent interest in the Wigner-Poisson problem is motivated by the miniaturiz-
ation of semiconductor devices, where quantum effects in potential wells near hetero-
junctions [8] or tunneling effects [7] must be taken into account.

Mathematically the Wigner equation for a prescribed potential was analyzed in
[9] and [10], using semigroup theory. In [2] these results are extended to the case of
a particle with spin in a prescribed electromagnetic field. The existence of a solution
of the coupled Wigner-Poisson problem has been shown for some special cases:
periodic boundary conditions [1], and a bounded Brillouin zone [6], [13].

In this paper we will prove the existence of a unique globally defined solution of
the Wigner-Poisson problem in the case of one space dimension. Due to the dimension
dependence of the Green function of the Laplace operator the higher-dimensional
cases have to be treated separately. An existence proof for the two-dimensional problem
in the charge neutral case will be given by Arnold and Nier [4] and for the three-
dimensional case by Brezzi and Markowich [5] in subsequent papers.

A second goal of this paper is the classical limit e 0: A sequence of solutions
of (1.1)-(1.3) has a subsequence, which converges weakly to a generalized solution of
the Vlasov-Poisson problem as e- 0.

The paper is organized as follows. In 2 we prove the existence of a solution of
the one-dimensional Schr6dinger-Poisson problem. In 3 we use the relation between
the Schr/Sdinger and the Wigner equation to derive a solution representation of the
Wigner equation in terms of the solution operator of the Schr6dinger equation. The
tools developed in 2 and 3 will be used in 4 to show the existence and uniqueness
of a globally defined solution of the Wigner-Poisson problem. Section 5 is devoted to
the classical limit.
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2. The Schriidinger-Poisson problem. In this section we will prove the global
existence of a solution of the Schr6dinger-Poisson problem"

(2.1) V(x) f Ix- yl d/(y)d/(y) dy,
R

2

(2.2t ieOt -- d/x + VO, x e g, t>O,

(2.3) O(x,t=O)=Ol(X).

THEOREM 2.1. Let W: {0 L(R)" II ll := IIq, ll=/ IIq,ll=/ IIx ,ll= < Ifd/, W,
then the Schr6dinger-Poisson problem has a unique mild solution 0 C([0, )- L2(R)).
If additionally d/l H:, then the Schr6dinger-Poisson problem has a unique classical
solution.

Remark. The term "mild" solution refers to the fact that the Schr6dinger equation
(2.2) is satisfied in the mild sense (see the definition on [11, p. 106]).

For the proof we first show that the Schr6dinger equation (2.2)-(2.3) for a given
sufficiently smooth potential, which is bounded by a polynomial of degree one, has a
mild solution. Then inserting this solution into (2.1) we obtain a new potential, for
which the Schr6dinger equation can be solved and we will show that an iteration can
be defined that way. Considering a sufficient small time interval this iteration contracts
to a unique fixed point, which is a solution of the Schr6dinger-Poisson problem. Using
a priori estimates this solution can be extended for all positive times > 0.

LEMMA 2.2. Let V(x, t) satisfy"

(2.4) IV(x, t)] _--< c([x[ / 1),

(2.5) [V(x,t)l<-,

(2.6) Vx(X, t)l <- ,>,,

IV(x,t)-V(x,)l
(2.7) lim sup =0

for some constants a, fl, y; then there exists a strongly continuous family of unitary
operators U(t, s)" L2(R)- L2(R) with

(2.8) U(t,r)U(r,s)=U(t,s) forO<-_s<=r<-t,

0+
(2.9)

e
U(t,s)qt i- d/xx V( s)d/ for d/ e Y,

Ot
t=s

e

(2.10) U(t, s)O U(t, s) i-2 txx V(" s) for 0 Y,
Os e

where Y := {0 L2 with xO, Oxx L2}
Proof The conditions for the existence of an evolution system U(t, s) satisfying

(2.8)-(2.10) are the following [11]:
(El) The operators Hs:=(ie/2)(oZ/ox2)-(i/e)V(’,s) form a stable family of
generators of Co-semigroups. That is, let 0_-< sl-<-s2-<-’’’ =< sn be a sequence of
real numbers; then the estimate [1I-[=1 (Hs,,-h)-l[[2 -<-h-" for h>0 holds.
(E2) The subspace Y_ D(H) is admissible. In other words, the restriction of

H to Y generates a Co-semigroup on Y for every fixed s.
(E3) The mapping H, is continuous in the norm of bounded operators from
Y into L2.
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The operator ills is essentially self-adjoint (see the corollary to Theorem X.38 in [12])
and therefore Hs is the generator of a unitary Co-group of operators on L2.

Let A > 0 and define @ as the solution of (H A)@ f forf L2. Taking the inner
product with @ and using that H is skew symmetric yields

(2.11 q ]]2 ]](H A)- ’f]]2 =< 1 / A
Since (2.11) holds independently of s, (El) immediately follows.

To show (E2) we have to prove that H generates a Co-semigroup on Y. We define
a norm on Y by

(2.12) :- 112 + x 112 + x 112 + xx
Since Hs is a closed operator on L2, its restriction to Y is closed too, and it remains
to estimate the resolvent II(H ,)-11 .

Letf Y and let q be the solution of

(H,- A) =f, A>0;

then q is the solution of

(2.13) (H, Z)x =fx + i eVxd/.
We take the inner product of (2.13) with qx, use that H is skew symmetric, and
applying the Schwarz inequality we obtain

(2.14) - Ilfxll=/ IIf112

Analogously we obtain from

(H A)Ox fx + 2i/eVx + i/ eVxxd/(2.15)
and (2.4)-(2.7)

In the same way we obtain

(2.17) IIxll= 112/112+ II/x[12+ [l/ll=

Summing (2.14)-(2.17) yields

(2.18) [[(Hs-A)-lf[ly=lliiy= 1+-+ Ilfll for A>0
A

with c > max {2fl/e + y/e, 2fl/e + e, 2fl2/e + fl}, which implies

1
II(n-A)-ll for A> c+ 1

(x_c_l)

and by the Hille-Yoshida theorem [11] H generates a Co-semigroup on
It remains to check condition (E3). Let Y; then we have

lim II(n-n)ll== lim II(v(., t)- w(., ))11=
ts ts

1 Iv(., t)- v(., )1
lim sup 0.
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Therefore the mapping t---> Ht, R+ ( Y, L2), where (Y, L2) denotes the space of
bounded operators from Y into L2, is continuous. Therefore an evolution system
U(t, s) satisfying (2.8)-(2.10) exists.

Finally, we show that U(t, s) is unitary. Let q(t) U(t, s)qo and q(t) U(t, s)oo
with qo and o E Using the self-adjointness of i we have

((,(= , + ,
(H,, )+ (, H,) (H,, )-(H,ff, )=0.

Since Y is dense in L2, we therefore have (U(t,s), U(t,s))=(, ) for if,Lz

and hence U(t, s) is unitary.
Now we can prove the following estimates.
LEMMA 2.3. Let V(x, t) satisfy (2.4)-(2.7), and let ( t)= U( t, 0) be the solution

of (2.2); then the following estimates hold"

(2.19) II(t)ll=

(2.20) IIx(t)ll2 II,,xl12+ t I1, 112,

t2

(2.21) x(t)11= x, 112 + t ,,x 112 + , 112.

us the subspace W is invariant under U( t, s).
Proof To prove (2.20) we differentiate (2.2) with respect to x:

0 ie 0

Ot
6 20x

6-i/eV-i/eV.

Using the method of the variation of the constant we obtain

u( , o,,- i u( , s v( s(s s,

x 112 ,.x 112 + t/ e , 112,
which proves (2.20) and (2.21) is obtained similarly.

In the next lemma we will show that the potential V(x, t) satisfies the assumptions
(2.4)-(2.7).

LEMMA 2.4. Let V(x) be defined in (2.1) with (i) (t) W and (ii) the mapping
(x, t) is continuous in [0, ) L2; then the following estimates hold"

(2.22) W(x)l (Ixl 112 + Ily(y)I1=)II

(2.23) IVx(x)l I111,
(2.24) vl 211 11211 x

IV(x,t)-W(x,s)l
(2.25) lim sup 0.

Proof Statements (2.22) and (2.23) follow immediately from (2.1) and (2.24) is
obtained from

f sign (y)[O(x+y)[ dy 21111211x112,
0

IVxxl
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and (2.25) follows from

IV(x,t)-V(x,s)l
lim sup

----< II’(t) (s)112(ll(lyl / 1),(t) I1_ + II([y[ + 1)(s) 112) o.
Combining the estimates (2.20), (2.21) with (2.22), (2.24) we obtain the following

a priori estimates.
LEMMA 2.5. A solution (x, t), V(x, t) of the Schr6dinger-Poisson problem has to

(2.26) q( )112 q, 112,

(2.27)

2

(2.28) xO(t) I1= x, I1= + te ,.x I1= + , I1, Vx., , 112.

To show the existence of a solution of the Schr6dinger-Poisson problem on the
time interval [0, T], we define the fixed point operator

(2.29) Fr" C([0, T] W) C([0, T] L2), F(t) Uv,(t,
where V+ :=R x-Yl[(Y)dY and Uv(t,s) is the evolution system associated with
the family of operators H,(V):= (ie/2)(d2/dx)-(i/e) V(t).

We prove the following lemma.
LEMMA 2.6. e set

(2.30) Sr:={6 C([0, T] W)" (t=0) ffl, ff satisfies (2.26)-(2.28)},

is closed in C([0, T] L2) and invariant under the action of Fr.
Proof Let , Sr and ffo C([0, T] L) with lim, ft, o in the sense of

C([0, T] L), that is,

lim sup II(/)- o/)12 0.

We have to show that o St. Since , converges to fro in Lz for every fixed t, we
have IIo(t)ll2 II,ll= and fro(0)= i. Now consider fixed. Since ft,(t) converges in
L(R), x(t) converges in Lz([-X, X]) to Xo(t) for every X >0. Therefore we have

Ixo()llN lira lim xl(x, t) dx
--X

To show that o(t) has a derivative with respect to x, which is in L, we define
ffo, in a distributional sense. Let C(R); then we define

o,(x,t)(x)dx=-I o(X,t)x(x)dx
R R

=-lim (x, )4dx
R

lim [ ,x(X, t) dx.

satisfy the a priori estimates
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Using the estimate for II.,xll_ we conclude that qo,x is a linear functional on L2 and
therefore a L2-function itself with

o,x(t)[[2 -< II,,II=+--
E

Therefore Sr is closed and applying (2.20), (2.21), (2.19), and (2.23) yields that ST is
invariant under Ft. 3

Now we can prove the existence of a solution of the Schr6dinger-Poisson problem.
LEMMA 2.7. For T sufficiently small, the operator Fr has a unique fixed point in St.
Proof. Since Sr is closed, it suffices to show that Fr is a contraction. Let bl, b:

Sr; then

Frdpl Fb_ Uv,( t, s)( V, V,2) FTdp ds.
E

We estimate

<t II(Ixl+ 1)F62112 sup V4,l(x, z)-- V4,2(x

To get the last inequality we made use of

Ivo,- v21- f Ix-yl(14)l(y)l=-14,(y)l) dy
dR

-< (Ixl + 1)(11 (lyl + 1)11= + II(lyl + 1)=11=)11-Choosing T sufficiently small, F is a contraction on S and has therefore a unique
fixed point, which is a solution of the Schr6dinger-Poisson problem. Using the a priori
estimates (2.26)-(2.28) this solution can be extended for all positive times > 0.

3. The equivalence of the Schr6dinger and the Wigner equation. In this section we
assume that the potential V(x, t) satisfying (2.4)-(2.7) is prescribed and that U(t, s)
is the family of operators defined in Lemma 2.2. We will use the evolution system U
of the Schrfdinger equation to construct a solution representation for the Wigner
equation

(3.1) w,+ v. w-O[V]w =0, w(t =0) wx.

By we denote the Fourier transform with respect to the velocity variable v"

vz lf W(X, V, t) e-inv dr.W(X, rl, t):=
R

Then w satisfies the Fourier transformed Wigner equation

(3.2)
,wt + iWxn i/ e( V(x + erl/2 t) V(x eq/2, t))w O,

w( O) wx.



964 H. STEINROCK

By employing the transform

(3.3)
p x + eq/2, q x- erl/2,

(Cg)(p,q)=e-’g(x, 7), C’L2(RxR,)LZ(RpRq),
and setting z Cw, z Cwi, we obtain an evolution equation for z"

z, := Qz, z( O) z,(3.4)

with

IF_. 02 iV(q, t))] z-[i e 02 iV(p, t)] z.Qz := i20q2 e 20p2 e

Using the notation of tensor products of Hilbert spaces [12] we can represent the
operator Q as

(3.5) Q= I(R)H,-H,(R)I.

Now we can write the solution operator of (3.4) by using the evolution system
U(t, s) defined in Lemma 2.2.

LEMMA 3.1. The family of operators

(3.6) {T(t, s)= U(t, s)(R) U(t, s) O<=s<= t}

is a strongly continuous unitary evolution system with

0+
(3.7) T( t, s)zl,=. Qz for z Y(R) Y,

ot

0
(3.8) T( t, s)z T( t, s)Qz for z Y(R) Y.

os

The proof runs along the same lines as in [9]. This yields the following solution
representation.

THEOREM 3.2. Let Wl LZ(R2) be real valued; then there exists a complete ortho-
normal system qI.k, k N of LZ(R) and real numbers Ak, k N, so that the solution of
the Wigner equation is given by

(3.9) w(t):o-lc-1 Ak(U(t, 0)qgk)(p)(U(t, 0)qgk)(q).
keN

We associate with the initial condition zl Cw the operator

ZI LZ(R) -* LZ(R), (Zif)(p) f zi(p, q)f(q) dq.
dR

Since wl is real valued, zi(p, q)= zi(q,p) and thus ZI is self-adjoint. Since
L2(R R), ZI is a Hilbert-Schmidt operator and therefore compact. Therefore ZI has
a complete orthogonal set of eigenfunctions qI.k, k N and real eigenvalues Ak with

(3.10) zi(p, q): Ak qi,k(P)
keN

with kN 12k <00. Now (3.10) and (3.6) imply the assertion of the theorem.
In other words, the solution of the Wigner equation (1.2) is equivalent to the

solution of a countable series of Schr6dinger equations:

0 6
2 02

(3.11) e bk qk + Vq& dig O) qi,k k N,
Ot 20X2
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where (Ak, (OI,k) are eigenvalues and eigenfunctions of the operator Z, associated with
the initial condition z, Cwt.

We define the Hilbert space of sequences of LZ-functions

k=l

with the inner product

(, ):= E (, ).
k=l

We define the sequences x, (O/Ox)O elementwise and using Lemma 2.3 we obtain
for a solution of (3.11) the following lemma.

LEMMA 3.3. Let i, ]x,[, (O/Ox),]; then a solution of
(3.11 satisfies
(3.12) Ii(t)ll I1,11,

(3.13) IIx(t)ll , +--I1,11,

(3.14) IIx(t)ll I[,ll+ te i + t=/211,ll

with fl w I1.
The next lemma gives a criterion for Xl, (a/Ox) in terms of the initial

condition z.
LEMMA 3.4. Suppose that the operators Z, Z, Z with the kernels z, p. q. z,

(O2/Op Oq)z, L are self-adjoint, of trace class, and X 0; then

E= All(o/x),.ll converge.
ProoZ The trace of Z is given by

tr (Z)= E (l,k, Z,,k)
k=l

z,(p, q) dp dq,"(P)"(q) Op Oq1 R R

z,(p, q) ,,(p) ,,(q) dp dq

I R RI A,,(p)t,(q) eI,k(P) el,k(q) @ dq

=E E ,., ,, =E 11,,k=l n=l n=l

A similar calculation gives

tr (Z) E A, IIx,. I1.
=1

4. The Wigner-Poisson problem. In the previous section we have considered the
Wigner equation for a prescribed potential. The goal of this section is to show the
existence of a solution of (1.1)-(1.3). To define the potential by the Poisson equation
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in integral form (1.1) we need that the particle density n(x)= R W(X, V) dv and xn(x)
are L1-functions. This fact is not guaranteed a priori if we assume that only the initial
density nl and xni are well-defined L functions. To exploit the equivalence of the
SchrSdinger and Wigner equations we will define a generalized particle density.
Suppose that wi(x, v) is sufficiently smooth and decays sufficiently fast; then we have
formally

n(x, t)= w(x, v, t) dv=w(x, r O, t)
R

(4.1)

44 z(x, x, t) - y ,1 u(t, o),,(x)l,
k=l

where /k and (l.k are defined in Theorem 3.2.
We say that an initial function z is of trace class (positive definite) if the associated

operator ZI is of trace class (positive definite). Now we define a generalized particle
density in the following lemma.

LEMMA 4.1. Let Zl be of trace class; then we define the generalized particle density
by

ng(., t) :--- ?=1 AIU(t’s)"(’)I2L(R)"
If, additionally, zt is positive definite, ng is not negative.

Proof. Since z is of trace class, k:l hk converges absolutely and therefore

Akl( U(t, O)ql,k)(X)l 2

k=l

If ZI is positive definite, then the eigenvalues Ak of ZI are positive and therefore
ng is nonnegative. Note that the positive definiteness of z is not equivalent with
w>_-0. [3

LEMMA 4.2. Let vw and wx L2 and k__ Ak <; then

ng(x)= n(x)= w(x, v) dve Ll(R).
dR

Proof. From vw, wx L we conclude that z H1, which implies that n(x, t)=
(e/)z(x, x, t) Loc and therefore coincides with ng in the Ll-sense, and by Lemma
4.1 we have n LI(R). [3

Now we can prove the existence theorem.
THEOREM 4.3. Let Wl be real valued, so that z Cw is positive definite and that

zt, pqzt, (O/Op Oq)z L2 are of trace class; then the Wigner-Poisson problem

(4.2) V(x) f [x- y[ng(y) dy,
dR

(4.3)

(4.4)

w,+v. w-@[V]w=O, xRx,

w(x, v, t= O)- Wl(X, v),

v R,,

where ng is the generalized particle density, has a unique mild solution.
Remark. The term "mild solution" means that the Wigner equation is satisfied in

the mild sense.
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Proof Let q1,k, Ak be the eigenfunctions and eigenvalues of ZI. Then the Wigner-
Poisson problem is equivalent to

V(x)= Ix- yl-alO(y)l2 dy,
R

0 8
2 02

ie-
Ot 20x2

We define the set

Or:= {q(’, t)e for 0<= t<- T, with qk(t=O)=ql.k, keN,

-xO(t) <--B(t), [Ixq,(t)ll<=C(t), I[O,,(t)ll=-I

where

Ox
q% + t/el[q.[[3 and C(t)=

e Ox

Proceeding analogously as in 2, it follows that r is a closed set invariant under
the operator Fr:

Fr:YrC([O, T]), (Fr)k(t)= Uv(t,O)l,k, kN.

In the next step we show that Fr is a contraction for T small enough.
From

I1(g)(t) -(F)k(t)ll=

T sup
IVy(x. t)- %(x. t)l (llx(F),(t)ll2+ll(F)ll2)

o,=,. ]xl + 1

Vq,(x, t)- V(x, t)

and

follows the estimate

8 lx-yl
, Ixl + 1 _-, A"(I’p"I2- [q’"12) dy

8
T(ll[l+ IIx[l+ IlOIl+ IIxll)(llFTll+ IIxFOIl)llO- II

8
2C( T)2TIIq,- qII.

Now choosing T sufficiently small yields that Fr is a contraction and therefore
has a unique fixed point in owr, which is a mild solution of the Wigner-Poisson problem
on the interval [0, T]. Due to the a priori estimates (4.5) this solution can be extended
to any e R+.

5. The classical limit. In this section we will prove that solutions of the Wigner-
Poisson problem (1.1)-(1.3) converge (after extracting a subsequence) to a generalized
solution of the Vlasov-Poisson problem as e - 0. The analysis in this section is guided
by the analysis in the corresponding sections in [13] and [1].
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THEOREM 5.1. Let T> 0 and (em).N be a monotone decaying sequence ofpositive
real numbers with limit zero (in the following we drop the index m) and let w() be the
solution of the Wigner-Poisson problem"

(5.1) W()(x) f Ix- yl n( dy, n((x) f, w((x, v) dr,

0 () V( w()(5.2)
0 w()+v.m w -O[ ] =0, xR, vR,
Ot Ox

(5.3) w()(x, v, t= O)= w((x, v)

with w([ satisfies the assumption of the existence Theorem 4.3 and the terms

(5.4) IIwTll_, Ilxw(;ll_, Ilvw(;ll=,

E
2 We)(5.5) IIw(;lll, IIx2w(;lll, Ilv2w(lll,

Ox2

are uniformly bounded with respect to e. Then there exists a subsequence em (which we
denote as the original sequence) and functions w(, w() V() with

(5.6) lim w()= w()

0
in L2([0, T] L2(R)) weakly,

(5.7) lim vw(= vw
0

(o in L2([0, T]- L2(R2)) weakly,

lim w(= w( in L2([0, T] L(R)) weakly,
e---O

(5.9) lim V= V() in L(R x [0, T]) weak*,
0

where w(), V() is a generalized solution of the Vlasov-Poisson problem"

(5.10) V((x)= I .x-y.n() dy, n’’(x)= f w()(x, v) dv,
R R

0 w(O) v(O 0 w(O) 0, R, R,(5.11)
0 w(O+v x v
Ot Ox Ov

(5.12) w()(x, v, t= 0)= w()(x, v).

In the following two lemmas we will show that certain quantities are bounded
uniformly with respect to e.

LEMMA 5.2. Let the assumptions of Theorem 5.1 hold; then there exists a constant
D( T) independent of e with

(5.13) Ilvw((t)ll<- D(llw(?ll_+ llvw(?ll=) for O<= t<-_ T,

and

(5.14) Ilxw((t)ll=D(llwill=+llxw(?ll=+llvw(?[l=) for O<--_t<--_ T.

Proof. The function vw( solves the equation

(vw(), + v(vw()x -O[ v(](vw()

---41 fR fR (W)(x-) + v?,(x+))e’n(-’)w()(x, v’, t)dv’ d.
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Using vll IIn;ll,--< IIw;ll, we obtain

Ilvw(t)ll- <- vw I1=+, TIIw? II, w7 I1=-
The second inequality is obtained similarly. [3

LEMMA 5.3. Let the assumptions of Theorem 5.1 hold; then there exists a constant
c depending only on the quantities in (5.5) with

(5.15) Ilxn(t)[l -< (t2 + 1)c.

Proof.

J Ixz(x, x)l dx

AklXU(t, 0),,11 u( t, 0)q,.kl dx

(5.16)
E

A[lxU(t, o),llk=l

with sup Wxl w, II1. Using the definition of the generalized paaicle density we
estimate

k=l =1 =1

and similarly

Ak l,k I)24 ox - w,.+ w, IIw, ll.

Inserting these estimates into (5.16) yields Lemma 5.3.
Now we are able to prove Theorem 5.1. By (5.13), (5.14), and the assumption of

Theorem 5.1 the functions w), vw, and w)) are uniformly bounded with respect
to e in the L-norm. Due to the weak compactness of a bounded set in L there exist
subsequences of w, vw, w) which converge weakly to the functions w, vw,
w. Since the L norm of n() is bounded uniformly, V) is bounded uniformly and
therefore there exist a subsequence of V) and a limit function V( with

lim V) V) in L(Rx[O, T]) weak*1,X
eO

It remains to show that w), _v<) satisfy the Vlasov-Poisson equation.
We multiply the Poisson equation by a test function C(R x [0, T]) and choose

a positive constant A"

V)dx dt sign (x- y)n)(y, t)(x, t) dy dx dt
R R

(1 +lv)w(’)(y, v, t)
’[ sign (x-y)(x, t) dx

R 1 +lvl
dv dy dt

+ sign (x-y)n
R\[-A,A] R

)(y, v, t)o’(x, t) dx dy at.
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We can estimate the second term by/z(supp (o))llo’lloollxn(ll/A. Note that/x denotes
the Lebesgue measure. Using that vw() converges weakly to vw, we obtain

for fR ( v)- IR sign (x- y)n()(y, t) dy) tr(x, t) dx dt

_--< c(1 + t2)/x(supp ())llll/A.
Taking the limit A- 00, we conclude that V(, n( satisfy the Poisson equation.

We denote by "a := I-A, A] and fa,T := I-A, A]2 [0, T]. Then we multiply the
Fourier transformed Wigner equation by a test function q C(R[0, T]) with
supp (q)c l)a,r. Integration by parts yields

-I w)’ drl dx dt + I w)’ drl dx dt
A,T A,T

i/e [ w)(V)(x + er//2) V()(x- er//2))o dr/ dx dt
A,T

Wl),rr( O) drl dx.
’a

Now using the weak convergence of w), w]) we obtain

I w()q,drt dxdt- f w()o,dT dxdt,
A,T A,T

w()
Oxn dq dx dt w()o,n dr dx dt,

-A,T A,T

f ’W(le O d’q dx f w( o O dq dx.

Only the third term on the left-hand side has to be taken care of. In the following
we set V=(V(x+eq/2)- V(x-e/Z))/e.

6 V w dx d

(5.17)
A,T

rl w dx dq dt
A,T

(5.18) +Ia (qV(x)-qV()w()dxdqdt
A,T

f rlV()(w(- w()q9 dx dr dt(5.19) +
A,T

(5.20) +Ia (6V()-nV())w()dxdndt"
A,T

Since V) converges in L(R x[0, T]) weak* and r/w() L, the first term (5.18)
converges to zero:

(nV()- rlV())w()q dx dn dtO e-O.as
A,T
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Since w() and 6V()w) are uniformly bounded in L([0, T]--) L2({A)) and
using

ffw) _i
0 w(n) + 6V()w()

OX

we can interpret ffw()(t) as a functional on HI(A) with

 w( )ll F,

where F is a constant independent of e. Therefore we can extract a subsequence with

w()--) ffw() strongly in L([0, T]- n-l(-a)).
Since

v(L)II [In()[[ --< coast. II(1 + Ivl)w( )ll ,
we conclude that r/V()g) is uniformly bounded in L([0, T]--) HI(A)) as e ---)0 and
therefore we have

rlV(f)(w()-w())qdxdrldt-)O as e--)0.
A,T

To show the convergence of the fourth term (5.20), we estimate

]6V()_rlV()[ I (Ix-Y+erl/2’-Ix-y-eq/2’ )-r/sign (x-y) n () dy
R E

x+ll/2

_-< (2Ix- yl/e + dy

coast.

and we obtain

which concludes the proof of Theorem 5.1.

(6V()-V())w()p dxdrl dt-)O
A,T

as e-*O,
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A BOUNDARY INTEGRAL EQUATION FOR THE
TWO-DIMENSIONAL FLOATING-BODY PROBLEM*

Y. W. LIUt

Abstract. The time-harmonic two-dimensional finite-depth floating-body problem is reformu-
lated as a boundary integral equation. As a result of choosing a simple kernel function, the integral
equation extends over both the wetted portion of the floating body and the free surface. It is also
shown that this integral equation suffers no irregular frequencies, that is, it has at most one solution.

Key word. floating-body problem

AMS(MOS) subject classification. 76B15

1. Introduction. In 1950, Fritz John [4] published a paper analyzing time-
harmonic motion of a fluid in which an impenetrable body is partially immersed. This
floating-body problem was formulated mathematically as a boundary value problem
for Laplace’s equation in 73 with appropriate boundary and radiation conditions.
The two-dimensional problem is formulated in a similar way with slight modification.
Using the Green’s function suggested by John, the boundary value problem can be
reduced to an integral equation over the wetted portion of the floating body. Just
as John demonstrated the existence of irregular frequencies for the three-dimensional
case, the two-dimensional case also suffers irregular frequencies (e.g., Ursell [7] and Liu
[6]). By irregular frequencies is meant frequencies for which the integral equation is
not uniquely solvable even though the solution of the original boundary value problem
is unique.

Another way to treat this problem is to employ a simpler Green’s function, which
only satisfies the boundary condition at the bottom of the fluid. Hence the corre-
sponding integral equation is defined over the wetted surface of the floating body and
the free surface as well. For both three- and two-dimensional problems, such integral
equations have been derived and even solved numerically for certain cases, e.g., Yeung
[9] and Bai and Yeung [2]. Numerical evidence indicates that these integral equations
do not exhibit irregular frequencies but does not constitute a conclusive analytical
argument to support this conjecture. Recently, Angell, Hsiao, and Kleinman [1] pre-
sented a proof of the conjecture that the integral equation for the three-dimensional
problem has no irregular frequencies provided that the original boundary value prob-
lem is uniquely solvable.

The present paper provides a proof of the conjecture that an integral equation for
a two-dimensional floating-body problem having no irregular frequencies is available.
Making use of a proper Green’s function, we arrive at an integral equation which
has the same form as the one derived by Angell, Hsiao, and Kleinman. However,
the proof of the uniqueness theorem is quite different. The unique solvability of the
original boundary value problem is also required.

*Received by the editors March 27, 1989; accepted for publication (in revised form) June 11,
1990.

Mathematics Department, Tennessee Technological University, Cookeville, Tennessee 38505.
This work is contained in the author’s doctoral dissertation at the University of Delaware.
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"T" C
FIO. 1

2. Notation and statement of problem. The geometry of the two-dimen-
sional floating-body problem with finite depth h is described as follows and is illus-
trated in Fig. 1. We denoted the fluid domain by D+, whose boundary consists of
Co, the wetted portion of the floating body, the free surface CI, and the bottom CB,
and we denote by D_ the domain consisting of the upper half space and the interior
of the floating body.

The function solves the floating-body problem if

0_._ V on C0, 0 0 on CB,V2=0 inD+, On On(1)

On k 0 on CI
and provided satisfies a radiation condition. Here O/On denotes the normal deriva-
tive pointing into D+ and V is a given function. The radiation condition is specified
in the form

o(2)
Oixl

iko o(1) as Ixl--

where k0 is the root with largest real part of the transcendental equation

(3) k ko tanh(koh).

Condition (2) may be shown to guarantee that

(4) (x, y) ekolxl a(y) + O (e-t,’)) as

uniformly in y, for some complex-valued function a(y), (x, y) being rectangular coor-
dinates and # is a positive constant.

We now define the Green’s function

1 {log ]q’
+log(5) 7(P, q) IP ql [p qll

where p (Xp, yp), q (Xq, yq) and q (Xq,-2h- yq). With this Green’s function,
Green’s theorem for a solution of Laplace’s equation in D+ which satisfies the radiation
condition (2) then takes the form

(6) f {(P’ q) O(q-) (q)
O(p’ q) } dSOnq

Cociwcs
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with

O/(p, q)
a(p)’= lim dSq,

e---O Onq
[OBe(p)]AD+

where OPt(p) denotes the boundary of a disc of radius centered at p. If satisfies
all the boundary conditions in (1) we arrive at the boundary integral equation

(8)

a(p)(p) + (q)-n.(p, q)dSq + (q) --n. (p, q) + k/(p, q) dSq
Co Cf

/" "(p, q)V(q)dSq,
Co

where p lies either on Co or Cf. The integral on CB vanishes since both -y and
satisfy the homogeneous Neumann condition there and the integrals over large enough
artificial bounds x R and x -R can be shown to be of order O(R-1) (see Liu
[6]). This equation has irregular frequencies if there are real values of k for which the
corresponding homogeneous equation (V 0) has nontrivial solutions. We shall prove
in the following, that such irregular frequencies do not exist.

3. Uniqueness. Our result can be summarized as follows.
THEOREM. /f
(a) (p) eikolxpl a(yp) + O(e-tlxpl) as ]p] oo, uniformly in yp, It > O;
(b) ()()+ fCo ()o-- (, )aS + It, (q)[o-- (, )+ (, )] aS o o

all p Co Cf and

(c) is continuous on Co (3 Cf,
then (p) 0 for all p E Co U Cf

Proof. Assume that is a function satisfying (a), (b), and (c) of the theorem and
define the functions u+ and u_ in D+ and D_, respectively, as

(9)

+ } re(q)ou- nq (p’ q)dSq
Co

+ (q) -ffn.(p, q) + k/(p, q) dSq,

Cf

It follows that

(10) V2u+ 0, p D+,

since p = q in either case. This property is inherited from the function ,(p, q). Using
the jump conditions for double layer potentials defined on Co U CI, we have

(11)

p--,Coucflim f )dSq (a(p) 2) /---._ (p, q (p) + (q) (p, q)dSq,
pED+ CoUCI CoUCI

pE CoUCs.
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Together with the continuity of single layer potenials, this implies that

(12) lim
p’-’Co LICI
p6D-

and hence

u_(p) a(p)(p) + (q)nq (p, q)dSq
Co

(13) lim u_(p) O, p 6 D_
p---,Co UC

in view of (b). As is established in Appendix A, the growth of the function u_ in D_
is

(14) u_(p) O(logrp) + O(1) + O(r
for p 6 D_. This together with (13) implies that

(15) u_(p) =_ O, p e D_

by the maximum principle (see Appendix B). Consequently, we have

(6)
au_
On_

0 on Co tJ Cf

where O/On_ indicates the normal derivative from D_. From the definition of u_ in
(9), it follows that

(17) onpOf (q) -n. (p, q, )dSq + k (q) --n p, q)dSq + fl(p)(p) 0,
Co uC.f C

with

O, P Co,
(18) fl(P)

-k, p e Cy,
where the jump condition of simple layer is employed. Note that the existence of the
normal derivative of a double layer is not guaranteed for a merely continous density .
But using the fact that u_ 0 in D_ and hence u_ has a ordinary normal derivative,
Ou_/On_ =_ 0 on Co IJ Cy, together with the fact that the single layers have ordinary
normal derivatives, we conclude from definition (9) that

(q) D--n. (p, q) dSqOnp
CouCI

exists in the ordinary sense.
For properties of u+, we find that

(19)

u+(p) (a(p) 2)(p) + (q) -n. p, q) dSq
Co

+ (q) -n.(P, q) + kT(p, q) dSq,

CI

pe CoUCs,
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from the usual jump conditions. Consequently, using condition (b) we have that

(20) u+(p) -2(p), p E C0 U Cf.
Equation (20) means that u+ (p) has the same growth as (p) on Cf, which is specified
by (a). Taking the normal derivative yields

Ou+ 0 f(P) Onp j
(q)--n.(p, q)dSqOn+

(21) CoUCf

+ k (q)--n(p, q)dS (p)(p).
CI

Since the normal derivatives of the double layer potential with continuous density are
the same from either side provided that one of them exists, we obtain

(22) Ou+
On+

-2(p)(p) (p)u+(p)

from (17) and (20), or equivalently

(23) Ou+ O, p Co,
On+

and

(24) Ou+ -ku+(p), p e Cy.On+
The function u+ also satisfies

(25) On+ O, p Cs,

which is inherited from "),(p,q). Thus equations (10), (24), and (25) imply that u+
satifies Laplace’s equation in D+, together with the homogeneous Neumann and Robin
condition on CB and CI, respectively. Following Weinstein [8] and Kreisel [5], u+ has
the representation

(26) u+(x, y)  ,a, (x)cosh + h)], [xl _> A,
n---0

where k,’s are the roots of the transcendental equation (3), and A is any number
greater than the diameter of the wetted portion of the floating body. That is, A >
max IXpl,p Co. Hence the Fourier coefficients a,(x) in (26) are of the form

(27)
0

an (x) Cn f u+ (x, y)cosh [kn (y + h)] dy
-h

for some constant Cn, and they all have the same growth as u+(x, y) when Ixl _> A,
i.e.,

(28) an(x) O(log Ixl)+ O(Ixl -x)

(see Appendix A). Recall that the most general form of a,(x) is

(29) an(x) Cn,eik’lxl + Cn,2e-ik’lxl
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since u+(x,y) satisfies Laplace’s equation. The fact that kn has positive imagi-
nary part for n >_ 1 makes the term exp(-iknlxl) grow exponentially. Computing
an(x) exp(iknlxl) from both (27) and (28), we see that

11 {O(og I1) + o() + O(Ixl-)} c,:ll + c,..
Hence Ca,2, being the only term that survives as Ixl --, , must be zero for n 1.
We may then rewrite the expression (26) as

(30) u+(x, y) Cn,eik, ll cosh [kn(y + h)] + Cn,2e-ik, lzl cosh [k0(y + h)].

Because u+ (x, 0) has the same asymptotic growth as , i.e., O(exp(ikolxl)), we conclude
that Co,2 0. Then the representation (30) can be further simplified as

(31) u+(x,y) Cne’k, lzl cosh[kn(y + h)] for Ixl A.
n=0

With this representation, it is obvious that u+ satisfies the radiation condition (2).
That is

(32) Ou
Olxl iou+ o(1) slxl ,

for-h y 0.
Now the uniqueness theorem for the two-dimensional floating-body problem (Liu

[6]) implies that u+ 0 in D+ and hence on Co U Cy, provided that Co satisfies the
geometric restriction. Equation (24) then ensures that (p) 0 on Co Cy. It means
that the only solution of (a), (b), and (c) is 0 and the integral equation (8) has
no irregular frequencies. This completes the proof.

Appendix A. On the growth of u. Here we establish the lemma regarding
the growth of the functions u+ and u_ defined in the uniqueness theorem. It is restated
as follows.

LEMMA. ff
() (p) o.(u) + o(-,) a bl uniyorm in , , > 0;

(b) c(p)(p)+ (q)-n. (p, q)dSq + (q) -n. (p, q) + kT(p, q) dSq 0

Co Cf

(c)
Vp e Co u C:;

is continuous on Co U CI; and

(d) u+(p) (q)(p, q) dSq + (q) --n. (p, q) + kT(p, q) dSq,
Co Cf
p E D+,

then u_(p) O(logrp) +O(1) + O(ri), and u+(p) O(log IXpl) +O(1)+O(Ixpl-),
as rp oc, where rp Ipl- (xg + y2p)V2.

Proof. With the Green’s function 7(P, q) defined in (5), we have

i [ (x + )7(P, q) I.lg [(xp xq) + (yp yq)Z]
(A.1) Ix] + (:h + )] ]+ log

[( ) + ( + h + )]
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and

(A.2)

hence

(A.3)

o7 (, )=

_
{ - +o (x x) + ( ) z] +

yp -b 2h + yq +(Xp Xq)2 + (yp + 2h + yq)2
2h + yq }X2q + (2h + yq)2

(q)nq (p, q)dSq O(r-l),
Co

(A.4) (q) __-:--_ (p, q)dSq

and

(A.5) (q)kg/(p, q)dSq O(log rp) + O(r ),

where Cf V BA is that portion on the free surface contained in the disc BA centered
at the origin with radius A, A > max{Ixpl,p E Co}. We also have to establish the
growth of

(A.6)

with BAG being the complement of BA. To examine the growth of the first piece in
(A.6), it suffices to establish the growth of the integral

1 [a(O)ekoxq + O(e-lxql)] (Xp xq)2 + y2p + x] + (yp + 2h) 2

A

yp -b 2h
-(Xp Xq) 2 + (yp + 2h)2 ] dxq,

where the asymptotic behavior of has been employed, A being a fixed number
sufficiently large. Integrating by parts shows that its growth is of O(r). Hence we
conclude that

0-(A.7) (q)--n. (p, q)dSq 0(r-) as rp oc.

CfNB

Next we consider the second piece in (A.6). As in the previous estimate, it suffices to
examine the growth of

[a(O)ekoXq + O(e-Ulx’)] log
(Xp Xq) 2 + y

A

dxq.
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Integrating by parts twice, we see that

log
(Xp Xq) 2 + y

iko
log

(Xp A)2 + y2p iko
eikxq +

Xq (x xq)" + y dxq
A

eikA’ A’2 2 eikoA, [ l xp-A’ ]iko
log

(Xp A’)2 + y (iko) + (Xp A’) + yg

(io) x + [(x ) +
A

Hence

(A.S) / k(q)/(p,q)dSq O(logrp) + O(1) + O(r; 1) as rp -+

C fBCA
It follows from (A.3)-(A.5), (A.7), and (A.8) that

(A.9) u_(p) O(logrp) + O(1) + O(r;) as rp --+ , p e D_,

which is the required growth for the function u_ (p) in D_. There are only two places
where the estimate of u+ is different from that of u_.The first is that for every p
in D+, yp is always bounded, which results in the fact that rp - (x) implies only
IXpl . The second is that the normal derivatives on Co t2 Cf have opposite sign
to those of u_(p), but this will not affect any growth order. Thus we may arrive at

(q)nq (p, q)dSq O(]xpl-),
Co

0";),
)dSq O(Ixpl(q)qnq (p, q ),

and

(A.8)’ / (q)

CI fBAG

Then it follows that

(q)k’(p, q)dSq O(log IXpl) + O(Ixpl-),

o ]n--nq (p, q)+ k’(p,q) dSq O(loglxpl)+ O(1)+ O(Ixl-),

(A.10) u+(p) O(log IXp[) + O(1) + O(Ixpl-*) as rp - , p e D+,

and the proof is complete.

Appendix B. Maximum principle on u_. We wish to prove that the function
u_(p) defined in (9) is a zero function in D_.
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Proof. From (13) and (14) we know that u_ 0 on Co LJ Cf and that u-(p)
O(log rp) as rp oc in D_. Choose r0 large enough such that Co lies completely inside
the circle r r0. Consider the potential u_ in the domain D_ r3 {(r,)lr > ro}. Since
u_ 0 on Cf it follows that u_ can be continued, by Schwarz’s symmetry principle,
into the domain D+ rq {(r, 0)lr > r0} by the relation u_(x, y) -u_(x,-y). Because
of the fact that u_(x, y) is an odd function of y as r > r0, there is an expansion

u_ (r cos , r sin bmrm sin mO / b-mr-m sin m6
m=l m=l

for r > r0,-r < 6 < r, where the coefficients {bin }m=l and {b-m}c satisfy

brm b_mr-m u_(rcosO, rsinO)sinmOdO.

Let r oc. We find that (14) requires bm 0 for re >_ 1, and hence

u_(rcosO, rsinO) b_r-msinmO.
rn--1

We then have

lu_(rcosO, rsinO)l < M/r
for r sufficiently large, say r > 2r0.

Now we consider u_ in a bounded domain D_ rq {(r, 6)lr < R} where R > 2r0.
On the boundary we have

[u-(RcosO, RsinO)l < M/R
when -:r < 0 < r, while u_ 0 on Co U C. Thus, for p. E D_ and IP] < R, we have

lu_(p)l < M/R,
by the maximum principle. Let R oc, keeping p fixed. We obtain lu_(p)l < O, i.e.,
u_(p) =_ 0 in D_. This is the required result.

Acknowledgments. The author is indebted to his supervisors Professors G. C.
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A PRESCRIBED MEAN CURVATURE PROBLEM ON DOMAINS
WITHOUT RADIAL SYMMETRY*

CHARLES V. COFFMANt AND WILLIAM K. ZIEMER

Abstract. The existence is proved of a nontrivial solution to the problem

div(Vu/’,/l+lVulZ)-u+Auq=O inf,, u=0 on0f,

on a smooth, bounded but not necessarily radially symmetric domain Ft when A is sufficiently large.

Key words, prescribed mean curvature problem, elliptic boundary value problem
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1. Introduction. This note is concerned with the existence of positive solutions to
the Dirichlet problem for the so-called "prescribed mean curvature equation"

(1) div (V u//1 + IV ul 2) -/xu + Au q 0 in f, u 0 on 012,

on a bounded C 1’1 domain 1___ R N, N_->2. Here/x->0; 1 <q<(N+2)/(N-2), and
A is a real parameter whose value will be assigned in advance. We stress that the
domain f is not assumed to be radially symmetric. Our main result is that when
q, and 12 are fixed as above then (1) has a smooth positive solution for all sufficiently
large A.

The problem (1) has been treated in a number of recent works. The papers [1],
[4], [5], [9] deal with radially symmetric ground states (positive symmetric solutions
on RN which tend to zero at oe) in the case /x > 0; it is shown in [4] that positive
solutions vanishing at oe must be radially symmetric.

Radial symmetry of positive solutions on a ball is proved in [6]; the case when
f is a ball is also treated in [8] and 11]. When/x 0 and 12 is a ball, Theorem 3.4 of
[8] implies nonexistence of nontrivial solutions to (1) for supercritical q, i.e., for
q>-(N+2)/(N-2); a similar nonexistence result is given in [10] for /x>0 and
star-shaped. In [11] it is shown that when q is subcritical and f is a ball, then,
independently of the radius of 12, there is no nontrivial solution to (1) if

/x > (2(q + 1)/(q

Nonexistence is also proved in [11] for A and/x > 0 when the radius of 12 is too
small; an existence result is given for the case where /x is sufficiently small and the
radius of 12 sufficiently large.

It is instructive to compare (1) with the analogous semilinear problem in which
the mean-curvature operator is replaced by the Laplacian

(2) Au --/xU at- AU q 0 in 12, u 0 on 012.

The nonexistence results quoted above for the case of supercritical q of course apply
also to (2), while the nonexistence results quoted from [11] reflect features special to
the quasilinear problem (1). In particular, in the case of (2), unlike that of (1), we can
limit attention to the case where A and/x 0 or 1.
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research of this author was supported by National Science Foundation grant DMS 870-4530.
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Our approach to (1) makes use of variational methods which generalize those
that were introduced by Nehari [7] to treat boundary value problems for nonlinear
ordinary differential equations; the application of these methods to (2) is described
in [2]; see also [3].

We seek solutions to (1) as minima of the functional

(3) HA(U)-- ffn[2x/l +lVul2-2+txu2-2A(q+ l)-llulq+’] dx

over nonzero functions subject to the constraint

(4) N;, u) I [IV ul2/,/l / lV ula / tzu2 ,lulq+l] dx O,

We first note that (4) is necessarily satisfied by a solution to (1). Secondly, on a
ray in Wo’2(12) emanating from the origin, HA(u) achieves its maximum at the unique
nonzero u that satisfies (4). Thus minimizing (3) subject to (4) is equivalent to
maximizing (3) on rays from the origin and then finding a u that gives the minimum
of these maxima.

The feature of (1) that enables one to extend Nehari’s method is that the integrand
on the right in (3) is concave in (/,/2, iVul=). As a consequence, if u W’2()\{0} with
NA(u) 0 and we solve the linear boundary value problem

(5) div (Vv//1 q" lV /,/ [2) ld, l)-} OU
q --0 in 12, v =0 on 01q,

adjusting a > 0 so that NA(v)= 0, then the mapping

(6) TA u- v

reduces HA. That is HA (v) --< HA (u) and equality holds only if u and v are proportional;
if the latter is the case then u satisfies (1) (/z and A are assumed to be fixed throughout).

Several difficulties are encountered when one attempts to implement the method
suggested above. First, the term

(/1 + Ivl2-1) dx

(see (3)) is not coercive on W’U(fl) for any p > 1. Second, in contrast to the case of
the semilinear analogue (2) (cf. [2]), the set

{u 6 W’2(a)" u # O, mx(u) =0}

is not bounded away from zero. Thus, in fact, the problem (3), (4), as formulated
above, does not have a nontrivial global minimizer. We seek, therefore, to minimize
HA under additional constraints. Assuming/x >= 0 to be fixed, we construct a set

S(l)_.. w2"r(-)N{u u W’2(-)\{0}, N;(u) 0} (r> N)

that is bounded in w2’r(12), and such that when A is sufficiently large we have the
following: (i) S()t) is nonempty; (ii) HA has a positive lower bound on S(A); (iii) for
u S(A), problem (5) is solvable and (iv) S(A) is invariant under the mapping T or
some iterate thereof. When A is such that these latter four conditions hold, then
can be minimized over S(A) and the resulting minimizer is a solution to (1).

2. Preliminaries. We shall actually consider a more general problem than (1),
namely,

(7) div(Vu/x/l+lVul2)-p,u+Af(u)=O in fl, u=O on Off,
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where the functional f C[0, oo) is assumed to satisfy the conditions

1 < s-qf(s) < C(8)

for some q such that

(9) I<q<(N+2)/(N-2),

and also to satisfy Nehari’s condition, which in our notation takes the following form:
for some e > 0,

(10) s-l-f(s)<t-’-f(t) for 0<s< t.

In place of (3) and (4) the definitions of H and N are

(11) H(u)= fa[Z(x/l+lVul)-l)+u2-ZAF(u)]dx
and

(12) N(u) | [[Vu[Z/x/l+[VuJZ+uZ-Auf(u)] dx;
d

F in (11) is defined by

(13) F(u)= f(s) ds.

3. InequMities. Below K will be used to denote a generic constant that can depend
on N and f but not on f,/x, or I.

We find readily from (10) that F, defined by (13), satisfies

(14) (2 + e)F(u) <= uf(u).

We will make frequent use below of the inequalities

(15) p 2(41 +p- 1)p/41 +p.

From (11), (12), and (14) we conclude that for u 6 W’2(){0} we have

(16) H(u) e(2+ e)-’ a(2[(l +lVulZ-1]+uZ) dx,

when u is subject to the constraints

(17) N(u)=0 and u0.

Next we observe that

+ dx Iv. dx.2(1

Combining this with (16) we have, when (17) holds,

(18) (l+l]Vul[LH(u)ee(2+e)-’ f (IVul2+.uz) dx.

Let u W’(){0} satisfy (17) and define the formal operator L= L. by

(19) tw -div (V w/41 + IV u] 2) + w.
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We note that if ]]Vu[l<c and h L2(12), then by the Lax-Milgram theorem, the
boundary value problem

Lw=h inf,, w=0 on

has a unique weak solution in W’2(O); for elementary reasons w will be nonnegative
if h is.

LEMMA 3.1. Let A befixed and let u W’(12)\{0} and satisfy (17). Let v
be the weak solution to

(20) Lv ozf( u),

for any a > O. Then

(21) H(v)<-Ha(u),

with equality only if Na(v)=O and u is a solution to (7).
Proof By an elementary concavity inequality we have

14(v)- H(u) <- f [vLv u1u (v- u)g(u)] dx,

where

g(0)=0, g(u)=f(u)/u, u#O.

From (17) and (20) we have

(22) H(v)- H(u) <= f [auv vZ]g(u) dx.

Using (20), the Schwarz inequality, and (17) we get

ah ug(u) dx uLv dx <- uLu dx vLv

(23) 2/2 /<=(A f u2g(u) dx) (ah In vug(u) dx)
We multiply through the last inequality by ( rug(u)dx)/2 and use the Schwarz
inequality to get

a I vug u dx <= Ia v2g u dx’

which, when substituted in (22), gives (21).
From the way in which the Schwarz inequality was used it is clear that for equality

we must have v proportional to u; since HA(v) achieves its maximum when a(>0) is
chosen so that N(v)= 0, the assertion follows.

Henceforth we assume that, in (20), a >0 is chosen so that Nx(v) 0. We seek a
bound for this a. Using (17) we have from (23)

ce ( f uLu dx)
/2

<= ( f vLv dx) lie.
We also have

41+ IlVull 2 I, utu dx >
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and, since Na(v) O,

and thus, in view of (21),

(24) a --< (e-l(2 + e)x/i + IlVv I[,/1 / Ilvu ll) */=.

If, in addition to the constraint (17), we also require that

then under these conditions HA(u) will have a positive infimum. We seek upper and
lower estimates for this infimum; these will be expressed as functions of and a and
in the case of the lower estimate also of A. Let we C()\{0} be given and let
fl =fl(a)>0 be such that Na(/3w) =0. Using the definition (12), it follows from (17)
and (8) that

Ia (’Vwl2 + tzw:Z) dx >= Aflq-’ Isa ’wlq+’ dx,

from which we conclude that

fl <- K 1 +/) /(q-)h-/(q-).

Thus we have shown the following.
LEMMA 3.2. There exists a constant K such thatfor every h > 0 there is a u C()

satisfying (17) and such that

(25)

(here we are taking
From (25) there follows

(26) H(u)

this estimate then holds for the infimum of HA subject to (17).
Finally, if u satisfies (17) then we have

/ llv u )-’ I (Iv ul2 /u2) dx <- c;t I, ul+l(,/1 dx

KCA (IV U[2+U2) dx

from which we have

(1 + IlVu IlL) ’/-’ f (IVul+u=) dx >= gc-2/(q-1),h,-2

Thus we have the following.
LEMMA 3.3. If ma(A) denotes the infimum of Ha subject to (17) and

then

and

IlVulloo A,

m,(oo)--< K2(1 + [d,)(q+l)/(q-1)h-2/(q-l)

ma(A) >= Ke(2 + e )-1( 1 + A2) (1--q>/2(l+q> C-2/(q-1)l-2/(q-1 >,
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LEMMA 3.4. Let II be a region with C 1’1 boundary, let r" N < r < oa be given, and
let

l <so<r.
Then there is a constant 6 > 0 and a constant M such that for

So<_s<_r

if u W2’r (fl) and

then the operator L, defined by (19) acts from W2"S(fl)f’l W’2(fl) to LS(fl) and is
invertible with inverse ,.()- w,(a)

satisfying the norm estimate

4. Determination of S(A). The set S(A) will be taken to be of the form

S(A)={u" u w2’r(fl) fq W’2(II), Na(u)=O, u->0, a.e. in fl,

O< Ilull,r ml A-1/(q-1), Hx(u)=<

where r and the constant ml (which depends on , C, N, , and the choice of r) are
to be determined; m is chosen in accordance with (26), i.e.,

(27) m= K(1 + )(q+l)/2(q-1),

with K as in Lemma 3.2. Note that with the exception of the inequality on the
(2, r)-norm all of the conditions in the definition are preserved by the operator T,.

We first determine the order of the iterate of the operator T, (defined by (5), (6);
see also Lemma 3.1) that will leave S(A) invariant. What we actually seek is the number
n such that, if we begin with u W’, then after n iterations the resulting function
will belong to W’() with r > N. If N 2 then r > 2 is chosen arbitrarily and we
take So r, n 1. If N > 2 then we define inductively a finite sequence So, s, , s,_
by putting

so=p*/q, p*=2N/N-2,

Sk+ NSk/q(N 2Sk), 0 < k < n

(note that this sequence is strictly increasing only if (9) holds). We take n to be the
least natural number such that

N/2<s_2 or N<Sn_l<,

we choose a finite r > N arbitrarily in the former case and we take r s_ in the latter
case. Wehave n=l onlyifN=2or N=3 and q<2.

Let A >0 be fixed and let u Uo be an arbitrary element of S(A). Let the finite
sequence

UO, Ul, Un

be determined as follows: Uo is as above and

(28) Lug+, akXf( Uk t L,, v Uk ), 0<k<n,
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where
simultaneously in W2’(f) (s Sk-l) and W2’r(f); more specifically, we shall derive
estimates of the form

(29)

(30) u ll2,r ka-1/(q-1),

k 1, 2,. ., n. In the course of this derivation we shall assume

(31) Ilull,r < , Okn,

where, with So and r chosen as above, is as in Lemma 3.4; this assumption will be
justified subsequently.

First, since r > N, (31) gives a uniform bound on the [[V ug[; through (24) this
gives a uniform estimate on the a,

(32)

We have from Uo S(A),

thus, in view of (18),

ak<--_ao, O<-k<n.

Hh(uo) /T22h-2/(q-1);

[[uoll = < aox/(2 + e)/e H(uo)1,2

--< aox/(2 + e)/ e m2A -2/(q-1),

where ao is as in (32) (here we are taking [[ulll,2=(a [Vul2 dx)’/2). From the latter
inequality, via (8),

f( uo) o c Uo g.
<= KCm’d ao2(2 + e)/e)q/4A-q/(q-),

and hence from (28), (32)

(33) u, 112,o <---- KMCa+q/2mq((2 + e)/E)q/4l--l/q--1) T,/-1/(q-l)

(here K incorporates an imbedding constant and M is as in Lemma 3.4).
Similarly we have

IIf(uo) [[r - CK Uoll %
<= KCmh-q/(q-.

hence

Ulll2,r KMCaom’[A-1/(q-’)<= 1/-l/(q-1)"

Proceeding inductively we get, for 1 -< k _-< n,

IIf(u)ll < cllull q, < Cgqllull < cgq"l’-q/‘q-’)2,Sk

and hence

[[Uk+ll[2,Sk CMKqao’rqkh-1/(q-1)<= Tk+l h-1/(q-1).

Thus, with Zl defined implicitly by (33), the Zk are determined recursively by

Zk+l CMKqaoz,
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where K is an embedding constant that depends on k. The k satisfy a similar recursive
relation with different values for K. The ’k are completely determined and we now
choose m so that

(34) m2, 7"n < ml.

The ?k now also can be determined and we shall assume, as we can, that they are
nondecreasing with m

Let A > 0 be such that

nA-1/(q-1) < 6.

We easily see then that the assumption (31) is justified provided that A=>A. Thus if
Uo," ", un are as above then the inequalities (29) and (30) will hold provided A->_ A.

It follows from (34), (27), Lemma 3.2, and (25) that S(A). Let A->A, let
u Uo S(A) be chosen arbitrarily and let un be related to u as above, i.e., let un Tnu.
Then we easily see that u, S(A). Indeed Na(u,) 0 by the definition of Ta, Ha(u,)<=
Ha(u)<= mA2/(q-) by Lemma 3.1, u,>-0 almost everywhere for elementary reasons,
and finally we have

112, _< mlA-1/(q-1)

by (34). Thus, as claimed, T maps S(A) into itself provided h =>A.

5. Statement of results. From the preceding section we deduce the following result.
THEOREM 5.1. Let f be a boundeddomain in Rs with C’ boundary. Letf C[0,

satisfy (8), where (9) holds, and (10). Then there is a function A= A(f, lz, f), monotone
nondecreasing in 1 for f, ffixed, such that for all A => A(f, tz, f), the problem (7) has
a nontrivial, nonnegative C-solution.

Remarks. 1. It is clear from the proof that f need only be defined and/or satisfy
(8), (10) on some interval [0, c).

2. Explicit dependence off on x can be allowed provided (8), (9) hold with the
constant C independent of x and (10) is satisfied.
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ON TRANSMISSION PROBLEMS FOR THE SCHRDINGER EQUATION*

G. F. ROACHt AND BO ZHANG"

Abstract. In this paper, weighted Sobolev spaces and the method of limiting absorption are used to
settle questions of existence and uniqueness of solutions to transmission problems for the Schr/Sdinger
equation. The methods used here are suitable for problems in which there are inhomogeneous terms and
variable coefficients that vanish asymptotically at infinity. Furthermore, it is shown that transmission solutions
which satisfy the radiation condition

+ r)-/2(Ou2\--r-iku2 L2(2), r= x, xRn, 0=</,_<-1

also satisfy an integrability condition at infinity of the form

(1 + r)-l/2(ln (e+ r))-l/2-6/2u2G L2(’2) >0.

Key words, transmission problem, Schr6dinger equation, limiting absorption principle, radiation condi-
tion, weighted Sobolev space

AMS(MOS) subject classifications. 35J10, 78A45

1. Introduction. Exterior boundary value problems involving compact boundaries
associated with the Helmholtz equation

(1.1) (A+ k2)u =f, k2>0

have already been investigated by many authors. In these investigations a crucial role
is played by the Sommerfeld radiation conditions. These were obtained by A. Sommer-
feld from physical consideration and require that solutions should have the behaviour

(1.2) u O(r-{"-’)/2),

OU
(1.3) iku o(r-{"-l/2),

Or

as r Ixl -> . Examples of corresponding existence and uniqueness theorems can be
found in the book by Kupradze [13]. Vekua [22] has shown that (1.2) is superfluous
since (1.3) on its own guarantees uniqueness, while Rellich [19] has shown that (1.3)
can be weakened to the following integral form:

l’(1.4) lim Iou/or- ikul 2 ds =0,
R s( R

where s(R) is a sphere of radius R. The existence of radiating solutions to (1.1) has
been settled using, for instance, integral equation methods (see, for example, Jager
[5]). Similar problems involving differential equations of more general elliptic type in
the limiting case where the losses vanish have been studied by a number of Russian
authors [2], [3], [21].

The existence and uniqueness of a radiating solution for boundary value problems
involving an infinite boundary for general elliptic differential equations has been

* Received by the editors August 7, 1989; accepted for publication (in revised form) May 3, 1990.
? Department of Mathematics, University of Strathclyde, Glasgow G1 1XH, Scotland.
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considered by Vogelsang [23] and Saranen [20]. These authors require that radiating
solutions should satisfy the following conditions: a finiteness condition

(1.5) (1 "ql-lXl2)--l/4--6/2U
and a radiating condition

(1.6) (1 +
In Neittaanmaki and Roach [15] it is shown that under the assumption (1 +lxl)x
(In (e+lx[))/zf Lz(f) there exists a unique solution u of (1.1) satisfying the radiation
condition

(1.7) O__u_ iku L2(f).

In [15] it is also shown that the radiation solution has the following integrability
property:

(1.8) (1 + Ixl)-’/Z(ln (e+lxl))-’/z-/-u Lz(f),
where 3 is some fixed number satisfying 0 < 6 < 1/2.

Transmission problems for the Helmholtz equation (1.1) have also been studied.
In [11] Kress and Roach considered the existence and uniqueness of transmission
solutions for (1.1), (1.2), and (1.3), withf 0 and established existence and uniqueness
theorems u.sing integral equation methods. In this connection we also mention the
works of Kittappa and Kleinman [9], Kleinman and Martin [10], Kupradze [13],
Ramm [18], and Werner [25], [26]. In particular, we remark that in [25] and [26]
Werner used integral equation methods to study the existence and uniqueness of
transmission solutions to the reduced wave equation in which the smooth coefficients
and inhomogeneous terms are assumed to be constants and zero, respectively, outside
a sphere of sufficiently large radius. Jones [6] established a uniqueness theorem for
elastodynamics, with spatially varying parameters, by making extensive use of the
properties of the spherical harmonics. Kristensson 12] obtained a uniqueness theorem
for Helmholtz equation in penetrable media with an infinite interface in the lossless
case, and in this connection we also mention the results of Odeh 16]. Beck 1 studied
a transmission problem for a second-order uniformly elliptic differential operator of
Helmholtz type in the case of a more general geometry compared to [12]. Here he
derived a Rellich-type estimate for the transmission solutions and established the
uniqueness theorem using this estimate in the case where the field u and its covariant
derivative are continuous on the interface.

In the present paper we study the uniqueness and existence of transmission
solutions to a non-selfadjoint differential equation of SchrBdinger type. In [4] Eidus
proved that under certain conditions the non-selfadjoint differential operator in Lz(Rn)
defined by

(1.9) L := -A+ B(x)V + q(x)

has no positive eigenvalues. Using this result of Eidus and a radiation condition of
the form

(1.10) (l + r)-/2(Ou )\-r ikue L(f_), 0 <= tx <= 1,

we can obtain a uniqueness theorem for transmission problems for the Schr6dinger
equation

(1.11) -Au+B(x)Vu+q(x)u-ku=f, k>O.
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This is achieved by imposing suitable conditions on the coefficients and by using the
unique continuation principle [14]. Weighted Sobolev spaces are then used to prove
the limiting absorption principle, from which an existence theorem for transmission
solutions can be derived. Furthermore, it is shown that transmission solutions satisfy
the integrability property

(1.12) (1 + [xl)-l/Z(ln (e4rIXl))-I/2-6/2U2G L2(l)2),

where 6 is some fixed number and 0 < 6 _-< 1.

2. Statement of the problem and notation. Let 11 R" be a bounded domain and

122 be the exterior. The interface boundary F := 011 0112 is assumed to be of class C2.
We denote by ,-(,, ’2," ", u,) the unit normal to F drawn in the direction from
-1 to -2"

We are concerned with the uniqueness and existence of solutions to the following
problem.

Transmission problem. Find u (u, u2) C2(1)1) C2(1)2) such that

-Auj+BjVuj+qjuj-kZuj=f in j, j= 1,2,

au- u2 g on F,

(2.1) Ou/Ou-Ou2/Ou=g on F,

(1 + r)-/(Ou2- iku2) L2(1)2), 0 -</x -<1
Or

where B./, qj, f./, and u are complex-valued functions on 11, j 1, 2, g, j- 1, 2 are
complex-valued functions on F, k2> 0, a,/3 C\{0} are constants. In 1), j-1, 2, we
assume that the following relations hold"

(2.2) IBl/lql<=C, j=l,2,

(2.3) ql, B, G C(-), q2, B2
(2.4) ]qz]+]B2]=O(r-Z(lnr)-’-), 0<6-<1, r-,

f6La(B(R)CII);) VR>0, j=l,2, glH’/2(F), gz6H-1/2(F)
With D= R" an open set, we introduce complex Sobolev spaces Hk(D), k =0, 1, 2, ,
and H(F), R. The inner product on Hk(D) is denoted by

(u, v) ,, E ouo clx,
Il---k do

where 0 =,... -, =O/Ox, and the corresponding norm by Ilull ,D--
The duality relation between H(F) and H-(F) will be denoted by (o,o). By @(D)
we denote the space of infinitely continuously differential functions having compact
support in D.

It is convenient to introduce the following weight functions"

P(x) := (1 / Ixl)-l/2(ln (e/lxl)) -/2-/2,
(2.5) q(x) :- (In (e+lxl)) -/2,

p(x) := (1 + Ixl)(ln (e+lxl)) /2,
and for any weight function g the following weighted Sobolev spaces"

L(D):={uL2(Df3B(R)) VR>OIguL2(D)}

H(D):={uH(Df3B(R)) VR>O]gOuL2(D),



994 G. F. ROACH AND BO ZHANG

with the weighted norm

and the Sobolev space

with the norm

u ,,o := g21a"ul 2 dx
Il--<k D

L() := L(F,) x L2(f),

where 12 12 U f2.
Let r=lx[, =x/r, and OrU--Ou/Or--:VU, where Vu=(OlU,..., 0nu). We intro-

duce the abbreviations

E(R) := {x e R" Ilxl> R},

B(R) := {x R Ilxl < R},

S(R) := {x R Ilxl R},

o(e) := {x al Ixl
For convenience, we suppose that 0 and that Ro is a fixed number such that

c B(Ro). Thus, let

a(e) := {x E(eo)llxl <
a(e,, e=):= {x E(eo) lel < Ixl <

To give a definition of a weak formulation of (2.1) we introduce the following
bounded, bilinear, and linear functionals"

(2.6) a(u, v):= f, (VuV + nVup + qup- kup) dx

Vu, v e H’(O), j 1, 2,

a(u, V):= al(Ul, Vl)+ a2(u2, v2),
(2.7)

Vu=(u, u), v=(v,

Vv (v, v2)e HI(O) x H(O),
together with the sets

H:={v=(v,, v)[v2eH(B(R)Oa2) VR>0, j= 1,2, v=v2 on F}

and

H:={v=(vl,v2)lveH(B(R)O2) VR>0, j= 1,2, v-v2=g, on r}.

With the above notation, a weak formulation of (2.1) is given"

Find u=(u,u2) eH} such thata(u, 4v)=F(v) VveH, e(R),
(2.9)

(1 + r)-"/2(Ou2/Or iku2) e L(O).
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Solutions of (2.9) are called weak solutions of (2.1). In what follows we are concerned
with showing that weak solutions ofthe transmission problem (2.1) exist and, moreover,
are unique.

3. On the uniqueness of the transmission solutions. To establish the required
uniqueness of the solutions to (2.9), we make use of the following result due to Eidus
[4, Thm. 3.2].

LEMMA 3.1 [4]. Under the assumptions (2.2)-(2.4), every solution u
H2(E(R) fq B(R)) for all R > R1 of the equation

-Au+B2Vu+q2u=k2u, k2>0 in E(R), Rl>-Ro

is equal to zero almost everywhere in E(R1) if u L2(E(R1)).
THEOREM 3.1. The transmission problem (2.9) has at most one solution.

Proof Let u (Ul, u2) He be such that

(3.1) a(u, &v)=O VvHE, b (R")

and

(3.2) (1-+- r)-/2(Ou2 )\--r iku2 L2(a2).

Then we have

(3.3) ujHl(B(R)nj) VR>0, aj(uj, cb)=O Vbm@(fy), j=l,2.

Furthermore, by the coerciveness estimates [14, Thin. 2.7], we see that

(3.4) ujGH2(B(R)I’Ij) VR>O,

and that for any R > 0 there is a constant C such that

IXul <-C(luj[/lvul) a.e. in B(R)CIf) ’dR>0,(3.5)

and

(3.6) -Auj+B)Vuj+qjuj-kuj=O a.e. inB(R)fqflj VR>0, j=l,2.

Hence we can obtain from the definition of HE and (3.1) the transmission conditions

(3.7) aUl u2 on F,

(3.8) Ou Ou2 onF.
On Ou

Bearing in mind Lemma 3.1 and (3.6), it remains to prove that u L(fe).
Step 1. We prove that

(1 + r)-l/2(ln (e+ r))-/2-/2(lu21/lu21) t2(a2)

and

(1 + r)-’/lV (e -ikr U2)I E L(O).

Let R> RI> Ro+ 1, r/(r)= r-1/2(ln r) -1/-/e and g(r)= r-/2 for r> 1. By direct
calculation with w e-i:ru2, we see from (3.6) that

(3.9) (-A-ik(2Or+(n-1)r-1)+BzV+qz+ikBz)w=O a.e. in f.
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On multiplying the equation (3.9) by (ln r)-, integrating over 1(R1, R), and taking
the imaginary part of both sides of the equation thus obtained, we get by appropriate
partial integration that

O,s(R)

(3.10) =Im f [BVw#+qlwl+ikBlwl-(rlnr)-Ow#](lnr)-dx
(R ,R)

-(ln R)- Im (OrW, W)0,(R + KR,(W),
where lr,(w)l Cllwll 1,(gl < +" By (2.4) and Cauchy’s inequality we obtain from
(3.10) that

k[lu[ o,,,a(R ,R + k(ln R)-lu[[ O,s(R)

(3.11)

+liowl[ o,(+K,(w).
On the other hand, multiply (3.9) by 2g(rOr#+(n 1)/2#), integrate over (R, R),
and make use of the basic identity

2 Re [A wrh(r)Or#] div [2 Re V wrh(r)Or# h (r)lV wlx] + (n 2)h(r)lV w[2

(3.12)
+ rOh(r)(IVwl2-2lOwl2) a.e. in E(go),

with h(r)= g= r-1 to obtain, after integrating by pas, the result

2llVwll W)o,(l,o,,, -llowl r-O,g,a(R, ,R (n 1) Re (0rW,

+ 2 Re ((BV + q+ ikB2)w, g(rO + (n 1)/2)W)o,n(R,,R

-[ [  OrW ds
(g) 3s(R)

ds =O.
(R) 3s()

Taking into account (2.4) and the fact that lVw-lOwl O, we obtain from (3.13) that

IIVwll
(3 14) +(ln g)-llull o, O,s(R)

llOrWll 0,g,(R1 ,g + KR(W).

Thus for R1 suciently large we get from (3.11) and (3.14) that

iill 0,g,(R ,R)

As (1 + r)-"/Ow o,(R)
tends to zero. Thus, we get

Ilull 0,g, (R) O,g,E(R) KR(W) "
Consequently, (1 + r)-/(ln (e+ r))-/-/u L() and (1 + r)-/lV(e-ikru)l
L(). This, combined with (3.6), implies that (1+ r)-/(ln (e+ r))-/2-/2lVu]
L(a).

Step 2. To show that lV w] L(), we need the following.
In the equation (3.13), integrating

Re r-#OrW dx
(R ,R)
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by parts and letting R- c, we get

2 IE(R) r-1 {IV wl 2 -]Orw[2} dx + Is(el) {2[OrWl2--1VwlZ+(n 1)R-1 Re Orw} as

=-(n- 1)/2{( r-3l u2[2 dx -i- I r-2l u212 ds}
s(R)

Re ((B2V + q2 + ikBz)w, (20rw -I’- r/-- 1 )r-1 w))o,R,-

From the assumption (2.4) and Step 1 we infer that the right-hand side of the above
equality is integrable with respect to R1 from R to c and, therefore, so is the left-hand
side. Integrating both sides of the above equality with respect to R1 from R to c and
denoting the left-hand side and the right-hand side of the equality thus obtained by
LH(R) and RH(R), respectively, we then have RH(R) < +, while

LH(R)=liminf{IaR2-’ R, R2)
[IVwl+(n 1)r-1 Re .OrW dx

r-’[lV wl -IOrWl] dx

-> lim inf{ IaR2"- (R, R2)

f’2R r-rlV wl- ]OrWl 2] dX
E(R)

IVwl dx-(n-1)/2 Ia r-lul dx
(R,R2)

-eRr r-l[’w]2-lOrW]2] dx),
E(R)

where we have used Young’s inequality and the fact that

Hence, from the above inequality and Step 1 it follows immediately that [7 w[ L2(2).
Step 3. To show that lim infe_ s(e) ([u212+ IVu2l 2) ds=O, we need the following.
Let R > Ro andj be an arbitrary integer withj > R. Choose b(r) @(R"), satisfying

(3.15) qS(r)=l, r<=R, b(r)=0, r>=j, 0<=b-<_l in R",

(3.16) ]Och2I<-C(j-R)-’, Od2<-O, R<r<j,

where C is a constant independent of r, R, j, and b2. The existence of suitable b2 is
indicated in Remark 3.1 below. On multiplying (3.9) by b2 and integrating it over
2(R, j), we have

Im (Orl,12, U2)0,s(R) -Im f {[B2Vw + q2w’q- ikB2w]jff+OrqjOrWff} dx
(R,j)

(3.17)
k I OrJ[u212 dx.

(R,j)

By assumption (2.4), Step 1, Step 2, (3.15), and (3.16), we see that the first term of
the right-hand side of (3.17) remains finite as j-o and therefore the second one is
finite as well. Define

f(r):= klochj[ Ilu2ll >
o,s() for all r R"
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then f(r)0 almost everywhere in [R, ee) as j-oe from (3.15) and (3.16) and

/(R) :=-k OrCjlU212 dx= f(r) dr
(R,j) R

is uniformly bounded for j>=R and is convergent as j-oo from (3.17). For all j> R
let g; sup {,+1,""" }. Then g; is integrable. In fact, Mk := max {,+1 ,’" ,+k}
is integrable. Moreover, Mk g; as k and for anyj > R there is a constant A(j) > O,
independent of k and Mk, such that

(3.18) MdrNA(j) for all positive integer k
R

for .(x):= sup IMdr with x R is a nonincreasing positive function of x, and
thus for any j > R, G(x) tends to , with 0 N < as x . Therefore the function
g is indeed integrable by Levi’s theorem (see [24, p. 368]). The sequence {g} is
nonincreasing, the integrals g dr 0 and g 0 almost everywhere in [R, ). Hence,

(3.19) gjdrO
R

as j by Levi’s theorem. The inequalities Ng for all j>R imply that
(R)0 as j. This combined with (3.17) yields

Im (Oru2, U2)0,s(R) 0

as R . From this and the fact that

Vw=Vu2[2+k:u2[2-2k Im 0u2fi, ]Vw t(2),

the required result follows.
Step 4. We prove that u2 L2(2) and u; 0 almost everywhere in , j 1, 2.
Multiply the equation (3.6) by 20rO2+(n-1)r-lo2, integrate it over E(R), and

take the real pa of both sides of the equality thus obtained to get

o,g,(R))--(n- 1) Re (OrU2, r-2U)o,e(R)
+ Re ((B2V + q2) u2, 20ru + (n 1)r- U2)0,(R)

+[ (210r. l +k l. l -IV. l Ids
ds(R)

+ (n 1) Re r- 2OrU2 ds O.
(R)

From this equality, (2.4), Step 1, and Step 2 we are able to obtain u2 L2(2) by
following the same argument used in Step 2. Consequently, we have u2 0 almost
everywhere in E(R) for some fixed R > Ro by Lemma 3.1. The unique continuation
principle [14, p. 65] and the transmission conditions (3.7) and (3.8) imply that Ul =0
almost everywhere in and u2 0 almost everywhere in 2. The theorem is proved.

Remark 3.1. Define ; (R") as follows:

1, rNR,
(r)= O, reZ

b(r)=exp{1-(j-R)Z[(j-R)2-(r-R)2]-}, R<r<j.

Then 4j satisfies (3.15) and (3.16).
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4. On the existence of the transmission solutions. The existence of the transmission
solutions will be established by the principle of limiting absorption as given by Eidus
[2], [3]. To this end, we introduce the following bilinear functionals:

a2t (u2, v2) a2(u2, v2) ie (u2, v2) 0.2

at(u, v)=

the Hilbert space

VU2, V2 E HI(Q2),

u, v Hl(l’,,) x H1(’),2),

H:={v=(v,, V2)[viEHl(i), i-- 1,2, av,-v2=O, on F},

with the inner product

2

(U, V)I,-:-- E (Ui, Vi)l,-
i=1

0<e=<l,

and the set

H*:={v=(Vl, v2)JviEHl(-i), i= 1,2, CeVl--V2--gl on F}.

In this section we will consider the following problem:

Find ut (Ult, u2t) H* such that
(4.1)

at(ut, v)= F(v) Vv H.

We will prove that (4.1) has a unique solution ut H* and, with respect to some
suitable weighted norm, the limit

(4.2) lim ut u
t0

exists. The limit function u will turn out to be the solution of the transmission problem
(2.9) and will be seen to possess certain integrability properties. Finally, we introduce
the bounded linear operator At :H H as follows:

(4.3) (atu, v)l,, at(u, v) Vu, v H.

To settle the existence and uniqueness of solutions to (4.1), we shall need the
following lemmas.

LEMMA 4.1. If either Re (813) > 0 or Im (all3) s 0, then there is a constant C > 0
such that for every u H

(4.4) Ilul[ 1,1 c(ll&ull

where C is independent of e, u, and
Proof. Let a Re (c/3) and b Im (rift). We distinguish the following two cases:
Case 1. a > 0. Since

[[U[[ 21, =(Aeu, u) 1,Sa +d/3 f (l+k2 ql)[Ul]2dx-ff. BlVUlldX
]-

+(rift-l) (_ IVu2]2dx+ [_ (+k2q-ie-q2)lu2]2dx
/2
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by taking the real part in the above equality and using Cauchy’s and Young’s
inequalities, we obtain

(4.5) !1.11 = < C(](Au,/,/) 1,]--]]/,]]20,f)1,

The estimate (4.4) follows from (4.5) and Cauchy’s inequality.
Case 2. b # O. From the equality

,.x, , + (1 ) IV u,I 2 dx + (1 + ak2 aq,)lu,i2 dx

2

[ B2V u202 dx,

we obtain, by multiplying the imaginary part by b-a, adding the result to the real
part of (4.6), and using the Young’s inequality, that

(4.7) I112 < C[I(A, ) ,1+( + )1111 0,]1,

which gives the estimate (4.4).
LEMMA 4.2. If either Re (fl) > 0 or Im () # 0, then for any R Ro there exists

a constant C > 0 such that for every u H

(4.8) I1.11,..(. C(IIA. I1,,.(.+,+ ( + )11 Io..(.+,),
where C is independent of e, u, and A.

Proof For any R Ro let b(r) (R) be such that

1,
0<(r)l R<r<R+I,

FR,
(4.9) (r)=

0, rR+l,
0C’/2’

where C is a constant independent of R, r, and th. From (4.5) and (4.7) we have

(4.10) ll4,ull 2 < C[l(a(4,u), bu)l,B(r+l)l / (1 / e)ll,u 2O,B(R+I)]1,B(R+I)

By making use of (4.3), (4.10), Cauchy’s inequality and a direct calculation, the required
inequality (4.8) follows from (4.10).

Remark 4.1. The same arguments used to prove (4.4) and (4.8) can also be used
to obtain similar results when At is replaced by At + AI with Re A-> 0 and Im => 0,
where I denotes the identity operator on H.

To deal with nonhomogeneous data we reduce (4.1) to an equivalent problem
involving homogeneous data as follows. First, we note that for gl H/2(F) there is a

Woe HI(-) such that Wo gl on F and Ilwoll 1,.,--< Cllgllll/2,r [17, p. 141]. we then set

u’ /le l’lle Wo

and

F’(v)=F(v)-(fffl/a)a,(wo, v,) Vv=(v,,v2)H.

Consequently, (4.1) is equivalent to the following problem"

(4.11)

and

(4.12)

Find u’ u!le, u) H such that

a(u’, v)= F’(v) Vv H

U "-(Ule U2e)--"(Ule/ Wo/OI Ut2e).
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If u’ are solutions of (4.11) with f2 L2(2), then it follows from the fact that
IF’(v)]=< C(E;= ]][]o,flj--I]g[Jl/2,F + ]]g2J]_I/2,F)]JVl]I, for all v H, the definition of
A, (4.3), and (4.11) that

(4.13) ][Aeu’el[l,aC ( ][llo,a,+llgllll/2,r+llg2ll_l/2,r).
j=l

To prove that (4.1), or equivalently, (4.11), has a unique solution and that (4.2)
exists in an appropriate weighted Sobolev space, we need the following a priori estimate
for solutions to (4.1).

LEMMA 4.3. Let u H*, 0<e 1, be a solution of (4.1) withf2 L(2). If either
Re (fl) > 0 or Im (fffl) 0, then

IlV(e-’ru)llo,a + u o,,
(4.14)

j=l

for some fixed R: > Ro and C > 0 independent of e, u, , and g, j 1, 2.
Proo We first note that, by coerciveness estimates [14, Thm. 2.7], we have

uHe(B(R)2) VR>0

and

(-A + BV + q- k2- ie)u f a.e. in .
Lemma 4.3 is proved in several steps following [15] and [23]. For RI> Ro set
C(R) be such that 6(x)=0, [x[R, 6(x)=1, ]x]2g, and 061,
R < Ix] <2R1. Let w (Wl, W2)=e-ikr(u, U2e). Then w H and by a direct calcula-
tion we find that we satisfies

(4.15) (A1 +A+ A3 + BV)w=
where A=-A, Az=-ik(20+(n-1)/r), Aa=qz+ikB2-ie, f=e-ikr[--A(U2)+
B2V(u2e) + q2u2e-(k2+ i6)u2e].

Step 1. We show that there exists a constant C > 0, independent of e, W2 and
R, such that for R > R

KJJVW2JJ 2
0,(R + VW2 0,(R)

(4.16) < C,{(ln R1)/2llfll2o,,,.a)+(ln R,) /2(]lVw2ll 2 2
o,R + W2 o,,))

+ e(ln R1)-/2(ll Vw2ll 2 2

where Ka(w2) denotes a functional satisfying

IKR(W2)I Ce(llVwll2 2
o.. + Wallo,;.).

Step 2. We show that for R2 > R, arbitrarily, the following estimate holds"

2k w2 o,P,( R, ,R2) + / )11 W2 2
0,q,(Rl ,R2)

4.17) <c,{llfll 20,.,...2+(n R,) /llVw21 2
0,.., ,-2 + w2 o,, ,a))}

+(/)(n R2)-’llw21[ 2
0,(RI ,R2)

where C > 0 is independent of e, w2, R, and R2.
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The estimates (4.16) and (4.17) can be easily proved by using the same arguments
as used in [15] and (2.3), (2.4), and (2.5).

Step 3. We now combine Step 1 and Step 2 to obtain the required estimate (4.14).
By (4.16) and (4.17) we know, for any R2> R1 => Ro, that

kllVw=ll =o..,,=) / 1147 v w=ll =
0,’ R ,R2)

+ (/)llwzll =
0,qs,"( R ,R2) + k W2

2
0,P,O(R ,R)

< C{(ln e)/211fll=O,O,(R ,R2)

+(ln g,)-/=(llVw=ll 0,P8 ,R2))
+ e(ln R1)-6/2(li Vw2l[ 2 2

+ e-l(ln e2)- w2112o,a(,+ K(w2),
which implies that, for R1 Ro sufficiently large,

iiw211 o,e ,2)
(4.8)

<c(ll]ll =
o,o,(,,=> + (in R=)- w=ll =o,,)+ K(w).

Since IK(w)l o,+llVw=ll ) and wHl(O2), there exists a0,s

sequence {R2}l such that Re and K(w2) 0 asj. From this, the definition
of , (4.18), and (4.15), we obtain by taking R R2 and passing to the limit in (4.18)
as j that for some fixed R > 0

ikr

From this and by making use of the definition of and we arrive at the following
inequality"

On the other hand, since in any bounded region the weighted norms are equivalent
to similar norms with unit weight, by Lemma 4.2 and (4.12), (4.13) we get

(4.20)

j=l

Then (4.19) and (4.20) imply the required estimate (4.14).
With Lemma 4.3 we can now establish the principle of limiting absorption in the

following form.
() j=l 2, andeither Re (fffl)>0 or Im (6fl)#0. LetTHEOREM 4.1. Let Lo

u, 0< e N 1, be a solution to (4.1). en there exists a u H L(O) such that
limo u u weakly in L( and u is the unique solution to the transmission problem
(2.9). Moreover, u satisfies the estimate

(4.21) IIV(e-u)llo.a+llUllo.p,a C(
j=l

where C is a positive constant independent ofu,, g, j 1, 2 andR is somefixed number
chosen as in Lemma 4.3.

Proof We distinguish the following two cases.
Case 1. Sup u
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By Lemma 4.3 we find

(4.22) sup [IV(e-’ru) o,. / u IIo,o,J <.
Define the Hilbert space .. as follows"

with the norm

ilvll_: [llV(e-,v)[12 2

2Then, bythe reflexive property of Hilbert spaces and (4.22) we can find a u
and a subsequence which we simply denote by {U}o<____ such that u converges weakly
to u in . This implies that u converges weakly to u in L2p(O) and that u converges
weakly to u in L2(B(R)) with R>=0, arbitrarily. On the other hand, from (4.22) we
see sup Ilullo.BCR <oo for arbitrary R-> 0, which, together with Lemma 4.2, gives
sup Ilu ,,)< for arbitrary R => 0. Rellich’s selection theorem asserts that there
is a subsequence {u,}i and a v L2(B(R)) such that u, converges strongly to v in
L2(B(R)) for arbitrary R=>0. Hence v=u in L2(B(R)) for arbitrary R->0. Lemma
4.2 yields that u, also converges strongly to u in H(B(R)) for arbitrary R_->0.

Combining this with (4.1), we obtain that u H*z f’)L,(12) is the unique solution to
(2.9). By the weak lower semicontinuity of Ilvll_ on z, we get

u I1. <- lim inf u, II-_-.

Then, from (4.14) we obtain that u satisfies the estimate (’4.21). Furthermore, the same
argument as above and Theorem 3.1 imply that the original sequence {U}o<_<_ weakly
converges to u in Lp(12).

Case 2. Sup u o,=) .
Let v u -o.B(R2)U. Then v satisfies (4.1) with f and gj replaced by f=
0,B(R2)f and gje u I1-’o,n(e2)g;, respectively, j 1, 2, and v O,B(= 1, where f

and g;, j 1, 2, tend to zero as e - 0. The same argument as in Case 1 can be used to
prove that there is a v L,(f) such that v converges to v weakly in L,(I)), where
v is a solution of the homogeneous problem corresponding to (2.9) and vii o,(= 1.
By Theorem 3.1 the solution of this homogeneous problem is unique, and therefore
v 0 almost everywhere in . This is a contradiction. The proof is complete.

To prove the existence of solutions to the transmission problem we have to prove
that at least for e > 0 sufficiently small (4.1) has indeed a unique solution. With the
help of Theorems 3.1 and 4.1, (4.11), and (4.12), this can be established as follows.

THEOREM 4.2. Letf L2(-j),j-- 1, 2 and either Re (a/3)>0 or Im (6/3) 0. Then
there is an Co>0 such that for 0<e_<-eo problem (4.1) has a unique solution u H*,
satisfying

(4.23) u 1,sa
j

Proof. (a) Uniqueness. Consider the following homogeneous problem correspond-
ing to (4.1)"

(4.24)
Find v (v, v) H such that

a(v, v)=O VvH.

To prove the uniqueness of solutions to (4.1) it is sufficient to prove that there is an

eo > 0 such that for 0 < e _<- eo problem (4.24) has only a trivial solution. If this is false,
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then there will be a subsequence { v,} such that ei --> 0 as - 0% v, 0 almost everywhere
in , and v is a solution to (4.24) with e replaced by ei. We now see that 0,
because otherwise we get ]]villo,e,a 0 from Lemma 4.3, which implies that vti= 0
almost everywhere in f. Thus, we can assume that IIvill0,B(n2 1. Theorem 3.1 and
the same argument as used in Case 1 in the proof of Theorem 4.1 imply that vti
converges to zero in L2(B(R2)). This contradicts the fact that i;

1, 2,.-.. Uniqueness is proved.
(b) Existence. Using (4.3) and the uniqueness property we find that the kernel of

the operator A satisfies Ker (A)= {0}. On the other hand, since A is a bounded
linear operator, A + AI is invertible for all A C with ]A] sufficiently large. Therefore,
if we can also prove that A + AI is a semi-Fredholm operator for all A C with Re A >_- 0
and Im A _-> 0, well-known results from perturbation theory imply that A + AI is not
only semi-Fredholm but also Fredholm with index zero for all A C with Re A _-> 0 and
Im A >_-0 [8, Thm. 5.17]. In particular, if A =0, we will obtain that A is a Fredholm
operator with index zero, which, together with Ker (A) {0} implies that A is bijective
from H onto H. Therefore, (4.11) has a unique solution. Thus by (4.11) and (4.12),
(4.1) also has a unique solution and the estimate (4.23) follows from (4.12) and (4.13).
Hence, we only have to prove that A + AI is a semi-Fredholm operator with Re A >_-- 0
and Im h _-> 0, that is, that R(A + hi) R(A + hi) and the dimension of Ker (A + hi)
is finite. To this end we first derive a coerciveness estimate. From (4.3) we find for
0<t<_-I anduHthat

,,/I((A + AI)u, u)1,l tiRe ((A + AI)u, u)1,a] + IIm ((A + AI)u, u)1,hi
(4.25) >/llVull -tkzllull 2 =

0,[]0,2

Since by (2.4) we have

](BVu2, U2)o,a] +[(q2u2, Uz)o,n2l
< CR-’(ln R1)-l-([[Vu2ll : :

it follows from (4.25) that there is an R > 0 sufficiently large and a > 0 sufficiently
small such that

(4.26)

On the other hand, by Remark 4.1 we have

VuH.

(4.27) llull,,(,<-c[ll(&+,t_)ull,,,+(1+)llullo,(,+,] VuH.

Now combine (4.26) and (4.27) to obtain the coerciveness estimate

(4.28) llull,.. c(e)Ell(&+Al)ulll.n+llullo, (, ,+, ] VuH.

From (4.28) and Re]lich’s selection theorem it follows that dim Ker (A + AI) is
finite.

To prove that R(A + AI) is closed, we consider the operator T" H/Ker (At + AI)
H, defined as follows"

T[u]:=(A+hI)u VuH,

where H/Ker(A+hI) denotes the quotient space with the norm II[u]l[=
inf {llu vii ,,1 v Ker (A + hi)} and [u] H/Ker (A + hi), an equivalence class such
that for arbitrary u’, u" [u] we have u’- u" e Ker (At + hi). Evidently, R(T)
R(A + hi) and T is a bounded linear operator satisfying Ker (T)= {[0]}; that is, T
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is invertible. Consequently, to prove R(A + hi)= R(A + hi) it is enough to prove
that T- is continuous, that is,

(4.29) II[u]ll <-- CIIT[u]ll,,,, Vu H.

However, by (4.28) we know that

Ilu-v[[,,<=C(e)([[(J+hI)ul[1,+llu-V[[o,B(R,+,)) VvKer(J+hI), uH,

which, together with Rellich’s selection theorem and the fact that T[u]- (A + hI)u
and Ker (T) {[0]}, implies that

]]u-vll,..<-c()ll(A/xI)Ul]l., VvKer(A+AI), uH.

From this, (4.29) follows. Hence, the proof is complete.
As a direct consequence of Theorems 4.1 and 4.2, we obtain the existence of

solutions to the transmission problem (2.9).
2THEOREM 4.3. Letf Lp(fj),j 1, 2 and either Re (aft) > 0 or Im (aft) # 0. Then

(2.9) has a unique solution u H* f’) Lp(f) such that

(4.30) c( IIf llo,o.. /llg,
j=l

Remark 4.2. If gl H3/2(F) and g2 H/2(F), then, by coerciveness estimates 14,
Thm. 2.7], we find that the transmission solution u (u, u2) has the regularity that
ujH2(B(R)fqYj) for all R>0, j= 1,2.

Remark 4.3. For exterior boundary value problems, that is, Dirichlet, Neumann,
and Robin problems, our methods are still applicable and similar results hold.

Remark 4.4. If the Laplace operator A is replaced by the operator k.j= (O/OXk) X
(a(O/Oxj), i= 1,2, with a( satisfying the following conditions"

(1) The a( are real-valued functions, a( ,,a eC (fZ), i= l, 2;
(2) For all x e and for all : R" the following inequality holds:

>- Col l
k,j=l

where Co is a positive constant;
(3) There is a R >_- Ro such that a()(x) 6k for Ix _--> R, 1, 2, k,j 1,. , n;
(4) In (2.1) the transmission condition Oul/O,-Ou2/O- g2 on F is replaced by

(2) OU2/OX g2 on F.the condition fla(1) ’kOU/Oxj kj lk
Then Theorems 3.1, 4.1, and 4.3 still hold.

Acknowledgment. The authors thank the referee for his constructive comments on
this problem and for his pointing out an error in the proof of Lemma 4.3 in the original
version of this paper.
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NONTRIVIAL SOLUTIONS TO NONLINEAR VOLTERRA
INTEGRAL EQUATIONS*

W. OKRASIIISKIt

Abstract. The Volterra integral equation

u(x)= k(x-s)g(u(s)) ds (x>-O)

is considered, where k_-> 0 is a monotonic integrable function and g is an increasing, continuous function
such that g(O) O. Some necessary and sufficient conditions for the existence of nontrivial solutions to the
above equation are presented. Physical problems that motivate these results are also discussed.

Key words, nonlinear Volterra equation, existence of nontrivial solutions

AMS(MOS) subject classifications. 45D05, 45G10

1. Introduction and statement of results. We consider the nonlinear Volterra
integral equation

Io(1.1) u(x)- k(x-s)g(u(s)) ds (x_> O),

where

(k) k (0, 6) - (0, +c) (6 > 0) is a monotonic absolutely continuous function such
that

(g) g is a nondecreasing absolutely continuous function such g(0)=0, g(u)>0
for u>0 and u/g(u)-O as u0+.

Equation (1.1) has been studied recently in connection with nonlinear diffusion and
shock-wave propagation problems (see the Appendix). A typical example of g con-
sidered in applications is g(u)= up (pc (0, 1)). Obviously, u--0 is the trivial solution
to (1.1). But the question of physical interest is the existence of nontrivial solutions
to (1.1), i.e., continuous functions u such that u(x)> 0 for x > 0.

The purpose of this paper is to present some sufficient and necessary conditions
for the existence of nontrivial solutions to (1.1) on an interval (0, 61) (6 > 0). We
formulate the results which will be proved in this paper. Let K -1 denote the inverse
function to K(x)’-o k(s)ds. At first, we present two theorems involving sufficient
conditions for the existence of nontrivial solutions to (1.1).

THEOREM 1.1. Suppose k is an increasing function satisfying (k). Let g satisfy (g).
if

[g’(s)/ g(s)]K-l(s/ g(s))(1.2) ds (o> 0),

then equation (1.1) has a nontrivial solution on an interval (0, 61) (61 > 0),
THEOREM 1.2. Suppose k is a decreasing function satisfying (k) such that Ink is

convex. Let g satisfy (g). If

(1.3) as (6o> 0),

then equation (1.1) has a nontrivial solution on an interval (0, 61) (61 > 0).

* Received by the editors January 2, 1990; accepted for publication (in revised form) June 11, 1990.
? Institute of Mathematics, University of Wroctaw, P1. Grunwaldzki 2/4, 50-384 Wroctaw, Poland.
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We now present two necessary conditions for the existence of nontrivial solutions
to (1.1).

THEOREM 1.3. Suppose k is an increasing function satisfying (k) such that In k is
concave. Let g satisfy (g). Ifequation (1.1) has a nontrivial solution on an interval (0, 61)
61 > 0), then

s
[g(s)k K-l(s/g(s))] < o(1.4) as (30>0)

THEOREM 1.4. Suppose k is a decreasing function satisfying (k). Let g satisfy (g).
If equation (1.1) has a nontrivial solution on an interval (0, 61) (31> 0), then

0
(1.5) [g’(s)/g(s)]K-l(s/g(s)) ds < (6o> 0).

o

Proofs of the theorems presented above are given in 3.
In [5] Gripenberg considered the following special case of (1.1):

(1.6) u(x)= (x-s)"-’g(u(s)) ds (a > 0),

where
(i) g(u)/u is continuous positive and nonincreasing on (0, a) (a>O),
(ii) for each q>O the function u[g(u)/u]q is nondecreasing on (0, %) (aq>O).

In [5] it is shown that u 0 is the unique solution to (1.6) if and only if

[s[g(s)/s]I/]-1(1.7) ds (30>0).

Let us note that for a 1 from (1.7) we obtain the famous Osgood condition. On the
basis of Gripenberg’s results it can be concluded that (1.6) has a nontrivial solution
if and only if

[s[g(s)/s]l/a]-1 ds < oo(1.8) (go>0)

It is easy to see that in the case where lim,_.o+ u/g(u)>O, equation (1.6) only has the
trivial solution. We must emphasize that under Gripenberg’s assumptions the case
where g(u) up (p (0, 1)) is not allowed. Results similar to Gripenberg’s are presented
in [2], [3], and [10] under weaker assumptions of g and such g’s as mentioned above
are admissible. In 2 of this paper we show that Theorems 1.1-1.4 generalize condition
(1.8).

2. Some consequences and comments. On the basis ofTheorem 1.1 we can formulate
the corollary.

COROLLARY 2.1. Suppose the assumptions of Theorem 1.1 and (i) are satisfied. If

(2.1) fo K-l(s/g(s))/s ds < oo,

then equation (1.1) has a nontrivial solution on an interval (0, 61) (6 > 0).
By (g) and (i) we have

(2.2) g’(s)--<_ g(s)/s a.e.
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By (2.2) we obtain

(2.3) [g’(s)/g(s)]K-l(s/g(s))<= K-l(s/g(s))/s a.e.

By (2.1) and (2.3) we infer (1.2) is fulfilled. The corollary is true.
Now we show Corollary 2.2.
COROLLARY 2.2. Suppose the assumptions of Theorem 1.4 and (i) are satisfied.

Moreover, there exists a number q0 > 1 such that u[g(u)/ u]qo is nondecreasing. Ifequation
(1.1) has a nontrivial solution on an interval (0, 81) (81 > 0), then

(2.4) K-l(s/g(s))/s ds <
0

As in [5] it can be shown that

(2.5) g’(s)>=(1-1/qo)g(s)/s a.e.

By (1.5) and (2.5) we infer (2.4) is satisfied.
Now we present results concerning the special kernel k(x)= x-1 (c > 0).
Remark 2.1. Let us note that for the kernel k(x)=x-1 (o >0) conditions (1.3),

(1.4), (2.1), and (2.4) are equivalent to Gripenberg’s condition (1.8).
We can generalize Gripenberg’s results as follows.
COROLLARY 2.3. Let ce > O. Suppose g satisfies (g), (i) and there exists a number

qo > 1 such that u[g(u)/u] qo is nondecreasing. Equation (1.6) has a nontrivial solution

if and only if (1.8) is fulfilled.
This corollary is a consequence of Theorems 1.2-1.3, Corollaries 2.1-2.2, and

Remark 2.1.
Remark 2.2. Function g(u) up (p (0, 1)) satisfies the assumptions of Corollary

2.3.
In [3] it is shown that the equation

u(x) exp (-1/(x- s))[u(s)]pds (c _-> 1, p (0, 1))

has a nontrivial solution. In this case our sufficient conditions do not work. This
suggests that we must look for other kinds of conditions.

3. Proofs f theorems. We start with two remarks, which are consequences of
theorems presented in [2], [7], and [8].

Remark 3.1. Let (k) and (g) be satisfied. If there exists a nontrivial solution to
(1.1), then it is the unique nontrivial solution on an interval {0, } (1 > 0). Moreover,
it is a strictly increasing absolutely continuous function. We shall denote this solution
by uo.

Remark 3.2. Let (k) and (g) be satisfied. Consider the equation

(3.1) u(x)= ex+ k(x-s)g(u(s)) ds.

For every e e (0, 1) there exists a unique strictly increasing absolutely continuous
solution u to (3.1) on an interval (0, 61), where 61 > 0 is independent of e. Moreover,
u, -<_ u for el --< e2.

Now we can formulate the following lemma.
LEMMA 3.1. Let e (0, 1). Let k satisfy (k) and g satisfy (g). If equation (3.1) has

a nontrivial solution u on (0, 61) (6 > 0), then there exists a function
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such that v > 0 almost everywhere and

(3.2) v(x) 1 k v() dg’(s) ds+ e a.e.

Proof. Let u be the nontrivial solution to (3.1) mentioned in Remarks 3.1 and
3.2. It is an increasing absolutely continuous function. Differentiating (3.1) we get

(3.3) u’(x) k(x- s)g’(u(s))u’(s) ds + e

for almost all x e 0, 1}. By assumptions and (3.3) we have u’ > 0 almost everywhere.
We infer u;- is an absolutely continuous function. From (3.3) we get

l(x)
u’(x) e + k(x- u (s))g’(s) ds a.e.

Substituting u2(x) instead of x, we obtain

(3.4) u(u2’(x)) e + k(u21(x)- u21(s))g’(s) ds a.e.

Let v [u2] almost everywhere. Since v 1/u’ u2 almost everywhere and u21(x)
u2(s) I v() d, by (3.4) we get (3.2).
COOA 3.1. Ifu is the nontrivial solution mentioned in Remarks 3.1 and 3.2,

then we put v u ]’ almost everywhere. Since u 2 is absolutely continuous, u (x)
Io v(s) ds.

COROLLARY 3.2. Let e > O. If the integrable function v satisfies (3.2), then

(3.5) K v() d g’(s) ds x.

Let e O. If the integrable function Vo satisfies (3.2), then

)(3.6) K Vo() d g’(s) ds x.

From (3.2) we have

(3.7) v(x) k v() d g’(s) ds+ ev(x)= 1 a.e.

Integrating (3.7) we get

) ;o(3.8) K v() d g’(s) ds+ e v(s) ds x.

From (3.8) we obtain (3.5) and (3.6).
Proof of eorem 1.1. Consider (3.1). Let {u} (e(0, 1)) denote the family of

increasing absolutely continuous solutions to (3.1) on (0, ) mentioned in Remark 3.2.
By Corollary 3.1 the function v [u] almost everywhere on (0, u()) satisfies (3.5).
Since K is convex then from (3.5) by the Jensen inequality, we get

g(x v( g’(s as/g(x x

or after, simple calculations

(3.9) V(x) g-l(x/g(x)),
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where

We have

(3.10)

V(x) v(s)g(s) ds/g(x).

V’(x) v(x)-[g’(x)/g(x)]V(x) a.e.

From (3.9) and (3.10) we get

(3.11) V’(x) >- v(x)-[g’(x)/g(x)]K-l(x/g(x)) a.e.

From (3.11) we obtain

(3.12) v(x)<= V’(x)+[g’(x)/g(x)]K-l(x/g(x)) a.e.

Since u-l(x)= o v(s) ds and (1.2) holds, integrating (3.12) we get

Iou-’(x) <- V(x)+ [g’(s)/g(s)]K-l(s/g(s)) ds.

Hence by (3.9) we obtain

(3.13) u-l(x)<-- K-l(x/g(x))+ [g’(s)/g(s)]K-l(s/g(s)) ds.

Let

F-’(x) "--K-’ sup (s/g(s)) + [g’(s)/g(s)]K-l(s/g(s)) ds+x.
\s(O,x)

It is a strictly increasing continuous function such that F-l(0)=0. By (3.13) we have

u-l(x) <-_ F-’(x) on (0, ue(61)

or

(3.14) u(x)>= F(x) on (0, 61).

Let e N 0+. Since the sequence u is decreasing with respect to e, we infer that

u(x) lim u(x) (x (0, 61))
0+

is a nondecreasing continuous solution to (1.1). Since (3.14) holds for any e (0, 1),
u(x) >-F(x) on (0, 61). It means we have found a nontrivial solution u to (1.1).

Proof of Theorem 1.2. Consider (3.1). Let {u} (e (0, 1)) denote the family of
increasing absolutely continuous solutions to (3.1) on (0, 61) mentioned in Remark 3.2.
By Corollary 3.1 and (3.2) we infer that the function v-" [u-l] almost everywhere on
(0, u(61)) must satisfy the following inequality:

(3.15) v(x)<-1 k v() d g’(s) ds a.e.

We can write (3.15) as

(3.16) v(x) <= 1 k K -1 K v() d g’(s) ds a.e.
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Since In k is convex it follows that k K- is convex. By the Jensen inequality from
(3.16) we obtain

(3.17) v(x) < 1/g(x)k g -1 K ve() d g’(s) ds/g(x) a.e.

The function 1/k K -1 is increasing because k is decreasing and K is increasing. By
(3.6) and (3.17) we obtain

v(x) <-_ 1/g(x)k K-l(x/g(x)) a.e. on (0, u(61)).(3.18)

Let

(3.19) G-l(x) [g(s)ko K-l(s/g(s))]-1 ds.

By assumption (1.3) the function G-1 is well defined. Integrating (3.18), we get

u-(x) <= G-’(x) on 0,

or

(3.20) u(x)>-_ G(x) on (0, 61).

Let e " 0+. Since the sequence u is decreasing with respect to e, we infer that

u(x) lim u(x) (x (0, 61))
eO+

is a nondecreasing continuous solution to (1.1). Since (3.20) holds for any e (0, 1),
u(x) >-G(x) on (0, 6). It means that the function u is a nontrivial solution to (1.1).

Proof of Theorem 1.3. Let Uo be the nontrivial solution to (1.1) mentioned in
Remark 3.1. Let Vo-" ugl] almost everywhere on (0, uo(61)). By Corollary 3.1 and (3.2)
we have

/Io(3.21) Vo(X) 1 k K-’ K Vo() d g’(s) ds a.e.

Since In k is concave it follows that k K -1 is concave. From (3.21) by the Jensen
inequality we get

(Io )(3.22) Vo(X) >= 1/g(x)ko K-’ K Vo() d g’(s) ds/g(x)

and by (3.6)

(3.23) Vo(X) >= 1/g(x)ko K-l(x/g(x)).

Since Vo is integrable, we infer that (1.4) holds.
Proof of Theorem 1.4. Let Uo be the nontrivial solution to (1.1) mentioned in

Remark 3.1. Let Vo=[ul] almost everywhere on (0, Uo(61)). By Corollary 3.1 the
function Vo satisfies (3.6). Since K is convex, then from (3.6) by the Jensen inequality
we get

x <- g(x)K Vo() dg’(s) ds/g(x)

or after simple calculations,

(3.24) Vo(x) K-l(x/g(x)),
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where

We have

(325)

Vo(x) Vo(s)g(s) ds/g(x).

V’o(X) Vo(X)-[g’(x)/g(x)]Vo(x) a.e.

From (3.24) and (3.25) we get

(3.26) V’o(X) <= Vo(X)-[g’(x)/g(x)]K-l(x/g(x)) aoe.

or

(3.27) [g’(x)/g(x)]K-’(x/g(x)) <- Vo(X)- V’o(X) a.e.

Since Vo and V are integrable, then by (3.27) we get (1.5).

Appendix. We present two physical problems leading to nonlinear Volterra integral
equations having the form (1.1) and satisfying (k) and (g).

A.I. Travelling wave solutions to shock-wave problems. We consider shock waves
in gas-filled shock-wave tubes [6]. We want to find the axial component of the particle
velocity behind the shock wave. We assume that the x-axis of the coordinate system
is directed along the axis of the tube. Moreover, the shock-wave front passes through
the origin of the x-axis at time =0. Let cs -> Co (Co is the sound speed) denote the
speed of the shock-wave front. We denote by v(x, t) the axial component of the particle
velocity behind the wave front at point x and time t. The function v must satisfy the
following equation (see [6]):

1 [ t-x/cs
(A1) Dtv+c,Dxv=-(Bv+(co-c))Dxv+- B2 Dtt)(x t-s)s-1 ds,

dO

where B, B2, a > 0 are physical parameters, and must also satisfy the condition

(A2) v(x,x/)=(c,-co)/B,.

This last condition describes the discontinuity of the axial velocity at the wave front.
We look for so-called travelling wave solutions of (A1)-(A2) having the form

(A3) v(x, t)= v(t-x/c).

In the case of such solutions the problem (A1)-(A2) will be reduced to

Io(A4) B-A ([ v(x) (c Co)/B]2)’= B2 v’(x s)s’- ds,
Cs

where v v(x) is the unknown function such that

(A5) v(O)--(Cs-o)/B1.

Substituting into (A4) and (A5) instead of v the function B2c[v-(-Co)/B]/B1,
we get

(A6)

and

([ V(X)]2)’= Vt(X S)Sa-1 ds

(A7) v(0) =0.
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Integrating (A6) and using (A7), we get

(A8) [v(x)]2= (x-s)"-’v(s) ds

or after substituting v u we obtain

(A9) u(x) (x- s)-[u(s)]/ ds

for x-> 0. With respect to physical meaning only nonnegative nontrivial solutions are
interesting. Such solutions are considered in [6] and [11].

A.2. Subsolutions of nonlinear diffusion problems. We study the following diffusion
problem [1], [9]"

(A10) D,h r-Dr(rDr(h’/P)) (p6 (0, 1))

with conditions

(All) h(r,O)=O for r>l,

(A12) h(1, t)=l for t>0.

Let us note that in the case p 1/2 the problem (A10)-(A12) may describe the infiltration
of the fluid from a cylindrical reservoir. It may be shown that (A10) with conditions
(All)-(A12) has a unique so-called weak solution h(r, t) in the domain (1, +oo)x
(0, +oo) (for details see [4]). It is important for applications that the weak solution is
classical at these points (r, t) for which h(r,t)>O. Moreover, it is shown that
supp h(., t)= (1, to(t)) for t>0, where ro(t) is a continuous increasing function. With
respect to applications it is interesting to give even approximate information about the
function h. We try to construct an auxiliary function approximating the exact solution
h from below. This new function will be a so-called subsolution. We try to construct
a subsolution _h having the form

1/, r<-_[A(t)]/
(A13) _h(r, t)--

0, r>[A(t)] /2’.
The above function will be a subsolution if there exist both a sufficiently smooth
decreasing function f satisfying the problem

(A14) s-l(s(f’/P)’)’= -1/2sf’ for s 6 (0, 1)

with

(A15) f(1)=0 and lim [f’/P(s)]’=O

and the function A satisfying the differential equation

(A16) Af(1/a/) 1 with a(0)= 1.

To solve (A14)-(A15) we use the substitution

(A17) f(s)=w(-logs).

We reduce (A14) and (A15) to

--2x wt(A18) (w /p) = e for x>0
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with conditions

(A19) w(0)=0 and lim [w/P(x)]’=O.
x-0+

Integrating (A18) twice and using (A19), we get

(A20) [w(x)] ’/p e_Z, 1
+x-s w(s) ds

Substituting e-ZPx/(-P)w(x) instead of w(x), we get

(A21) [w(x)] lip k(x- s)w(s) ds

where

(x>_-0).

(A22) k(x) [1/2+ X] e2x/(1-p).

We look for continuous solutions w of (A21) such that w(x) > 0 for x > 0. We substitute

(A23) w up

into (A21) to obtain

(A24) u(x)= k(x-s)[u(s)] ds (pe (0, 1)).

Mathematical considerations concerning the existence of nontrivial solutions to (A24),
or more exactly to (A20), are presented in [9].
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STABILITY OF TRAVELING WAVEFRONTS FOR THE
DISCRETE NAGUMO EQUATION*

B. ZINNER

Abstract. It has been shown that the discrete Nagumo equation

fin=d(un_-2un+un+)+f(u,), nZ,

has a traveling wavefront solution for sufficiently strong coupling d. In this paper it is shown that such a

traveling wavefront is unique (up to a shift in time) and globally stable.

Key words, traveling waves, lower solution technique, myelinated axon, discrete cells
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1. Introduction. Consider the infinite system of coupled nonlinear differential
equations

(1) fi.-- d(u._,-2u.+u.+l)+f(u.),

where d is a positive real number.
A typical example for the nonlinearity f is the cubic polynomial f(x)=

x(x-a)(1-x), 0<a<. Equation (1) is the discrete analogue to the well-known
Nagumo equation [5]

(2) 0u=0t O--x+f(u)"
The discrete Nagumo equation is interesting because it has been used to derive (2)
[8] and it has also been proposed as a model for conduction in myelinated nerve axons
[1]. The continuous Nagumo equation (2) is well studied [4] and it has been proven
that there exist globally stable monotone traveling wavefront solutions.

The analytic approach has been less developed for the discrete than for the
continuous Nagumo equation. The first results about the discrete Nagumo equation
were concerned with threshold properties, that is, conditions forcing nonconvergence
to zero of solutions as time approaches infinity, and bounds on the speed of propagation
of a "wave of excitation" 1 ], [2]. The next results were concerned with wave propaga-
tion, that is, with solutions of the form

u,(t) U(n+ct).

In particular, failure of propagation for small d and local stability of traveling
wavefronts were shown in [6] and [7].

Then traveling wavefronts were analyzed numerically for certain cubic polynomials
f [3 ]. Only recently has the existence of monotone traveling wavefronts for sufficiently
large d been proved in [9] and [10]. It is the purpose of this paper to prove that such
traveling wavefronts are globally stable.

By a traveling wavefront with velocity c, c > 0, we mean a solution {u,(t)}__ of
(1) for which there exists U C1([, (0, 1)), U(-)=0, U(c)= 1, such that u,(t)--
U(n+ct) for all tR. If in addition U’(z)>0 for all z[, then the wavefront is
monotone. The following theorem allows f to have several zeros in (0, 1) even though

Received by the editors September 18, 1989; accepted for publication (in revised form) June 21, 1990.
? Division of Mathematics, 120 Mathematics Annex, Auburn University, Auburn, Alabama 36849-5307.
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existence of a monotone traveling wavefront has only been shown for the case where
f has exactly one zero in (0, 1).

THEOREM 1.1. Supposefc C1([0, 1],E), satisfies
(i) f(o)=f()=o, f’(o)<o,f’()<o,
(ii) f(u) < 0 for 0 < u < ao,
(iii) f(u) > 0 for al < u < 1, 0< ao--- eel < 1,

and suppose there exists a monotone traveling wavefront { v, (t) }, v, (t) U(n + ct). Then
for any solution { u, (t) } of (1) which satisfies

0 <- u, (0) <- for all integers n, and

lim sup u,(O) < ao_-< eel < lim inf u.(O),

there exists a constant s such that

lim(sup[u.(t)-U(n+ct-s)[)_ n =0.

The following corollary is a direct consequence of Theorem 1.1.
COROLLARY 1.2. Suppose {u,(t)} and {v(t)} are traveling wavefronts of (1). Then

there exists a constant to such that {u,(t)} {v,(t-to)}. In particular, there is a unique
speed c for traveling wavefronts.

2. Proof of the theorem. We will make use of the following lemma [6, Thms. 4.1,
4.23.

LEMMA 2.1. If the hypotheses of Theorem 1.1 hold, then there are constants zl, z2,

qo, Io (the last two positive) such that

(3) U(n+ct-zl)-qoe-’<-u.(t)<= U(n+ct-z2)+qo e-’.

Furthermore, if there are constants to, Zo, and e for which

sup lu,( to)- U(n + Cto-Zo)l < e,
n7/

then there is a number to e with lim_o to (e) 0 such that

suplu,(t)-U(n+ct-zo)l<to(e) for all t>-to.
n7/

Lemma 2.1 says that {u,(t)} is "more or less" bounded between two shifted
wavefronts and if {u. (t)} is close to a wavefront U at some instant then it will remain
close to U. The main idea for the following proof is the attempt to replace the constants
zl, z2 in (3) by functions zl(t), Zz(t) with lim,_zl(t)=lim,_.z(t).

Let

and

Note that z2 A, zl B, and Theorem 1.1 will be proved if we show that A fq B .
By assumption (i) of Theorem 1.1 there exist positive constants/x and 30 such that

(4a) f(x)-f(y) <= -lz(x- y) for all x, y [0, o], and

(4b) f(x)-f(y) <- -tx(x-y) for all x, y c [1 to, 1].
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Choose 6 (0, 30), arbitrary. Since U(-o)=0 and U(o)= 1, we may choose noZ
and nl ;7 such that

U(no- z2) =<- and U(nl- z) >_- 1 --.
2 2

Now let I(t) := {n : no- ct n n ct},

Af:={s[ze, zl]’limsup[ sup w(t)] 01,t nl(t)

t nel(t)

LEMMA 2.2. Af A and Bf B.
Proof From the definition of Ay, A, By, and B it is clear that A = Ay and B c By.

It suffices to show Ay = A, since the proof of By = B is identical.
So suppose s Ay. Then

t nel(t)

and we have to show that

limsup supw,(t) _--<0,
t-- L

i.e., given e > 0 there exists T such that

(5) w(t)<-e for all nZ, t_->T.

Fix e > 0. Then there exists To such that

w,(t)-<_e for all nI(t), t>-To
and

(6) un(t)[6,1-6] for all nC_I(t), >-To.
Let q (0, 1) be such that

(7) d

We will show that the existence of a number Tk >= To, k No, such that

(8) w,(t)-< max {qk6, e} for all n Z, >-_ Tk,

will imply the existence of Tk+ >= To such that

(9) w(t)<--_max{qk+6, e} forallnZ, t>--Tk+.
Note that (9) only needs to be shown for n I(t). Suppose (8) holds and for some
index n we have

(10) max {qk+8, e}=< W,(t) =< max {qk6, e}, t>= Tk.

Since u, and U satisfy (1) we obtain

(11) , d(w._-2w. + wS.+)+f(u.)-f(U),
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which can be rewritten to

(12) ff,=d ,1+ "+1-2, w.+
14n

From (7), (8), and (10), we deduce

(13) d wn-1 Wn+l
ws-I-s

and from (4a), (4b), and (6) we get

(14)
f(u)-f(U)

Finally, from (12), (13), and (14) we estimate

(15) w.-w..

f(u. -f(U)

holds for all sequences {mk}k__l, mk I(tk),

or (19) does not hold.
If (19) holds, then it follows from (16) and by induction that

limk_.sup.(tk) lw(tk)l=O. Together with (18) this implies that there exists K
such that sup.g Iw(tk)l < 6 for all k >_-K. Since 6 may be chosen to be less than e,
this contradicts (17).

Therefore (19) does not hold and hence there exist a subsequence of {tk}, which
we also denote by {tk}, a sequence {ink}, mk l(tk), and Co>0 such that

(20) limwk(tk)=O and IWSmk_l(tk)ld-lWSm+,(tk)l>=eO
kc

(19)

lim W(tk)=O implies lim (Iw.-,(t)l+lw.+,(t)l)--o
k kc

(18)

Either

With Gronwall’s lemma we deduce (9) where Tk+l is determined by

exp (_1tx T+ Tk q.

The claim (5) then follows by induction.
Because of Lemma 2.2 it now suffices to show that Aytq By . To reach a

contradiction suppose Ay f-) By
We consider Ay and By as topological subspaces of the interval [z2, zl]. It is easy

to check that By is closed and therefore we may pick s OBr\Ay. Since s OBy there
exist sequences {tk}_l, limk_, tk =, {nk}k=, nk I(tk), such that

(16) lim W(tk)=O.
kc

Since s : Ay By A f-) B there exists e > 0 such that

(17) sup ]w,(t)] > e

in view of Lemma 2.1.
It follows from the definition of I(t) that there exists To such that

Iw,(t)] < for all n I(t), t-> To.



1020 . ZINNER

It follows from (20) and s OBy c B that there exists K such that

/o
--2W,k(tk) > 4’

and

ow,k-1 (tk) + W’m+,(tk) > 2’

f( u., (h,)) f( U rn ch, s)) >

holds for all k-> K. Therefore (11) implies

deo(21) (tk)>
8

for all k -> K.

It also follows from (11) that there exists M > 0 such that

fi),(t)<M for all nMand t_->0,

which implies together with (21) that there exists h > 0 such that

deov0,,k(t)> forall t[tk--h, tk] k>K.
16

Therefore --Wmk(tk h) > (hdeo/16)- w(tk) for all k => K which implies together with
(20) that

hdeolim sup -w(t) _-> > 0,
,- 16

in contradiction to s By.
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AN OSCILLATION METHOD FOR FOURTH-ORDER, SELF-ADJOINT,
TWO-POINT BOUNDARY VALUE PROBLEMS WITH NONLINEAR

EIGENVALUES*

LEON GREENBERG

Abstract. An oscillation method is presented for finding the eigenvalues of a fourth-order, self-adjoint,
two-point boundary value problem. The eigenvalue may occur nonlinearly in the differential equation, and
may occur in the boundary conditions. The method can approximate the nth eigenvalue without consideration
of other eigenvalues. It provides an a posteriori error estimate for the approximate eigenvalue.

Key words, eigenvalue, eigenfunction, self-adjoint, oscillation, energy inner product, Wronskian, Sturm-
Liouville equation
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1. Introduction. Physical problems often lead to linear two-point boundary value
problems in which the eigenvalue occurs nonlinearly in the differential equation, and
may occur in the boundary conditions. Typically, this type of equation arises when
we linearize a nonlinear equation and look for normal modes. Examples of such
problems occur in acoustics (Porter and Reiss [10]), mechanics of beams (Roseau
[12]), and hydrodynamics (Drazin and Reid [5], Chandrasekhar [2], [3]).

A classical example of this kind of problem is a Sturm-Liouville equation

(p(x,A)u’)’+q(x,A)u=O for0<x< 1,

(1.1) o(;) u(0)+ to(;) u’(0) 0,

a(A)u(1) + l(A)u’(1):0.

In [8], Greenberg and Babuka studied the problem (1.1) by means of a function
N(A), which is related to the number of oscillations of a solution of the differential
equation. Under suitable conditions, (1.1) has N(,V’)- N(A’) eigenvalues in the interval
[,V, ,V’). This enables us to decide whether or not a given interval [,V, ,V’) contains an
eigenvalue. Furthermore, if N(,V) =< n- 1 and N(A") => n, then the nth eigenvalue
satisfies ,V_-< An < ,V’. Thus we can determine if An lies in a given interval. By applying
the bisection method to N(A), we can approximate the nth eigenvalue without con-
sideration of other eigenvalues, and with an a posteriori error estimate.

In this paper, the above results will be extended to fourth-order boundary value
problems. N(A) will be related to the oscillations of the Wronskian of two solutions
of the differential equation. In [8], the analysis for the second-order problem was
based on the Sturm comparison and oscillation theorems and on Sturm sequences for
tridiagonal matrices. These methods are not applicable to the fourth-order problem.
An entirely different analysis is given here, based on variational properties of eigen-
values and inertial properties of the energy inner product. It seems likely that these
methods can be applied to higher-order problems.

We shall consider two types of fourth-order problems: A scalar equation

(I) L(u; A)=(p(x,A)u")"-(q(x,A)u’)’+r(x,A)u=O for0<x<l

* Received by the editors December 11, 1989; accepted for publication (in revised form) August 2, 1990.
t Mathematics Department, University of Maryland, College Park, Maryland 20742.
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with boundary conditions of the form

BCo(u" A)__ I-/aOl(A)
U

and

BC(u; A)
L/3(A)

and a vector equation

(II)

[u(O)
,o4q | u’O
04(/)J / Utt(O)

Lu’"(o)

012() 013(})
12(/ 13( 14(/

u(1)
u’(1) =o;
u"(1)
’"(1)

L(u; Z)= -(P(x, A)u’+ Q(x, Z)u)’+ Qr(x, A)u’+ R(x, Z)u =0

with boundary conditions of the form

BCo(u" A)--
[|aOl(A)
L

and

[u,(O)
004(/)] /U2(O)
04(X) / u(O)

Lug(0)

=0

for 0< x < 1

(S1)

Standard assumptions for problem (I).

p(x, A), (O/Ox)p(x, A), (02/Ox2)p(x, A), q(x, A), (O/Ox)q(x, A), and r(x, A) are
continuous functions on [0, 1] x (A, A2).

($2) p(x,A)>=k>O for0-<x-<l, AI<A<A2.
Standard assumptions for problem (II).

(Sla) P(x, A), (O/Ox)P(x, A), Q(x, A), (o/ox)Q(x, ), and R(x, h) are continuous
matrix functions on [0, 1] x (A1, A2).

Ul(1)

BCl(U; A)=
jl 1(/) jI2(A) J13(/) j14(/) U(1)--0.

u(1)

In problem (II) u(x)=(u(x),u2(x)) r and P(x,A), Q(x,A), and R(x,A) are 2x2
matrices. (Note that Qr(x, A) denotes the transpose of Q(x, A).) The boundary condi-
tions are required to be self-adjoint. This will be discussed in 3.

We shall need to make certain assumptions about the coefficient functions in
problems (I) and (II). As indicated below, these occur in several categories. The
standard assumptions will always be implicitly assumed. The other assumptions will
be explicitly assumed when needed. (The monotonicity and limit assumptions are
similar to assumptions in the Sturm oscillation theorem for second-order problems.)
The reader may wish to skip over or scan through these assumptions at first. The
monotonicity and limit assumptions will only be used in 4. In the following, A will
vary in an interval (A, A2). We do not exclude the possibilities A1----o0 or A2--oo.
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(Slb)

(S2)

P(x,A)=Pr(x,A) and R(x,A)=Rr(x,) for 0_<-x_-<l, A,<A<A2.

There is a number k>0 such that for any vector = (:, 2) T, Tp(x, 1)>--
k(+s) for 0--<x--< 1, AI<A<A2.

($3)

($4)

Standard assumptions for problems (I) and (II).

The coefficients in the boundary conditions are continuous functions of A on
(A, A2).

At each endpoint x =0, 1, the two given boundary conditions are linearly
independent for A1 < A < A2.

($5) Any essential boundary conditions have constant coefficients (see Remark 2,
below).

Remark 1. We do not need the full strength of assumption ($1). It would be
enough to assume that these functions are piecewise smooth in x (up to the indicated
degree of smoothness), and continuous in A. We assume (S1) for simplicity.

Remark 2. Regarding ($5), recall that an essential boundary condition for (I)
involves u and u’, but no higher derivatives. An essential boundary condition for (II)
involves u and u, but no derivatives. The relevant Hilbert space for problem (I)
(respectively, (II)) is a subspace of the Sobolev space H2[0, 1] (respectively, H[0, 1] x
Hi[0, 1]) that depends on the essential boundary conditions. We have assumed condi-
tion ($5) in order to prevent this space from changing as A varies. This will enable us
to apply well-known monotonicity properties of eigenvalues.

The energy inner product for (I) is of the form

+ [p(x,)u"v"+q(x,A)u’v’+r(x,)uv] dx.

Here the inner product /3i(u, v; h) (for i=0, 1) arises from the natural boundary
conditions at the endpoint x i, and has the form

[3i(u, v; h)= ai(h)u(i)v(i)+ bi(h)(u(i)v’(i)+u’(i)v(i))
(1.3)

+ ci(A)u’(i)v’(i).

For problem (II), we shall use the "dot product" notation"
where :- (, 2)r and r/= (r/, r/2). The energy inner product for (II) has the form

(1.4)

B(u, v; 1)=-/3o(U, v; /)-lt-/I(U, V; /)

+ [P(x, h)u" v’+ Q(x, h)u. v’
0

+ Q(x, h)v. u’+ R(x, h)u. v] dx,

where

[3i(U V’ 1 ai(A )ul( i)v,( i) + bi(A )(u,( i)vz( i) + u( i)vl( i))
(1.5)

+ ci(A)Uz(i)v(i).

(These inner products will be discussed in 3, where we shall classify the boundary
conditions.)

Please note that the inner products in this paper are often indefinite. For a linear
eigenvalue problem, the number of negative eigenvalues equals the negative index of
inertia of the energy inner product B(u, v).
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We shall assume monotonicity conditions on the coefficients of (I) and (II) in
order to force B(u, u; A) to be a strictly decreasing function of A for each u 0.

Monotonicity assumptions for (I).

(M1) For each x, r(x, A) is a strictly decreasing function of A.

(M2) For each x, p(x, A) and q(x, A) are nonincreasing functions of

Monotonicity assumptions for (II).

(M1) For each x and for - (1, :2)r 0, R(x,A). is a strictly decreasing
function of A.

(M2) For each x and for any vectors =(1,2)r, r/-(r/1, r/:) r, P(x,A).:+
2Q(x, A)r/. + R(x, A)7" r/is a nonincreasing function of A.

Monotonicity assumptions for (I) and (II).
(M3) For each vector --(1, (2) , the boundary term flo=ao(h):2+

2bo(h)12+ Co(A) is a nondecreasing function of h.

(M4) For each vector =(s1,2) r, the boundary term
261(h):l2+ Cl(A) is a nonincreasing function of h.

Remark 3. If A(A) is an n x n symmetric matrix whose coefficients ai(h) are
differentiable functions of A, and := (1, 2,"" ", n) T 30, then TA(A): is a strictly
decreasing function of h if (d/ dh)A(A) is negative definite. (If A(A) is not differentiable,
an analogous condition is that A(A") A(A’) be negative definite for h’ < h".) Suppose
that the coefficients in (I) and (II) are differentiable functions of h. Then (M1) is
satisfied for (II) if (O/Oh)R(x,h) is negative definite. (M2) is satisfied for (II) if
(0/0)[ P Q

q R] is negative semidefinite. (M3) is satisfied if (d/dA)[ a b] is positivebo Co
semidefinite. (M4) is satisfied if (d/dA)[ ’ b,

b, c,] is negative semidefinite.
The main result in this paper is Theorem 4.2, which indicates how N(A) can be

used to locate eigenvalues. It is an analogue for fourth-order problems of Theorem
2.1 in [8], which deals with second-order problems. The condition (L1) below will be
needed to ensure that B(u, v; A) is positive definite when A is near A1. In a companion
paper [7], an existence theorem, similar to the Sturm oscillation theorem, will be
proved. The condition (L2) below will be needed to guarantee the existence of infinitely
many eigenvalues. For (I), we can place the burden for this either on r(x, A) or q(x, A),
and so we shall give two possible conditions for each of these cases. We shall use the
following notation:

(1.6) f*(A) max f(x, A), f,(A) min f(x, A).
0-----_xl 0xl

Limit assumptions for (I).

(L1) Either (a) lim_A, r.(A) =c or (b) lim_A, q.(A)= and there exists A+ in
(A, A) such that r.(A+) > 0, ao(A+) --< 0, and al(A+) > 0.1

(L2) Either (a) lim;A2 r*(A)---cx3 or (b) lim_A q*(A)=-c.

In problem (II), let R(x, A) have eigenvalues IR(X, A) __--< ’R(X, A), and let/R(A)
minol IR(X, A), ’R(A)=maxo_l UR(X, A). The matrix .) has eigen-
values +/-o(x,A) and +,o(x,A), where O<=lo(x, A) <-- uo(x, A). Let ,o(A)=
maxo UQ x, h ).

The functions ao(A) and al(A) in (Llb) are coefficients in the boundary terms flo(U, v; A) and fl(u, v; A)
in (1.2) and (1.3).
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Limit assumptions for (II).

()
(L1) lim )2= oo.

-A 1 + UQ(A

(L2) lim -oo.
-+A2 1 + UQ(A)

Remark 4. For (II), the denominator in (L1) is 1 + uQ(A)2 rather than pQ(A)2 in
order to counteract the effect of small UQ(A), and similarly for (L2). If Q(A) is
bounded, then (L1) may be replaced by limA, n(A)=, and (L2) replaced by

limaA2 UR(A) =-.
The construction of the function N(A) begins in 2, where we consider linear

eigenvalue problems of the form Lu Au. Here A does not appear in the coecients
of L or the boundary conditions. A number No(L) is defined, using the Wronskian
w(x) of two solutions of the differential equation Lu =0. No(L) is related to the zeros
of w(x). Theorem 2.2 asserts that No(L) equals the number of negative eigenvalues
of L if L has Dirichlet boundary conditions at x 1. This theorem was proved (for
problem (II)) by Morse [9], in the context of extremal curves in the calculus of
variations. It is also one of the main theorems in Edwards [6], where it is proved by
topological methods. The proof given in 2 is simpler and more direct than previous
proofs. It uses only standard tools from eigenvalue theory.

In order to deal with operators that do not have Dirichlet boundary conditions,
a "correction term" (L) is defined, using an orthogonal decomposition of the energy
inner product. The integer (L) can have values 0, 1, or 2. Theorem 2.5 asserts that
the number N(L)= No(L)+ (L) equals the number of negative eigenvalues of L. This
theorem is due to Edwards [6]. However, it should be mentioned that Edwards never
explicitly addresses the boundary conditions, and so (L) cannot be related to the
coecients of the boundary value problem. Here we emphasize the detailed calculation
of formulas, which enables numerical computation.

In 3 we classify the separated, self-adjoint boundary conditions for (I) and (II)
into four types (for each problem). The inner products o(U, v) and (u, v) are
calculated for each type of boundary condition. We also calculate the inner product
B(u, ), which is used to compute (L).

By its definition in (2.22), B(u, v) is an integral. But an important feature of our
method is that B(u, v) and (L) depend only on values (of u, v their derivatives, and
the coecients of L) at x 1. In this respect, (L) is analogous to the term (A) in
[8], for Sturm-Liouville problems. The main purpose of 3 is to calculate B(u, )
and (L) for the different types of boundary conditions.

In 4, we turn to the case where the operator L and the boundary conditions
depend on A. Let L denote the operator L for fixed A, and let (A) be the kth
eigenvalue of L. The monotonicity assumptions imply that the (A) are strictly
decreasing functions of A. The zeros of these functions are the eigenvalues of L. These
are the key facts that allow the theorems of 2 to carry over to the A-dependent case.
We define N(A)= N(L), and Theorem 4.2 shows that N(A) has properties similar to
those proved in [8] for Sturm-Liouville problems.

In 5 we discuss propeies of the Wronskians that are used to calculate N(A).
Our method requires the calculation of n(x; A)= nullity W(x; A), where W(x; A) is a
ceain Wronskian matrix. The integers n(x; A) can be 0, 1, or 2, and n(xo; A)>0 if
and only if Xo is a zero of the Wronskian determinant w(x)= w(x; A)=det W(x; A).
An impoant fact established in 5 is that w(x) changes sign at Xo if n(x0; A)= 1, but
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does not change sign if n(xo; h)=2. This enables us to distinguish the two cases
numerically.

2. Linear eigenvalue problems. In this section, we shall consider differential
operators L of types (I) and (II) in the case that the coefficients (in L and in the
boundary conditions) do not depend on h. Our main objective in this section is to
prove two formulas (Theorems 2.2 and 2.5) for the number of negative eigenvalues
of L.

Let Hk[a, b] be the Sobolev space of functions u(x) that have derivatives u()(x)
LZ[a, b] for O<-j<=k. The basic Hilbert space for (I) is

H {u e H2[0, 1] [U satisfies the essential boundary
(2.1)

conditions at x 0, 1}.

The basic Hilbert space for (II) is

/4 {u H[0, 1]/4[0, 1]]u satisfies the essential boundary
(2.2)

conditions at x 0, 1).

The energy inner products in these spaces are given in (1.2) and (1.4). (Note that the
above spaces are the relevant Hilbert spaces for (I) and (II) whether or not the
coefficients depend on X. The standard assumption ($5) implies that these spaces do
not change when A varies. In the present section, the operator L and the energy inner
product B do not depend on X.) Let Ilull denote the norm ( U(X)2 dx)/ in L2[0, y].
The following estimates are immediate consequences of the fundamental theorem of
calculus and Schwarz’s inequality.

LEMMA 2.1. Let u(x) be a function in H[0, y] such that U(Xo)=0 for some

Xo [0, y ]. Then

(1) u(x)Z<- y[[u’[[ 2 for O<- x<-_ y, and

(2) u y u’]].

DENVrON 2.1. Let L be an operator of type (I) or (II), where we assume that
the coefficients in L and in the boundary conditions do not depend on A. For 0 < y =< 1,
let Ll[o,y denote the operator L restricted to the interval [0, y], with the given boundary
conditions BCo(u)=0 at x-0, and Dirichlet boundary conditions at x=y. (Recall
that Dirichlet conditions for problem (I) are u(y)= u’(y)-0, and for problem (II) are
u(y)=Uz(y)--O.)

THEOREM 2.1. Let h(y) be the smallest eigenvalue ofL[to,y. Then limy_.O hi(y) =oo.
Proof We shall use the formula

(2.3)
h,(y)= min

B(u,u)

where the Hilbert space H, energy inner product B, and norm []u[I have all been
restricted to the interval [0, y] (and u e H is required to satisfy Dirichlet conditions
at x= y). Thus, for example, [lull 2= u(x) dx.

For (I), the energy inner product is

2 2(2.4) B(u, u)= -/3o(u, u)+ [p(x)u"(x) + q(x)u’(x) + r(x)u(x)2] dx,
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where

(2.5) /30(u) aou(O) + 2bou(O)u’(O) + CoU’(0)2.
(The term/3y(U, u) is absent because we have Dirichlet conditions at x- y.) Using the
notation f. minox f(x), and recalling that p(x) >= k > 0, we have

B(u, u) >- -o(U, u)+ klJu"ll2+ q, llu’ll2+ r, llull .(2.6)

By Lemma 2.1,

(2.7)

(2.8)

Therefore,

(2.9)

[flo(U, u)l <- (laoly + 21boly2 + Icoly)llu"ll 2.

B(u, u)> (k- ay- fly2- yy3- 6y4)llu"ll 2

i111 y4ll u,,ll2
where a Icol, Iq, + 2lbo[, -laol, and ; Ir, I. This implies that

k oy [y2 ,)/y3 ty4)
(2.10) Al(y) y4
and so limy_o h(y)= oo. This proves the theorem for (I).

For (II), the energy inner product is

(2.11) B(u, u)=-fio(U, u)+ [P(x)u"u’+2Q(x)u’u’+R(x)u’u] dx,

where

(2.12) flo(U, U) aoUl(0)2 4- 2boUl(O)u2(O) 4- CoU2(0)2.
The matrix o(x (Xlo has eigenvalues +xo(x) and +uo(x), where 0 <= o(x) < o(x).
Let o maxo uo(x). Then, for any e > 0,

l(x). ’1 = O(x) "(’) ok+ "
Let R(X) be the smallest eigenvalue of R(x), and R minox R(X). Then

R(x)u’uu’u.
Recall that P(x)u’. u’ ku’. u’, where k > O. The above remarks imply that

(2.13) B(u, u)-o(u, u)+ (k-e2o)u’’u’+ R-- U’U dx.

+lllLet I "" "dx 111 + I1"11 and similarly I dx ,
Lemma 2.1 implies that I111 yll’ll . Therefore,

(2.14) B(, )e-o(, )+ (k-o) - y II
We can estimate flo(U, u) as in (I) to obtain

(2.15) leo(U, u)l (laol + 2lbol + ICol)yllu’ll .
Therefore,

(2.a6) n(u, u) ( -y- y2)ll u’l12,
where k- e2uo, laol + 21bol + Icol, and r I -(uo/ez) Now choose e small
enough so that k-euo > 0, and the proof concludes as for (I).



1028 LEON GREENBERG

Remark. Inequalities (2.9) and (2.16) show that the Rayleigh quotient has a lower
bound, and so the eigenvalues are bounded from below on any interval [0, y]. This is
a well-known property of elliptic equations.

DEFINITION 2.2. Let L be a differential operator of type (I) or (II) on the interval
[0, 1 ]. (We assume that the coefficients in L and the boundary conditions do not depend
on A.) For a given number Ao, let u, v be linearly independent solutions of Lz AoZ
that satisfy the boundary conditions at x--0. Let W(x)= W(x; L, Ao)=
W[u, v](x; L, Ao) be the Wronskian matrix, and w(x)= w(x; L, Ao)= w[u, v](x; L, Ao)
the Wronskian determinant. Thus, for problem (I), W(x)= , ,], and for problem

//1 DI(II), W(x)= ]. In each case, w(x)=det W(x).
Please note that these Wronskian matrices and determinants have size 2 x 2. This

is in contrast to the standard practice for a fourth-order problem, where four indepen-
dent solutions are used, so that the Wronskians have size 4 4.

We now define the following functions:

(2.17) n(x; L, Ao) =nullity W(x) 2-rank W(x),

(2.18) No(L, Ao)= n(x; L, Ao),
0<x<l

(2.19) No(L)= No(L, O).

Remark. The integer n(x; L, Ao) can be 0, 1, or 2. Moreover, there can be only
finitely many points x (0, 1) such that n(x; L, Ao)>0. (This will be verified in the
proof of the following theorem.) Thus, the right-hand side of (2.18) is a finite sum.
TEOE 2.2. Let L be a differential operator of type (I) or (II). (We assume that

the coefficients in L and in the boundary conditions do not depend on .) Suppose that L
has Dirichlet boundary conditions at x 1. Then L has exactly No(L, o) eigenvalues
(counting multiplicity) that are less than Ao. In particular, L has No(L) negative eigen-
values.

Proof For 0 < y =< 1, consider the restricted operator Llto.y defined in Definition
2.1. Let u, v be linearly independent solutions of Lz AoZ that satisfy the boundary
conditions at x 0 (as in Definition 2.2). The given number Ao is an eigenvalue of
Llto,y if and only if there exist constants a, b (not both zero) such that z au + by

satisfies the Dirichlet conditions at x=y. Such constants exist if and only if the
Wronskian w[u, v](y; L, Ao) 0. The integer n(y; L, Ao) is the multiplicity of the eigen-
value ho for Ll[o,y ].

Let hk(y) be the kth eigenvalue of L[to,y 3. Then n(y; L, ho)>0 if and only if
hk(y) Ao for some k. Furthermore, n(y; L, ho) is the number of functions h(y) (i.e.,
the number of indices k) such that h(y)= ho.

It is well known that A(y) is a continuous, strictly decreasing function of y. (See,
for example, Weinberger [13].) Therefore, for each k, there can be at most one y such
that h(y)= ho. Theorem 2.1 implies that all of the functions hk(y) decrease from
to h(1) as y varies from 0 to 1. Therefore there exists y(0, 1) such that A(y) ho
if and only if h(1)<ho. But the numbers h(1) are the eigenvalues of L. Therefore,
there are only finitely many indices k such that Ak(1) < ho. This shows that only finitely
many terms n(x; L, ho) in (2.18) can be nonzero. It also shows that No(L, ho) equals
the number of eigenvalues Ak(1) that are less than Ao.

The formula given in Definition 2.2 and Theorem 2.2 is the first objective of this
section. It deals with the case where L has Dirichlet conditions at x 1. Next we shall
find a formula that deals with more general boundary conditions. A "correction term"
tr(L) will be constructed that depends on the boundary conditions at x 1. It will be
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shown that the function N(L)= No(L)+ tr(L) counts the negative eigenvalues of L.
Let H be one of the spaces (2.1) or (2.2) (corresponding to (I) or (II)), and let

B(u, v) be the energy inner product in H. The negative eigenvalues of L are, of course,
related to the inertial properties of B(u, v). This point of view is based on the following
theorem, which is easily proved by using eigenfunction expansions. The proof will be
omitted. We state the theorem to set the mood for the subsequent discussion.

THEOREM 2.3. The following numbers are equal:
(1) The maximum dimension of a subspace V c H on which B(u, v) is negative

definite;
(2) The dimension of a maximal subspace Vc H on which B(u, v) is negative

definite;
(3) The number of negative eigenvalues of L (counted with multiplicity).
DEFINITION 2.3. We shall consider the following subspaces of H"

(2.20) Ho {u Hlu satisfies Dirichlet conditions at x 1}.
S(L) {u HILu 0 and u satisfies the given

(2.21) boundary conditions at x 0}.
The restrictions of the energy inner product B to these subspaces will be denoted as
follows:

(2.22) Bo
We shall also consider the following operator:
(2.23) Lo is the differential operator that has the same differential

expression as L, with the given boundary conditions at x 0, and
Dirichlet boundary conditions at x 1.

Remarks. In the notation of Definition 2.1, Lo L1o,11. Ho is the relevant Hilbert
space for Lo and Bo is the energy inner product in Ho. The condition in brackets on
the right-hand side of (2.21) should be interpreted in the weak sense: B(u, v)=0 for
all v Ho. This forces u to have enough smoothness so that the condition in (2.21)
can be interpreted and is valid in the classical sense. Note that the functions in S(L)
are required to satisfy the essential boundary conditions at x 1 (if any), since this is
part of the definition of H. Thus dim S(L) can be 0, 1, or 2. If zero is not an eigenvalue
of Lo, then dim S(L) 2- u, where u is the number of independent essential boundary
conditions at x 1. In this case dim S(L)= codim Ho.

THEOREM 2.4. (a) S(L) is the subspace of H that is orthogonal to Ho with respect
to the energy inner product B.

(b) If 0 is not an eigenvalue ofLo, then H Ho@ S(L) (orthogonal decomposition).
Proof (a) The equation

(2.24) B(u, v)=0 for all v Ho
is the weak form of

(2.25) Lu =0

and u satisfies the given boundary conditions at x 0.
(b) Since zero is not an eigenvalue of Lo, dim S(L)= codim Ho (as was remarked

above). Furthermore HoVI S(L) {0}, because any nontrivial function u Ho S(L)
is an eigenfunction of Lo with eigenvalue zero. This shows that H Ho S(L).

DEFINITION 2.4. If F(u, v) is an inner product on a space X, the index of F is

Ind F sup {dim V] V is a subspace of X on which F
(2.26) is negative definite}.
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We now define

(2.27) o-(L) Ind B

and

(2.28) N(L) No(L) + o-(L),

if zero is not an eigenvalue of Lo;

(2.29) N(L) lim N(L+ e),
0

if zero is an eigenvalue of Lo.
Remarks. Theorem 2.2 asserts that Ind Bo No(L). Note that tr(L) can be 0, 1,

or 2. One way to calculate or(L) is to represent Bs by a (symmetric) matrix A, with
respect to some basis of S(L). Then tr(L) is the number of negative eigenvalues of A.

Note that to calculate N(L+ e), we would find solutions of Lz=-ez.
THEOREM 2.5. Let L be a differential operator of type (I) or (II). (We assume that

the coefficients in L and in the boundary conditions do not depend on A.) Then L has
exactly N(L) negative eigenvalues (counting multiplicity).

Proof First suppose that zero is not an eigenvalue of Lo. Then N(L)=
No(L) + r(L). By Theorem 2.3, the number of negative eigenvalues of L is Ind B. The
orthogonal decomposition H= HoS(L) (in Theorem 2.4) implies that Ind B=
Ind Bo+Ind Bs, which equals No(L)+tr(L)= N(L).

If zero is an eigenvalue of Lo, then it is not an eigenvalue of Lo+ e for small e.

Let A1, A2, , An be the negative eigenvalues of L. Then A1 + e, , An + e are eigen-
values of L+ e, and for small e they remain negative. Thus Ind B n N(L+ e), for
small e.

Remark. In the next section we shall express the inner product B, explicitly in
terms of the boundary conditions.

3. Self-adjoint boundary conditions. The separated, self-adjoint boundary condi-
tions for problems (I) and (II) will now be classified. The inner products flo(U, v),
ill(U, v) (that occur in (1.2)-(1.4)) and B(u, v) (in (2.22)) will be calculated for each
type of boundary condition. As in the previous section, we assume that the operator
L and the boundary conditions do not depend on A.

LEMMA 3.1. Let V be a two-dimensional subspace of 4 such that

(x2y x3Y2) + (x4y XlY4) 0

for all x, y V. Then V is the solution space of one of the following systems of equations:

(1) {X =0,
x=O;

(2) {xl =0,CX2 ql_ X3 0"

ax at- bx x4 O,
(3)

bxl-x2=O;
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+ bx2 X4 0,
(4)

(bXl+ cx2+ x3 =0

The above coefficients a, b, c can be arbitrary real numbers.
Proof Using the Euclidean inner product (x, y)=4i=1 xiyi in R4, let W- be the

orthogonal complement of V. Consider the matrix

(3.1) 0 0 0 -1

S=
0 0 1 0

0 -1 0 0

1 0 0 0

Note that

(3.2) (x, Sy)-- (x2y x3Y2) -- (x4y xlY4).

The equation (*) says that (x, Sy) 0 for all x, y e V. This implies that S(V) V+/-. Since
S2= -I, S(W-)= S2(V)= V. Thus S interchanges V and V+/-. Therefore if x, y
then S(y) V and so (x, S(y))=0. This shows that equation (*) is satisfied for all
x,y W-.

Now let a (c1, c2, a3, c4),/3 (/31,/32,/33,/34)r be a basis for VI. Then V is
the solution space of the system of equations

OIX "- 02X2 "1- 03X3 - O/4X4 0)
(3.3)

jlXl -- 2X2 -- 3X3 -- j4X4 0.

Since ce,/3 satisfy equation (*), we have

(3.4) O2/ O32 O1/4 O4
Using (3.4), the lemma can be proved by considering several cases, depending on

the rank of the matrix A 3 114] The details are left to the reader.
Notation 3.1. The boundary conditions for (I) will be given using the following

functions: Uo u, ul u’, u2=pu’’, u3 (pu")’-qu’.
THEOREM 3.1. For problem (I), self-adjoint (separated) boundary conditions at

x (where O, 1) are equivalent to one of thefollowing types. The conditions at x 0
and x 1 are independent of each other.)

Uo(i) 0 Dirichlet conditions ),
1

ul(i) =0;

(2) { u(i) 0,
eul(i)+u2(i)=O,

auo(i) + bu2( i) -/,/3(i) 0,
(3)

buo(i)-ul(i)=O;

auo(i) + bUl( i) -/.,/3(i) O,
(4)

buo(i) + CUl(i) + u2(i) 0.

Proof Let L be the operator of (I). Integration by parts shows that

(Lu)vdx=-yo(U, v)-] ’/l(U v)-’ u(Lv) dx,

where (for 0, 1)
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(3.5) /i(u, v)= (u,(i)v2(i)- u2(i)v,(i))+(u3(i)vo(i)- uo(i)v3(i)).

The boundary conditions

OZoiUo(i) + aiu,(i) + o2iu2(i) + o3iu3(i) 0,
(3.6)

flo,Uo(i) +/3iu (i) + fl2iu2(i) + fl3u3(i) 0

at x--i are self-adjoint if and only if y(u, v)= 0 for all u, v satisfying (3.6). Setting
(Xl, X2, X3, X4) (Uo(i), Ul(i), u2(i), u3(i)), we see that Lemma 3.1 implies that the
equations (3.6) are equivalent to one of the types listed in the theorem. ]

Notation 3.2. The boundary conditions for (II) will be given using the functions
u (Ul, u2) T and ti (ti, ti2) T Pu’ + Qu.

The following theorem is proved similarly to the previous one by setting
(xl, x2, x3, x4) (ul(i), u)_(i), ti2(i), -ti(i)) in Lemma 3.1.

THEOREM 3.2. For (II), self-adjoint (separated) boundary conditions at x (where
i= O, 1) are equivalent to one of the following types: (The conditions at x 0 and x 1
are independent of each other.)

(i) 0 (Dirichlet conditions),
(1)

uz(i) -0;
=0,

(2)
cu2(i) +/2(i) 0;

au,(i) + til(i) + btie(i) 0,
(3)

bUl(i)-u2(i)=O;
aul(i) + bu2(i) + ft,(i) O,

(4)
bu(i)+ cu(i)+ a).(i)=0.

The following two theorems can be proved using integration by parts. The details
are left for the reader.

THEOREM 3.3. For (I), the following formulas give the inner products fl(u, v) and
Bs(u, v), corresponding to the different types of boundary conditions.

(1) { uo(i)=0,ul(i) =0;

i(u, v)=0. If i= 1, then Bs(u, v)=0.

(2) { u(i) 0,
cu(i)+u2(i)=O;

i(u, v)=cul(i)v(i). If i= 1, then Bs(u, v)=[CUl(1)+u2(1)]Vl(1).
auo(i) + bu2(i) u3(i) 0,

(3)
buo(i)-u(i)=O;

fli(u, v)= auo(i)vo(i).
If i= 1, then B(u, v)=[auo(1)+bu2(1)-u3(1)]Vo(1).

auo(i) + bu,(i) u3(i) 0,
(4)

buo( i) + CUl( i) + u2( i) 0;

fli(u, v)= auo(i)vo(i)+ b(uo(i)vl(i)+u(i)vo(i))+ cul(i)vl(i).
If 1, then

B(u, v) [auo(1) + bul(1) u3(1)]Vo(1)+[buo(1)+ cul(1) + u(1)]Vl(1).
THEOREM 3.4. For (II), the following formulas give the inner products B(u, v) and

B(u, v), corresponding to the different types of boundary conditions.
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=0,(1)
u2(i) =0;

fli(u, v)=O. If i= 1, then B,(u, v)=0.

(2) {ul(i) =0,cu2(i) + a2(i) O;
i(u, v)=cu2(i)v2(i). If i= 1, then B,(u, v)=[cu2(1)+fi2(1)]v2(1).

au,( i) + ,( i) + b2(i) 0,
(3)

bu,(i)-u(i)=O;

i(u, v)= au,(i)v,(i).
If i= 1, then B(u, v)=[au,(1)+,(1)+b(1)]v,(1).

au,(i) + bu2(i) + l(i) 0,
(4)

bu, i) + cu2( i) + 2(i) 0;

fli(u, v)= au,(i)v,(i)+ b(u,(i)v2(i)+u2(i)v,(i))+ cu2(i)v2(i).
If 1, then

B(u, v)=[au,(1)+bu2(1)+,(1)]v,(1)+[bu,(1)+cu2(1)+(1)]v2(1).
Remark. The inner products B(u, v) do not appear to be symmetric in the above

formulas. But this is only an illusion, since B(u, v) is symmetric.

4. Nonlinear eigenvalues. We now turn to the case where the operator L and the
boundary conditions depend on A. The coecients a, b, c in the boundary conditions
(see Theorems 3.1 and 3.2) may now be functions of A. But in the type (3) boundary
conditions (for (I) and (II)) the coecient b is assumed to be constant, because
essential boundary conditions are assumed to have constant coecients. (See the
standard assumption ($5) in 1.) The type of boundary condition does not change as
A varies, because the type is determined by the essential boundary conditions.

We begin with the following estimates, which will be needed in the proof of
Theorem 4.1. As before, we use the notation J]u]]= o u(x) dx.

LEMMA 4.1. Let e > O.
(1) Ifu Hi[0, 1], then u(x)2N ellu’][+(1 + 1/62)11u112.
(2) ere exists C(e) > 0 so that if u H2[0, 1] then Ilu’l12 21[u"ll=+ c()ltull 2.
Proof (1) Let minou(x)2=m2=u(xo)2. Then Ilull2=lou(x)dxm=, so

U(X)2 U(Xo)2 + 2U(X)U’(X) dx

m2+2()

2llu’l[2+ 1+ 11ull 2

(2) Integrating by parts, we have

Io’ IoIlu’ll= u’(x) dx= u(1)u’(1)- u(o)u’(o)- uu" dx,

and therefore,
(4.1) Ilu’lllu(1)u’(1)l+lu(O)u’(O)l+llull Ilu"ll.
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Let el, 62, 6 > 0 be constants to be determined later. For 0, 1 we have

1( ,(i)2+ 12 (i)2)(4.2) lu(i)u’(i)l <=- eZu U
E1

(4.3) Ilull Ilu"ll-<- Nllu"II=+ Ilull =

Part (1) of the lemma implies that

(4.4) u( i)2 6211 u,ll2 4- 1 4- u =,
(4.5) u’( i)2 _< u"ll 2 / 211 u’ll 2.

The above inequalities imply that

(4.6) 1-2e2- Ilu’ll=--< / Ilu"l12/ a/ / Ilull 2.

We may assume that E < 1 (or else replace E by e’ =1/2). Now let E1 E/2 and E2
=1 (i.e., 62 2)sothatE+(E/2)=E2/2. Define6sothatl--2E--(62/E2) =E2(1--E /8),

and let C(e)=Z[(1/EZ)(l+l/6)+l/(zEZ2)]. NOW (4.6) implies that

=II u"ll / c()ll u .
LEMMA 4.2. Let Q be an n x 2n matrix and let QI be its norm with respect to the

Euclidean norm in ffn. Let Q be the 2n x 2n matrix [o o
o o and let Ao be the maximum

eigenvalue of (. Then IQI- o.
Proof Let x, yn and z (y)t2n. The equation Qz Az is equivalent to the

pair of equations

(4.7) Q 7"x Ay, Qy Ax,

which imply that

(4.8) QQTx= Ax, QTQy= Ay.

Therefore, if A is an eigenvalue of 0, then h2 is an eigenvalue of QQ. Conversely, if
QTQy hZy, let Qy hx. Then hQTx QQy hZy. If h 0, then Qx by. Since
Qy Ax and Qx Ay, it follows that h is an eigenvalue of O. If h %then Q and
Q have a zero eigenvalue, so ( does also. Thus h is an eigenvalue of Q if and only
if h2 is an eigenvalue of QTQ. Since ho is the maximum eigenvalue of , h2o is the
maximum eigenvalue of QQ.

Let (x, y) denote the Euclidean inner product in ", and Ixl2= (x, x). Then

IQxl (Qx, Qx> (QrQx, x)
IQlZ=max =max =max

Therefore, [Q[ ho. l-I
Remark. The above proof shows that if h is an eigenvalue of Q, then -h is also

an eigenvalue. In fact, the characteristic polynomial p(h)=det (hi-Q) is an even
function. This can be seen by multiplying the first n rows and the last n columns of
det (hi- () by -1.

The lemma shows that the norm [QI of the matrix Q(x, h) (which occurs in (II))
equals the maximum eigenvalue uo(x, h) of --[T o]. This implies that

(4.9) IO(x, z)u. u’l-<
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where VQ(h) maxo__<x__<l vo(x, h). This fact will be used in the proof of the following
theorem.

THEOREM 4.1. Let L be a differential operator of type (I) or (II). Suppose that L
satisfies the monotonicity assumptions and the limit assumption (L1). Then the energy
inner product B(u, v; A) is positive definite for h near A1.

Proof Suppose that L is of type (I). Recall that

(4.10)

where, for 0, 1,

(4.11) fli(u, u; A)= ai(A)u(i)2+2b,(A)u(i)u’(i)+ ci(A)u’(i)2.

Suppose that L satisfies the limit assumption (Lla): lima_.A, r.(h)= . Let A<ho <
The standard assumption ($2) and the monotonicity assumptions imply that for

A1 < A < Ao,

(4.12)

and therefore,

S(u, u; ;t)_>--o(U, u; o)+B,(u, u; o)

Io’q-" (k(u")2+ q(x, /0)(U’)2-[ r(x, /)/,/2) dx,

B(u, u; A)-->-Iflo(U, u; Ao)l-Ifl,(u, u;
(4.13)

/ kll u"[l= / q,(Ao)ll u’ll= / r,()ll u =.
Letting a a(ho), bi b(ho), and ci c(Xo), we have

(4.14) [fl,(u, u; ,o)l<-Ia,]u(i)=/2lb, llu(i)u’(i)l/lc, lu’(i),
(4. 5) 2[u( i)u’( i)1 _< u(i)2 + u’(i)2.

Let e > 0 be a constant to be chosen later. Lemma 4.1 implies that

(4.16) u(i)2 Ilu’ll2/211ull =,
(4.17) u’(i)2<-- =ll u"ll= + (1+1) u,l[=.

These inequalities imply that

(4.18) Ifl,(u, u; Ao)[<=a,ellu"ll-/n,(e)llu’ll/cillull,
where a,=lb, l+lc, I, n,(e)=(la, l+lb, l)+([b,l+lc, I)(l+ 1/e 2) and C,-2([a,l+[b,I). Let-
ting A Ao+ At, B(e) Bo(e)+ B(e), and C Co+ C, the above inequalities imply
that for A < A < o,
(4.19) B(u, u; A)>-(k-m=)llu"ll=/(q,(Ao)-n())llu’ll=/(r,(,)-f)llull.
Let 6 > 0 be a constant to be determined later. Lemma 4.1 implies that there exists
D(6) > 0 so that

(4.20) u’ll = --< =11 u"ll = / D(8 )ll u =.
By letting E(e)= [q,(;to)-B(e)[, the inequalities (4.19) and (4.20) imply that

(4.2) n(u, u; ,)>=(k-m=-E()=)llu"ll=/(r,(,)-f -O()E())llull,
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for Al< h < ho. Now choose e and 6 so that Ae2 < k/2 and E(e)2 < k/2. Then
k-Ae2-E(e)52>O and (Lla) implies that r,(A)-C-D(6)E(e)>O for h near A.
This concludes the proof under the assumption (Lla).

Next we suppose that L is of type (I) and satisfies (Llb): lim_,A, q,(A)---o0 and
there exists A+ such that r,(h+) > 0, ao(h+) <= 0, and al(h+) >= 0. The standard assumption
($2) and the monotonicity assumptions imply that for A < h < h+,

B(u, u; A)-->_-rio(U, u; A+)+/3,(u, u; A+)+ k[[u"l]
(4.22)

+ q,(A)llu’ll2 + r,(A+)[[ u 2.

Letting ai ai(A+), bi b(A+), c= c(A+) and using

(4.23)

(4.24)

and

(4.25)

we obtain

(4.26)

(4.27)

where

A,(s) Ic,] + Ib1,

21u(i)u’(i)l eu( i)2+4 u’(i)2,
E

u(i)2=< Ilu’ll=+211ull ,
u’(i)<= allu"ll+ 1 + [[u’ll 2,

3,(u, u; A+)a,u(1)2-A,(e)a2llu"l[2-U,(e, a)llu’ll-c,211ull 2,

-30(u, u; a+)>--aou(O)2-Ao(e)aZllu"ll2-Bo(, a)llu’ll2-Coe2llu}12,

8,
Bi(E’ a)-lbi182- Icil’-{- 1 +-5 and Ci--2lb, I.

Letting A Ao+ A1, B Bo+ B1, and C Co+ C, (4.22) now implies that

B(u, u; a)>=-aou(O)2+a,u(1)2+(k-(A(e),S2)[[u"[I 2

(4.28)
+(q,(a)-B(e,

for A<A<A+. Choose e and 6 so that r,(A+)-Ce2>O and k-A(s)62>0. The
assumption (Llb) implies that q,(A)-B(e, 8)>0 for A near A1. This concludes the
proof under the assumption (Llb).

Now suppose that L is of type (II). Recall that

B(u, u; A)=-3o(U, u; Ao)+ fll(u, u; Ao)
(4.29)

+ (P(x, A)u’. u’+ 2Q(x, A)u" u’+ R(x, A)u" u) dx,

where

(4.30) i(U, U; A)--ai(A)ul(i)2+2bi(A)u,(i)u2(i)+ci(A)u2(i) 2.

The standard assumption ($2) and the monotonicity assumptions imply that for
A1 < A < Ao,

B(u, u; A)>--rio(U, u; ao)+ fll(u, u; Ao)
(4.31)

+ (ku" u’+ 2Q(x, A)u" u’+ R(x, A)u" u) dx.
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The eigenvalues of R(x,h) are /XR(X,A)--< UR(X,A), and /xR(h)=mino<__x__</x(x,h).
For u (Ul, U2) let lul = = =u + u and u go lul = dx, Then

(4.32) R(x, A)u, u dx e ()11 u =.
o Q(,The eigenvalues of (,) )] are (x, h) and ug(x, h), where 0 9(x, h)

u(x, h) and u(h) =maxo== ug(x, h). It follows from (4.9) that

(h)21Q(x,)u’u’l2o()lullu’llu’l+ 2 lul2,
and therefore,

(4.33) 2Q(x,)u.u’dx- 211u’112+ 2 Ilull =
o E

The inequalities (4.31), (4.32), and (4.33) imply

B(u, u; h)>--rio(U, u; ho)+ fl,(u, u; )to)

+ (k- e2)[I u’ll 2 / [/XR (A)
L

(4.34.)

for A1 < h < ho. Using the estimates

(4.35) 2lu,( i)u(i)[ <_-- Ul( i)2 + uz( i),
and

(4.36) uj(i)2<- =lluSIl=+ 1 + Ilull =,
we obtain

o()] Ilull =

(4.37) I,(u, u; o)lA, =llu’ll=/ 1+ Ilull =

where A,=la,(Ao)l+lb,(,o)l+lc,(Ao)]. Letting A= l+Ao+A1 and using the fact that
,o(A)2/e+A(1 + 1/ee)<-A(1 + ,o(A))(1 + 1/e), the inequalities (4.34) and (4.37)
imply that

B(u, u; A)>=(k-Ae=)llu’ll
(4.38) /zR(A)

-A 1/ Ilull 2+(1 + UQ(A)2)
1 + ,Q(A)2 -5

for AI<A<Ao. Now choose e>0 so that k-Ae2>O. The limit assumption (L1)
implies that

1 + ,o(h)-A 1 + >0 for h near A1.

Remark. If (I) has a boundary condition of type (1) or (2) at x =0 or 1 (see
Theorem 3.1 for the types of boundary conditions), then Lemma 2.1 implies that
u(x)2<-Ilu’ll 2 and Ilull=_-<llu’ll = for uH. In this case, estimates similar to those in
the the previous proof show that B(u, v; A) is positive definite for h near A1 if

lim_A, q,(h) c.
DEFINITION 4.1. L will denote the operator L for fixed A, and

(4.39) No(A)= No(L),
(4.40) o-(A) o-(Lx),
(4.41) N(A)= N(Lx) No(A) + o’(A).
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The following theorem is the main result of this paper. It is analogous to Theorem
2.1 in [8], which applies to second-order problems.

THEOREM 4.2. Let L be an operator of type (I) or (II).
(1) Let A1 < h’ h" A2. If L satisfies the monotonicity assumptions, then L has

exactly N(A")-N(A’) eigenvalues (counting multiplicity) in the interval [h’, h").
(2) Let A1 < h < A2. IfL also satisfies the limit assumption (L1), then L has exactly

N(A) eigenvalues (counting multiplicity) in the interval (A1, h).
Proof. (1) Let /z(h) -</2(h) _-<. _-</z, (h) --<_. be the eigenvalues of La. The

following statements are equivalent:
(a) ho is an eigenvalue of L;
(b) zero is an eigenvalue of Lxo;
(c) /Xk(hO)=0, for some k.

Furthermore, ho is a double eigenvalue of L if and only if/Zk(hO) =/k+l(ho)--0, for
some k.

The monotonicity assumptions imply that for each u H, u 0, B(u, u; A) is a
strictly decreasing function of h. This implies that the /Zk(h) are strictly decreasing
functions. By Theorem 2.5, La has exactly N(A) negative eigenvalues. As h increases
from h’ to h", the number of negative eigenvalues increases from N(A’) to N(A"). Thus
N(A")- N(A’) new eigenvalues /Zk(h) have become negative, thereby passing through
zero. This shows that L has N(A")-N(A’) eigenvalues in the interval [h’, h").

(2) If L satisfies the limit assumption (L1), then Theorem 4.1 shows that N(ho) 0
for ho near A. Part (1) of the present theorem implies that there are no eigenvalues
in the interval (A1, ho), and N(A)= 0 for A1 < h N ho. If ho < h < A2, then any eigen-
values in (A, A) are in the interval [ho, h), and the number of these eigenvalues is
N(A)- N(Ao)= N(A). 13

Remark. In [7] it is shown that if L satisfies the limit assumption (L2), then
lim_ N(A)=00 and L has infinitely many eigenvalues.

$. Wronskins. The Wronskians used to calculate N(A) will now be Considered
in greater detail. We shall define six Wronskians that are related to each other by a
system of differential equations. Let the given boundary conditions at x 0 be denoted
by BCo (y; A)=0. For a given o, let u,/) be linearly independent solutions of

L(y; Ao) 0,
(5.1)

BCo (y; ho) 0.

For problem (I) we continue to use the notation Uo--u, u- u’, u2=pu’’, and u3-
pu")’ qu’. Now let

W1 //0/)1 //1 V0, W2 /,/0/)2 w//2/)0,

(5.2) W3 //0/)3- //3/)0, W4 //1/)2-- //2/)1

W5 //1/)3 //3/)1, W6 //2/)3 //3/)2"

For problem (II) let u (ul, u2) , fi (ti, fi2) r Pu’ + Qu, and let

W1 //1/)2 --//2/)1, W2 //1/1 --/il/)1,

(5.3) W3 //1 2 /i2Vl,
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Note that the Wronskian determinant w(x) (that occurs in Definition 2.2) is the same
as w(x) for both (I) and (II). The self-adjointness ofthe problems implies the following
fact.

THEOREM 5.1. (1) For (I), W4 W

(2) For (II), ws=-w2.
Proof (1) Integration by parts shows that

(5.4) (Lu)vdt- u(Lv) dl---[(bl3Vo--lgoV3)q-(bllV2--U2D1)])d.

(Here we have abbreviated L(u; o) by Lu.) If u and v are solutions of (5.1), then
Lu 0 Lv, and (5.4) shows that

(5.5) (uBvo- UoVs) + (uv2- UaV,) constant.

But the boundary conditions at x 0 are self-adjoint precisely when the left-hand side
of (5.5) is zero at x 0 (see the proof of Theorem 3.1). Therefore, the constant in (5.5)
is zero. Referring to (5.2), this implies that w4 w3.

(2) Similarly, for (II), integration by parts shows that

(5.6) (Lu) v dt- u" (Lv) dt [u" 6- fi" v].

As before, this leads to the equation

(5.7) u. 6- ti.v constant.

Since the boundary conditions at x =0 are self-adjoint, the constant in (5.7) is zero,
which implies that w =-wz.

Theorem 5.1 allows us to reduce the system of six Wronskians to five by omitting
w4 for (I) and w5 for (II). A simple calculation now shows that for (I), the Wronskians
satisfy the following equations:

w;=(/p)w,

W qw 4-2W3,

(5.8) w w,

W5 rw q- lip)w6,

w’6 rw2 + qw.

In (II), the equation L(u; ho)=0 can be split into a first-order system:

u’ -P-Qu + P-
(5.9)

Let

(5.10)

A=[a,, a,2] _p-1Q,
a21 a22

B
b21 b22

P-

C=[ ell C12] =_QTp-1Q+R.
C21 C22_]
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Note that B Br and C C r. Equation (5.9) may be rewritten as

u’= Au + Bfi,
(5.11)

fi’= Cu-At.
Using (5.11), a calculation shows that the Wronskians for (II) satisfy the following
equations"

w’ (a + a22)w q- 2b12w2 -}- b22w bw4,

W2 C12W a21 w3 q- al2w4 b2w6

(5.12) w3 c22w- 2azw2 + (a- a22) w3 + bw6,

w4 -cw +2aw2 + (-a + a22)w4 bzzw6,

w6 -2czwz + ew3- czzw4-(a + a22)w6

Recall that n(x; Ao) nullity W(x; Ao), where W(x; )to) , ,] for (I) and W(x; Ao)
Ul /)1[/’/2 /)2

for (II).
THEOREM 5.2. For (I) and (II), the following are equivalent.
(1) n(xo; )to)= 2,
(2) w,(xo; )to)= w2(xo )to)-- w3(xo )to)- w4(xo )to)" w5(xo )to)--0.
Proof Statement (1) is true for (I) if and only if Uo(Xo) ul(xo) Vo(Xo) vl(xo) O.

It is true for (II) if and only if u(xo)= u2(xo)= v(Xo)= v2(Xo)= 0. Referring to (5.2)
and (5.3), we see that (1) implies (2).

Conversely, suppose that (2) is true for (I). If (Uo(Xo), Vo(Xo)) (0, 0), then, since
w2(xo) w3(xo)=0, it follows that there are constants ce,/3 such that (u2(xo), v2(Xo))=
a(Uo(Xo), Vo(Xo)) and (u3(xo), v3(xo)) (Uo(Xo), vo(xo)). This implies that w6(xo) =0.
Since all six Wronskians are zero at x= Xo, the vectors (Uo(Xo), u(xo), u2(xo), u3(xo))
and (Vo(Xo), Va(Xo), v2(xo), v3(xo)) are linearly dependent. This implies that u(x) and
v(x) are linearly dependent. This contradiction implies that Uo(Xo)= Vo(Xo)=0.

Similarly, if (u(xo),V(Xo))(O,O), then w4(xo)=Ws(Xo)=O implies that
(u2(xo), v2(xo)) a(Ul(Xo), Vl(Xo)) and (u3(xo), v3(xo)) fl(u(xo), v(xo)). This again
implies that w6(xo) 0, which leads to a contradiction. Therefore u(Xo) vl(xo) 0,
and n(xo; )to) 2.

A similar argument shows that (2) implies (1) for (II).
THEOREM 5.3. The following are true for (I).
(1) If n(xo; )to) 1, then w(x) has a zero of order 1 or 3 at Xo.
(2) If n(xo; )to)= 2, then w(x) has a zero of order 4 at Xo.
Proofi Using equations (5.8), the derivatives of w can be expressed in the form

W’--Wl

W’--(1/p)w2,

(5.13) w"= O21W 1_ O22W2

__
(2/p)w3,

W’" a31W q- a32W2
q- a33W3 q-(2/p)ws,

W
(iv) -" W2 -- W -f- d- (2/p2) w6O41 W1 O42 O43 O45 W5

By Theorem 5.2, n(xo; )to) 2 if and only if Wl(Xo) w2(xo) w3(xo) w4(xo) Ws(Xo)
0. Recalling that w3 w4, (5.13) shows that n(xo; )to) 2 if and only if W(Xo) w’(xo)
w"(Xo) w’"(Xo)=0. Moreover, if wi/))(Xo)=0 also, then (5.13) shows that W6(X0)
so that all six Wronskians are zero at Xo. This leads to a contradiction (as in the proof
of Theorem 5.2). Therefore, w(x) has a zero of order 4 at Xo if n(xo; )to)= 2.
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Now suppose that n(xo; Ao) 1. Then W(Xo) =0, and we may suppose that Uo(Xo)
ul(xo) 0. This implies that Wz(Xo) -Uz(Xo)Vo(Xo), w3(xo) -u3(xo)Vo(Xo) and w4(xo)
-u2(xo)v(xo). If w’(xo)SO, then w(x) has a zero of order 1 at Xo. Suppose that
w’(xo) =0. Then (5.13) shows that w2(xo) =0, which implies that either Vo(Xo) =0 or
Uz(Xo)=0. Therefore, either w3(xo)=0 or w4(xo)=0. But w3 w4, by Theorem 6.1.
Thus, w3(xo)=0, and (5.13) implies that w"(Xo)=0. If w’"(Xo)=0 also, then n(xo; Ao)
2, as shown above. Therefore, w(x) has a zero oforder 1 or3atxoifn(xo;Ao)=l. D

THEOREI 5.4. Forproblem (II), n(xo; Ao) equals the order ofthe zero ofw(x) at Xo.
Proof We know that n(xo;Ao)>0 if and only if W(Xo)=0. We claim that

n(xo; Ao) 2 if and only if W(Xo) w’(xo) 0. If n(xo; Ao) 2, then w(xo) w(xo)
w3(xo) w4(xo)= ws(xo)=0, by Theorem 5.2. The first equation in (5.12), which is

(5.14) w’= (a + a22) w1 -k- 2blzW2 -k- b22w3- bl W4,

now implies that w’(xo)= O.
Conversely, suppose that W(Xo)=W’(Xo)=O. We may assume that ul(xo)

Uz(Xo)=0. Therefore, w2(xo)=-fi(Xo)V(Xo), w3(xo)=-fi(Xo)V,(Xo) and Wa(Xo)
-fi(Xo)Vz(Xo). Equation (5.14) implies that

w’(xo) -2b,z(Xo)a(Xo)V(Xo)- b2z(Xo)ftz(Xo)V,(Xo)
(5.15) + b(Xo)fi(Xo)V2(Xo).

By Theorem 6.1, ws=-w2. Since u(xo)= u(xo)=0, this implies that

(5.16) fil(Xo)V(Xo) + fiz(Xo)V(Xo) O.

Substituting in (5.15), and setting w’(xo)=0, we obtain

b(Xo)a(Xo)V(Xo) + b(Xo)[a(Xo)V(Xo) a(Xo)V(Xo)]
(5.17)

b(Xo)a(Xo)V(Xo) o.
Let (sc, rt) denote the Euclidean inner product for vectors sc, r/, and consider the
vectors a(Xo)=(a,(Xo),a(Xo)) and V(Xo)-=(v2(xo),-v(xo)) r. Note that ti(Xo)
(0, 0), since u(x) is not the trivial solution of L(u; Ao)=0. Let

(5 18) Bo=B(xo)=[b,(Xo) b(/o)] =P(/o)-’.
b21(Xo) b(Xo)

Since Bo is positive definite, Bofi(Xo) O. Equation (5.17) is equivalent to

(5.19) (Boti(Xo), V(Xo) -) O.

Since Boti(Xo) and V(Xo)=(v(Xo),V(Xo)) T are both orthogonal to V(Xo) +/-, and
Boti(Xo) 0, it follows that there is a constant e such that V(Xo) cBofi(Xo). This implies
that

(5.20) Pov(Xo) ca(xo),

where Po=P(xo). Equation (5.16) says that (ti(Xo), V(Xo))=O. By (5.20),
(Pov(Xo),V(Xo))=c(fi(Xo),V(Xo))=O, and therefore, V(Xo)=0. This shows that
n(xo; o)= 2 if W(Xo)= w’(xo)=0.

We now know that n(xo; Ao)= 2 if and only if W(Xo)= w’(xo)=0. Furthermore,
we claim that w"(Xo) 0 in this case. To see this, differentiate (5.14) and use (5.12) to
obtain

(5.21) w"= O1W + O/2W2 + O3W -I" O4W4 + 2(bb22-b2) w6.

Since n (Xo; Ao) 2,

WI(X0) W2(X0)= W3(X0)-- W4(X0)--- W5(X0)--0.
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If w"(Xo)= 0, then (5.21) implies that W6(X0)--0 also. This leads to a contradiction (as
in the proof of Theorem 5.2). Therefore, Xo is a zero of order 2 (of w(x)) if n(xo; Ao) 2,
and it must be a zero of order 1 if n(xo; Ao)= 1. U

Theorems 5.3 and 5.4 imply the important fact that w(x) changes sign at Xo if
n(xo; Ao)= 1, and does not change sign if n(xo; Ao)= 2.
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DIFFUSIVE LOGISTIC EQUATIONS WITH INDEFINITE WEIGHTS:
POPULATION MODELS IN DISRUPTED ENVIRONMENTS II*

ROBERT STEPHEN CANTRELL? AND CHRIS COSNER’

Abstract. The dynamics of a population inhabiting a strongly heterogeneous environment are modeled
by diffusive logistic equations of the form ut V (d(x, u)Vu) -b(x) Vu + m(x)u cu in ll x (0, c), where
u represents the population density, d(x, u) the (possibly) density dependent diffusion rate, b(x) drift, c

the limiting effects of crowding, and rn(x) the local growth rate of the population. The growth rate m(x)
is positive on favorable habitats and negative on unfavorable ones. The environment fI is bounded and
surrounded by uninhabitable regions, so that u 0 on 0fl x (0, ). In a previous paper, the authors considered
the special case d(x, u)= d, a constant, and b 0, and were able to make an analysis based on variational
methods. The inclusion of density dependent diffusion and/or drift makes for more flexible and realistic
models. However, variational methods are mathematically insufficient in these more complicated situations.
By employing methods based on monotonicity and positive operator theory, many previous results on the
dependence on rn of the overall suitability of the environment can be recovered and some new results can
be established concerning environmental quality dependence on b. In the process, a bifurcation and stability
analysis is made of the model which includes some new estimates on eigenvalues for associated linear
problems.

Key words, diffusive logistic equations, heterogeneous environments, population dynamics, monotone
flows, bifurcation and stability analysis, eigenvalue problems, indefinite weights

AMS(MOS) subject classifications. 35J65, 35K60, 92A15

1. Introduction. Reaction-diffusion equations have been widely used as models
for populations whose densities vary with location as well as time. If the environment
is strongly heterogeneous, the coefficients describing the growth and diffusion of the
population may vary with location as well. In an earlier article, we studied a diffusive
logistic model in which the diffusion rate of the population was constant but the growth
rate was assumed to vary with position, being positive in regions of favorable habitat
and negative in unfavorable regions. The present article is devoted to extending our
results to models in which the diffusion rate varies with position and population density,
and the population may be subject to drift in addition to pure diffusion. These more
complicated models incorporate effects which are often present in real situations, and
thus can give more complete descriptions of biological phenomena. Since these models
are quasilinear rather than semilinear, and in general are not in variational form, the
technical aspects of the analysis are somewhat different and more difficult than in the
case of simple Fickian diffusion. The technical complexity is inherent in the models
we consider, and cannot be avoided if we are to give a rigorous analysis. However,
we have introduced into our models only the sorts of effects which theoretical ecologists
have suggested to us as being especially important.

Since the implications of our analysis should be of some interest to biological
scientists, we give a brief summary of them in the last section, and conclude each
section ofthe paper with a fairly detailed discussion ofthe main results from a biological
viewpoint. Some of the discussion overlaps that given in [6], [7], and [9]. Additional
references are given in [6] and [9]. In [7] we use relatively simple mathematics to
analyze a number of special cases of the general models considered here and give a

* Received by the editors July 17, 1989; accepted for publication (in revised form) June 11, 1990. This
research was supported by National Science Foundation grant DMS88-02346.

t Department of Mathematics and Computer Science, University of Miami, Coral Gables, Florida 33124.
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moderately detailed biological discussion of their interpretation. A reader whose
primary interest is in the biological aspects of the work may find the present article
more accessible after reading [7].

The situation we wish to model is that of a species inhabiting a bounded region
of variable habitat, and dispersing throughout that region via a process of diffusion
which may be affected by population density and location and which may also involve
drift due to wind, current, or environmental gradients. The questions we address are
those of deciding how environmental factors and/or the density dependence of the
diffusion affect the population. Obviously, if the overall environment includes too
much poor habitat the population cannot be expected to persist. However, the arrange-
ment of favorable and unfavorable regions turns out to play an important role in
determining the overall suitability of an environment. Questions about the effects of
the arrangement of favorable and unfavorable regions are especially important in
refuge theory; for example, is one large preserve likely to be more or less effective in
sustaining a population than several small preserves? Of course, the answers to such
questions will depend on the details of the biology but models can suggest answers in
some cases and serve to sharpen discussion in others. Island biogeography theory has
been widely used in the context of refuge theory. The sort of models we consider
provide an alternative approach. We discuss this point in some detail and give a number
of references in [6]. One object of the present work is to extend the results of [6] to
include models with more complex and realistic sorts of diffusion and drift processes.
Another object is to study directly the effects of density dependent diffusion and of
drift. We find that density dependence in the diffusion rate may have effects similar
to those of depensation in the growth dynamics, as studied in [20]. Specifically, models
with density dependent diffusion may admit multiple equilibria even if the correspond-
ing dynamics with constant diffusion yield a unique equilibrium. The effects of drift
in the case of a homogeneous environment and constant diffusion are discussed in
[22]. We extend some of the results of [22] to models with variable diffusion and
growth coefficients, but we have so far been unable to give a complete description of
the effects of drift on the population dynamics.

There is a vast literature on traveling waves in reaction-diffusion models. Most of
that literature is not directly relevant to our work, because we are concerned exclusively
with bounded regions. A general overview of the literature on waves is given in [10]
and [28]. Some specific problems related to wavelike propagation in ecological models
and to considerations of domain size are studied in [4]. Another class of models which
have a more direct relation to our work are patch models, where a population is
assumed to inhabit a number of discrete patches rather than a continuous region. Some
topics similar to those we consider are discussed from the viewpoint of patch models
in [26]. (Threshold results for propagation through an infinite number of patches are
derived in [3]; the specific model in [3] arises in neurophysiology, but the same methods
would also apply to ecological models.) Our present work is most closely related to
the ideas discussed in [20], [22], and [27], and of course [6], [9], where the models
are primarily reaction-diffusion equations on bounded spatial domains.

The viewpoint we take in our modeling is essentially that taken in the pioneering
work of Skellam [27], who deduced reaction-diffusion models for population growth
and dispersal from the random-walk problem, and analyzed some of those models via
classical methods. A representative result is that the density u of a population with
linear growth law inhabiting a uniform disc of radius ro surrounded by a completely
inhospitable region can be described by the equation ut dAu + mu with homogeneous
Dirichlet boundary conditions, and hence will grow rather than decline provided
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m- (dj211 r)> 0, where jl is the first zero of the Bessel function Jo. Another way to
state this result is that the population will grow if the first eigenvalue h for the problem
-d Ath hrmb on the disc of radius ro with homogeneous Dirichlet conditions satisfies

hi< 1. Skellam considered several other models, the most complicated being of the
general form ut dAu + m(x)u c(x)u2. Of such models, Skellam wrote (in 1951) that
"orthodox analytical methods appear inadequate." (See [27, p. 212].) Since that time,
there has been much work on reaction-diffusion models for population dynamics, and
a number of new analytical methods have been introduced. For general background
on the modeling aspects of population dynamics, see [19] or [24]; for mathematical
methods and results, see [9], [10], or [28]. In our previous article [6], we study models
that include those considered by Skellam, and discuss their biological interpretation.

The models in [6] have the form

(1.1) u,=dAu+f(x,u)u inl, u=O on

where f is decreasing in u and f is a bounded domain in En, with n _-< 3 in applications.
The intrinsic local growth rate of the population is given by f(x, 0), which is assumed
to change sign on f, with positive values indicating favorable habitat and negative
ones unfavorable habitat. Our results imply that (1.1) has a unique positive steady
state which is a global attractor for nonnegative, nontrivial solutions, provided the first
positive eigenvalue A(d,f(x, 0)) of the problem

-dAh =hf(x,O)4 in , 4 =0 on 0,

satisfies h(d,f(x, 0))< 1. We also examined the question of how Al(d, rn(x)) depends
on the arrangement of positive and negative regions for m(x). We showed that for a
sequence {m(x)} of weights, a necessary and sufficient condition for having

lim A(d, m.(x)) oo is that lim sup f qmj_<- 0

for any q L(f) with q_->0 almost everywhere. (This result is Theorem 3.1 of [6].)
One implication of these results is that if the unfavorable regions are greater than or
equal to the favorable ones in strength and extent, and the two sorts of regions are
too closely interspersed, the population will not persist, even though it might persist if
thefavorable habitformed a single larger region. We also showed that in a certain sense,
the most favorable situations will occur if there is a relatively large favorable region
located some distance away from the boundary of f.

In the present article we consider models of the form

(1.2) ut--V.d(x,u)Vu-b. Vu+m(x)u-cu2 inf,, u=0 on0f,

and attempt to recover some of the results of [6]. Since the analysis of [6] was based
largely on variational methods, we have had to substantially modify our techniques.
In many cases, we replace ideas and results based on variational principles with others
based on monotonicity or positive operator theory. Also, since we assume only re(x)
L(f) (for various reasons which are discussed in [6]), we must work with weak
solutions, so the standard Hopf maximum principle must generally be replaced by the
maximum and comparison principles for weak solutions of elliptic equations discussed
in [11, Chaps. 8, 9], or the corresponding results for the parabolic case which follow
readily from similar arguments. (We do not always state this explicitly, and in some
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cases we will simply cite references where the Hopf maximum principle is used but
whose results extend directly to our situation via maximum principles for weak
solutions.)

Models such as (1.2) display some different features than those of the form (1.1).
In particular, if d(x, u) is not monotone nondecreasing in u, (1.2) may have multiple
positive solutions. (We give an example in 3.) It is known that a similar phenomenon
can occur in (1.1) in the presence of depensation (that is, if f(x, u) is allowed to be
increasing in u for some values of x and/or u) but not in the case of logistic growth.
This situation is not surprising, since the equation V d(u)Vu + g(u) =0 can be conver-
ted to the form AU+ G(U) =0 by letting U= D(u) where D(0) =0 and D’(u) d(u),
and such a change of variables may destroy monotonicity or concavity properties of
g(u).

To analyze (1.2) we observe that the recent work of Hirsch [16] on monotone
flows implies that the dynamics of (1.2) are determined by its steady states, we "unfold"
the steady-state problem by introducing a parameter A multiplying the undifferentiated
terms, and we then analyze the steady states by using A as a bifurcation parameter
and applying the results of Rabinowitz [25]. Our main results state that under suitable
restrictions on d, b, and m, the problem (1.2) has a unique, stable, positive steady state
provided Al(d(x, 0), b(x), m(x)) < 1, where Al(d, b, m) is the first positive eigenvalue of

(1.3) -VdVb +b. Vb Amb in 12, b =0 on cgf,

and give a partial description of how that eigenvalue depends on d, b, and m. In
particular, we show that under a mild coercivity assumption on the left side of (1.3),
the necessary and sufficient condition for A(d, O, mj(x)) asj given in Theorem
3.1 of [6] extends to the case of Al(d(x), b(x), mj(x)). Since environments may vary
in ways best described by discontinuous functions (for example, if a field is crossed
by a paved road with sharp boundaries) we consider the case of rn L(12) with m > 0
on a set of positive measure, but with m taking both positive and negative values. In
that situation, we have to extend known results somewhat to obtain the existence of
a first positive eigenvalue Al(d, b, m). The analysis is based on work of Hess and Kato
[15] and Hess [14]. Our results on the behavior of Al(d, b, m) overlap slightly with
those of Murray and Sperb [22], who considered the case of AI(1, b, 1). Other results
implying bounds for eigenvalues for A l(d, b, m) under various hypotheses are given
in [12], [13], [15], and [17], but they either do not apply in our situation or do not
appear to be sharp enough for our purposes. We have observed that the presence of
a drift term can either raise or lower A l(d, b, m). Our analysis of the existence problem
for positive steady states of (1.2) is fairly complete, but to obtain uniqueness we must
make additional structure assumptions (specifically that either Od/Ou 0 or b-= 0), and
there remain many open questions about the dependence’of &l(d, b, rn) on d, b, and m.

The paper is structured as follows. We derive the basic existence theory for positive
equilibria in 2, and obtain conditions on the uniqueness and stability of equilibria
in 3. Many of the results are somewhat technical, but they have some interesting
biological implications. In 4 we examine how the eigenvalue l(d, b, m), whose size
determines whether the model predicts extinction or persistence for the population,
depends on the environment, drift, and diffusion. In 5 we obtain some population
estimates, again in terms of A l(d, b, rn). Since the answers to the questions of greatest
biological interest are determined by the size of A l(d, b, rn), we consider the results of
4 to have the greatest applied significance because they relate A l(d, b, m) to the

physical conditions in the model. In 6 we give a biologically oriented summary of
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our conclusions. We also conclude each section with a description of the biological
interpretation of the main results of that section.

2. A qualitative overview. In this section, we consider the positive steady-state
solutions of the parabolic problem

ut V. (d(x, u)Vu) -b(x) Vu + A(m(x)u cu2) in x (0, o),
(2.1) u(x, O) Uo(X) >= 0 for x f,

u(x, t) 0 on 0fl x (0, ).

Here, as noted in the Introduction, h is a real parameter and we wish to observe the
structure of said solutions when viewed as a subset of an appropriate function space
via global bifurcation theory [25] as well as determine the stability properties of the
solution when viewed as solutions to (2.1). We assume that d C(x) such that
d(x,s)>-dl>O for all (x, s)x, b [C(1))], and mL() and consider

-V (d(x, u)Vu)+b(x) Vu-A(m(x)u-cu) in,
(2.2)

u 0 on 0f.

Observe first of all that (2.2) can be expressed as

[b(x) -dx(x, O) ]-Au +
d (x, O)

V u

m(x) d,,,(x, u____)IV u] 2 + V u
(2.3)

h
d(x, O)

u +
d(x, u) \ d(x, u) d(x, O)

+ l_____d(x,0) d(x,1 u
(b(x). Vu)+ I d(x,u)-d(x,O) m(x)u-d(x, u)

in a,

u =0 on 0.

Denote the expression in brackets in (2.3) by H(h, u). Then for a sufficiently large p,
H’Ex W’v(I))-LV/:(I)) is continuous and limll.ll.._oH(h,u)/[[ul[,v=O, where

,p denotes the norm in W’V() and the limit is uniform for h contained in compact
intervals. (That such is the case relies on the fact W’(l)) embeds into C() for
sufficiently large p.) Consequently, if L denotes the elliptic operator on the left-hand
side of (2.3) subject to zero Dirichlet boundary data and M/D denotes multiplication
by m(x)/d(x, 0), a solution u to (2.3) is equivalent to a solution u of

(2.4) u hL-1 (--)uq-L-1H(h, u).

Since L-" LP/2(f) W2"t’/2(f) f’l W’P/2(12) is continuous, W’P/(f) ("1 W’P/(Ft)
g-- +cembeds compactly into o (), 0 < a < 1 for p sufficiently large, and C+ () embeds

into W’V(f) for any p, the right-hand side of (2.4) may be viewed as a completely
continuous operator on W’P(f) for a sufficiently large p with
limll,ll,pollL-1H(A,u)l[1,p/[lull,p--O uniformly for h in compact intervals. Con-
sequently, x W’P(f) is an appropriate space in which to apply global bifurcation
theory [25].

In order to invoke global bifurcation theory to guarantee the existence of a
continuum of positive solutions to (2.2) in x W’P(),. it suffices to establish that
there is a unique h h (m) > 0 such that

has as generalized null space the span of a positive function. Note that (2.5) is equivalent
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to

(2.6)
-V (d(x, O)Vv)+b(x) Vv=Am(x)v in

v 0 on

In the special cases b-=0 or m C(1), the result follows from the results of [21] and
[15], respectively, provided that {x " m(x)> 0} has positive measure. In the case
that b0 and m6(L()-C(I)), to our knowledge, the result does not explicitly
appear in the literature. Since such is the case and since the result is of independent
interest, we include a brief proof.

THEOREM 2.1. Suppose that d, b, and m are as described above and that {x
ll: re(x)> 0} has positive measure. Then there is a unique A A,(m)> 0 such that

b(x)-d(x, 0)
Vv= A v in a

(2.7)
-Av+

d(x,O) d(x,O)

v 0 on

has a solution v ,o ((l) with v(x) >O in fl and (Ov/On)(x)<O on 0. Moreover,
t-Jr>_, N{(I-AL-I(M/D))r}=(v).

Proof The uniqueness and simplicity assertions of the theorem follow as in [15]
once the existence of such a A has been established. To this end, let R > 0 be such
that m(x)/d(x, 0)+ R>0 on i) almost everywhere and consider the operator A
A(L+RA)-(M/D+R), which may be viewed as a compact positive operator on
Co(l)). A is continuous in A and consequently so is its spectral radius r(Aa) [23].
Moreover, lim_o r(A) =0. Hence, as in [8], the existence of an eigenvalue A with
the required properties follows from the Krein-Rutman theorem and the maximum
principle as long as there is a A > 0 so that r(Aa) ->_ 1. The assumption that {x : re(x) >
0} has positive measure guarantees that (2.7) has infinitely many eigenvalues with
positive real part [14, Thm. 2]. For any such eigenvalue A* and any associated
eigenfunction v, Lemma 3 of [15] implies that

Hence r(ARz*)_--> 1, and the result is established.
It is of substantial interest from the biological point of view not only to have the

existence of an unbounded continuum of positive solutions to (2.2) but also to know
there is a solution (A, u) on the continuum for all A > A,(m). Such an observation
requires information in addition to that provided by global bifurcation theory. The
a priori estimates given in the following theorem are sufficient for this purpose.

THEOREM 2.2. Suppose (A, u) is a positive solution to (2.2) and that A [a, b],
<g.where 0 <- a <- b < o. Then there is a constant K > 0 such that u 1.p

Proof We know that u W2"P()[ W’P() and consequently u,o ().
Hence, as in 2 of [6], the maximum principle implies that Ilull <-

ess supxc (m+(x)/). The result then will follow if we can show IIVull is bounded
uniformly with respect to A [a, b].

To this end, we employ results in 4 and 5 of Chapter 4 and in 2 of Chapter
6 of 18]. Equation (2.2) satisfies the ellipticity and structure conditions there imposed,
with ellipiticity (and other constants) bounded for A[a, b]. Moreover, as noted,
O<-_u(x)<-esssupxc(m+(x)/c). By the proof of Theorem 4.1 of [18, Chap. 4],
ess sup IV u can then be bounded in terms of ess sup0 ]V ul and integrals which are
in essence Ilul122,2 and u 1,4. Theorem 5.1 of [18, Chap. 4] implies that these last
integrals are bounded in terms of I[ull and constants depending on and the
coefficients of (2.2), all of which are uniformly bounded for A [a, hi.
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In order to see that ess sup0n IV u[ is uniformly bounded with respect to h c [a, b],
we employ Lemma 4.1 of [18, Chap. 4] or Lemma 2.1 of [18, Chap. 6]. (These are
two statements of the same result.) The idea behind the lemmas is Bernstein’s, namely,
to compare u with an appropriate auxiliary function via differential inequalities and
the maximum principle to obtain bounds on Ou/On on subsets of 0f. In [18], the
classical maximum principle is used, and u is assumed to have classical second
derivatives throughout f. However, we may replace the classical maximum principle
with the maximum principle for weak solutions as stated in Chapter 8 of [11] and
only require that u c W2’(I))(3 W’P(I)). The bound we obtain depends only on
u I1, and ellipticity and structure constants which are bounded as long as u I1 and

A are uniformly bounded so the result follows.
Consequently, there is an unbounded continuum c in E W’(I)) of positive

solutions to (2.2) with the property that if (A, u) e c and A e a, b ], where 0 _-< a < b <
there is a K > 0 such that Ilu][1,, < K. Furthermore, it is evident that (2.2) has only the
trivial solution when A =0. Hence, the projection 1-I(C) into E of must satisfy
(Al(m),)H()_ (0, o). In particular, there is at least one positive solution of (2.2)
for every A > A (m).

For any fixed A, (A, u)e of course implies that u is an equilibrium solution to
(2.1). It is sometimes possible to determine that u is globally asymptotically stable
with respect to smooth initial data Uo(X)>-O. We first observe that if A > Al(m), then
the zero solution of (2.2) is unstable. To this end, observe that the linearization A of
-V. (d(x, u)Vu)+b(x). Vu-A(m(x)u-eu) with respect to u at u=0 is given by
A() =-V. (d(x, 0)V4)+b(x)- V-Am(x)4 and that the zero solution is unstable
provided that

Ach o’
0 on 01),

and (x)> 0 in implies that r < 0. If o’_>-0, then v is a positive solution to the
inhomogeneous boundary value problem

-V (d(x, 0)Vv)+b(x) Vv Am(x)v+h in ,
v 0 on 01),

where h r-> 0. As A > Al(m), Proposition 3 of [15] is violated. As a consequence,
the zero solution of (2.2) is unstable as an equilibrium to (2.1) if A > Al(m),.and we
are able to establish the following theorem.

THEOREM 2.3. Suppose that for some A > Al(m), there is a unique positive solution
(t to (2.2). Then is a globally asymptotically stable equilibrium for (2.1) provided we

require the initial data Uo to lie in an appropriate Sobolev-Slobediekii space W’p. This
will be the ease if Uo C((), for example.

Proof The methods of Amann [1], [2] imply that (2.1) generates a monotone flow
on a Sobolev-Slobedickii space W’P(12) with W’P()
(See also [16, Thm. 4.6]. We assume slightly less regularity than Amann since m(x)c
L(), but a comparison principle for weak solutions to quasilinear parabolic problems
can be readily obtained by modifying the proof of Theorem 9.5 of [11] to treat the
parabolic case, so this is not a problem.) Consequently, the results of[ 16] are applicable
in this situation. Since the zero solution of (2.2) is an unstable equilibrium and since
[0, fi] is an order interval containing no other equilibria, Theorem 0.6 of [16] implies
that if 0 -< o(X)-<- fi(x) and Uo(X) O, then the solution u(x, t) of (2.1) corresponding
to Uo(X) converges to (x) as , uniformly on 1). Moreover, for any sufficiently
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large constant K, Theorem 0.7 of [16] implies that the solution Ul(X, t) of (2.1)
corresponding to initial condition K converges to a(x) as t- c, uniformly on 12. The
result now follows from monotonicity, since for any smooth initial data v(x)> 0 and
v 0, we can find Uo(X) [0, fi] and K sufficiently large so that Uo(X) <= v(x) <= K. We
conclude this section with the following result, which is a corollary to Theorems 2.1-2.3.

THEOREM 2.4. Consider equation (2.6) and let Al(d, b, m) be as in Theorem 2.1.

If A d, b, rn < 1, then the problem (2.1) with A 1 has a positive equilibrium solution. If is unique, then it is globally asymptotically stable with respect to smooth initial
data Uo(X).

2.1. Biological interpretation. The primary result of biological interest in this
section is Theorem 2.4. That result asserts that there exists a positive equilibrium
density for the population being modeled provided that the eigenvalue A l(d, b, rn) is
less than 1. The significance of the result lies in the fact that A l(d, b, m) depends
directly on the terms in the model describing biological properties of the population
and the environment. Thus Theorem 2.4 provides a criterion for the possible persistence
of a population in terms of diffusion, drift, and growth rates which vary with location.
In some simple cases it is possible to compute A (d, b, rn) as the solution of an equation
involving trigonometric and hyperbolic functions (which can be approximated by
Newton’s method). This is discussed in [7]; an example is given below.

In general, the numerical problem of finding A l(d, b, m) is fairly difficult but has
been studied extensively. Approximation schemes for the case b=0 (no drift) are
discussed in detail in [29]. There is a substantial literature on numerical approximation
for solutions of eigenvalue problems with or without drift terms; [29] gives a large
number of references. It is not surprising that the computation of the eigenvalue A1
may be complicated, since if A gives a reasonable synthesis of the various factors such
as the size, shape, and quality of the environment and the effects of winds, currents,
temperature or chemical gradients, it must reflect a large number of complex biological
factors. In giving an accurate description of a complex phenomenon, a certain amount
of mathematical sophistication may be required. Even so, the computational problem
of finding Al(d, b, m) is likely to be simpler than that of evaluating the results of a
comparably detailed simulation.

A major advantage of having a criterion for persistence based on Al(d, b, m) is
that it is possible to make a number of qualitative statements about the ways in which
changes in the environment affect a population. That is the main theme of [6] and [7]
and of 4 of this article. We discuss the topic at some length in 4.

As an example, suppose that we consider a one-dimensional region 12 (0, g),
with no drift, constant diffusion rate, and a growth rate m(x) which is a positive
constant on a subinterval of f and a negative constant on the remainder of 12. For
appropriate d, this problem can easily be rescaled into the form

u"+ m(x)u cue 0 on (0, 1),
(2.8)

with

(2.9)

u(O) u(1) =0

O<x<a,
m(x)= k, a<x<a+ T,

1, a+ T<x<l,

for some T < 1 describing the relative size of the favorable region, some a 6 [0, 1 T]
describing its location relative to the boundary, and some k describing the relative
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quality of the favorable habitat compared with the unfavorable. (The diffusion
coefficient is scaled into re(x); the carrying capacity relative to habitat quality is
described by c but does not directly enter the computation of A1.) We show in [7] that
for (2.8), (2.9), we have A1 a where a is the smallest positive solution of

(2.10) cot ax/ T
k tanh [a(1- a T)] tanh
x/ [tanh aa + tanh a(1 a T)]

Note that for a uniformly favorable environment we have A1 a2= /k so that
we can expect persistence only for k> . For k= 16, T= 1, a =0 (indicating a
uniformly favorable environment), we have A1 .61. For k 16, a .1, T .8 we find
by solving (2.10) that A1 .63. For k= 16, a=.3, T=.4, A1 .86. The results of [7]
show how in (2.8) a number of other forms of m(x) can be treated via equations
similar to (2.10).

3. Uniqueness. In this section we shall consider the question of uniqueness for
positive steady states in our model. Our analysis includes some results on the direction
of bifurcation with respect to the unfolding parameter A, and on the linearized stability
of the steady state. We begin with an example that shows that some restrictions are
needed if uniqueness is to hold. In the general semilinear problem Au +f(x, u)=0,
some conditions must be imposed on f to obtain uniqueness, and the problem
V.d(u)Vu+m(x)u-cu2=O is equivalent to the semilinear problem AU+
m(x)D-I(U)-c[D-I(u)]2=O where U=D(u) with D’(s)=d(s), D(0)=0; so we
must expect that some conditions will be needed on d (s) if the corresponding semilinear
problem is to have a unique solution. The nature of those conditions is indicated by
the problem

(3.1) (d(u)u’)’+h(u-u2)=O, u>0 on (0, ), u(0)=u()=0,
where d (s) 1 2dos for 0 s do d (s) is smooth for 0 s <, and d (s) d > 0.
By the analysis in 2, a branch of positive solutions to (3.1) bifurcates from the trivial
solution at A 1. If we multiply the equation in (3.1) by u, integrate by parts, and use
the fact that

u’(x)2 dx u(x)2 dx,

then we obtain the relation

fodl u2 dxNdl (u’)2 dxN d(u)(u’)2 dx=A U
2 dx-A U dx.

Since u > 0 on (0, ), it follows that d > 0. Also, 0 < u < 1 on (0, ) by the maximum
principle, so a standard application of the Rabinowitz global bifurcation theorem
implies that the branch of positive solutions emanating from the zero solution at 1
must meet infinity in . However, if we multiply (3.1) by sin x and integrate by parts,
then as long as 0 u do (which will be true locally near the bifurcation point) we
have

;o io ioI u sin x dx- u sin x dx (d(u) u’)’ sin x dx

u" sin x dx + (2douu’)’ sin x dx

u sin x dx- dou sin x dx.



1052 R. STEPHEN CANTRELL AND CHRIS COSNER

Hence, as long as 0 < u-<_ do/4, we have

A (u u 2) sin x dx (u u2) sin x dx + 1 do) u2 sin x dx,

so if do > 1, we must have A < 1. But the branch of solutions must meet infinity in A,
so there must be a solution with sup u > do corresponding to A 1. It follows from
the fact that the branch of positive solutions is a continuum and the leftward direction
of bifurcation that for some e > 0, the problem (3.1) has at least two solutions, one
with sup u <-do/4 and one with sup u > do/4, for A 1- e.

To avoid the phenomenon observed in this example, we must ensure that the
bifurcation is to the right rather than to the left. If we have A> Al(d(x, 0), b, m) for
all positive solutions and they are all linearly stable, that is enough for uniqueness.

THEOREM 3.1. Assume that d(x, u) is of class C 1. Suppose that for any solution of

7d(x, u)Vu-b(x) Vu+h(m(x)u-cu2)=O in

(3.2) u 0 on O,

h > 0, u > 0 in

we have h > h l(d (x, 0), b, m), and that the first eigenvalue of the linearized problem

Od(x,u)
-V d(x, u)Vb-V. (hVu+b" Vch+h(2cu-m)ch=o’ in

(3.3) Ou

ch 0 on O

satisfies Ol > 0 for any positive solution u. Then the positive solution for (3.2) is unique
for any given h.

Remarks. Combined with the comparison principle for the corresponding para-
bolic problem and the results of Hirsch 16], uniqueness implies stability. The condition
o-1 > 0 already implies linearized (and hence local) stability.

’+()Proof Choose p > 1 large enough that W2’v()f-3 Wo’V() embeds in Co
and WI’v/2() embeds in Ct() for some a,/3 (0, 1). Then the nonlinear function
F(A, u)=V. d(x, u)Vu-b(x). Vu+A(m(x)u-cu2)maps(W’V(l) W’v()) @
Lv(). The map is continuously differentiable, and the derivative with respect to the
second variable is the negative of the operator on the left side of (3.3). If cr > 0 in
(3.3), then the linearized operator is invertible from L" to W2’v 71 W’v by standard
elliptic theory. Thus, if (Ao, Uo) satisfies F(A, u)=0 and Uo> 0 in , then there is a
bounded neighborhood U of Uo in W’v W’", an interval A (Ao- , Ao+ 6) with
> 0, and a function g:A-* U such that for any A A, the unique solution in U of

(3.2) is u= g(h). Let h ’ ho+ 3 as k-* . By (3.2), we have for Uk--g(Ak)

(3.4)
Uk =--A-’[(Vd(x, Uk)" VUk--b" VUk + ,k(mUk--CuZk))/d(x, Uk)]

A--lWk.
Since U is bounded in W2,p (’] W’p, so is ; thus the right side of (3.4) is of the form
--A-lWk, where {Wk} is uniformly bounded in W1’ply. (Here the p/2 is due to the
presence on the right side of (3.4) of terms of the form (Od/Ou)lVul2; also, we have
used the fact that d ->_ dl> 0, the embedding W-’p fq W’p C+’, and the differentiabil-
ity of d.) Our choice of p is such that WI’p/2----> C, so since C embeds compactly in
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C, we may choose a subsequence and reindex so that {Wk} converges in C, and
hence in Lp. Then (3.4) implies that the sequence {Uk} converges in W2,p (3 1,pWo thus
producing a nonnegative solution to (3.2) at h ho+ 6. A similar argument applies at
o- 8. For these values of , the solution can be extended further if it is positive.

However, if we choose K > 0 sufficiently large we have from (3.2) that

-V d(x, u)Vu+b(x) Vu+Ku=[hm(x)-hcu+K]u>-O,
so if u-> 0 and u 0 somewhere in fl, then u- 0 almost everywhere by the strong
maximum principle for weak solutions (see [11, Thm. 8.19]). Hence, the only way that
continuation in h can fail is if h is a bifurcation point from the branch of trivial
solutions. The unique point where positive solutions can bifurcate from that branch
is h hl(d(x, 0), b, m). It follows that if (3.2) has a positive solution Uo for some ho,
then there is a curve (h, u(h)) of positive solutions passing through (h0, Uo) which can
be extended at least until h=h(d(x,O),b,m). Suppose that for some ho>
hl(d(x, 0), b, m) there are two distinct positive solutions of (3.2). Then each lies on
an arc which extends until h--h(d(x, 0), b, m), and the arcs cannot intersect as long
as the solutions to (3.2) remain positive. If an arc contains a positive solution to (3.2)
at h- hl(d(x, 0), b, m), then the preceding argument based on the implicit function
theorem implies that there are positive solutions of (3.2) on h (h-, hi), for some
6 > 0, contradicting our hypotheses. But both branches cannot connect to the zero
solution at the point h hl(d(x, 0), b, m), since the Crandall-Rabinowitz constructive
bifurcation theorem for simple eigenvalues implies that there is a unique branch of
positive solutions in some neighborhood of the bifurcation point. Hence, assuming
the existence of two distinct positive solutions for some h yields a contradiction, so
for any h the positive solution of (3.2) must be unique.

Remark. A similar argument is used to obtain a uniqueness theorem for a diffusive
Lotka-Volterra competition model in [5].

So far, we have been unable to establish that the hypotheses of Theorem 3.1 are
satisfied, in general, for equations of the form (3.2). However, we can show that they
will be met if the differential operator in (3.2) is either linear or in divergence form.
The two cases require different arguments, so we consider them separately.

COROLLARY 3.2. Suppose that b-=0 and Od(x, u)/Ou>=O for all x and u
[0, ess sup (m+/c)]. Then (3.2) has a unique positive solution for > hl(d(x, 0), O, m).

Proof Suppose that (3.2) has a positive solution for some > 0. Multiplying by
u, integrating by parts, and using the hypothesis that d(x, u) is monotone increasing
in u, we have

Since mu dx > O, it follows from results in 16] that

[ d(x, O)lTu]: dx >-_ h(d(x, 0), O, m)[- m(x)u: dx,

so that

hl(d(x, 0), 0, m) mu2 dx < h mu dx

and

a,(d(x,O),O,m)<h,
as required.
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Suppose that 41 > 0 is an eigenfunction for (3.3) corresponding to the principa
eigenvalue or1. Multiplying (3.3) by u and integrating by parts yields

od(x,u)
OU IV Ul 2 + 2ACU2 Amu I ck dx,

so by (3.2) we have

of uddx=I[Od(x’U)ou IVu] + tcu2] 1 dx > 0

and hence o1 > 0 as required.
COROLLARY 3.3. Suppose that d(x, u)=-d(x, 0), so that (3.2) is semilinear. The

(3.2) has a unique positive solution for A > A (d (x, 0), b, m).
Proof Suppose that (3.2) has a positive solution for some A > 0. Then we have

-V. d(x, 0)Vu +b(x) Vu= h(m(x)-cu)u,

where u > 0 in f and u 0 on 012, so that

A= A,(d(x, 0), b, m-cu)> A(d(x, 0), b, m)

by the monotonicity of the positive principal eigenvalue with respect to the weigl
(see [11]). In this case, (3.2) can be written as

(3.5) -V d(x,O)Vu+b. Vu+A(2cu-m)u=Acu>O.

Since (3.5) admits a positive solution u for the positive inhomogeneous term Act
it follows that the principal eigenvalue for the operator Lck=--V. d(x,O)Tch-
b. Vch+A(2eu-rn)ch must be positive. Since Od(x, u)/Ou=O, that eigenvalue is o-1
so o- > 0.

Remark. It would be of interest to find a natural set of conditions including thos
of both corollaries under which the hypotheses of Theorem 3.1 are satisfied. So far w
have been unable to find such general conditions. It is well known that results fc
quasilinear problems not in divergence form are typically much weaker and/or mor
difficult than for either linear or divergence form problems (see the discussion in [7
and [14]). There are numerous open questions about uniqueness even in the case tz

ordinary differential equations.

3.1. Biological interpretation. The results of this section serve largely to sharpe
those of the previous section by giving criteria for the uniqueness of the positive stead
state for the population. Uniqueness is important in the context of our models becaus
it implies the global stability of the positive steady state and thus the persistence c
the population. Perhaps the most interesting observation from a biological viewpoir
is that uniqueness may fail if the rate of diffusion is allowed to decrease with respe
to the population density. Such a phenomenon occurs when the diffusion rate
constant but the logistic growth term is replaced by something of the form uf(x, u

withf(x, u) sometimes increasing with u; in other words, in the presence of depensatio:
in the growth rate. That observation is made in [20] in connection with a model f
the population dynamics of the spruce budworm. As far as we know, it has not bee:
observed previously that the same sort of effect can be induced by density depender
diffusion, which can sometimes produce multiple steady states even with a simpl
logistic growth term. In the absence of drift, we show that such an effect can onl
occur if the diffusion rate decreases relative to the population density at some densities,

We have not been able to determine the effects of drift terms on this phenomenon. I:
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the case of a density independent diffusion rate, we show that a positive steady state
is unique and stable if it exists, and similarly for models with no drift and a diffusion
rate which increases with population density.

4. Properties of the principal eigenvalue. We have seen that under fairly general
hypotheses, the condition A(d(x, 0), b(x), m(x))< 1 is sufficient for the existence of
a positive steady state for our model, and under somewhat stronger hypotheses the
condition is also necessary and the positive steady state is unique and hence stable.
Thus, it is natural to ask how A(d(x, 0), b(x), m(x)) depends on d, b, and m. Some
results for the case d(x, O)= 1, m(x)= 1 are given in [21], and for the case d(x, O)= 1
and b-= 0 in [6].

Our first result is an extension of Theorem 3.1 of [6].
THEOREM 4.1. Suppose that d(x) d(x, 0) cl+a(fi), b(x) (bl, bn) with

bi(x) 6 Ca(l)) for i= 1,’", n, and mg(x)6 L(I)) forj= 1,2, Suppose that d and
b are such that for any dp Wo’2(f) we have

for some do > O, and for each j,

(4.2) mll <-- mo and m > 0 on a set ofpositive measure.

(4.3)

To have limj_ A(d, b, m)= c, it is necessary and sufficient that

lim sup In mfl <_- 0

for all fl L1 (-) with >= 0 almost everywhere.
Proof Suppose that (4.1), (4.2), and (4.3) hold but/l(d, b, m)7 as j-*. We

may then choose a subsequence {A(d, b, mk)} which is bounded. Let bk be the positive
eigenfunction corresponding to A (d, b, ink) and normalized so that IV bk]2= 1. Then
the sequence {bk} is uniformly bounded in W’2(f), and since w’Z(f) embeds
compactly in Lz(D,), we may choose a subsequence {bt} which converges in Lz(D.) to
some function 4’. We have

(4.4) A,(d, b, mr) fa m,b
A l( d, b, mt)(I mt( qb dP2) + Isa mtqb2).

Letting 1- oo, the first integral in the last formula goes to zero since mille, <-- mo and

thl - th in L2(-); the second goes to zero by (4.3). Since {Al(d, b, ml)} is bounded, this
implies do -< 0, which is a contradiction, so we must have A

To show that our hypotheses are necessary as well as sufficient, we use a device
due to Holland [17] in a form similar to that used by Hess [13] in the context of
periodic-parabolic problems. (In fact, this device provides a method for estimating the
size of Al(d, b, m) from above for fixed d, b, and m, but we shall not pursue this.)
Consider the problem

(4.5) -Vd(x)Vq,+b. V,-Amq,=/x, in f, q,=0 on 012,
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where rn c L() and m>0 on a set of positive measure. The first eigenvalue
admits an eigenfunction with q > 0 on 12. Let 0 =-In q; then 0 is defined on 12 and
satisfies

(4.6) dAO-dlVOI2-(b-Vd) VO-lm- ,1(/).

Suppose that be C(f) satisfies . m4,>0 and , b2= 1. (We will return to the
question of deciding if such functions exist later.) Multiplying (4.6) by b2 and using
the divergence theorem, we have

(4.7) fV ddp270- fsa[dc21VO’2+2dqbVdp" VO+ 2b" VO]-A fsamdp2=la,,(A).
Another application of the divergence theorem shows that the first term in (4.7) is
zero. Adding the quantity

dl70+[dpb+ZdTqb]/Zdl2>= 0

to the left side of (4.7) and rearranging terms, we have

(4.8) f [14b+ 2dTdpl2/4d]-, I m2>- la, l(, ).

If we let

A. A(tTb, m)=- I [[qbb+ 2dTqb[2/4d]/I mdp2,

then (4.8) implies/xl(a) -<0; but since $ > 0, it then follows from (4.5) and the positivity
lemma of [15] that al(d, b, m)-< A(qS, m). Now suppose that lim sup_oo 5a m/3 eo> 0
for some /3 e Ll(f) with /3 >_-0 almost everywhere. Then we can take a subsequence
{mk} so that 5a rnk/3 => eo/2, and we can approximate as closely as we wish in L2(f)
with a function 4’ e C(12). If we choose h so that I ]J--(fl21 eo/4mo, we obtain
rnkch2>- eo/4> 0. It follows that for such b the denominator of A(b, ink) is uniformly

bounded away from zero, and since the numerator is independent of m, we have
a l(d, b, mk)<----Ao < m for some Ao and all mk in the subsequence. Hence we cannot
have lim_ al(d, b, m)= if (4.3) does not hold.

Remarks. If we consider a set of weights {ma} with 5 m_-> rnl >0 for all h then
(4.3) fails for/3 1, so the corresponding set of principal eigenvalues al(d, b, m) must
be bounded, since otherwise we could find a sequence mt with al(d, b, ml)- o as l- o.
There are various conditions on d and b under which (4.1) must hold. For example,
if we assume d _>-dl > 0 and Ibl--< bo, then we have for any e > 0

<= f(e(b" V4’)2/2)+(4’2/2e)<-[(eb/2)+(1/2eao)] flVcbl2

where ao-=a,(1, 0, 1). If we minimize with respect to e, we obtain Ia (b. V4)41_-<
bo/vo, so that (4.1) is satisfied if d, > bo/vo. If we assume be Cl()]", we have

If7. b<-_b and d>=dl>O, then (4.1) must hold provided d> bl/2)to.
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Next we consider the problem of how b affects ,l(d, b, m). For the case where
d-= 1, m---1, and b=-VB, B C2(), Murray and Sperb [22] showed that if yl, //2
are such that y,-<_ 1/2AB +1/4IV B]2<- T2, then

(4.9) ,1(1, 0, 1) + yl =< AI(1, b, 1) <- al(1, 0, 1) + y2.

They also showed that if f c_c_ 2 is convex, the matrix ((Obi/Ox)) is positive semidefinite
in f, w maxoa ]hi, a(,, w) w((A + w2) /- + w), and p is the radius of the largest disc
contained in , then A(I, b, 1) is greater than or equal to the first positive root A of
(a, )/(a + (a, )) cos (p).

Inequality (4.9) is obtained via a change of variables. If we have b(x)/d(x)=-VB
for some B, we can make the corresponding change of variables; letting = e/:
converts the problem -V dV + b V Am to

(4.10) -V. dV+[(V, dVB/2)+(dVB]2/4)] m,
while preserving the homogeneous Dirichlet boundary condition. If A A(d, b, m)
then since =e’/Z >0, A is also the first eigenvalue for (4.10), which has the
variational characterization (see [21])

(4.11) inf
[dlV]+ y]

6 w’() a m
mO2>0

where y=[(V, dVB/2)+(dlVBl2/4)]. In the special case d 1, m 1, (4.11) implies
the bound (4.9). In general, if b satisfies b=-dVB, with B such that y 0, then we
may conclude A(d, b, m) A,(d, 0, m), and if TN0, 1(d, b, m)N A(d, 0, m). Since m
is indefinite, it is not clear how to obtain bounds analogous to (4.9).

In the case where b is not a gradient, we can still obtain some information if
b[C()]. If we multiply the equation -V. dV+b. V=Am by , integrate
by parts, and use the boundary condition, we obtain

(4.12) f2 [dlV12-(V b/2)2] A f.m2.

If condition (4.1) is satisfied (which will clearly be the case if V. b O) then we have

Ya m> O, so that we may again use the variational formulation of [21] to see that if
V b O, then

al(d b, m) inf 5a [d[VOI2-(V" b/2)02]
Wa’2(]) 5 m2

m2>0

inf
d]V612

a(d, 0, m)
a, 5m2

We have thus proved the following result.
THeOReM 4.2. Suppose that either be[C()]" and V. bO, or that b=-dTB

for some Be C2(fi) such that y[(V, dVB/2)+(d]VB]2/4)]O. en a(d,b, m)
a,(< 0, m).

Theorem 4.2 generalizes a result of [22] which implies that adding a constant drift
term to the Laplacian always raises the principal eigenvalue. It can be shown via a
perturbation argument that if be[C()]" with V. b>0, then for e>0 sufficiently
small, a(1, eb, m) a(1, 0, m). The general question of deciding how a(d, b, m)
and a(d2, b2, m2) are related is to our knowledge an open problem.



1058 R. STEPHEN CANTRELL AND CHRIS COSNER

THEOREM 4.3. Suppose that d>-_dl>O and that b[Cl()] with V .b<=O. Let
M(x) be any solution to

(4.13) V. dVM+b. VM+(V. b)M m.

Suppose M => supa M and M2=> ess supa (-Mm). IfM2<=O, then h(d, b, m)>= 1/2M.
IfM2 > 0, then

Ax(d, b, m) ->
-2M, +[4M2 +(SM2/d,A,(1, O, 1))] ’/2

(4M2/dla,(1, O, 1))

Remarks. Observe that no boundary condition is imposed on M in (4.13). Since
V. b-< 0, there will exist a solution for any reasonable boundary data.

Proof. Suppose b satisfies

(4.14)
-V. dVb+b. Vqb=A,(d,b,m)mcb

4 0 on

Then we have via integration by parts

0= f M(V. dV)- -(V arM).

Since

V. dV42 24V dV4+2dlV4l2

2,bb. V4 2Z,mb2+ 2dlV4l2

and

f2Mqb(b’Vdp)=IMb’Vqb2=-I b2[VM" b+ MV "b],

it follows that

(4.15) 0=2 Md[Vb[2- /)2[V dVM+b. VM+(V. b)M]-2h, Mmdp2.

From (4.14) it follows that

J [dlV4[2-(V" b/2)421 > 0,

and we may assume that & is normalized so that a m42= 1. By (4.13) we may
replace the middle term in (4.15) by -5 m42; if we then rearrange terms and multiply
by al, we obtain

(4.16) l=hlfc, mcb2=-2h2faMmcb2+2hlf Md ,Vb 2.
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Since

also,

V b_-<O, 0 < I dlVb]2--< A1 I mb2 1;

4,2 dlX7b[ 2

Al(1, 0, 1)dl

If we estimate the two integrals on the right of (4.16), we obtain

If M2<=0, we have 1-<2M1A. If M2>0, then we have

1 _--< (2M2/A,(1, 0, 1)d,)A] + 2M,A1.

The bounds on A1 follow immediately.
Example. Let f=(0, 7r), d--1, b--bo, and M=sin nx. Then (4.13) becomes

M"+ bM’= sin nx, which has a solution

M= -[bo/n(n2+ b)] cos nx-[1/(n2+ bo)] sin nx.

We may use M1 1/n(n 2 + bo2) 1/2 and M2 (n + bo)/n(n 2 + b). Theorem 4.3 then yields

l [-(n2+b) ’/2 (nZ+b 2n(nZ+b2o))l/2](4.17) hl(1, bo, sinnx)>= n+bo
+

(n+bo)-+ n+bo

which implies that A(1, bo, sin nx)- with order n as n-* o and with order V/o as

4.1. Biological interpretation. While the results of this section are technical in
appearance in the sense that they represent extensions of existing results, they are
potentially the most relevant for studying the effects of environmental factors on
population dynamics. In previous sections we established that the size of the eigenvalue
A l(d, b, m) gives a criterion for persistence, namely,/l(d, b, m) < 1, so that A l(d, b, m)
serves as a reasonable measure of the overall suitability of an environment. In the next
section we shall strengthen the case for using A1 as such a measure by deriving a
population estimate in terms of A. The results of this section give some information
on how A(d, b, m) is affected by the aspects of the environment described by the
diffusion rate, drift, and local growth rate. Thus, they provide a means of using our
models to infer the likely effects of certain environmental changes. The first two major
results are qualitative, in that they describe the general behavior of A1 when the
environment is perturbed in certain ways. The third is quantitative and allows a
comparison of the relative impact of different effects, at least in simple cases. Our
biological conclusions are somewhat tentative because of the enormous complexity of
the problems they address, but they provide a starting point and direction for further
work. We undertake a much more detailed analysis of some specific situations in [7].

Theorem 4.1 is a generalization of a result in [6]. Its main significance, we believe,
is that it allows us to gain some insight into the effects of habitat fragmentation via
reaction-diffusion models. The problem of understanding habitat fragmentation on
populations is one of the most important topics in conservation biology. The theory
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of island biogeography has been used to a considerable extent in the theoretical work
on this problem, and it generally suggests that a few large regions of favorable habitat
can be expected to sustain more species than a great many very small regions of the
same total area. Theorem 4.1 allows us to consider the question at the species level
rather than the community level, but leads to conclusions which are similar in spirit.
Specifically, if we consider an environment in which the average habitat quality (as
measured bythe integral ofthe growth rate m(x)) is zero and vary the spatial distribution
of favorable habitat so that it becomes more and more fragmented and more closely
interspersed with unfavorable regions, then A1 will eventually tend to infinity so that
our model predicts extinction.

As a simple example, if we consider a one-dimensional environment with fixed
diffusion and drift coefficients and take mr(x)=sin (jx), then Al(d, b, sin (jx))-->oe as
j- oe. Whenever j is large enough that A l(d, b, sin (jx))> 1, the population cannot be
expected to persist. It is important to keep in mind the asymptotic nature of this result;
some of our work in [7] indicates that under certain conditions a few medium-sized
favorable regions may provide a more suitable overall environment than a single large
one. In some cases, we can obtain more precise quantitative information from Theorem
4.3. We have given an example immediately prior to this discussion. For more details
on the connections between our work, island biogeography theory, and conservation
biology, along with some references, see [6].

Theorem 4.2 gives some information on the effects of drift on the population. It
is well known that (in the presence of a hostile exterior) increasing the diffusion rate
tends to cause a more rapid loss of population across the boundary of the environment.
Under certain conditions the effects of drift can produce the same results, and the
theorem described some of those conditions. The case of constant growth and diffusion
rates was treated by Murray and Sperb [22], and our results can be viewed as an
extension of theirs to the case of variable diffusion. In realistic models we should
expect V. b to change sign unless b is constant, since otherwise the drift term itself
acts as a source or a sink. The condition b=-dVB with B satisfying (V. dVB/2)+
(dlVBI2/4) >= 0 says roughly that the drift acts to augment the effects of diffusion. This
condition can be checked via standard techniques from vector calculus. It was shown
in [22] that for constant diffusion and growth rates, constant drift always makes the
environment less suitable for the population under the assumption of a hostile exterior.
Our results show that the same conclusion holds in the case of variable growth and
diffusion rates. In both situations, the effect is due essentially to the drift pushing the
population toward the hostile exterior region in one direction, while contributing no
inward flux from the other since there will be no population in the hostile exterior region.

The qualitative results of Theorems 4.1 and 4.2 are augmented by the quantitative
bounds on A given by Theorem 4.3. The example following the proof of that theorem
shows how it can be used to draw conclusions about the persistence of a population
from data on the diffusion, drift, and growth coefficients in a specific case. If the lower
bound given in (4.17) is larger than 1, our model predicts extinction for the population.
Other situations could be treated in a similar way. Of course, more complicated
situations will require more effort in the analysis, but the estimate is based on the
well-developed theory of linear differential equations. The specific bound (4.17) is
already of some interest biologically since it gives an indication of the relative sig-
nificance of drift and environmental heterogeneity. If we consider a one-dimensional
environment, the estimate increases with the same order as the number of fragments
of equal size into which the regions of favorable and unfavorable habitat are divided.
It increases with the order of the square root of the coefficient describing the drift.
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5. Population estimates. In the situations covered by Corollary 3.2 (density depen-
dent diffusion in divergence form) and Corollary 3.3 (density independent diffusion
not necessarily in divergence form), we are able to estimate the total size a u dx of
the positive steady states to (2.1) in a manner analogous to that in Theorem 4.1 of [6].
Since the results for these two cases are different from each other, we include them in
this paper for the sake of completeness. We begin with the case of density independent
diffusion.

THEOREM 5.1. Suppose that u is the positive solution to

-V (d(x)Vu)+b(x) Vu h[m(x)u-U2] in ,
(5.1)

u 0 on O

where h > h(d, b, m). Suppose that the differential operator satisfies the coercivity condi-
tion (4.1) and that > 0 is the principal eigenvalue for

Then <-_ h d, b, m) and

-doAz= tzmz in ,
z 0 on Ol’l.

Proof Suppose that w > 0 on and satisfies

-V (d(x)Vw)+b(x) Vw= h(d, b, m)m(x)w infl,

w 0 on 0.

Then

Consequently, Ia m(x) w:z> 0 and do a IVwl2>-. a m(x) w2 by the variational charac-
terization of [21]. Hence <_- h(d, b, m). Multiplying (5.1) by u and integrating gives

f’ Iflu3 m(x)u2 fa[-7"(d(x)vu)+b(x)’vu]u

<-- (1--) Ia m(x)u2,

since am(x)u2>O by (4.1). Since amu2<=am+u2<=llm+[[3[[u[l and ][ull-<
Ilullll/, the result follows.

Two comments are in order at this point. The first is that the reader will recall
that 4 contains a discussion of conditions under which the coercivity condition (4.1)
obtains. The second is that Theorem 5.1 does not provide an estimate of the rate at
which [[ul[1 approaches zero as h-> A l(d b, m) which we know must be the case by
the results of 2 and 3. This limitation is due to the presence of the drift term.
However, Theorem 5.1 does provide the useful global estimate Ilulll-<-Ilm+lllal In
the density dependent case in divergence form, we can obtain the same global estimate
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as well as estimate the rate at which Ilulll tends to zero as A- Al(d(x, 0), 0, m) as the
next result shows.

THEOREM 5.2. Suppose that u is the positive solution to

-V (d(x, u)Vu) A[m(x)u- u2] in 11,

u 0 on

where A > A (d (x, 0), 0, m) and we assume that Od/Ou >= O. Then

A,(d(x, 0), 0, m),[lm+lllfz[/
A

Proof.

I. d(x, u)lVul f’0< + U3= mu2.
A

So J, mue> O, and hence

U3-- mu2 lVul2

A

by the positivity of , mue and the variational characterization of Al(d(x, 0), 0, m).
The remainder of the proof follows as in the proof of Theorem 5.1.

Finally, we note that in both these situations, we can obtain estimates on the rate
of decay of solutions to (2.1) which are analogous to the result of Theorem 4.7 in [6].
The modifications needed to obtain these results from Theorem 4.7 of [6] are similar
to those needed to obtain Theorems 5.1 and 5.2 above from Theorem 4.1 of [6].
Consequently, we omit them from this paper.

5.1. Biological interpretation. The immediate biological interpretation of the
results of this section is clear. They yield bounds on the total population which our
models predict a given environment can sustain. Theorem 5.1 is less sharp than Theorem
5.2, but for regions with simple geometry may be easier to compute than A 1. A deeper
interpretation of Theorem 5.2 is that A l(d, b, m) is, in fact, an appropriate measure of
environmental suitability, for in the original form of our models with A 1, Theorem
5.2 gives a bound on the population in which 1- A l(d, b, m) appears as a factor. Thus,
if we vary d, b, and m so that Al(d, b, m) approaches 1, the bound on the population
goes to zero. (We have considered only the case where the carrying capacity is taken
to be 1, but that can always be achieved by a rescaling if the carrying capacity.is a
constant.)

6. Conclusions. Reaction-diffusion models have been widely used to model popu-
lation dynamics (see [4]-[7], [9], [10], [19], [20], [24], [27], [28]). We consider a class
of such models which incorporate environmental variation, drift, and density dependent
diffusion. We establish that in many cases the eigenvalue Al(d, b, m) for an associated
linear problem is a reasonable measure of environmental suitability by showing that
the condition A l(d, b, m) < 1 implies persistence and obtaining upper bounds for the
population in which 1-A(d, b, m) appears as a factor. The significance of this



DIFFUSIVE LOGISTIC EQUATIONS II 1063

observation is that A l(d, b, m) is a quantity which depends directly on the diffu-
sion, drift, and growth rates for the population and which can be computed by
using well-known (although sometimes fairly sophisticated) mathematical techniques.
In some cases we can calculate hi(d, b, m) fairly easily, but what is perhaps more
important is that we can make qualitative inferences about the effects of changing
various aspects ofthe environment on its overall suitability for a population as measured
by A 1. Specifically, our models predict that a high degree of fragmentation of favorable
habitat increases A1 and thus decreases environmental suitability, and that the presence
of drift may either increase or decrease environmental suitability. (It turns out that
under the assumption of a hostile exterior region that constant drift always decreases
the overall environmental suitability, but a spatially varying drift term may actually
increase it.) Similar conclusions have been drawn in other ways, but largely on the
basis of either heuristic arguments or different modeling viewpoints. A conclusion that
does not rely on properties of h is that the presence of density dependent diffusion
can lead to multiple equilibria. A similar effect has been observed for models with
constant diffusion but depensatory growth rate, but the observation that multiple
equilibria can occur with a logistic growth term and density dependent diffusion is
apparently new.
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GLOBAL BEHAVIOR OF AN AGE-STRUCTURED EPIDEMIC
MODEL*
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Abstract. The global behavior of the general s s age-structured epidemic model in a

population of constant size is obtained. It is shown that there is a sharp threshold which determines
the existence and global stability of an endemic state; hence, periodic solutions are ruled out. The
threshold is identified as the spectral radius of a positive linear operator. The analysis employs the
theory of semigroups and positive operator methods, and is based on the formulation of the problem
as an abstract differential equation in a Banach space.

Key words, epidemic model, age structure, semigroup, monotone operator, global behavior
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1. Introduction. Periodic oscillations in the incidence rates of infectives occur
for a number of diseases, and there are several dynamic mechanisms that could be
the cause of this oscillatory behavior. For example, there is a pronounced biennial
oscillation in the occurence of measles that is reported in the data of several large
cities [7], [10], [13], and these have been variously attributed to the incubation delays
[10], to the age-structured seasonal interaction rates that are due to school attendance
[13], and to more complicated nonlinear transmission dynamics [7]. The simplest epi-
demiological interactions occur for diseases which do not impart immunity and which
can be described by models that include only two epidemiological classes composed of
the susceptible and infective parts of the population, that is, they are of the s -- - s

type. Since it has been suggested that the age dependence of the transmission rate
of a disease may cause oscillations that do not occur in the corresponding situation
without age structure, a basic problem in epidemic modeling is to rigorously establish
either the possibility or the impossibility of the occurence of such oscillations.

The purpose of this and of a subsequent paper, where we will include vertical
transmission, is to show that, for the general s -- - s age-structured model, periodic
oscillations do not occur. In fact, we give the complete global dynamic behavior for
such a model when the total population is at its equilibrium distribution. To our
knowledge, this is the first general age-structured epidemic model for which the global
dynamic behavior is resolved. Global behavior results for this model have recently
been obtained by Busenberg, Cooke, and Iannelli [2] when the force of infection term
assumes certain particular age-dependent forms. These forms represent the cases
where the disease transmission interactions are limited to members of the same age
group (the intracohort case), and the other extreme possibility where the age of the
infectives does not affect their contact rates with other individuals (the intercohort
case.) In fact, for the intercohort case, periodic oscillations are ruled out in [2], only
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with additional assumptions on the form of the age-dependent probability that a
contact of a susceptible with an infective will lead to the transmission of the disease.

There is a recent surge of interest in analyzing the effects of age-structure on
the dynamics of epidemics [1]-[6], [8], [11], [12] because of the recognition that the
transmission dynamics of certain diseases could not be correctly described by the
traditional epidemic models with no age dependence. Much of the work in this area
has been limited to the derivation of threshold conditions for the existence of endemic
steady states and, in some cases, to the the study of the local stability of these endemic
states. Global stability analyses of such models have been obtained only in special
cases [2], [4]. Even though the s -- s model exhibits one of the simplest types of
disease transmision interactions, its complete analysis which we provide here settles a
basic open question in the modeling of epidemics.

The model that we consider divides the affected population into two epidemiolog-
ically distinct classes, composed of the susceptible and the infective individuals. The
age-specific densities of the susceptibles at time t and age a is denoted by s(a, t), and
that of the infectives by i(a, t). Thus

a2

8(a, t) da and
a2

i(a, t) da,

are the respective numbers of susceptible and infective individuals at time t whose ages
fall between al and au. Let K(a, a) denote the rate at which an infective individual
of age a comes into a disease transmitting contact with a susceptible individual of
age a also let Ko(a) be the infection rate for pure intracohort interaction. Then the
rate at which susceptible individuals of age a are moved over into the infective class
is given by

[ /0 ]s(a, t)A[alu(., t)] s(a, t) Ko(a)i(a, t) + K(a, a’)i(a’, t) da’

The decomposition of the trasmission rate into the two parts K0 and K allows us to
include a pure intracohort term without using kernels which are measures.

Denoting the age-specific mortality, birth rate, and cure rate by #(a), (a), and
(a), respectively, and using the notation A(a, t) for A[alu(. t)], we obtain the following
system of equations that describe the dynamics of this model:

(1.1)

Os(a,t) Os(a,t)+Ot Oa

Oi(a,t) Oi(a,t)+Ot Oa

+ tt(a)s(a, t) -s(a, t)A(a, t) + /(a)i(a, t),

+ tt(a)i(a, t) s(a, t)ik(a, t) (a, t)i(a, t)

with initial and boundary conditions

s(O, t) l(a)s(a, t) da, i(O, t) O,

s(a, O) s0(a), i(a, O) io(a).

We note that in our assumption the disease does not affect the natural mortality and
fertility rates.
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We shall be dealing with these equations under the hypothesis that the total
population, p(a, t) s(a, t) + i(a, t), has reached a steady-state distribution p(a).
From the classical theory of the linear McKendrick-Von Foerster equation which p(a, t)
satisfies, this occurs when the basic reproductive number R of the total population is
equal to 1. That is,

/0 (/0
a )(1.3) R Z(a) exp #(a’) da’ da 1.

It is worth noting that, if the parameters/, #, % and K in the model did not depend
on age, the corresponding equations for the total populations S(t) and I(t), can be
obtained by integrating (1.1) from a 0 to , and using the conditions (1.2), and
s(oc, t) i(c, t) 0. These last conditions simply mean that no individual in the
population can survive to infinite age. The resulting equations are

dS(t)
dt

(fl #)S(t) + /I(t) gs(t)I(t),
(1.4) dI(t)

dt -(# + /)I(t) + gs(t)I(t).

This is the standard S - I -- S epidemic model with vital dynamics. The condition
(1.3) implies that #. Hence, we are in the case where the births and deaths
are in balance, and consequently, the total population S(t)+ I(t) P is constant.
Writing S(t) P- I(t), and substituting in the second equation in (1.4), we obtain
a first-order equation in the single variable I(t) which can be explicitly integrated by
elementary methods. The system (1.4) cannot exhibit time-periodic behavior, and
the main result of this paper shows that the introduction of age dependence, with
a general form K(a,a’) of the contact rate, does not produce a model which has
periodic solutions, regardless of the choice of the age-dependent parameters entering
in (1.1)-(1.2).

In the next section we transform the problem (1.1)-(1, 2) to one that involves only
a single dependent variable u(a, t) i(a, t)/p (a). We then proceed to show that the
problem can be viewed as a dynamical system for which we prove the existence of
an appropriate unique solution, under mild restrictions on the parameters appearing
in the equations. In the other sections we exploit the monotonicity and convexity
properties of our formulation of the problem to show that all solutions stabilize to
steady states, regardless of their initial data. The conditions we impose on the contact
rate K(a,a’) include all epidemiologically significant cases. Thus, for the general
s - i --. s age structured model, the global behavior of solutions is settled, and
oscillatory solutions do not occur. In the final section we discuss the epidemiological
implications of our results and of the hypotheses that we need to place on the pertinent
parameters in the model.

2. Setting the problem. Let us first state the assumptions on the demographic
parameters/(a) and #(a), namely, we assume that there is a maximum age a for the
population so that we can restrict ourselves to the age interval [0, at], and

(2.1) (a) is nonnegative and belongs to L(0, at),
(2.2) #(a) is nonnegative and measurable,

(2.3) R (a) exp #(a) da da 1.
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This last parameter R is the basic reproductive number of the population and
represents the mean number of newborns from an individual, during his whole lifespan.
Thus, by (2.3) we are assuming that the demographic parameters are such that a
steady asymptotic state exists:

(/0 )(2.4) pc(a) b0 exp #(or) da

where

at
bo (a)p(a) da.

Now we assume that the total population p(a, t) s(a, t)+ i(a, t) has reached the
steady-state distribution (2.4). Thus we have

s(a,t) p(a)-i(a,t)

and the system can be reduced to a single equation for i(a, t). In fact, fitting (2.6)
into the second equation in (1.1), we have

Oi(a,t) Oi(a,t)+ + #(a)i(a, t) [a i(., t)][p(a) i(a, t)] /(a)i(a, t),Ot Oa

A[a i(., t)] Ko(a)i(a, t) + K(a, a’)i(a’, t) da’,

i(0, t) 0, i(a, O) io(a).

Furthermore, we perform the following change u(a, t) i(a, t)/p(a) so that

Ou(a,t) Ou(a,t)+ [a u(., t)][1 u(a, t)] 7(a)u(a, t),Ot Oa
at

)p(a’)u(a’, t)A[a u(., t)] Ko(a)p(a)u(a, t) + K(a, a’

u(0, t) 0, u(a, O) io(a) uo(a),p(a)

and this is the problem that we are going to consider in the sequel.
Let us now state the assumptions on /(a) and on the contact rates Ko(a) and

K(a, a). We assume that

(e.8) /(a), Ko(a) are nonnegative and belong to L(0, at);
moreover, K(a, a) is measurable, and there exist a positive constant e and nonnegative
functions gl (a), K2(a) such that

(2.9) e K(a)K2(a’) <_ K(a,a’)p(a’) <_ K(a)K2(a’),

(2.10) K

There are 0 _< al, a2, b, b2 <_ a such that

(2.11) al < b, a2 < b2, al < b2,
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(2.12) Kl(a) > 0 if al < a < bl,

(2.13) K2(a)>0 ifa2<a<b2.

The implications of these hypotheses from the viewpoint of the biological model will
be discussed in 6.

3. Resetting the problem. We now identify the problem as an abstract semi-
linear equation. To this purpose we consider the Banach space E LI(0, at) and
define

(3.1) A- I DA {f e Elf is absolutely continuous; f(0) 0},

(Af)(a) -f(a),

(3.2) F(f)(a) $[a f(.)][1- f(a)]- 7(a)f(a),

where

If(.)] Ko(a)p (a)f(a) + K(a,

Thus (2.2) can be expressed as the following Cauchy problem in E"

d
(3.3) du(t) Au(t) + F(u(t)), u(0) u0,

and, due to the meaning of u(a, t) we look for a solution in the closed convex set"

(3.4) C- {f e Ll(0, at); 0 _< f(a) _< 1 a.e.}.

Concerning the operator A we have that it is the generator of the C0-semigroup
on E:

(3.5) (etAuo)(a)_
uo(a- t) for t < a,

0 for t>a

with the following properties:

(3.6) etA(C) C C,

(3.7) if u0 _< v0, then etAuo <_ etAvo,

where <_ denotes the usual ordering in L1.
We also note that if a > 0 the resolvent (I aA)-1 is given by the formula:

(3.s)
1 fa (a--s)e z f(s) ds((I oA)-f)(a)
o Jo

and satisfies:

(3.9) (I- aA)-(C) c C
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if u _< v, then (I- A)-lu <_ (I- A)-iv.

Concerning F we have Proposition 3.1.
PROPOSITION 3.1. The function F C - E is Lipschitz continuous and there

exists a constant a 6 (0, 1) such that

(3.11) if u <_ v, then u + aF(u) <_ v + aF(v),

+ C.

Proof. Lipschitz continuity is a simple matter. Moreover, let 7+ and + be such
that 7(a) < 7+ and A[a If(.)] < + for any f e C. Take

(3.13) a <
7+ +A+’

then, if u _< v,

(u + aF(u))(a) u(a) + aA[a u(.)][1 u(a)] a7(a)u(a)
<_ u(a) + aA[a v(.)][1 u(a)] (7(a)u(a)

u(a)[1 aA[a Iv(’)] a7(a)] + aA[a v(.)]
<_ v(a)[1- aA[a Iv(.)]- a7(a)] + aA[a Iv(.)]

(v + aF(v))(a)

with the last estimate being possible because the square bracket is nonnegative, thanks
to the choice of a.

Finally (3.12) is a consequence of (3.11), in fact if 0 <_ u(a) <_ 1 then, by (3.2),

(3.14) 0 <_ aF(O) <_ u + cF(u) _< 1 + aF(1)= 1- a7(a) _< 1.

Now we are ready to prove existence of a mild solution to problem (3.3), namely,
we look for a solution of the integral equation (see A. Pazy [12]):

(3.15) u(t) etAuo + e(t-8)AF(u(s)) ds.

We then have Theorem 3.2.
THEOREM 3.2. Let uo C; then problem (3.3) has a unique mild solution in C.

This defines a flow S(t)uo which has the following properties:

(3.16) S(t)(C) c C,

(3.17) if uo <_ v0, then S(t)uo <_ S(t)vo,

(3.18) if 0 <_ <_ 1, then S(t)uo <_ S(t)(uo).

Proof. It is easy to prove that problem (3.15) is equivalent to the following one:

(3.19) 1/o u(t) e-- tetAuo + + aF(u(s))] ds,
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where is chosen as in (3.13). We start the standard iterative procedure:

(3.2o)
 o(t) no,

l forun+l(t) e--tetnuo + e-(t-s)e(t-s)A[un(s) + aF(un(s))] ds.

Now, thanks to (3.6) and (3.12), u’+l(t) e C; in fact, the right-hand side of (3.20)
is a convex linear combination of etAuo and Inn(s) + aF(u(s))] (note that e-- +
f e--(t-8)ds 1); thus, because of the Lipschitz continuity of F, the sequence

u(t) converges uniformly to S(t)uo E C.
Furthermore, if we start the procedure with v0 _> u0, thanks to (3.7) and (3.11),

the iterates vn and un satisfy v >_ u so that, in the limit, we have (3.17).
Finally, let u be the iterates (3.20) with u0 replaced by u0. Since 0 _< _< 1,

we have
u + aF(u) >_ (u + aF(u))

so that

and, going to the limit, we obtain (3.18). [:]

4. Existence and uniqueness of an endemic equilibrium. We are now
concerned with existence and uniqueness of a nontrivial equilibrium point to problem
(3.3); namely, we look for a solution to the equation

(4.1) Au + F(u) O.

We use the symbol u because we shall show below that any such fixed point is a
limit of other solutions of (3.3). This is equivalent to looking for a fixed point of the
iow:

(4.2) S(t)u uo.

In fact, if u satisfies (4.2), from equation (3.15) we get

(4.3) u etAu + e(t-s)Ads F(u) Vt >_ O,

that is,

(4.4) etAu u eA ds F(u),

which implies that etAu is differentiable, and consequently, that u DA. Differ-
entiating (4.4) at t 0, we obtain (4.1). This argument can be followed backward
proving (4.2), starting from (4.1).

We now state a necessary condition which should be satisfied by any nontrivial
solution of (4.1).

PROPOSITION 4.1. Let u be a nontrivial solution of (4.1); then

(4.5) fOa* Ku(a)u(a)da > O.
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Proof. If (4.5) is not fulfilled, then

a
K(a a’)p(a’)uoo(a’) e [0, a](4.6) da’ 0 Va

and uo satisfies

uG(a) -’)’(a)uoo(a) + Ko(a)p(a)u(a)[1 u(a)],

thus uo(a) is either identically zero or positive on [0, at], and this latter case is not
compatible with (4.6) and (2.9)-(2.13). r]

We next state a preliminary estimate that must be satisfied by any possible non-
trivial fixed point. Our estimate involves a comparison function, namely,

(4.7)
a

re(a) K (a’) da’.

PROPOSITION 4.2. Let uo be a nontrivial solution to (4.1). Then

(4.8) elm(a) _< uc(a) <_ 2m(a),

where el, 2 are positive constants depending on uo.
Proof. As uo is a nontrivial solution, (4.5) is satisfied so that

ciK (a) <_ ,k[a u(.)] _< k+o uoo(a) + c2K1 (a),

where c, c2 are positive and k+o >_ boKo(a). Hence u satisfies the inequality

ClKl(a)- ()+ q-’)/+)Uoo(a) <_ u(a) <_ k+o u(a) q--c2Kl(a)

and, since u(0) 0, we can find positive , e2 such that (4.8) is satisfied. D
To deal with problem (4.1) it is convenient to transform this problem into the

following one:
u (I (A)-I(I + cF)u,

where a is as in (3.13). Thus we are led to investigate fixed points of the mapping

T (I oA)-l(I + oF),

which by (3.9)-(3.12) has the following properties:

(4.9) T(C) C C,

(4.10) if u <_ v, then Tu <_ Tv.

We first show the uniqueness of a nontrivial equilibrium by following the line of
reasoning in Krasnosel’skii [9]. In order to do this, we need some more estimates.

LEMMA 4.3. Let uo E C be a nontrivial fixed point of T. Let be a constant
and v E C, such that O < < 1, v >_ O, and

(4.11) u + v C,
at

Ka(a)v(a) da > 0;
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then there exists a constant e3 > 0 such that

T(u + v) >_ u + e3(1 )m.

Proof. Note that (see (3.13))

Then by (3.8), (3.10), and (4.7), we obtain (4.12).
LEMMA 4.4. Let u E C be a nontrivial fixed point ofT and let 0 < < 1. Then

there exists a constant 4 > 0 such that

(4.13) T(uo) >_ uoo + (1 )4ml,

where ml (a) rn2(a).
Proof. Note that

((uoo + aF((u))(a)
((u + aF(uo))(a) + a((1 ()uo(a)A[a

>_ (u + cF(u))(a) + a(1 )eu(a)K1 (a) K2(a’)u(a’)da’

d
Kl(a’) da’> + +

0

where we have used (4.8). Thus, by (3.8) and (3.10) we get (4.13).
Note that by (4.13) it follows that

u + (1 )4rnl E C,

and moreover, since al < b2, it follows that

at
K2(a’)rnl (a’) da’ > O.

Finally, we have Theorem 4.5.
THEOREM 4.5. T has at most one nontrivial fixed point.

Proof. Let u v be two nontrivial fixed points. Without losing generality we
can assume that we do not have u _< v. By (4.8), v >_ (el/e2)u. Let be the
maximum constant such that

(4.14) voo >_ u.



1074 S.N. BUSENBERG M. IANNELLI AND H. R. THIEME

It must be that 0 < < 1. Then, by Lemma 4.4

(4.15) v T2(v) >_ T2(uoo) >_ T(u + [(1- )4ml)

and by Lemma 4.3 (take v (1- )e4m)

v _> u + (1 )e3m

so that
vo>_u+(1 )e3

2

which is impossible because it contradicts the definition of . fi
The existence of a nontrivial equilibrium is related to the Frchet derivative of T,

which we denote by DT[u], and depends on the spectral radius p of DT[0]; actually
we have Proposition 4.6.

PROPOSITION 4.6. Let p <_ 1; then the mapping T has no nontrivial fixed points
in C.

Proof. Suppose that u is a nontrivial fixed point of T and let 0 < < 1. Then,
by Lemmas 4.3 and 4.4

3

2

and, by noting that

(4.16)
a

(Tu)(a) (DT[O]u)(a)- (--(a-s))[8 u(.)]u(s) ds,

which implies
T(u) <_ DT[O]u for any u E C,

we have
(DT[0])2u >_ T2(uo) >_ (I + 5)uo

so that
(DT[O])2 u >_ (1 + 5)u,

which implies p > 1, thus contradicting the assumption, fi
On the other hand, we also have Proposition 4.7.
PROPOSITION 4.7. If p > 1, T has at least one nontrivial fixed point.
Proof. DT[0] is linear, completely continuous, and leaves the positive cone K

{h E E h >_ 0} invariant. Then by the Krein-Rutman theorem, there exists an
eigenvector h* _> 0 with eigenvalue p. Since h* satisfies the problem:

d
aPah*(a) [1 a/(a) p]h*(a) + ai[a h*(.)],

h*(0) =0.

Proceeding as in the proof of Proposition 4.2, we can find positive constants Cl, c2

such that
cl re(a) <_ h*(a) <_ c2 m(a).
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This, in particular, implies that h* belongs to L(0, at), so that, without loss of
generality, we can assume that h* E C. Moreover, by (4.16), we have, for 0 < < 1,

a

T(h*)(a) ph*(a) 2 e’---(a--s)[8 h*(.)]h*(s) ds.

Since

we have

a

A[s h*(.)]h*(s)ds <_ A+c2m(a) <_ +-2 h*(a),
Cl

T(h*)(a) >_ h*(a) + [(p- 1)- ,k+ C2]c h*(a),

and, if is sufficiently small,

Thus the sequence

T(h*) >_ h*.

un Tn(h*) e C

is monotonic nondecreasing and converges to someu which is a nontrivial fixed point
of T.

5. Convergence to the equilibrium. Our first statement concerns the case
when only the trivial equilibrium exists.

THEOREM 5.1. Assume that no nontrivial equilibrium exists; then

(5.1) Vuo

Proof. Assume that (5.1) is not true for some initial datum u0, then define

fi lim sup S(t)uo.
t---* c:)

This fi : 0 does exist in C because LI(0, at) is a complete lattice. Moreover, since

SUPs> S(s)uo is nonincreasing as a function of r, then

sup (s)uo.

Now
S(t)f lim S(t) sup S(s)uo >_ lim sup S(t + s)uo

r--cx) s r r--, cx)

lim sup S(s)uo lim sup S(s)uo fi,
rstTr r

which implies that S(t) is nondecreasing as a function of t; in fact, if h > 0,

S(t + h)ft- S(t)S(h)ft >_ S(t)f.

Then
u- lim S(t)

exists and is a nontrivial fixed point of S(t), i.e., it is a nontrivial equilibrium. This
contradicts the assumptions and proves that (5.1) is true. D
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Let us now consider the case in which a (unique) nontrivial equilibrium u exists.
In this case we have to introduce the following condition:

at
(5.2) K2(a)uo(a- t)da > 0 for some t _> 0.

If this condition is satisfied, we say that u0, with support in [0, ai], is a nontrivial
initial datum.

Then we have Proposition 5.2.
PROPOSITION 5.2. Let uo be a nontrivial initial datum. Then there exist to > 0

and > 0 such that
 (to)uo >

Proof. We start from equation (3.19) (where u(t) S(t)uo), which yields

(t- (t-s)A[uu(t) >_ 1
e--z s)e (s) + aF(u(s))] ds

Now, since a < 1/(A+ + 3,+) we have

+ _>

where

so that

a
(w(s))(a) oeIl (a) K2(a’)(u(s))(a’) da’

]oat.-,(e(t-8)Aw(s)) (a) >_
aeKl(a + s t) K2(a’)(u(s))(a’) da’

0

fora > t-s,

for a < t-s,

and, plugging this into (5.3), we obtain

(5.4) --t K1 (a + s t)h(s) ds(u(t))(a) > ee-.
-a)v0

with

We will prove that

at
h(s) K2(a’)(u(s))(a’) da’.

There exists Soo such that h(s) > 0 for s > Soo.

To this aim, we first prove that

(5.6) If h(s) > 0 for s e [81, 82], then h(s) > 0 for s e [81 -- el, 82 -- C2],

where Cl (al V a2) bl and c2 b2 al.

Note first that u(t)(a) > 0 if

(5.7) a > al, t > Sl, sl-bl < t-a < 82--hi.
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In fact, if these are fulfilled then (t-a)Vsl < tAs2 and, setting I [(t a) V sl,t A s2]
we have

(5.8) I C [s, s2], {a t + I} [a, b] q)

so that from (5.4)

(5.9) (u(t))(a) >_ e-- K(a + s t)h(s) ds > 0
J(t--a)Vs

because by (5.8) the integrand is positive on some interval contained in I.
Finally, fix t e Is1 + c, s# + c] and note that

h(t) >_ K(a’)(u(t))(a’) da’ > K(a’)(u(t))(a’) da’.
Va2

Now, K2 is positive on [a V a2, b2] and, by (5.7), u(t)(a) is positive for a > a and
a J _= [a + t s2, t + bl s] but our choice of t yields

a + t s2 < a + C2 b2,

t + b sl > b + C1 a V a2,

so that J [a V a2, b2] - 0, and h(t) > O.
Now that (5.6) is proven, note that if uo is a nontrivial initial datum, then from

(3.19) we see that for some positive constant 5

a? a
h(s) g2(a)u(s)(a) da >_ 5 g2(a)(esAuo)(a) 5 K2(a)uo(a- s)da > 0

for s in some interval [s, s2]. Thus, iterating statement (5.6) we have, for any integer
n

(5.10) h(s) > 0 in [s + ncl, s2 + nc2]
so that, since c2 -c > 0 and c2 > 0 by (2.11), if n is sufficiently large, successive
intervals are overlapping, and consequently statement (5.5) is proven.

We now use (5.5) in order to prove that

(5.11) There exists to such that (u(t))(a) > 0 for a > al and t > to.

In fact, if t > so + a + b, we have t- a > So and, by (5.4)

(u(t))(a) >_ ee--zt Kl(a + s t)h(s) ds
-a)_

e-- K(a)h(cr + t a)da > O.
al

Now let to > s + at; then to- a > s and

(u(to))(a) >_ ee--t Kl(a + s to)h(s)ds
--a)

> ee-th_ K (a + s to)ds
--)

-+/-th_ Kl(s)ds te e--z oh_re(a),



1078 S. N. BUSENBERG, M. IANNELLI AND H. It. THIEME

where h_ infse[8,to] h(s). Finally, by (4.8) we have

(5.12) (u(to))(a) >_ u(a),

to h_, and the proof is done.whr (/)-
Finally, we come to the following theorem.
THEOREM 5.3. Let u be the unique nontrivial equilibrium; then for any non-

trivial initial datum uo

(5.13) S(t)uo

If uo is not nontrivial, then

(5.14) S(t)uo o for t >_ a,.

Proof. Let and to be as in the previous proposition; then letting 1 denote the
function equal to 1 almost everywhere on [0, at],

u <_ S(to)uo <,

and

s(t) < s(t + t0)0 _< s(t).

Now
u S(t)u <_ S(t)u and S(t)l _< 1.

Consequently, S(t)u and S(t)l are monotonic with respect to t (nondecreasing and
nonincreasing, respectively) and converge to a nontrivial equilibrium which coincides
with u by the uniqueness Theorem 4.5; then (5.13) follows from (5.15).

Now let
at
K2(a)uo(a- t)da 0 for all t _> 0.

Let us show that the iterates un(t) defined in (3.20) also satisfy

at
(5.16) K2(a)un(t)(a- s)da 0 for all t >_ 0 and s >_ 0.

Actually, if (5.16) is true, then

at
/[a u(t)(.)] <_ Ko(a)p(a)un(t)(a) + Kl(a) K2(a)un(t)(a) da

Ko(a)p(a)un(t)(a)

This implies that

un(t) -- oF(un(t)) _ (1 + ozk+o )un(t).

un+l(t)

_
etnuo + c e(t-a)nun(a) da,
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where c > 0; and, consequently,

at sat
K2(a)un+l(t)(a- s)da <_ K2(a)uo(a- t- s)da

+t

+ c K2(a)un(a)(a t s + a)dada O.
+t--a

Thus (5.16) is true by induction.
Now (5.16) implies that

at
(5.17) K2(a)u(t)(a s)da 0 for all t _> 0 and s _> 0

so that if t > a

(5.18) u(t) <_ c e(t-")Au(s) ds,

which implies (5.14). In fact, fix t > at, a E [0, at] and define

(x) u(t a + x)(x) for x e [0, at];

then by (5.18)
x

(x) _< c (s) ds,

which implies (x) _= 0. D

6. Conclusion. As noted in the Introduction, our results provide a complete
global stability analysis and show that sustained periodic behavior is not possible in
the general s- i- s age-dependent epidemic model with constant total population
size. Consequently, the addition of age-structure does not change the gross dynamics
of this model, even though it adds considerable demographic detail and realism to
the model. We demonstrate the existence of a sharp endemic threshold and our
results can be used to obtain the age distribution of the susceptible and the infective
subpopulations. The basic endemic threshold for this model is identified as the spectral
radius of an explicit linear operator which depends on the pertinent demographic and
epidemiological parameters. It generalizes the explicit expressions that were obtained
for this threshold by Busenberg, Cooke, and Iannelli .[2] for the two special cases of
purely intercohort and intracohort forces of infection. The proof that we provide for
the existence and uniqueness of the endemic state, when it exists, is constructive. It
can be used as the basis of an iterative method for obtaining approximations, within
prescribed error bounds, of the subpopulation age distributions at the endemic state.

The generality of our results is limited only by the restrictions (2.9)-(2.13) on
the age-dependent force of infection term. The conditions (2.10)-(2.13) do not place
any essential restrictions on K(a, a) that go beyond what Would be dictated by the
biological situation that is being modeled. However, from (2.9) it is seen that if
K(, ’) 0 for some fixed (, ’) e [0, at] x [0, at] then either gl() 0, or K2(’)
0. Hence, we either have g(, a) 0 or g(a, ’) 0 for all a e [0, at]. That is, if the
disease is never transmitted to any age individual from every age individual, then
either it cannot be transmitted from any age group a 5 to age 5 individuals, or it
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cannot be transmitted from any age 5 individual to an age a 5 individual for all a
[0, at]. Since we are dealing with densities which are defined almost everywhere, this
represents a real restriction only when there exist two age-class intervals 11,12
for which K(a, a) 0 for all (a, a) c I1 X 12. In the epidemiological situtation that we
are modeling, such complete immunity to disease transmission across two separate age
classes is extremely unlikely. Hence, condition (2.9) includes the situations that are of
interest from the viewpoint of the epidemiological model. In particular, asymmetric
forms of K with K(a, a) K(a, a) are included in our result, as well as cases where
individuals from two separate age groups have only limited, but nonvanishing, disease
transmitting interactions. Nevertheless, it would be interesting to explore the dynamic
implications of any substantial weakening of condition (2.9).

We finally note that we have excluded the possibility of vertical transmission in
our model by requiring that i(0, t) 0 in (1.2). This restriction is not essential,
and was made for technical reasons since the inclusion of vertical transmission adds
complications to the the model equations. Similar results to the ones that we have
proved here also hold for the model with vertical transmission and they will be taken
up in a separate paper.
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Abstract. Convergence of almost all trajectories of strongly order-preserving semiflows is derived under
suitable additional assumptions. These essentially consist in slightly sharpening the strongly order-preserving
property and in the continuous differentiability of the flow with respect to the state variable. Required
spectral properties of the linearizations of the flow around equilibria usually follow in the same way as the
compactness and monotonicity assumptions for the flow itself. The proofs are based on sharpened versions
of the limit set dichotomy and the sequential limit set trichotomy.

Key words, monotone dynamical system, strongly order-preserving semiflow, open dense set of (stable)
convergent points, limit set dichotomy, nonordering principle, sequential limit set trichotomy, spectral theory
of strongly positive linear operators
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Introduction. In the fundamental paper [7], Hirsch establishes that most orbits of
a strongly monotone semiflow on a strongly ordered space X tend to the set E of the
equilibria. Somewhat more precisely, Hirsch shows that the set of all x X for which
w(x), the omega (positive) limit set of x, satisfies to(x)c E, is a "large" (open dense,
residual, set of full measure) subset of X. Points x for which w(x)c 17, are called
quasi-convergent points; they are called convergent points if w(x) consists of a single
point of E.

The results in [7] extend earlier work of Hirsch [4], [5] for competitive and
cooperative ordinary differential equations to infinite-dimensional semiflows. Applica-
tions are made to parabolic partial differential equations.

Matano pioneered the monotone dynamical systems approach to parabolic
equations in [12] and [13] where he introduces the notion of upward (downward)
stability of equilibria and considers the dynamics near such equilibria using monoton-
icity arguments. In his more recent work 13]-[16], he outlines an alternative approach
to monotone dynamical systems, parallel to Hirsch’s, which does not require that the
space be strongly ordered and is, therefore, more suitable for applications to parabolic
equations. One of the main results of Matano’s theory, like that of Hirsch’s, provides
sufficient conditions for "most" points to be quasi-convergent.

In a recent paper [27], Smith and Thieme combine ideas from Hirsch and Matano
to obtain a theory which improves several of the results of both authors while at the
same time being conceptually simpler. We adopt (a slight generalization of) Matano’s
idea of a strongly order-preserving semiflow, but base our results on modified versions
of two fundamental results due to Hirsch, namely, the nonordering principle for limit
sets [7] and the limit set dichotomy [7]. These two principles also hold under Matano’s
weaker assumptions (see 16]) and can actually be shown by modifying Hirsch’s proofs
accordingly.

In this paper we present conditions for the existence of a dense open set of
convergent points, i.e., any trajectory starting in that dense open set converges to a
single equilibrium.
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Trivial conditions consist in assuming that the set of equilibria E is discrete or
totally ordered. Both assumptions guarantee that any quasi-convergent point is con-
vergent: in the first case because the w limit set is connected, in the second because
the w limit set cannot contain two different order-related points due to the nonordering
principle.

These two trivial conditions do not harmonize with the spirit of the theory, namely,
finding general structural conditions (e.g., strongly order preserving) under which
almost all solutions have a very simply asymptotic behavior. For systems of equations
and particularly for infinite-dimensional problems, it can be very difficult to verify one
of" the two trivial conditions above.

Our aim is to obtain general structural conditions that guarantee the existence of
a dense open set of convergent points. These conditions do not imply that any
quasi-convergent point is convergent (though this holds if we assume that it is a stable
point). Essentially they consist in strengthening the notion of a strongly order-preserving
semiflow (remaining more general than strongly monotone) and, more importantly,
assuming that the semiflow is C 1, i.e., continuously differentiable in the state variable,
at least in a neighborhood of each point of E. We also require spectral conditions for
the linearization of the semiflow around equilibria, but these usually follow from the
same considerations which establish the strengthened strongly order-preserving proper-
ties and the compactness properties of the semiflow.

Our approach has been inspired by the work of Polfiik [20], who finds conditions
for abstract semilinear parabolic evolution equations to have a residual set of convergent
points. In setting down these conditions, he is able to exploit the special framework
for semilinear parabolic equations, as described by Henry [3]. Our approach is more
general in the sense that we make no assumptions on the underlying system of equations
generating the semiflow. Our abstract results, applied to the case considered by Poliik,
yield stronger conclusions than those in [20], assuming less smoothness but more
compactness. We conclude that the set of stable convergent points is open and dense,
whereas Poliik concludes that the set of convergent points is a residual set.

In the remainder of this section we describe some basic ideas and notation and
preview several of the main results.

Let X be an ordered metric space with metric d and order relation =<. We write
x < y if x <- y and x y. Points x and y in X are ordered if either x < y or y < x. Given
two subsets A and B of X we write A-< B (A < B) whenever x <_-y (x < y) for each
choice of xA and y B. If x<y then [x, y] {z X: x<=z<-_y}. A subset Y of X is
order convex if y, Y2] Y whenever y, Y2 G Y and yl < Yz.

We assume that the order and the topology on X are compatible in the sense that
x _-< y whenever x, --> x, y, y, and x, _-< y for all n. If x X we say that x can be
approximated from below (above) in X if there exists a sequence {x,} in X satisfying
x < x,+ < x (x < x,+ < x,) for n _-> 1 and x -> x.

The space X is said to be normally ordered if there exists a constant k > 0 such that

d(u, v) <- kd(x, y)

for all x, y, u, v with u, v [x, y].
For simplicity here, we assume that is a global semiflow on X. More precisely,

let :XR+-X be a semiflow on X, that is, is continuous and ,(x)=-(x, t)
satisfies o(X) =x for every x and (I),(I) ,+ for every t,s>=O. For xX, let

’+(X) {{:I)t(X): > 0},

o(x)= q e+(,(x))
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be the orbit initiating at x and the omega (positive) limit set of +(x), respectively. If
/(x) has compact closure in X, then w(x) is nonempty, compact, connected, and
invariant, i.e., d,(w(x))=w(x), t>=O, and ,(x)-w(x) as to. We let E=
{x X: t(x)=x, t-> 0} be the set of equilibria. The set of quasi-convergent points is
denoted by Q {x x: w(x) c E} and the set of convergent points by C {x Q: w(x)
is a singleton set}.

The semiflow is said to be monotone provided

t(x) =< ,(y) whenever x =< y.

Following Matano 15], 16], is said to be strongly order-preserving if is monotone
and whenever x, y X with x < y, there exist open sets U and V, x U, y V, and to >- 0
such that ,o(U) =< o(V). By monotonicity, it follows that

t( U) <= ,( V) for t_--> to.
In almost every case in which the strong order-preserving property can be verified,

it results from the fact that the semiflow eventually operates as a strongly monotone
semiflow on some subset Z of an ordered Banach space (Y, I1" II) with cone Y+ and
where Int Y/ # . We write =< y for the partial order on Y generated by Y/ and <<
for the strong ordering induced by Int Y/ that is, Yl << Y2 if and only if y2 Yl Int Y/.
We assume that Z is a common subset of Y and of X, that the two partial orders =<
and =< y induced on Z by the ordering on X and the ordering on Y agree, and that
the inclusion Z X is continuous, where Z is given the topology induced by the norm
on Y. In order to simplify the statement of our results here, we assume that Z is order
convex.

Additional hypotheses intertwine the set Z and the semiflow :
(I) ,(Z) Z for => O.

(J) There exists z => 0 such that (X)
_
Z and X Z is continuous.

(M) If x, x2 X satisfy x < x2, then (x) << (x2).

(D) is continuously differentiable on Z with derivative ’(z).

For any equilibrium e of @ satisfying p(e):= spr (’(e))=> 1, p(e) is a pole
of the resolvent of @’(e) with finite rank and N(p(e)I-@(e)) is spanned
by an element of Int Y+.

Here we use the notation spr L for the spectral radius of a bounded linear operator
L and N(L) for the null space of L. Less restrictive hypotheses are stated with more
care and detail in 3.

The spectral hypothesis (E) is crucial to our result. It may appear very restrictive
until we realize that the monotonicity of implies that the derivative ’(e) is a positive
linear operator on Y. In applications we usually can establish the compactness of

’(e) which implies that p(e) is a pole of the resolvent with finite rank. The same
consideration that checks the strong monotonicity assumption (M) usually provides
that the operator ’(z) is strongly positive, i.e., maps nonzero positive elements into
Int Y+. This implies [22] that the eigenspace associated with p(e) is one-dimensional
and spanned by a vector in Int Y/.

Hypotheses (D) and (E) can be replaced by an alternative hypothesis that ’,(e)
generates a strongly continuous semigroup for each e E and where spectral conditions
are assumed to hold for the generator of this semigroup instead of for the semigroup
itself. This approach is more appropriate for applications to semilinear parabolic
equations.
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It turns out that (J) and (M), together with the monotonicity of on X, imply
(see Lemma 2.1) that is strongly order preserving on X. The additional assumptions
allow a significant improvement of the limit set dichotomy in [27] (see Proposition 2.2).

PROPOSITION. Let be a monotone semiflow on X satisfying (I), (J), (M), (D),
and (Z). If xl, x2c X are such that +(xl) and +(X2) have compact closure in X and
xl < x2 then either

(a) ,o(x) < o,(x), or

(b) w(xl) w(x2) {e} for some equilibrium e E.
Armed with this sharpened limit set dichotomy, we improve our sequential limit

set trichotomy of [27] in Proposition 2.3 and this, in turn, leads to two of our main
results stated below.

THEOREM 1. Suppose that for each x X, +(x) has compact closure in X and that
x can be approximated either from above or from below in X by a sequence {xn} such
that n>- to(xn) has compact closure in X. Then Int C is dense in X.

In fact, under minimal additional hypotheses we can show that X contains an
open and dense set of stable convergent points (see Theorem 2.6). A point x X is
called a stable point if for every e > 0 there exists 6 > 0 such that d(, (x), ,(y)) < e

for _-> 0 whenever y X and d (x, y) < 6.
In many applications, however, it is unreasonable to assume that we have a global

semiflow on the space X. We typically have a local semiflow on X (see 3 for precise
definitions) and can show that (7+(x) has compact closure in X only for some subset
Xo of points of X. In 3 we show that, by suitably modifying assumptions (I), (J),
(M), (D), and (Z), we can obtain the following result.

THEOREM 2. Let Xo be an open subset of X such that every point of Xo can be
approximated both from above and from below in X. Assume either

(a) X is normally ordered, every orbit starting in Xo has compact closure in X, and
for any convergent monotone sequence x, in Xo, =1 w(xn) has compact closure in X, or

(b) Each point of Xo belongs to a neighborhood U such that U x [0, ) c Dom
and ( U to, c)) has compact closure in Xfor some to> 0.

Then Xo contains a dense open subset of stable convergent points.
The modified versions of assumptions (I), (J), (M), (D), and (Z) are assumed to

hold in Theorem 2.
The compactness assumptions contained in both (a) and (b) of Theorem 2 are

rather mild for most applications. However, these assumptions are not made in [7] or
[20]. In 3 we show that neither of these compactness assumptions is required for the
weaker result that there are at most a countable number of nonconvergent points on
any totally ordered arc of points of X having precompact orbits in X. Such a result
for quasi-convergent points was obtained by Hirsch [7, Thm. 7.3].

For applications of the results of monotone dynamical systems theory, we refer
the reader to [4]-[6], [23], and [24] for applications to systems of ordinary differential
equations, to [7], 12]-[ 17], [20], and [21] for applications to parabolic initial-boundary
value problems, to [25], [26], and [28] for applications to functional differential
equations, and to 10] and 11] for applications to systems of parabolic equations with
time delays. In these applications the stronger results ofthis paper are typically obtained
by finding additional conditions that guarantee that the induced semiflow is con-
tinuously differentiable in the state variable.

The organization of this paper is as follows. In 1 we establish the key result,
Proposition 1.2, leading to the improved limit set dichotomy. Proposition 1.2 states
that for a strongly order-preserving discrete dynamical system with certain smoothness
and compactness properties, any compact, connected, unordered, and nonempty set
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of equilibria which attracts two orbits {un} and {v,} with un << v, must be a singleton.
In 2, we use this result to establish the improved limit set dichotomy (the proposition
above) and Theorem 1. In this section we assume that is a global semiflow on X.
In 3 we show how to modify the ideas of 2 to apply in case the semiflow is a local
one. Theorem 2 is a corollary of the main result of this section. Finally, in 4 we
consider two applications of our results. The first application is to semilinear parabolic
equations. Here we compare our results to those of Poliik [20]. The second is to
systems of functional differential equations, following [25].

1. Discrete prelude. Let Y be an ordered Banach space with cone Y/ such that
Int Y+ . Let Z c y and S:Z-> Y be a mapping which is order preserving and has
the following property. If e Z is a fixed point of S, i.e., Se e and a natural number,
then there exists a neighborhood U of e in Z which is order convex in Y such that
(i) S is defined on U and (ii) S is continuously differentiable on U; that is, there
exists a continuous mapping S’:U--> L/(Y) such that

S(z)- S(zo) S’(zo)(Z- Zo)+ (z, Zo)II z- Zol[

with b(z, Zo)0 as z-zo where Zo, Z U. Here L+(Y) denotes the cone of bounded
linear operators on Y mapping Y+ into itself. The reader may think of S as the map

where cI) is the semiflow in the Introduction.
We assume the existence of a compact connected set K of fixed points of S in Z

with the following properties:

(A)

(B)

For any e K with pe =spr (S’(e))>= 1, Pe is a pole of the resolvent of S’(e)
of order me and N((pfl-S’(e)) me) is finite-dimensional. Moreover, N(pfl-
S’(e)) is spanned by a vector in Int Y+.
If el, e2 K and el=< e2, then el--e2, i.e., K contains no pair of distinct
order-related points.

If an isolated point a of the spectrum of a closed linear operator L is a pole of
the resolvent of L of finite order and k>= N((aI-L)k) is finite-dimensional, we say
that ce is a pole of the resolvent of finite rank.

Assumption (A) has several consequences that are conveniently described here.
First, we note that Pe >= 1 for all e K unless K is a singleton. For if e K is a limit
point of K, then necessarily one belongs to the spectrum of S’(e). So let us assume
that pe >= 1 for all e K. It follows that Pe depends continuously on e K. In fact, the
upper semicontinuity follows from the well-known upper semicontinuity of the spec-
trum as a function of the operator and the lower semicontinuity is a result of the lower
semicontinuity of isolated parts of the spectrum [8, Thm. 3.1, Remark 3.3, Thm. 3.16,
Chap. IV]. As pe is a pole of the resolvent of the order rn me

Y= N((peI-S’(e))’)@Im ((pe!-S’(e)) m)

where both subspaces are invariant under S’(e) and pe does not belong to the spectrum
of the restriction of S’(e) to Im ((peI--S’(e))m). Let P(e) denote the projection onto
N((pfl- S’(e)) m) along Im ((peI S’(e))’). Then P(e) depends continuously on e K
[8, Thm. 3.16, Chap. IV].

Finally, let z(e) denote the unique eigenvector of S’(e) associated with Pe of unit
norm belonging to Int Y+. We establish the continuity of z(e) on K as follows. Let
e,-*e as n- where e,, eK, and let z,=z(e), z=z(e). Then (I-P(e))z,=
[P(e,)-P(e)]z,-O as n-c, and {P(e)z,} is precompact in the finite-dimensional
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space N((peI-S’(e))m). Hence, {z,} is precompact, and, if z,, u for some sub-
sequence {hi}, then S’(e)u limi_ S’(e,,)z,, lim_ pe,,,Z,, peU. It follows that u z
and that zn z as n -.PROPOSITION 1.1. If K is not a singleton, then pe > 1 for all e K.

Proof Assume K is not a singleton. Then Pe >= 1 for all e K as noted above.
Suppose that Pe 1 for some e K. Choose a sequence en
Then

e- en S(e)- S(en) S’(e)(e- en)+ o(lle e. II).
Put vn=(e-en/lle-enll). We have

vn S’(e)vn + rn, rn-->O asn-->oo.

In view of our hypothesis (A) and the discussion following it, we may conclude that
I-S’(e), restricted to (I-P(e))Y, is invertible where P(e) is the spectral projection
defined in the discussion preceding the proposition. Let wn (I- P(e))vn and observe
that

(I- S’(e))w, (I- P(e))r, -0

which implies that wn 0. As in a previous argument, this implies that { vn } is precompact
in Y and any limit point belongs to P(e) Y. If vn, v as --> c for some subsequence,
then v= S’(e)v. Thus, v= +z(e), and this implies that en, e-lJe-en, llvn is related
to e for large i, contradicting (B) and completing our proof.

Proposition 1.1 is the only place where we require that N(peI-S’(e)) be spanned
by a vector in Int Y+ (see (A)). The proof of Proposition 1.2 below requires only that
the null space N(peI-S’(e)) contain a vector in Int Y+.

PROPOSITION 1.2. If there exist sequences {un} and {v,} in Z, un+l S(un), vn+
S(vn), un >> vn and dist (un, K) -> 0, dist (vn, K) --> 0 as n - oo, then K is a singleton.

Proof Suppose K is not a singleton set but that there exist two sequences as in
the hypotheses. Let w elnt Y+ and define a new norm ]].tlw on Y by I[y]lw
inf {A > 0:-Aw _-< y -< A w}. Since w Int Y+, there exists 6 > 0 such that for all y Y, y #
0, it follows that w+5(y/]]yll)>-O. From this, we conclude that Ilyllw_-< -llyll for all
y Y, i.e., the w-norm is weaker than the original norm. All convergence and continuity
statements below are with respect to the original norm. The ]]. ]]w norm is used only
for order purposes.

Define cn sup{ > 0: un >- vn + aw} and note that an > 0 and un >- vn + anw. We
observe that an -> 0 as n -* oo. If not, an, -> a > 0 for some subsequence {n} and, by the
compactness of K and the fact that un, vn --> K as n--> o, we may as well assume that
un,--> u K and v,,- v K as --> o. Then u >-_ v + aw so u and v are distinct order-
related points of K in contradiction to our hypothesis (B).

Choose e, K such that vn- en-> 0 as n--> oo. Now K is assumed not to be a
singleton, so Pe > 1 for all e 6 K by Proposition 1.1. As K is compact and e-pe is
continuous, there exists r > 1 such that Pc,, >---- r for all n. Let zn Int Y+, ]]zn ]]w 1 be
the normalized positive eigenvector of S’(e,) corresponding to pc,, so zn --< w. There is
an e > 0 such that zn >= ew holds for all n. This follows from the continuity of the map
e z(e) Int Y+ assigning to each e K the normalized (]1 z(e)]] 1) positive eigen-
vector of S’(e) corresponding to Pc, which, in turn, implies the continuity of the map
fl" K-(0, oo) defined by 3(e) =sup {fl >0" z(e)>=w}. As K is compact, there exists
e > 0 such that/3 (K) >_- e.

Choose l, a positive integer, such that rip > 1. By (i) and (ii) and the compactness
of K there is a cover of K by order-convex open U c Z such that S is differentiable
on U and for each sufficiently large n, the entire segment vn + a,w, 0_-< _-< 1, belongs
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to one of the U. Hence

S(v. + a,w)- Sv,, (S)’(e,,)a,,w+ a.A.
where

A [(sl)’(Vn + OnW)-(sl)’(en)]W d.
o

Since Vn + anW--e,, 0, K is compact, and (St) is continuous, it follows that 6.--
IIA.[[w - 0 as n- o. Thus we have

St(v. + a.w)- Sty,, >- [S’(e,,)]ta.w a.GnW
>- [S’(e.)]o.z,,

rlOnZn OnCnW
>-- (rte
anW

for all large n. We have used that ew <- zn <-- w and en E in the estimate above. From
this last estimate, we obtain

u,,+=Su.>-S(v.+a,,w)

)n+l -- Ol’nW

for all large n. This implies that

OCn+ Ol

for large n, contradicting that 0 < an- 0 as n o and completing our proof.

2. Stable convergence. Returning to the continuous scenario outlined in the
Introduction, consider an order-preserving (or monotone) semiflow on an ordered
metric space X. We assume that for each x X, +(x) has compact closure in X.

Suppose that there is an ordered Banach space Y with order _-< y generated by a
cone Y+ having nonempty interior, Int Y+, and that Y and X have a common subset
Z with the following properties:

(i) The metric dz induced by the norm in Y on Z is stronger than the metric
induced by d, the metric on X, i.e., the embedding from (Z, dz) to (Z, d) is continuous.

(ii) The restriction of <-W to Z agrees with the restriction of _-< to Z.
In the following, the topology on Z will be assumed to be that induced by dz

unless otherwise indicated. Additional hypotheses intertwine the set Z and the
semiflow :
(I)

(J)

(M)

(D)

,(Z)___ Z for t=>0.

There exists z_-> 0 such that (X) Z and X- Z is continuous.

If Xl, x2 X satisfy xl < x2, then (xl) << (x) where " is as in (J) and the
strong order << is induced by Int Y+ on Z.

For any e E, there exists a neighborhood U of e in Z which is order convex
in Y and a -> 0 such that is continuously differentiable on U, i.e., there
exists a continuous mapping

0’" U- L+(Y)
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such that

(z)-(Zo) =’(Zo)(Z-Zo)+ 4(z, zo)llz- oll
for z, Zo U with 4(z, Zo)II Y - 0 as z -* Zo.

(:) For any equilibrium e of satisfying p(e):= spr (’(e))_-> 1, p(e) is a pole
of the resolvent of ’(e) with finite rank and N(p(e)I-’(e)) is spanned
by an element of Int Y+, where - is as in (D) above.

Remark 1. As mentioned in the Introduction, assumption (E) is less restrictive
than it appears. In applications some compactness property of will typically imply
that ’(e) (or one of its powers) can be represented as a sum of a compact operator
and an operator with norm strictly less than 1. This implies that p(e)_-> 1 is a pole of
the resolvent with finite rank [18]. The same consideration which derives (M) usually
shows that ’(e) is a strongly positive operator, i.e., maps positive nonzero elements
into Int Y+. In particular, ’(e) is irreducible, implying that the eigenspace of ’(e)
associated with p(e) is one-dimensional and spanned by a vector in Int Y+. See
Theorem 3.2 of [22, p. 270]. It is possible to give alternative conditions for (Z) to hold
which are weaker in certain respects (see [2, 8, 9], 18], [22]), but the above appears
to be most appropriate in the applications.

Remark 2. In many cases of interest, Z will be order convex, and, in this case,
it is possible to verify (M) and (Z) by establishing the following:

(Z’) For any z Z, ’(z) is a strongly positive operator, i.e., maps any positive
nonzero element in Y into Int Y+. Moreover, for e E, ’(e) is compact.

Observe that (M) follows from (Z’) by the integral version of Taylor’s formula.
Remark 3. In many applications, semilinear parabolic equations, for example,

’(e), e E, will usually be a strongly continuous semigroup. In this case, it is more
natural to replace the spectral condition (Z) involving ’t(e) by one which involves
the infinitesimal generator A(e) of ’,(e). We will show, at the end of this section,
how our results may also be obtained by replacing (D) and (Z) by the assumption (S)
below.

(S) For any e E, > 0, , can be continuously differentiated in a neighborhood
of e in Z which is order convex in Y and (e),t>=O, forms a strongly
continuous semigroup on Y. Assume that, for e E, there exists e > 0 and a
neighborhood U of e such that ’ is defined and bounded on U [0, e] as an
L(Y)-valued map. Assume that the generator A(e) has compact resolvent. If
the spectral bound s(e)= sup {Re A: A o-(A(e))} of A(e) satisfies s(e)>-O, let
N(s(e)I-A(e)) be spanned by an element z(e) Int Y+.

It turns out that (J) and (M), together with the monotonicity of on X, imply
that is strongly order preserving on X.

LEMMA 2.1. Assuming the hypotheses above, we have
(a) , maps X continuously into Zfor >= ’.

(b) For any Xl,X_X with X <X2, (t(Xl)<(t(X2) for t>=O and t(x)<< (I)t(X2)
fort>=-.

(c) Any compact invariant set in X is also compact and invariant in Z.
(d) is strongly order preserving on X.
Proof We prove (d) as the other statements are obvious. If xl < x2 then (xl)<<

(x2) so we may find neighborhood Uy, Vy in Z with Uy<= Vy and (x)
Uy, (x2) Vv. As maps X continuously into Z, we have (U)

_
Uy, (V)

_
Vy

for suitable neighborhoods U, V of x, x2 in X.
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We next prove the following improvement of the limit set dichotomy in [27]. For
the remainder of this section, we assume the existence of a space Z satisfying (i) and
(ii) above and we assume (I), (J), (M), (D), and () hold.

PROPOSITION 2.2. If Xl X2 X and xl < x2 then either
(a) o)(Xl) ((.o(x2) or
(b) to(x) to(x2) {e} for some equilibrium e E.
Proof We only need to show that if to(x)= to(x2)c_ E, then (b) holds. Let K

to(x) and note that K is compact in Y by Lemma 2.1(c). By the nonordering principle,
K contains no pair of order-related points. Let v, ,,(x), u, ,(x2) and S" Z Z
be given by S ,. Then K is a compact connected set of fixed points of S, u,+l

Su,,v,+l=Sv, and u,<< v, holds for n>_-2. Moreover, distz (u,; K)-0 and
distz (v,; K)-0 as n- oe. In fact, (J) implies that ,(x)- K in Z as t- oe. In order
to apply Proposition 1.2, it remains only to check (A) of 1, as the fact that S is
continuously differentiable and order preserving is inherited from the corresponding
properties of . But (Z) implies (A) of 1, so by Proposition 1.2, K is a singleton.

Armed with this sharpened limit set dichotomy, we improve our sequential limit
set trichotomy of Proposition 3.1 of [27]. Observe that only alternative (c) of the earlier
version is affected. Note also that we include explicitly in the hypotheses only the
compactness hypotheses required for the proof, rather than assuming hypothesis (C)
as in [27].

PROPOSITION 2.3 (sequential limit set trichotomy). Let Xo X have the property
that it can be approximated from below in X by a sequence Y, such that U,_>_ to(Y,) is

compact in X. Then there exists a subsequence x, of Y, such that x, <X,+l < Xo, n >-1,
with x,- Xo satisfying one of the following"

(a) There exists Uo E such that

,o (x.) < o(x.+,) < Uo= .,(Xo), n -> 1

and

lim dist (to(x,), Uo) O.

(b) There exists Uo E such that

to(x,) Uo < to(Xo), n >= 1.

If u E and u < to (Xo), then u <- Uo.
(c) There exists Uo E such that to(x,) to(Xo) Uo for n >= 1.
The special property "U ,_->1 to(Y,) is compact in X" ofthe sequence ), approximat-

ing x from below will be required for several results of this and the next section. It is
convenient to have some notation for it. We say x has property (to_) ((to+)) if it can
be approximated from below (above) by a sequence x, such that U,_>_ to(x,) is compact
in X. We say x has property (to) if it has both property (to_) and (to+).

Repeating the proof of Theorem 3.3 in [27] and using the stronger sequential limit
set trichotomy in Proposition 2.3 in place of Proposition 3.1 in [27], we find that there
is an open dense subset of X which consists of convergent points.

THEOREM 2.4. Suppose each point ofX has property (to_) or (to+). Then Int C is
dense in X.

In fact, under minimal additional hypotheses, we can show that X contains an
open and dense set of stable convergent points. A point x X is called a stable point
if, for every e >0, there exists 6>0 such that d(,(x), ,(y))<e for t->0 whenever
y X and d(x, y)< 6. The set of stable points in X is denoted by S.
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PROPOSITION 2.5. Let x S be a stable point which has property (to_) or (to+). Then
xC.

Proofi Consider an approximating sequence (x,). Then, after passing to a sub-
sequence only alternatives (a) or (c) of Proposition 2.3 are possible because points
close to x have limit sets which are close to the limit set of x. Thus x C.

Proposition 2.5 implies the following conclusion from Theorem 3.9 in [27].
THEOREM 2.6. Let X be a normally ordered metric space. Suppose that each point

x X has property (to_) or (to+) and that X contains an open and dense subset Xo of
points which have property (to). Then S c_ C and Int S is dense in X.

In [27], Theorem 3.13, we give conditions under which the set of asymptotically
stable points A is dense in X. This theorem cannot be improved by adding the
assumptions of this paper, but note that we now have A

_
C instead of A

_
Q. Recall

that A
_
S__ C by Proposition 2.5 and that, by its definition, A is open.

We conclude this section by sketching modifications of the arguments in the proofs
of Propositions 1.1 and 1.2, now in the continuous setting of the semiflow (P t, which
are required in order to establish that assumptions (I), (J), (M), and (S) imply the
limit set dichotomy (Proposition 2.2). We begin with the analogue of Proposition 1.1.

PROPOSITION 2.7. Assume (I), (J), (M), and (S) hold. Let K be a nonempty,
compact, connected, unordered set of equilibria of (Pt which is not a singleton. Then
s(e) > 0 for all e K.

Proofi Let e K. As in Proposition 1.1, we can find a sequence e, K such that
e, # e and e.-) e as n-) co. We have

e- e. (P,(e)-,(e.).
Set v, (e e,/[I e e, I[). Then
(2.1) v. =(P(e)v. + r.(t)
where r,(t)-)0 as n- oc pointwise in t. By our boundedness assumption concerning
(P’ in (S), we can assume that the

r.(t)= [Op’,(se+(1-s)e,)-Op’t(e)]tn ds, n >-- 1

are uniformly bounded for in [0, e]. Multiplying through (2.1) by e-’ where A is
chosen sufficiently large, and integrating the result from zero to e, we obtain

A-l(1-e-)v e-"’’t(e)vdt+ e-’r,(t) dt

=(aI-A(e))-v e-’’t(e)vdt+ e-’r,(t) dt,

where, in the second equality, we have used the Laplace transform formula for the
resolvent of the generator of the semigroup (I)’t(e) (see [19, proof of Remark 5.4, Chap.
1]). By the uniform boundedness of the r,(t) on [0, e] and the fact that they converge
pointwise to zero, o e-’r(t) dt - 0 as n - co. Let a denote the measure of noncompact-
ness [9]. Using the compactness of the resolvent and standard properties of a, we
obtain from the last formula

II )A-’(1 e-)a{v,} < a e-’’t(e)v.dt

<-_
a-o(e)
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where we use that II’,(e)ll Me’(e)’ for some M -> 1 and co(e). Choosing h sufficiently
large in the inequality above establishes that a{vn} =0. Hence, vn has a subsequence
converging to a point u and, by (2.1),

u =d’t(e)u >--O.

Multiplying through by e-’ and integrating over [0, c), we get

A-u=(AI-a(e))-lu
for large Z. In particular, r(e), the spectral radius of (ZI-A(e))-, satisfies r,(e)>= ,-
for large A. As r,(e)=(A-s(e))->--Z-, it follows that s(e)>-_O. If s(e)=0, then it
follows that r,(e)= A- and so u is an eigenvector of A(e) associated with s(e). By
(S), u +z(e), where z(e) is as in (S). But then e, e-Ile-e, llv, is related to e for
some large n, contradicting that K is unordered. This proves the proposition.

Now, the proof of Proposition 2.2 can be followed to obtain the sequences
u,+=Su, and Vn+l--S1.) where S=, z as in (M), u,<< v, and distz (u,; K)o
0, distz (v, K)o0 as n oc with K co(x), a nonempty compact, connected, unor-
dered set of equilibria. Now we need Proposition 1.2 to conclude that K is a singleton.
Let us see how to modify the proof of Proposition 1.2 so that we may apply it. Indeed,
we can follow the proof of Proposition 1.2 through the first paragraph without change.
For the remainder of the proof we take z, as the eigenvector of A(en) corresponding
to s(e,)> 0. Clearly z, is an eigenvector of q’(en) associated with the eigenvalue
r(e.) eS(e")> 1, although r(e,) need not be the spectral radius of ’(e,). We need
only to establish the continuity of the maps ez(e) and es(e) in order to conclude
the existence of r > 1 and e > 0 such that r(e,)> r and z(e,)>= ew hold for all n. The
remainder of the proof of Proposition 1.2 can then be followed to obtain the desired
contradiction.

In order to establish the continuity of the maps ez(e), e- s(e), we show that
for sufficiently large ,, the resolvents (,I-A(e))- depend continuously on eK.
Indeed, if en e, A=A(e), A=A(e), Tn(t)=’t(e), and T(t)=’t(e), then from
the boundedness of q’ in U x[0, el, where U is a neighborhood of e (see (S)), it
follows that IlT(t)[I, IIT(t)ll<--Me’,n>-, for some M=>I and co (see the proof of
Theorem 2.2 [19, Chap. 1]). Since T,(t) T(t) in the uniform operator topology as
n , we can argue as in Theorem 4.2 of [19, Chap. 3] to conclude that (,I A(e,))-(hi-A(e))- as n c in the uniform operator topology. Note that part (b) of Theorem
4.2 of[ 19, Chap. 3] proves that if Tn(t) T(t) in the strong topology, then the resolvents
converge in the strong topology. We obtain the stronger conclusion above by virtue
of the stronger hypothesis that T,(t) T(t) in the uniform topology. The spectral
radius r(e) of (hI-A(e))- depends continuously on e by the same arguments
establishing the continuity ofthe spectral radius pe in 1. Moreover, rh(e) (h s(e))-and z(e) spans the eigenspace of (hI-A(e))- corresponding to r(e). Thus, the
continuity of s(e) and z(e) follows as in the arguments preceding Proposition 1.1.
This completes our sketch of the validity of Proposition 2.2 under the hypotheses (I),
(J), (M), and (S). In particular, these assumptions can replace (I), (J), (M), (D), and
(E) in all the results of this section.

3. Stable convergence for local semittows. In this section we consider the case that
the semiflow q may not be globally defined on X. We assume only that " Dom

_
X R/ X is a local semiflow as defined below. Our aim will be to show that, through
slight modification of the ideas in [27] and the previous section, a stable convergence
result may still be obtained in this more general setting. As in 2, we assume that X
is an ordered metric space.
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Following Hirsch [7], we assume that :Dom X, where Dom is an open
subset in X R/ containing X x {0}, and is continuous on Dom and satisfies

(i) o (’, 0) idx
(ii) For all s, => 0, Dom s+, -l(Dom s) and

+, ,
where , :Dom , X, Dom , {x: (x, t) Dom } and ,(x) (x, t) for x
Dom ,.

For each x X, {t >_-0: x Dom ,} [0, o’x) is a half-open interval with right-hand
endpoint o-x=< +oe. The orbit of x is +(x)={,(x): 0<=t<rx}. A set KcX is
positively invariant if it contains the orbit of each of its points. If K is compact and
positively invariant, then O’x +oe for each x K. In particular, if +(x) is compact
in X, then rx +oe and the omega limit set oo(x) has the properties described in the
Introduction.

We assume hereafter that is monotone (order preserving) in the sense that
,(x) <= ,(y) holds whenever x<-_y and 0_-< t<min {o-x, ry}.

As in 2, we assume that there is an ordered Banach space Y with order -< y
generated by a cone Y+ with Int Y/ and that Y and X have a common subset Z
with the assumptions (i) and (ii) of 2 holding.

We modify the assumptions (I)-(M) of 2 as follows:

(I) ,(z) Z, 0=< < r, for each z Z.

(J) There exists " => 0 such that, for any x X with rx > ’, there is a neighborhood
U of x in X such that is defined on U and maps U, with the X topology,
continuously into Z, with the Y topology.

(M) There exists " > 0 such that if xl, X2 X satisfy Xl < x and crx, > ’, then
(x) << (xe), where the strong order << is induced by Int Y+ on Z.

Assumptions (D) and () of 2 are assumed to hold as well, where - in assumption
(Z) is the same as " in (D). Alternatively, assumption (S) of Remark 3 may be assumed
in place of (D) and ().

By taking " sufficiently large, we may assume that the " of (J) and (M) are identical.
Indeed, if in (J), - < < rx, then there exists a neighborhood V contained in U such
that V[0, t]= Dom and , maps V, with the X topology, continuously into Z,
with the Y topology. From (M), it is easily deduced that ,(x)<< ,(x) holds for all
satisfying -<= < min {O-x,, Crx}. As (D) and (Z) remain valid with - replaced by any

integral multiple of itself, it is clear that we may assume, by passing to a sufficiently
large - if necessary, that the " of (J), (M), (D), and () are identical.

The strong order-preserving property of must be understood in a slightly
modified form. Arguing as in Lemma 2.1, we can show that if x, x2 X satisfy
rx,, o’x> " and x < x, then there exist neighborhoods U of x and V of x in X such
that U [0, ’] and V [0, -] are contained in Dom and (U) _-< (V). Since we
will usually assume that the points x with which we work belong to orbits having
compact closure in X, this modification of the strong order-preserving property will
not have a significant effect.

The reader may check that the limit set dichotomy in Proposition 2.3 of [27]
remains valid in the present context provided that we assume that +(x) and +(y)
are compact in X. Similarly, the sequential limit set trichotomy in Proposition 3.1 of
[27] is valid if we assume that +(Xo) is compact in X, +(,) is compact in X for
each n, corresponding to the sequence , approximating Xo from below in X, and
t2,>__ w(x,) is compact in X.
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It is now easy to check that the improved limit set dichotomy (Proposition 2.2)
and the sequential limit set trichotomy (Proposition 2.3) of 2 remain valid, provided
that we assume that the appropriate points (x and y in Proposition 2.2 and x0 and Yn
in Proposition 2.3) belong to orbits having compact closure in X. Note that hypothesis
(i) of 1 is automatically satisfied since for any > 0 and e e/ there exists an open
set U such that U x [0, t) c Dom .

We now introduce a local uniform compactness-of-orbits assumption on which
will allow us to obtain strong stability results as in Theorem 2.6 without the normality
assumption of that theorem. This is important for applications to semilinear parabolic
equations where the usual interpolation spaces fail to have the normality property.

We say that orbits of are locally uniformly compact at x0, provided there exists
a neighborhood U of Xo such that o-y-+ for all y U and

( u x [to, oo))
has compact closure in X for some to> 0. Observe that this assumption implies that
U n_>_w(x,) is compact in X if x, is a sequence approximating Xo from below (above)
in X and x, U for n_-> l.

Let x e X belong to a neighborhood U in X such that ff+(y) is compact in X for
each y U. Then we say x is stable provided for each e > 0 .there exists 8 > 0 such that
d(c,(x), ,(y)) < e for ->_0 whenever y e X satisfies d(x, y) < 6. Let S denote the set
of stable points in X. We say that x is asymptotically stable if there is a neighborhood
V of x, contained in U, with the property that for every e > 0, there exists t > 0 such
that d(,(x), ,(y)) < e if >= t and y V. Let A denote the set of asymptotically
stable points in X. Note that A is open and that A c S.

The next two lemmas prepare the way for a main result of this section, Theorem
3.3 below.

LEMMA 3.1. Assume that Xo is contained in a neighborhood U such that O’y "--00

for y U and

,( u x to,

has compact closure in X for some to> 0. Furthermore, assume that Xo X can be
approximated from below such that either alternative (b) or (c) of the sequential limit
set trichotomy holds.

Then there exists a neighborhood Wc U of Xo such that any point x W, x < Xo, is

an asymptotically stable point.
Proof Let (b) hold. From Corollary 3.2 of [27] we find a neighborhood W of Xo

contained in U with the following property: For each x W, X<Xo, there is a
neighborhood V Vx of x in W, a positive integer N Nx and a time T Tx > 0 such
that

Uo<= ,( V) <- ,(xu) for > T.

We claim that, for any e > 0, there is some t > 0 such that

d(ct(v), UO)<e t> t, V6 V.

If this does not hold, we find sequences t--> oo, j-. co and v V such that, for each j,

d(,(v), Uo)> e >0.

By our compactness assumption we can assume, possibly after choosing a subsequence,
that @,(v) converges towards an element w X, d(w, Uo)>= e. As

Uo<=tj(v)<-t(xN) --> Uo, j-->oo,

we conclude that w Uo, a contradiction.
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We now consider alternative (c). From Corollary 3.2 of [27] we find a neighborhood
W of Xo contained in U with the following property. For each x W, x < Xo, there is
a neighborhood V- Vx of x in W, a positive integer N- Nx and a time T- T > 0,
such that

,(x) <- @,( V) <- ,(xN) for t-> T.

We claim that, for any e > 0, there is some t )0 such that

d(dPt(v),dPt(x,))<e t) t, V.

If this does not hold, we find sequences b - oe, j- ee, and vj V such that

d(dPt.,(vj), ,(Xl)) > e > O.

By our compactness assumption we can assume, after possibly choosing subsequences,
that

and

(I)tj(Xl) --> Wl (I) Vj -’) W2 fI) XN --) W

d(w2, w,)>- e >0, Wl, w3w(x,)=w(xN).

From the compatibility between order and topology we conclude that

W W2 W

The nonordering principle implies w, w3; hence w, we, a contradiction.
LEMMA 3.2. Let Xo X be such that it can be approximated both from below and

from above. Furthermore, assume that Xo is contained in a neighborhood U such that
O’y +(90 for y U and

U to, eo))

has compact closure in Xfor some to > O.
(a) Let alternative (a) of the sequential limit set trichotomy hold both below and

above Xo. Then Xo is a stable point.
(b) Let alternative (c) of the sequential limit set trichotomy hold both below and

above Xo. Then Xo is an asymptotically stable point.

Proofi We first consider (a). So we have sequences

Xn Xn+ Xo Yn +, Yn Xn --> Xo Yn -> Xo n cx3

w(x.) < w(x.+,) < Uo W(Xo) < to(y.+,) < w(y.).

where

lim dist (to(x,), Uo)= lim dist (w(y,), Uo)=0.

By Corollary 3.2 of [27] we have neighborhoods Un of Xo in U and times tn > 0 such
that

(I t(Xn) < dPt( Un) < dPt(yn), >- tn.

If Xo is not a stable point, we find z - Xo, s -, such that, for all j,

d(..,(z), ..,(Xo)) > e > O.

After choosing appropriate subsequences we can assume that s. > b, z U, hence

,(x) -< ,2(z2) _-< (y).
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By our compactness assumption, we can assume, after choosing subsequences, that

dP
sj xj - W b

sj zj - w2 b yj - w j - o.

In particular,

WIW2W3, d(w2, uo)>=e.

The monotonicity of the flow implies that, for each j,

tO(Xj) < W W2 W < w(yj).

This implies w Uo w2 w3, a contradiction.
We consider the situation in (b). So we have the sequences

Xn < Xn+ < Xo < Yn+ < Yn Xn - XO Yn - XO

where

o(x.) ,O(Xo) ,o(y.).

Using that the semiflow is strongly order preserving we find a neighborhood V of Xo
in U and a time T> 0 such that

dP,(x,) <= dP,( V) <= ,( y,), t> T.

Arguing as in the proof of Lemma 3.1 case (c), we find: For any e > 0 there is some
t > 0 such that

d(,(v),dPt(Xo))<e, t> t, vE V.

This completes our proof.
We can now state the main result of this section.
THEOREM 3.3. Let Xo be an open subset ofX such that every point of Xo can be

approximated both from above and from below in X. Assume that either
(a) X is normally ordered, every orbit starting in Xo has compact closure in X and,

for any convergent monotone sequence x, in Xo, t-J,>_l w(x,) has compact closure in X, or
(b) Each point ofXo belongs to a neighborhood Usuch that U [0, ) c Dom and

(U [to, )) has compact closure in Xfor some to>0.
Then A S C and

Xo fq (a U Int S)

is dense in Xo. In particular, Xo contains a dense open subset ofstable convergent points.
Proof We consider only the case where (b) holds, since the other case follows

simply as in Theorem 3.9 of [27]. It is sufficient to show that

U f3 (a t_J Int (S f3 C))

for any open subset U of Xo. Assume that U fq A . Let Xo be an arbitrary element
in U. By assumption Xo can be approximated from below and above. If the alternatives
(b) or (c) of the limit set trichotomy hold below Xo or above Xo, U fq A , because
Xo is then approximated by asymptotically stable points. See Lemma 3.1. Hence,
alternative (a) has to hold below Xo and above Xo. Therefore, Xo is a stable convergent
point by Lemma 3.2(a). Since Xo was an arbitrary point in U we have U c S C. As
U is open we have U = Int (S 71C). This implies the assertion. Note that A = S = C
follows as in Proposition 2.5.
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COROLLARY 3.4. LetX contain a dense open set Xo satisfying one ofthe assumptions
(a) or (b) of the previous theorem. Then A Int S is open and dense in X.

Theorem 2.4 and Corollary 3.4 imply that, from a topological point of view,
convergence to equilibrium occurs for a "large" set of initial data for strongly order-
preserving semiflows enjoying the properties assumed to hold in this paper. Another
notion of a "large" set, in finite dimensions, is a set whose complement has Lebesgue
measure zero. We can establish that the set of nonconvergent points has measure zero
in finite dimensions by showing that the set of such points on any totally ordered arc
is at most countable and then applying Fubini’s theorem. Thus, a natural extension
of this notion of the scarcity of nonconvergent points, to infinite dimensions, is that
any totally ordered arc contains at most countably many nonconvergent points. Such
a result for quasi-convergent points was obtained by Hirsch [7, Thm. 7.3]. If we restrict
ourselves to totally ordered arcs as opposed to sets, this result does not require the
separability of the space X. Below we extend this result to convergent points as well
as obtain a stronger result with the additional compactness hypothesis required for
the sequential limit set trichotomy.

Recall that a totally ordered arc is the continuous image of a nontrivial interval
I_R under a map q:I-X such that tp(s) < 0(t) whenever s,tI and s<t.

THEOREM 3.5. Let J be a totally ordered arc ofpoints belonging to orbits with compact
closure in X. Then J\C is at most countable. If, furthermore, for every convergent sequence
xn J, U,___I w(x,) is compact in X, then J\ C consists of isolated points of J.

Proof Let W=([0, oe)x J). Then the continuity of implies that W is a
separable metric space which is positively invariant under . Hence, we may as well
assume from the beginning that X is separable since we can always pass to the
space W.

We next establish that if x J and

inf {dist (w(x), w(y)): yJ,y x}=0,
then x C. Choose a sequence x, J, x x, such that dist (w(x,), w(x))
We may assume that x, < x for all n. Taking a subsequence, we can conclude from
Proposition 2.2 that either w(x,,)= w(x) holds for some n or w(xn)< w(x) holds for
all n. In the first case x is convergent. In the second case we choose yn o (x), z, w (x),
such that d(y,, z)- 0, n-c. As w(x) is compact we can assume, possibly by passing
to a subsequence, that y,,, z,, ---> z w(x). As y _-< co(x), we conclude that z <-_ w(x) and
z w(x) implies that w(x)= {z} by the nonordering principle [27, Prop. 22]. Again, x
is a convergent point, establishing our claim.

Now, if x J\ C, we find, by the claim of the previous paragraph, that there exists
a neighborhood Ux of w(x) such that U, f-)to(y)= for every y J, y x. By the
axiom of choice we have a mapping x-- u to(x)c U from J\C into X which is
injective. As X is separable, it has a countable base and we may obtain a neighborhood
V c U for each x J\ C, where V, belongs to the countable base. A second application
of the axiom of choice gives an injective mapping from J-C into the countable base
by x-- V,. This establishes the countability of J-C.

Assume the stronger assumption holds that for each convergent sequence x,
J, U n>-i w(xn) is compact in X. If x were not an isolated point of J-C relative to J,
then we could approximate x by a monotone sequence of points of J-C. But, as
x J-C, this violates the sequential limit set trichotomy.

4. Applications. In this section we apply our theory to an abstract parabolic
evolution equation and a concrete parabolic initial/boundary problem as well as to a
system of quasi-monotone functional differential equations.
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4.1. An abstract parabolic evolution equation. We consider the Cauchy problem
du

(SPE) --+ Au =f(u)
dt

and compare the results provided by our theory with those obtained by Poliik [20].
We assume that A is a sectorial operator on a Banach space X with compact

resolvent (AI-A) -1 and Re tr(A)> 0, where tr(A) denotes the spectrum of A.
For u > 0, X denotes the domain of the fractional power A with the correspond-

ing graph norm which makes it a Banach space.
We fix some 0_-< ce < 1. X is going to be our basic state space.
We require the following properties for f:

(fl) f: X - X is C 1.
(f2) f maps bounded sets in X onto bounded sets in X.

By Theorems 3.3.3 and 3.3.4 of[3] the solutions u of (SPE) induce a local semiflow
on X by ,(u(0))= u(t). The maximal interval of existence of ,(x) is denoted

by trx.
It follows from Corollary 3.4.6 of [3] that is continuously differentiable as a

mapping from X" (0, o) into X on its domain of existence. (SPE) then implies
that ,(x) is a continuous function of from (0, o-x) into X.

As A has a compact resolvent and we have assumed (f2), ,, for > 0, maps
bounded sets in X" into bounded sets in X, a </3 < 1, and, hence, into compact sets
in X". See the proof of Theorem 3.3.6 and Theorem 1.4.8 of [3]. In particular, sets
cI)(B[e,c)) with BcX, which are defined and bounded in X for e=0, are
relatively compact in X" for e > 0.

We assume that X is an ordered Banach space under a partial ordering <=. Our
essential requirement is that there is some/3 [c, 1) such that Xt is strongly ordered
by the induced ordering <=, i.e., the positive cone X+ has nonempty open interior in
Xa and that

(P) ,(y) -,(x) Int X+, > 0, x < y,
x, y X", in the common interval of existence. (P) is formally weaker than Poliik’s
assumption (M4) because it only involves solutions and not subsolutions to (SPE).
(P) implies, in particular, assumptions (J) and (M) in 3.
t restricts to a continuously differentiable (in the state variable) local semiflow

on Xt since f restricts to a C map on X. Hence (I) holds.
We verify that (S) of Remark 3, 2 holds. For e E, we have already noted that

is continuously differentiable in an X neighborhood of e. From Theorem 3.4.4 of
[3], it follows that ’,(e) defines a strongly continuous semiflow on Xa generated by
A( e) -A +f’( e). A(e) is sectorial and (txI-A(e))- maps X continuously into X
and hence restricts to a compact operator on X’. Thus A(e) has compact resolvent.
For each e E and e > 0 there exists a neighborhood U’ of e such that U’ [0, e] c
Dom . Using again Theorem 3.4.4 of [3], standard Gronwall estimates, and continuity
of , on X’, we can verify that there is a neighborhood U containing e in U’ such
that ’( U [0, e]) is a bounded set in L(Xt).

The remaining hypotheses in (S) concerning the spectrum of A(e) must be added
to our hypothesis:
(SP) For each e E, the spectral bound s(e)=sup{Re A: A o-(A(e))} has the

property that if s(e)>=O, then N(s(e)I-A(e)) is spanned by an element z(e)
belonging to Int Xt.

We note that (SP) follows immediately from (M3) of Poliik (see [20, beginning
of 3]).
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In the following results we assume that (fl), (f2), (P), and (SP) hold. Theorem
4.1 follows from the first assertion of Theorem 3.5 and Theorem 4.2 from Theorem 3.3
with hypothesis (b).

THEOREM 4.1. Let J be a totally ordered arc ofpoints in X, the orbits of which are

defined for all >-O, and are bounded. Then the set of nonconvergent points on J is at
most countable.

THEOREM 4.2. Let U be an open subset ofX with the following property. For any
u U there is a neighborhood V of u in U such that V [0, ) c Dom and

o(v [o, oo))

is bounded in X. Then U contains a dense open subset of stable convergent points.
Theorems 4.1 and 4.2 express that the set of nonconvergent points is small. They

should be compared to Pohiik’s Corollary 5.3 in [20]. We obtain a stronger conclusion
in Theorem 4.2 than [20, Cor. 5.3], namely, that U contains a dense open set of stable
convergent points rather than a residual set of convergent points, assuming more
compactness. We can dispense with the technical conditions (SM1) and (SM2) in [20]
and, more importantly, need f C rather than f C2 as in [20].

The results for abstract parabolic evolution equations can be applied to scalar
parabolic initial boundary value problems

atu u g(x, u, 7u), x

Bu 0, x

u(O,x)=uo(x), xf,

where f is a bounded domain in RN with sufficiently smooth boundary Of and is
a uniformly elliptic second-order operator and B a suitable boundary operator, in
essentially the same way as done by Pohiik. Our hypotheses (P) and (SP) can be
verified by application of the strong maximum principle for parabolic equations. We
need g C instead of C2 and can dispense with Pohi6ik’s assumption (6.8) in the
case of Dirichlet boundary conditions.

4.2. Quasi-monotone functional differential equations. Consider the functional
differential equation

(FDE) x’(t) f(x,)

where f:CrR is C, r=(rl,r2,...,rn)>O Cr---I-Ii=l C([-ri, O],R). If xi(t) is
defined and continuous on [-ri, tr), tr>O, 1 =< -< n, and O-t < tr, then xt Cr is given

2by x, (x,, x,, , x, where x,(0) xi(t + 0), -ri --< 0 _-< 0. Given Cr, (FDE) has
a unique solution x(t; ) on a maximal interval of existence [0, r+) satisfying xo .
The system (FDE) generates a (local) semiflow on Cr given by

o,() x,(), 0_-<t<.
Let C+r =l-Ii= C([-r, O],R+) be the cone of nonnegative functions in C and

note that Int C+ consists of the functions each of whose components is positive on its
domain.

Let U be an open subset of C which is positively invariant for (FDE); that is,
Ot() U for 0_-< t<o-+, for all U. Following [24], we introduce the following
hypotheses:

(K) For all 0 U and b C/r with b(0)=0,

fl(O)() ----> O.
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The derivative fl(0), off, appearing in (K) can be represented as

4,(o) dn,(o)
j=l --rj

where /ij /ij(O; 0): R R satisfy

n0(0) .0(0), 0 _-> 0,

r/0(0) 0, O<=-rj,

qo BV[-, 0] and is continuous from the left on (-r, 0).

As noted in [24], (K) is equivalent to assuming that r/0 is nondecreasing on [-r, 0],
ij, and r/, is nondecreasing on [-r, 0).

In addition, we introduce the following hypotheses.

(R) For each U, the n n matrix

(0; ))

is irreducible.
(S) For every j for which rj > O, there exists such that for all 0 6 U and all small

vo(-r + e; q,) > O.

We refer the reader to [24] for additional motivation for the hypotheses above.
Recall that a matrix is irreducible if it does not leave invariant any nontrivial coordinate
subspaces. Iff satisfies (K), (R), and (S) on U, then f is cooperative and irreducible
in U.

In order to insure that (FDE) generates a (global) semiflow with appropriate
compactness hypotheses we will also assume the following:

(T) f maps bounded subsets of U to bounded sets in R’. For each 0 U the orbit
7+(0) {x,(0): t->0} exists and is bounded. Moreover, assume that there is a
closed bounded subset B c U such that w(0) C B for all 0 U, where w(
is the omega limit set of +(0).

Hypothesis (T) is easily seen to imply that the compactness assumptions of
Theorem 3.3(a) hold. Indeed, if {q,,} is a convergent sequence, then t_J,_>l w(0,) is an
invariant set contained in the closed and bounded subset B. Since f is bounded on
bounded sets, , is completely continuous for large [24] so it follows that (-J,_->l
has compact closure in B.

In the following result, we summarize several important consequences of our
assumptions.

PROPOSITION 4.3. Let f satisfy (K), (R), (S), and (T). Then lff is an eventually
strongly monotone C l-semiflow on U; that is, if , dp U, and 4’ < O, then

xt(dp)<< xt(O) fort>=(n+l)maxri.

Ife U is an equilibrium point of (FDE), then { Te (t) =- dp ’t(e) }t >-_o is a strongly continuous
semigroup and Yt dp ( e) dp satisfies

y’(t) L(yt), L(d/)=f’(e)O, yo

Moreover, Te (t) is compact and strongly positive for _-> (n / 1) max r.
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Proof The proof follows immediately from Theorem 3.1 of [24].
THEOREM 4.4. Let f satisfy (K), (R), (S), and (T). Then U contains an open and

dense set of stable convergent points.
Theorem 4.4 follows from Theorem 3.3(a) using the normality of Cr. Concrete

examples where the above result applies appear in [24], [25], and [27].

Acknowledgment. The authors thank an anonymous reviewer who stimulated us
to significantly improve our original manuscript.
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Introduction. We consider the nonlinear periodic tridiagonal system

Y=fl(t, yl,Y2),

(0.1) yj =(t, Yj-I Y, Y+,), 2 <--j <= n 1,

y’=f(t,y._l,y.),

where f= (fl,f2,""" ,f.) is defined on R 6, a nonempty open subset of R". We
assume that the f/and their partial derivatives with respect to the y are continuous in
Rx and that there exist 6ic {-1, +1}, 1 -< i<= n- 1, such that

(0.2) i
of/

>0, ti0f/+l>0, l<=i<--n-1
Oyi+l Oyi

holds for all values of the arguments (t, y) c R . It will be assumed that there exists
to > 0 such that

(0.3) f(t+to, y)=f(t,y), (t,y)6Rx .
Finally, concerning the open set , we assume that each of the coordinate projections
1
_
R2 of onto the (y, Y2) plane, n - R2 of onto the (yn_, y,) plane, and R

of onto the (y_, y, y+) space, 2_-<j_-< n- 1, are nonempty convex subsets.
Autonomous systems of the form (0.1) satisfying (0.2) where f was assumed to

be n-1 times differentiable with respect to the y. were considered by Smillie [18].
With these hypotheses, Smillie shows that every bounded orbit converges to an
equilibrium. We extend this result by showing that every bounded orbit of (0.1) is
asymptotic to an to-periodic solution of (0.1), at the same time relaxing Smillie’s
smoothness assumptions. In the autonomous case, we obtain his result with only the
assumption that f C1.

The requirement (0.2) implies that the Jacobian matrix, Of/Oy, corresponding to
(0.1), is tridiagonal and sign symmetric in the sense that of/oyi+l and Of+l/Oy have
the same sign, namely, 6i. In case i----1 for all i, (0.1) is called competitive and if
i--’-1 for all then (0.1) is called cooperative. The change of variables Yi--tiYi,
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? Department of Mathematics, Arizona State University, Tempe, Arizona 85287-1804. This research

was supported in part by National Science Foundation grant DMS8722279.
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/zi E{--1, +1}, 1 <_-i-< n, transforms (0.1) to a new system of the same type, satisfying
(0.2), where now 8i tzitzi+lSi. It is clear that we may choose the/zi, 1 -< =< n, so that

tzilZi+l 8i for 1 _--< =< n 1. Indeed, set /Xl 1, /xi 8i-ltXi-1, 2 <- <- n. After such a
change of variables we may always assume that (0.1) is cooperative. Note also that
the time reversed system is again a system of type (0.1) satisfying (0.2) and (0.3) with
the signs of 8i reversed.

System (0.1) with the assumption (0.2) can be viewed as a monotone dynamical
system in the sense that the Poincar6 (period) map preserves a partial ordering on Rn.
There is now an extensive literature on monotone dynamical systems, beginning with
the path-breaking work of M. W. Hirsch [9]-[12] for monotone semiflows. The results
of Hirsch and later improvements by Matano [15], Smith and Thieme [22], [23], and
PolS.ik [17] established that most orbits of a strongly order-preserving semiflow
converge to the set of equilibria. These results, of course, apply only to autonomous
systems. Smillie’s result stands out in that all bounded orbits converge.

The theory of discrete-time monotone dynamics is significantly more complicated
than its continuous-time counterpart. There has been much recent work following the
early studies of Alikakos and Hess [1] and Alikakos, Hess, and Matano [2]. Examples
of stable k-cycles, k ->_ 2, for strongly order-preserving discrete-time dynamical systems
have been given by Taki [26], [27] and by Dancer and Hess [28]. In the example
given in [27], the dynamics is generated by the Poincar6 map for a cooperative and
irreducible time-periodic four-dimensional vector field. These examples show that the
limit set dichotomy of Hirsch [9], [10], [12] for strongly monotone semiflows does not
carry over to strongly monotone discrete-time dynamical systems and that we cannot
expect to prove that "most orbits" of a strongly monotone discrete-time dynamical
system converge to the set of equilibria (fixed points). Convergence for strongly
monotone discrete-time dynamical systems has been established by Taki [25] in the
case that all equilibria are Lyapunov stable and additional technical assumptions. This
result improved the previously mentioned work of Alikakos and Hess 1 and Alikakos,
Hess, and Matano [2].

In a certain sense, our results here are natural generalizations of the results of
de Mottoni and Schiaffino [4] and Hale and Somolinos [7], who proved that all
solutions of two-dimensional to-periodic competitive or cooperative systems are
asymptotic to to-periodic solutions. See also [19] and [20] for extensions of this work.

The proof of our main result, namely, that every bounded solution y(t) of (0.1)
is asymptotic to an to-periodic solution, uses the main technique introduced by Smillie
and which is also used in a related form by Smith with Mallet-Paret in [13], by Fusco
and Oliva in [6], and by Smith in [21]. An integer-valued function is introduced which
has the property that it is a Lyapunov function for a certain class of linear systems
including the variational equation corresponding to (0.1). In other words, this function
is defined for all but an at most finite set of points along a nontrivial solution of the
linear system, is locally constant near points where it is defined, and strictly decreases
as increases through points where it is not defined. The nature of the domain of this
Lyapunov function, together with the fact that the solution of the linear system belongs
to this domain for almost all values of t, places strong restrictions on the signs of
components of the solution and leads to the proof of our main result, Theorem 2.2.
The Lyapunov function also places strong restrictions on the Floquet multipliers of
an to-periodic solution of (0.1). In Theorem 1.3 we show that all multipliers are distinct
and positive.

The idea of using integer-valued Lyapunov functions in dynamical systems seems
to go back to the work of Nickel [16] and later to that of Matano [14], where the
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so-called lap number is introduced as a count of the number of sign changes of a
solution u(t, x) of a scalar reaction diffusion equation on an interval 0=< x_-< L. As
increases this number cannot increase. The lap number has been used by Henry [8]
and Angenent [3] to establish the Morse-Smale property for scalar reaction diffusion
equations. See also Fiedler and Mallet-Paret [5].

The paper is organized as follows. In 1 we introduce the Lyapunov function
and use it to study certain linear systems which include the variational equation along
a solution of (0.1). Theorem 1.3 concerning Floquet multipliers is also proved. In 2
we prove our main result, Theorem 2.2, by applying the results of 1 to the difference
of two solutions of (0.1), which satisfies an appropriate linear system.

1. Linear systems. Consider the linear system

x’l alxl + alex2,

(1.1) x=a_x_+axj+a+x+, 2=<j<n-1,

X ann Xn OnnXn,

where the ao are continuous functions defined on a nontrivial interval I and

(1.2)
ajj+,(t)>O on I, 1-<j-<n-1,

ajj_l(t)>O on/, 2<=j<-n.

Following [18], we define the continuous map

on

by

o-:A{0, 1, 2,...,n-l}

A={vR":vl#0, v,#0andifvi=0

for some i, 2 =< <= n 1, then vi-lvi+l < 0}

or(v) #{i: ViVi+

Here, # denotes the cardinality of the set. Note that A is open and dense in R and
A is the maximal domain on which r is continuous.

A second integer-valued function was introduced in [13] and in [6]. In [21], Smith
extends the applicability of this function to a class of linear systems including (1.1).
This map is defined by

N:{0, 1,2,...,n}

on

{ v R" if vi 0 for some i, 1 <_- =< n, then v_vi+ < 0},

where is to be interpreted modulo n (0---n, n + 1---0), and

N(v) 4 { i: Vil)i_ < 0}.

It is not hard to see that N is continuous on its domain V, which is open, and that
N takes only even values in {0, 1, 2,..., n}.

Clearly, we have

(1.3)
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and

(1.4) N(v) {tr(v),r(v)+ 1, vv,<O

for all v e A.
A special case of the main result in [21] is the following.
PROPOSITION 1.1. If x(t) is a nontrivial solution of (1.1) on I then
(i) x( t) A/" except possibly for isolated values of t.
(ii) If x(s)

_
for some s int I then N(x(s+)) < N(x(s-)).

Assertion (i) implies that if x(s) W then there exists e > 0 such that x(t) e A/" for

0<lt-sl< e. The continuity of N on A/" implies that N(x(t)) is constant on (s-e, s)
and on (s, s+ e). N(x(t)) decreases by a positive multiple of 2 as increases through
s. The notation int I denotes the interior of the interval I and N(x(s+)) denotes the
limit of N(x(t)) as approaches s from the right and similarly for N(x(s-)).

The next result was proved by Smillie [18] in the case where aij are n- 2 times
differentiable.

PROPOSITION 1.2. If x(t) is a nontrivial solution of (1.1) on I then
(i) x(t) e A except possibly for isolated values of t.
(ii) If x(s) : A for some s int I then cr(x(s+)) < r(x(s-)).
Corresponding remarks to those following Proposition 1.1 can be made here as

well. In particular, cr(x(t)) decreases (not necessarily by a multiple of 2) as increases
through a point s int I at which x(s) A. Note that as o’(x(t)) can assume at most
n values for e I x-l(A), it follows that there can be at most n- 1 values of e I for
which x(t) A.

ProofofProposition 1.2. We use Proposition 1.1 in the proof. Let tl int I be such
that x(tl): A. Suppose first that x(t)A/’. Then x(t)=0 or x,(tl) =0 or both. But
X(tl)W implies that if x(tl)=0 then Xn(tl)XZ(tl)<O and if x,(tl)=0 then
x,_(tl)xl(t)<O. We suppose x,(tl) =0, the other case being similar. Now
a,,_x,_(tl) 0 so t is an isolated point at which x(q) A and

d

t=t

x,( t)x,( t) a,,_,( tl)Xn_l( tl)Xl( tl) < 0.

By (1.4) and the fact that N(t)= N(tl) in a neighborhood of t, it is clear that

O’(X(/1--)) O’(X(tl+)) q- 1.

Thus the conclusion of the proposition holds in this case.
Suppose x(tl) A/’. Then by Proposition 1.1 there exists e > 0 such that x(t)

for 0<It- tl < e and N(x(fi-))- N(x(fi+)) is a positive multiple of 2. We claim that
x(t)x,(t) can vanish at at most two points of O<]t-tl<e. At a zero of xx, in
O<lt-t[<e d/dtxlx, <0 since xAf at such a point. Thus xx, can vanish at most
at one point of (t- e, t) and at most at one point of (t, tl+ e), proving our claim.
Hence we may find eo<_-e such that x(t)A for O<lt-t]<eo. As N decreases by a
positive multiple of 2 as increases through t, (1.4) implies that cr must decrease by
at least 1. Our proof is complete.

As Proposition 1.1 had important implications for Floquet theory for periodic
linear monotone cyclic feedback systems in [13], Proposition 1.2 has similar implica-
tions for Floquet theory for (1.1) when the system is periodic. Hereafter in this section,
we assume that ao(t+ o))= ao(t holds for all and all i, L where w >0. Let X(t)
denote the fundamental matrix solution of (1.1) satisfying X(0)=/, where I is the
identity matrix. Recall that the eigenvalues of X(w) are the Floquet multipliers of
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(1.1). The proof of the next result follows closely the proof of related results in [13]
and so we merely sketch the proof, making use of results and notation in [13, 2].

THEOREM 1.3. The w-periodic linear system (1.1) has n distinct positive Floquet
multipliers a1,’", an, satisfying

(1.5) ot > a2>" > an-1 >

If E. are the corresponding one-dimensional eigenspaces ofX(w) then E,X{0}= A and

(1.6) (E,{0}) i- 1, 1 i n.

Proof It is easy to see that Lemmas 2.1 through 2.4 of [13] hold with replacing
N. Let a be a multiplier of (1.1) and G=ker(X(w)-aI) be the generalized
eigenspace corresponding to a (here m is chosen sufficiently large). By Lemma 2.2 in
[13], for each o> 0 which is the modulus of some Floquet multiplier of (1.1), we have

o{0} A

and is constant on o{0} where

o=Re G.

If dim o 2 then we could find linearly independent vectors v, w o such that

flv + w 0 for a suitable scalar # 0. But this contradicts that v + w o{0} A.
Hence, dim o 1 and o Go Eo for some Floquet multiplier ao. Moreover, ao
is the only Floquet multiplier with modulus ]ao[ o. Thus ao is real.

Recall that for a Floquet multiplier a of (1.1) there corresponds a nontrivial
solution x(t) of (1.1) satisfying x(w)=ax(0). If a were negative then necessarily
x(t)(x,(t)) must vanish for some t, contradicting that E{0} A. Thus, every Floquet
multiplier of (1.1) is positive.

Lemmas 2.4 and 2.5 in 13], where now dim spanos o 1 replaces the estimate
in Lemma 2.5, by the argument above, imply that takes different values on different
eigenspaces E (more precisely on E{0}). Lemma 2.3 in [13] then implies (1.6).

2. Main results. In this section we establish our main result concerning the
nonlinear periodic system

y=f,(t,y,,y2),

(2.1) y =(t, y_, y, y+), 2j < n 1,

where f= (fl,f,""" ,f,) is defined on R x where is a nonempty open set in
with the propey that each of the coordinate projections 1 R2 of onto the (y, Y2)
plane, , R2 of onto the (y,_, y,) plane, and R of 6 onto the (Yj-1, Yj, Y+I)
space, 2j n 1, are convex. We assume that thef and each oftheir paial derivatives
with respect to the y exist and are continuous on R x and

(2.2) f(t+w,y)=f(t,y)

for all (t, y) R x for some positive number w (not necessarily the minimal period).
In addition, we assume that f is cooperative:

(2.3) o >0, o >0,
Oy_ Oy+

2j n 1, and the first inequality holds for j n and the second holds for j 1. In
the introduction we showed that the more general assumption (0.2) can be transformed
to (2.3) by a change of variables.
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LEMMA 2.1. Let y( t) and ( t) be distinct solutions of (2.1) on an interval I. Then
y(t)-fi(t)A except possibly at finitely many values of tI. tr(y(t)-fi(t)) is locally
constant and strictly decreases as increases through a value s at which it is not defined.

Proofi x(t) y(t) y(t) satisfies the linear system (1.1), where

aij(t)= y (t, Ui_l(S t), ui(s t), Ui+l(S t)) ds

with Ui(S t) syi( t) + (1-- s)i( t), j=i-1, i, i+1. The result now follows from (2.3)
and Proposition 1.2.

THEOREM 2.2. Let ( t) be a solution of (2.1) for >= 0 which is not to-periodic but
which is bounded for >= O. Then .9(t) is asymptotic to an to-periodic solution of (2.1).

Proof Define the Poincar6 map corresponding to (2.1) by Py(0) y(to) for those
points y(0) for which it is defined. The omega limit set of the orbit +(37(0))=
{)(nto) P"37(0)" n =0, 1, 2,. } of)(0) under the map P, 1)(37(0)), is defined, compact,
nonempty, invariant under P, and 37(nto) 1)(37(0)) as n . The proof will be complete
if we establish that (3(0)) is a singleton.

By our hypotheses and (2.2), 37(t) and (t+to) are distinct solutions of (2.1) for
t=>0. Lemma 2.1 implies that y(t+to)-(t)A for all large t. This implies that
(t+to)-l(t)(,(t+to)-fi,(t)) cannot vanish for all large and so must be of
constant sign, say, 371(t + to)- )(t)> 0 for >-into where m is some positive integer.
Putting kto, k >= m, into this inequality, we find that

fil(kto) < )71((k + 1)to),

In particular, lim k-o (kto) =/1 and limk- ,(kto) =/, exist.
If p 1)(37(0)) then it follows that p =/1 and p, =/,. If p q and p, q

then the solutions p(t) and q(t) of (2.1) with p(0)=p and q(0)=q are defined for all
tR and p(lto), q(kto) belong to 1)(37(0)) for all integers and k. Since p(t) and q(t)
are distinct solutions of (2.1), Lemma 2.1 implies that p(t) q(t) A for all large values
of t. In particular, p(kto) q(kto) 0 for all large positive integers k. But this contra-
dicts that p(kto)= q(kto), which was established above. Thus 1)(3-(0)) must be a
singleton set, establishing the theorem.

According to Theorem 1.3, if p(t) p(t + to) is an to-periodic solution of (2.1), its
Floquet multipliers, determined by the periodic linear variational system (1.1) where

of,
ao(t) =757. (t, Pi-l(t), pi(t), Pi+l(t))

for j i-1, i, i+ 1, are positive and distinct.
Theorem 1.3 has an important additional implication if we assume that every

to-periodic solution p(t) of (2.1) is nondegenerate, that is, that one is not a Floquet
multiplier. Of course, this implies that p(t) is hyperbolic by Theorem 1.3, that is, there
are no Floquet multipliers of unit modulus. In this case, if there is a heteroclinic
(homoclinic) solution z(t), asymptotic to an to-periodic solution p(t) as t-+ and
to an to-periodic solution q(t) as t--c, then dim WS(q(0)) <dim WS(p(O)) where
W(q(O)) denotes the stable manifold of the fixed point q(0) for the Poincar6 map P
corresponding to (2.1). In particular, there can be no homoclinic solution z(t) corre-
sponding to an to-periodic solution of (2.1) nor a set of heteroclinic solutions forming
a cycle. See [29] for an application of this result. In order to see that dim W(q(O))<
dim W(p(O)), assume q(0)p(0), a similar argument applies if p(0)=q(0), and
suppose z(t) is a heteroclinic solution so that z(nto)p(O) (z(nto) q(0)) as n-+
(n -c). Then z( t) q( t) A for Itl large and p( t) q( t) A for all by Lemma 2.1
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and periodicity. It follows that cr(z(t)- q(t))-* or(p(0)- q(0)) as t- +e and cr(z(t)-
q(t))>-cr(p(O)-q(O)) by Lemma 2.1 and continuity of o-. Now, a subsequence of
(z(nw)-q(O))/[z(noo)-q(O)] approaches a unit vector in E q() the eigenspace corre-
sponding to some Floquet multiplier aj of the periodic solution q(t), where the
multipliers are ordered as in Theorem 1.3. Thus, cr(z(t) q(t)) =j- 1 for large negative
t. Hencej- 1 _-> or(p(0) q(0)) and note also that dim W"(q(O)) >-j since cj > 1. Arguing
similarly with p(t)-z(t), we obtain cr(p(0)-q(0)) -> k-1 where a subsequence of

-p(o)(p(O)-z(nto))/Ip(O)- z(nto) approaches a unit vector in some /z the eigenspace
corresponding to a Floquet multiplier ak of the periodic solution p(t). Now, ak (1

so dim WS(p(O)) _-> n k + 1. The inequality j- 1 _-> or(p(0) q(0)) _-> k- 1 implies that
dim WS(q(O))-n-dim WU(q(O))<-_n-j<-n-kn-k+l<-dim WS(p(O)), comple-
ting the argument.

In the special case where (2.1) is autonomous, (2.2) holds for all to, we obtain the
result of Smillie [18]. Smillie required f to be n-1-times differentiable. Our result
removes that restriction.

COROLLARY 2.3 (C version of Smillie’s theorem [18]). Letfbe independent oft
in (2.1). Then every solution y(t) of (2.1), bounded on >-O, converges to an equilibrium
of (2.1).
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THE SPHERICAL WIENER-PLANCHEREL FORMULA AND
SPECTRAL ESTIMATION
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Abstract. The d-dimensional spherical analogues of Wiener’s "s-function" and difference operator are
defined, and the role of the iterated Laplacian is explained. The corresponding spherical Wiener-Plancherel
formula is formulated and proved. A recipe for spectral estimation is extracted from the formula.

Key words. Wiener-Plancherel, Tauberian theorems, iterated Laplacian, Besov and Besicovich spaces,
spherical mean value, difference operators
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Introduction. We shall prove a spherical Wiener-Plancherel formula for d-
dimensional Euclidean space Ed. This formula is an analogue of the Plancherel formula
in the case of functions that are not square-integrable. Wiener developed such a formula
for [W2], and it became a beacon in his perception and formulation of the statistical
theory of communication, e.g., [W3], [Le]. Wiener even chose to have the formula
appear on the cover of his autobiography, I Am a Mathematician.

What exactly is a Wiener-Plancherel formula? Given a function o defined on
having Fourier transform q3 defined on d (=Ed). Suppose the distribution q3 is
intractable, as is likely for poorly behaved 0. Let s be an operable integral of q3, i.e.,
suppose that s is a well-behaved function and that Ls q3, distributionally, for some
differential operator L. Wiener’s idea was to deal with a computable function s instead
of the more esoteric distribution q3, and to relate the quadratic behavior of q and s.
In particular, for the spherical case dealing with balls B(0, R) {t E[d:lt R} having
volumes IB(0, R)[, a Wiener-Plancherel formula has the form

lim [p(t)[ 2 dt Q(s),
oolB(0, R)I o,)

where Q(s) is an explicit quadratic expression and Q, s, and L are interdependent (cf.
(1.1) for the exact formula). In Wiener’s original result (d 1), Ls can be correctly
formulated as a first distributional derivative of s, e.g., [B1, 2.1], and

Q(s) lai 2- Is(y+ A)- s(y- A)I dy

(cf. [La], [M]).
The Plancherel formula allows us to define the Fourier transform of a square-

integrable function f, and, at certain levels of abstraction, it is considered to characterize
what is meant by an harmonic analysis off. On the other hand, for most applications
in [d, the Plancherel formula assumes the workaday role of an effective tool used to
obtain quantitative results. It is this latter role we envisage for Wiener-Plancherel
formulas in the non-square-integrable case. After all, distribution theory (in d) gives
the proper definition of the Fourier transform of tempered distributions. The real issue
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is to obtain quantitative results for problems where an harmonic analysis of a non-
square-integrable function is desired. A host of such problems comes under the heading
of an harmonic (spectral) analysis of signals containing non-square-integrable noise
and/or random components, whether it be speech recognition, image processing,
geophysical modeling, or turbulence in fluid mechanics. Such problems can be attacked
by Beurling’s profound theory of spectral synthesis, e.g., [B1 ], as well as by the extensive
multifaceted theory of time series, e.g., [P]. Beurling’s spectral synthesis does not deal
with energy and power considerations, i.e., quadratic criteria, and time series relies on
a stochastic point of view. Our goal is to implement Wiener-Plancherel formulas to
address the above-mentioned group of problems. These formulas are well suited to
deal with energy and power; they provide an analytic device which should dovetail
with spectral estimation methods (from time series) developed since Wiener’s time.

Our title is misleading in that we do not obtain results in spectral estimation.
However, our Wiener-Plancherel formula contains a critical recipe for power spectrum
estimation that is discussed in 7. This recipe is the basis for our forthcoming work
on multidimensional spectral estimation.

The paper is organized as follows. In 1 we state our spherical Wiener-Plancherel
formula, viz. (1.1), without going into any detail concerning hypotheses and motivation.
We feel that the technicalities in proof are sufficiently complex to warrant a displayed
version of our goal at the outset. We also remark on some previous work and the
relevance of the spherical case. Section 2 provides the required Fourier analysis on
multiplicative groups, including the Tauberian theorem, as well as some examples of
special functions that are used in the proof of (1.1). It turns out that the differential
operator L is an iterated Laplacian Ak in our case, and the Wiener s-function described
above is defined by Aks q3. Section 3 deals with these notions and the subtleties
required to define distributional convolution properly for this setting (cf. (1.2), Theorem
3.8, and the hypotheses of Theorem 5.7). The expression Q(s) combines a spherical
mean-value operator and spherical difference operator. These ideas and accompanying
technicalities are the subject of 4. At this point we are ready to prove our spherical
Wiener-Plancherel formula. This is accomplished in Theorem 5.7 of 5. Besides the
Tauberian theorem and the material in 3 and 4, we also utilize the space of functions
having bounded quadratic means over spheres as well as the Beurling algebra, which
is its predual. Because the Tauberian theorem is required, 6 contains a preliminary
result and example concerning zeros of Fourier transforms of relevant special functions.

Besides the usual notation in analysis as found in the books by H6rmander [H6],
Schwartz [S], and Stein and Weiss [SW], we shall use the conventions and notation
described at the end of the paper.

1. Statement of the spherical Wiener-Plancherel formula.
Formula 1.1. The spherical Wiener-Plancherel formula is

lim
1 fu ]go(t)[ 2 dt lim(1.1)

R-IB(O,R)] O.R -0

c(d, k)(2r)4k I.._-IX-_a ID.s,(.)l d%

The function Sk is the Wiener s-function

1.2) Sk * Ek,

where AkEk--1, Wd-1 is the surface area of the unit sphere Xd-1, c(d, k) -1 is the
Ll-norm of a special function related to the Fourier transform of the restriction of
surface measure rd_ to Xd-, e.g., Example 2.5,
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and

s(/)
1 I, s,,(v+,o) do-,_,(o).

O’)d -1 d-1

The integer k is related to the dimension d, and there must be control of the quadratic
means of over spheres in order to verify (1.1). The operator L described in the
Introduction is the iterated Laplacian Ak.

Remark 1.2. (a) In a previous work [BBE], we proved a rectilinear version of
(1.1). The rectilinear result is easier to prove than the spherical one, although by no
means elementary. Also, in the case of "rectilinear geometry" the operator L is the
hyperbolic operator

L 0102 Od,

whereas the "spherical geometry" of (1.1) gives rise to the elliptic operator L= Ak.
This remark indicates there is a range of Wiener-Plancherel formulas according to the
number of degrees of freedom available in various convergence criteria.

(b) It is natural to expect significant differences between the rectilinear and
spherical cases.

The analogous situation with the convergence problem for multiple Fourier series
makes this point clear. There are several natural rectilinear convergence criteria for
multiple Fourier series, and there exist positive results in some cases. For example,
using the Carleson-Hunt theorem for d 1, Fetterman [F] proved that

(1.3) lim Z a, e27rit’m q(t) a.e.
R RPfqZ

for q Lp ([d / 7/d ), 1 < p <-- , where P
_
d is a d-dimensional polygon. The rectilinear

convergence we used in [BBE] is analogous to the so-called "restricted rectangular"
convergence criterion in the theory multiple Fourier series; this criterion is different
from that of (1.3). If the polygonal convergence of (1.3) is replaced by spherical
convergence, then it is not known whether all the elements of L2(d/7/d), d > 1, have
a Fourier series representation pointwise almost everywhere. There are negative results
if p < 2. The problem of multiple Fourier series with spherical convergence criteria is
closely related to deep problems associated with Bochner-Riesz multipliers. There are
some positive results, and we close this discussion with one such recent theorem written
in terms of Fourier transforms [CS]: if d=>2, a>0, 2<-_p<2d/(d-1), and q is an
element of the Sobolev space LP([d), then

lim f q3(3,) e2="v dy q(t) a.e.
Roc .B(0,R)

Example 1.3. A formula such as (1.1) established a mapping between spaces of
functions. For example, if the left side of (1.1) is finite then IIIB=()II <, where
B(a) consists of functions having bounded quadratic means over spheres, e.g., (5.1).
There is a hierarchy of Besicovich spaces B(p, q) of which B= B(2, ). For the right
side of (1.1) the corresponding hierarchy V(p, q) is related to Besov spaces. In the
case d 1, the mappings B(2, 1)- V(2, 1) and B(2, c)- V(2, ), established by
Wiener’s original Wiener-Plancherel formula, are topological isomorphisms, e.g., [Be]
and [CL], respectively. Taking d>= 1 and using the rectilinear Wiener-Plancherel
formula in [BBE], Heil [He] proved that the mapping B(2, q) V(2, q) is a topological
isomorphism for 1 -< q =< o.
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2. The Fourier transform on R*+. Let R*+ denote the set, {reR" re (0, )}, con-
sidered as a multiplicative group under ordinary multiplication. *+ is a locally compact
Abelian group taken with the usual topology from . Haar measure/ on *+ is defined
by the formula

VOe Cc(*+), 0 d/= O(r)
dr

r

and convolution on R*+ is written as

O(R)O(r) 0 O(s)
ds

S

(*+)^, the dual group of R*+, consists of elements p e under the mapping p "R*+- C,
r-- ri.

DEFINITION 2.1. The Fourier transform of (R)e LI(*+) is the function on (*+)^
defined as

Vp e (*+)^, (O)(p) rO, O(r
dr

Formally, the Mellin transform of O, a function on *+, is

M(O)(z) rZ-lO(r) dr, zeC.

Thus,

(O)(p)=M(O)(ip).

Wiener’s Tauberian theorem and its generalizations are valid on any locally
compact Abelian group [B1]. The form we use in 5 is the following.

THEOREM 2.2. Given e LI(R*+) for which [(p)] > 0 on (*+)^, let b e L(E*+)
and assume there is a constant C. for which

lim (R) (r) C, (s)
ds

S

Then

lim O(R)O(r)= C, O(s)
ds

Example 2.3. Define the function

0 for re (0, 1),
KA(r)= 1/rd for r >-1,

where d >0. The subscript A is used to designate "arithmetic mean" (cf. (2.1)).
First, note that KA e LI(+*_) since o KA(r) dr 1/d. Also, if e L(R*+) then

(2.1) rd --1(KA(R)(r) (r) dr
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since KA(R/r)=O if and only if r>R. Finally, (Ka)(p)=l/(d-ip), so that
I(KA)(P)I > 0 on (*+)^.

Example 2.4. Given an integer d _-> 2, define the function

K(r) r4-a(12r ()Ogd --1
4d -2)/2

for a given integer k 0. K plays a critical role in the definition of the spherical
difference operator ( 4) used in our formulation of the Wiener-Plancherel theorem
( 5) (cf. Example 6.3). We have

Vr>0 and Vfl ed_l, Kk(r)= F
4k-d

d-1

where d-1 is the restriction of surface area measure d- to Ea- d.
Observe that [[KkILI()I[ < for 4(k- 1) < d < 4k, and that

iKILI(R)II = for d (4(k- 1), 4k).

3. The Wiener s-function and iterated Laplacian. Let XR(t) be the characteristic
function of B(0, R)-, R > 0.

Definition 3.1. (a) Given Lo(d), assume there is an integer k0
such that ((t)/Itl2k)xR(t) L(a) for all R > 0. The corresponding k-spherical Wiener
s-mean determined by R > 0 is defined by

Sk,R( ()2k I 1
e-2"it’’(t) Xa(t) dt, Y a,

for each R > O. Clearly, s. A(a).
(b) Formally, we have

(3.1) AkSk,R(T) e-2it’v(t)XR(l) dr,

where k is a positive integer and Ak is the kth iterate of the Laplacian A in d.
(C) Let ’(d)Lo(d). Because of (3.1) we consider the well-known

equation Aksk . We write

(3.) s G,

where AkEk , and formally compute

(- 1)(2)21 tl=(t) 1.

The Wiener s-function corresponding to is the distribution Sk defined by (3.2) when
this distributional convolution exists.

The verification of the following result is standard.
THEOREM 3.2. Given k 1 for which d > 2k, define

(-1)
(t)=

21)

(a) E 6 ’(a) Lo(d) and its Fourier transform is

(3.3) Ek(y) (-1)kA(d-2k)6 Lo(d),
where A(a)= a/F(a/2)/F((d-)/2), e.g., [St, Chap. 3.3.3].
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(b) If d < 4k then Ek Loc(d) and, for each R > O, E, L2(Rd\B(O, R)).
d(c) If Lo( and XR(t)o(t)/ltlL(a) for each R>0 then q’(Id)

and qEk Ll(Rd).
The hypotheses of Theorem 3.2 were made in light of the requirements to prove

the Wiener-Plancherel formula in 5. In case the convolution (3.2) does not exist for
q Loc(Rd), but qE, 5e’(Rd), then it will be convenient to refer to (qE,) as the
Wiener s-function corresponding to q. If the hypotheses of Theorem 3.2(c) are satisfied,
then

(3.4) )^Sk qE k e A(a

(cf. Theorem 3.8 and Example 4.6).
Remark 3.3. Suppose q e ow’(a) 71Loc(a). Our proof of the Wiener-Plancherel

formula requires k for which 4k > d; d > 2k is required in order that E ,, Ek e 0’ f-) Leon.
In attempting to define the s-function by means of (3.2), it is easy to see that there
are no integers k for which 2k < d < 4k in the cases d 1, 2, 4, but that for all other
dimensions there are solutions. There is no problem in defining the s-function by
means of (3.2) for d 1. In fact, s H q3, H the Heaviside function, and Ak is replaced
by ordinary one-dimensional distributional differentiation. In particular, s’= q3 distribu-
tionally [B1 ].

If d 2, 4 then we can take Ek (7) C log 17] by classical distributional methods,
e.g., [GS, Chap. 2.3.3 and 2.4.2].

dTHEOREM 3.4. If qLioc(N ), XR(t)qg(t)/ltl2kcLl(d) for all R>0, and d>2k
k >- 1) then

lim [ISk- s,,lA(a)ll =0
R0

and

lim AkSk,R(f)= Aksk(f)= (f)
RO

(cf. (3.2)).
Proof. Since Sk, Sk.R A(d) (Theorem 3.2(c) and (3.4)), the norm estimate is a

consequence of estimating
Iff 5e(d) then distributional differentiation and Fubini’s theorem allow us to

write

sk,(f sk, q
,I--> itl=

(Akf) t) dr= (t)f(t) dr,
tl>=R

and so

lim AkSk,a (f) f q(t)f(t) at (f).
R-->O

We have

lim AkSk,(f)= lim sk, (Akf) Sk(Akf)= Aksk(f)
R->0 R->0

by distributional differentiation and the weak convergence, limR_,O Sk,R(g)= Sk(g), g
oW(d). This weak convergence is a consequence of our A(d)-norm estimate.
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The situation is more complicated if d _-< 2k, k_-> 1, but there is a result analogous
to Theorem 3.4. For example, if q 5’(Ea) is Borel measurable and XR(t)q(t)/]t]2k
LI(Ed) for all R > 0 then limR_O AkSk,R(f) 3(f) for each f in the "moment space"
Yo(d). Of course, o(d) is not dense in LI(Ed) since {0}c__d is a set of spectral
synthesis, e.g., B 1].

Example 3.5. Suppose d > 2k.
(a) Give p [1, ). It is not true that f, Ek LP(Ed) for all f C(d). In fact,

iff 0 then, by Fubini’s theorem and translation invariance, we compute

io
(b) On the other hand, f, E L(a) for all f (a). In fact,

[f* Eg(7). C J 1

1 [A[ d-2g
]f(7 A)[ dA + C

>,
[f(7 A)] dA

C[lflL(d)llo._ p2- do + Cl[flL(d)[[.

Because of (3.2) and (3.4) it is desirable to define 93*Ek for a large class of
functions q 0’(Nd) Loc(Na). To this end, it is useful to know that f,(Ll(d)
for all f (d), in light of the fact that f, Ek L(Nd) (see, e.g., Definition/Remark
3.7(a)).

Definition 3.6. (a) 0c(d) is the space of infinitely differentiable func-
tions g for which there is m Z such that

Va, (1 q_[,y]2)rn O,g(y)6 Co(a).

(b) If ,(a) Loc(d) then f* q3 e Uc(a) for all fe 9(a) (see, e.g., [H,
Prop. 4.11.7]); the exchange formula (fv)^ =f, is valid [S].

(c) Further, if p e 5’(a) Loc(d) thenf e LI(d) for all fe 9(a). In fact,
[[ is a positive tempered measure so that

dt < oo
(1 / Itl )

for some m, e.g., [S, Thm. 7.7.4]; hence,

I(fo)(t)l tit- If(t)l(l+ltl2)m(l+]t]2)mdt
dt < o.

t)l--< IIf’(t)(l/ltl)"lZ()[I (l+ltl)

Definition/Remark 3.7. (a) Given S, T ’(d), suppose (S*f)( ’* g) L(a)
for all f, g Sf(d ), where ’(g) T(y)(g(-y)). Then there is a unique element S T
6e’(d), the ’-convolution of S and T, satisfying the equation

Vf, g6Sf(a), ((S* T)*f)(g)= f (S*f)(y)(’*g)(y) dy.(3.5)

The fact that (3.5) determines a well-defined element of 5e’(a) and the subsequent
definition of convolution are due to [HO, p. 148].
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(b) Note that (3.5) is automatic if S, T ow(d) and S, T is usual convolution:

((S* T)*f)(g)= f (f S* T(A)f(y-A) da)g(y) dy

f f f S(A-tz)T(tx)f(y-a)g(y) dtxdA dy

(S,f)()(r,g)()d.

(c) Given N T D’(Re), the product ST is defined as

lim (S,O)(T,O)=ST, (D’(N"),

if the left side exists for each sequence {0} C(Ne) with the properties that
supp 0 {0} and I 0,() dr= 1 for all n.
ToM 3.8. Suppose d > 2k, k 1. Assume ’(Na) and

(3.6) Vfe (d), (l+[y[2)+l(f*)(y)e L(d).
en the ’ convolution s ,E exists and

(3.7) (*E) E.
Proof (a) We can verify that

(3.8) f (d), (1 +[y[)-(+)f*E(y) C(a),
noting that f, E(y) clearly exists for each y

(b) Using (3.6) and (3.8), Definition/Remark 3.7(a) allows us to define the
’-convolution of and E.

(c) Take any C(). Then ,(a) and it is easy to check that

(6), y’().

Furthermore, by a closure argument, e.g., IS, Thm. 7.8.15], we have

((6)*) (,)
and , (a) (see, e.g., Definition/Remark 3.6(b)).

Using (3.6), there is g L(a) for which

g(Y)(, )(T)E(T)
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and, in,particular, (q q3)Ek LI(a\N), where N is a neighborhood ofzero. Moreover,
since 0.q3 c(a), we know it is bounded on N and hence (*)Ek LI(N). Thus,
(*)EkLI(d), and so, (Oq)*EkA(a). The continuity allows us to use [IS,
Prop. 5] to conclude that qE, exists and

(pEk)(O) ((0)* E)(0).

Consequently, we have

f ,3(,)E() d,=(,E(,))((-Z))=(,E)(O),(EV)(O) ((p)* Ev)(O)

and this is (3.7).
The procedure we have used to verify the exchange formula (3.7) after showing

that the product qE, exists is quite general and is due to [IS]. More recent related
work is due to members of the Polish school including Antosik, Burzyk, Kaminski,
and Wawak. The proof of Theorem 3.8 is easier if we know qE k Ll([d).

Example 3.9. (a) Condition (3.6) is automatically satisfied if q is a trigonometric
polynomial.

(b) Further, if q3 =/Z Mb(d) has the property that

then (3.6) is satisfied for all f b(d).
(c) On the other hand, if 3 =/ze Mb+(d) and

(3.9)

then (3.6) fails for all nonnegative f ow(a).
It is easy to construct positive-definite elements q =/zv A(a) that satisfy (3.9).

For example, if g(y)= [rl-+’( +171) -1 then Ilglt(d)ll r,o_,/2, whereas the left
side of (3.9) for the case q gV is

4. Spherical mean value and difference operators.
Definition/Remark 4.1. (a) The d-dimensional spherical mean-value operator

of radius )t is defined as

(4.1) eP/f(y)= .1 f f(y+aO) dod_,(O),
(’Od- ’]d-I

^dwhere f:d C, yen A>0, and O,d-. Thus, 3f(y) is a mean-value off at the
point y. In fact, if d 2 and f is analytic within and on a circle of radius Z about
then the Cauchy integral formula implies that f(y)= 3/lf(y). Furthermore, if d->_2

and f is harmonic in a domain containing y d and the closed ball of radius A then
f(y) J//af(y) [SW, p. 38].

(b) Each operator Ma is a continuous linear mapping M," ow(a)--> ow(a). The
dual mapping M*" ow’(d --> ow’([a is well defined by the duality (M*f)() =f(Mg)-,
where g 9(a).

(c) M*" 5f’(a) -* ow’(a) is the unique continuous linear mapping on 5e’(a) that
extends M defined on 5e(d)

_
9’(d); as such we designate M* by M for each A > 0.
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To see that dJ* is an extension of d//a, take f, g e ow(a) and compute

(/*f)(g) =f(d//ag)- f f(y)(d/lag)(y) dy

1 I (If(Y)g(y+AO)dy)dcrd-l(O)
gOd -1 d-l

gOd -1

gOd --1

To verify uniqueness, take fo’(d) and let f-f in the o-(o’(d),(e))
topology, where {f }

__
(). Then

(*f)() =f(,g)- limf(g)- lim (f,)().

Remark 4.2. In [BBE], we defined a symmetric difference operator zX which was
a unimodular weighted mean-value operator. An analogue for the present situation is

f w(O)f(y+ AO) dora_l(0),
1

gOd-1 ]’.d_l

where ]w(O)] 1 and

lim | w(O)f(y+ A0) doa_,(O)=0.
AO gOd-1 3’,d_l

PROPOSITION 4.3. Let g L2(d), a C, and f 5F’(d). Assume f satisfies the
following conditions" fv ,(d) is a Borel measurable function,

::IR ) O, such that fv L2(B(O, R)-)

and

]tl2f (t) Lo(d ).

Then f-lf L2(d and

I]g cr (f f)[L-(d

(4.2) ( 27r )g"(t)-af(t)1-(ItlA)-d-)/2Ju_)/2(2rltlA L2(d)
d-1

Proof (a) The hypothesis Itlf(t)Lo(a) implies that f Lo(d{O}). In
fact, if K d is compact and 0 K then

fK fK [t[4
f 2 fKf(t)[2dt= [ (t)[ dtC [t[4[f(t)[ 2 dt.

If we did not assume f to be a Borel measurable function, then it could contain
terms of the form 06.

(b) We now prove

(4.3) f(t)Oa(t)=f(t)(1 2(Itll)-(a-/J(a_/(2tlA))L(Na).d-1
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Since f(t) L2(B(0, R)-) and

sup ]t]-a+2Ja_)/2(2zr]t]A)2<= C sup Itl-a+2(2rltlA)-’ Ca sup It] -d+’ CaR-d+’,

it is sufficient for (4.3) to dominate

(4.4) I IB(O,R) f(t)(1 27r

(-Od -1

This integral is

fB(O,R)
(.Od_

f(O.R)

(I tla )-(a-2)/2J(a_2)/2(2r[ t[h ) 2

2r ([t[h)_(d_2)/2(27r[t[A) (d-2)/2_)tOd- 2 F(d/

_([tlh)-(d-2)/e(27rltlh)(d-2)/2 (--(1/4)(2zr] tlh)2) g }2 f2= k!F(((d-2)/2)+ k+ 1)

fv(t){27rd/2 (-zr2ltl2A2) k }-l :l kr((d/2)+ k)

2

2

(see, e.g., Example 2.4). Thus, by Minkowski’s inequality, we have

I1/2< . 27rd/--2 (rltlh)
=1 (.Od_ k!F((d/2)+ k)

L2(B(O’ R))

() k,F((d/2)+(rA)2k k) tl2kr fl [[fv(t)l [LZ(B(0, R))[[

and this is finite since [tl2f(t) Lo(d). Consequently, (4.3) is valid.
(c) Distributionally, we have

V (d), (f0)()= (f 0x)().
The left-hand side is

f((o.(= f((o.(( =f(o.

=f(T) 1 -1 e-’’* da_,(O) $(t) e-2’’" dt
d-1 d-

=f(y) (y)
1

( t) e-2"’(’+*) dt dd_,( O)
d-1 d-t

mk> S-S: (S ).
Since fvoa L2(a) we know that (fv0) L2(a), and hence, f-Mf L(a).

Equation (4.2) is a consequence of the Plancherel theorem.
The operator (on the function f)

2d
(f- ,f)

corresponds to the Laplacian in a in the same way that the difference operator

1
(4.5) .-7 (z_,f- r,f)

AZ
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corresponds to the ordinary derivative in (cf. [BBE] for the rectangular generalization
of (4.5) to a and 1 for the corresponding differential operator). Wiener made the
following calculation for the case d 3 [W1].

Formal calculation 4.4. Given f ,.,(d) for which Af L2(d) and fv is Borel
measurable, then

(4.6) lim_o Af- ---y (f-J/lf) L2(d) --0.

Proof Since Af is a convolution off 9’(d) and a distribution having compact
support, the exchange formula is valid and Afv(t)=--4r21tl2f(t)9’(d). The
hypothesis Af L2(d) allows us to conclude that -4r2l t]2f(t) L2(d). In particular,
the hypotheses of Proposition 4.3 are satisfied and thus we have

f(t) -- 1- Wd-1

(4.8)

Using the series representation of J, the right side of (4.7) becomes

2(r[t[A)2 2r
+

d O)d_
(I tl A )-(d-2)/2 (2[2tlA)

2,1rd/2 (-(r[tlA)z)k })oo---_i k!F((d/2)-)
1 (- (rltlA))
7  i (i 7-77

-2)/( _(rltlA)2 )]r((d/2)+i)

where we use the fact that F((d/2)+ 1)=(d/2)F(d/2) to eliminate the k= 1 term.
The right side of (4.8) formally tends to zero as A-* 0 since k->_ 2. [3

Naturally, the final and only formal step of the preceding calculation is verifiable
for many functions f.

Also, in light of the role of iterated Laplacians it is natural to ask if this calculation
can be adapted to deal with "1 ajAf instead of Af Since (1 ajMf)v(t)
YI (-1)(2r)2JajI tl 2, the cancellation analogous to that indicated in (4.8) is not possible
if a =-2d/A and j_-> 2. Similar problems arise when a is adjusted. For example, if
a c/A2, j>-_2, so that the It[ 2J terms cancel, then there is no cancellation for the It[ 2k
terms, k <j. Progress can be made when / is replaced by more complicated means.

DEFINITION 4.5. The d-dimensional spherical difference operator D of radius A
is defined by

Dif() =f(y) (3//f)().(4.9)

If the hypotheses of Proposition 4.3 are satisfied for a function f then the spherical
difference operator gives rise to an L2(d)-valued function of A, the path of which is
a helix (in L2(Rd)) in the sense of Masani’s theory ofhelices (see, e.g., [M, pp. 351-359]).
The helical theory is more complicated for our rectangular Wiener-Plancherel formula
(see, e.g., [He]).
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Because of the Wiener-Plancherel formulas in Theorems 5.6 and 5.7, it is natural
to investigate the relationship between DSk and Sk,R. We do this in the following
example.

Example 4.6. Let 4,(t)=(i/27r)-ko(t)/[tl2k, where oba’(a)f’lLoo(Ra), and let

f and g be functions defined on a. We have the following formal relations which are
valid for a large class of functions"

(4.10) Sk,R *g Sk * (8 --5B(0,R)) Sk--Sk *)B(0,R),
where 4 Sk

(4.11) lim d//xf=f
A-O

and

(4.12) d//;,(f, g) (d//f) g.

Let R-1/A. Because of (4.11), the mean d// of the right side of (4.10) is
approximated by Sk--M(Sk*,O,R)). Using (4.12) and the weak convergence to 8 by
O,R, we see that this approximation is in turn an estimation of DSk. Thus, DSk
MSk,R (cf. Example 6.3).

5. Proof of the spherical Wiener-Planeherel formula.
Definition/Remark 5.1. (a) The space Bz(d) of functions having bounded quad-

ratic means over spheres is the set of all functions Lo(a) for which

1
I(t)l2 dt <.(5.1) IIlD(a)ll =sup>o [B(0, R)I o,

B2(d) is a Banach space with norm defined by (5.1).
(b) Given Loc(d). The spherical average of is the function defined on
by

(5.2) *(r)=
1 [ [(rO)l2 da_,(O).

(c) A basic propey of spherical averages, and one that is relevant for comparison
with the classical and rectangular Wiener-Plancherel formulas [W2], [BBE], is that

(5.3) e L(R*+)

The verification of (5.3) is immediate:

1 f io(t)12dt
]B(0, R)I o,

implies o B2(a ).

09d-I ra-(r) dr
IB(0, R)I

dlB(0, R)I
Od_,R IIlL(a*+)ll

(d) Clearly, B2(a)\L(la)#. In fact we can choose a continuous radial
element c L2(Ia) for which limr_o ]o(r)] =oo. This function also shows that the
converse of (5.3) fails since (r)= Io(r)[ 2. Furthermore, this observation shows that,
’for the class of radial continuous functions, @ L(+*) if and only if o L(la).

We quote the following important result of Beurling which is related to one of
his deep investigations of spectral synthesis [Be].
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THEOREM 5.2 [Be, Thms. I, II] (cf. [BDD]). (a) B2(d) is the Banach space dual
of the convolution Banach algebra A2(Ed defined as follows"

A2(d) [.j 2 d L d,/( ) ),

where {co Ll(d) w > 0, [[w[Ll(d)[[ 1, oa is radial, and co(It{) decreases on *+}
and L2/,o(a) is the Banach space of Borel measurable functions q defined by the norm

w( t)
dt

The Banach space norm of q A(a) is

Zl/,,,(d) II,

and the duality between A(d) and B2(d) is defined by the relation

VOA2(d) and VqB2(d), q(0)=fq(t)0(t)dt.
(b) B2(d) is characterized by the intersection

(5.4) B2( aL( ).

DNWON 5.3. The spherical Wiener space W(d) consists of all functions
Loc(a) for which

II [w(e")ll
(1 +ltl=) a

dt <

(cf. [BBE, Ex. 4.3]). Clearly, W(a) -a, where H is the Hilbert Sobolev space
L]().

We could prove the first inclusion of the following result directly, analogous to
the method used in [BBE, Thm. 3.2], or by invoking the well-known inclusion B()
H", for each <-d/2. Instead we use (5.4); this application of Beurling’s theorem
is due to Heil [He].

THZORM 5.4. B(a) W(a) ’().
Proof (a)We shall first prove that B2(a) W(a). The weight w(t)=

c/(1 + Itl=) a is an element of , for the proper choice of c > 0, and L(a) W(a).
The asseion follows from (5.4).

(b) The proof of the inclusion W(a) ,(a) follows from definitions.
LEMMA 5.5. Let Lo(a) for which L(), and suppose we are given kfor

which 4k> d. en
VR > 0, qE, L([a\B(0, R)).

Proof.

[q(t)Ek(t)l dt-
(0,R)-

1 f(27r)4k
rd-4k-ldp(r) dr<= (27r)4k(4k d)

Rd-4k. [’]

THEOREM 5.6. Given q Loc(d) and an integer k for which 4k> d, assume
L(a*+). Then

lim
1 IBR-iB(O,R)I O,R

(5.5)

Iq(t)l dt lim
(4k- d)(27r)4k fAO O)2d_ll4k-d ISk’I/A( 3/)12

lim (4k-dT)R4k-d In I0(t)l 2
1

R-c O) d-1 (0,R)
dt,
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in the sense that if any one limit exists, then the others exist and they are all equal.
Proof. We compute

(2r ]Sk,R(Y)[ dy= iq(t)[2
1

(O,R )- - dt

rd_4k_ 1
O)d_ ]((r0)] 2 dO’d_(O dr

R ’Dd-1

OOd_lA4k_d (Ar)d_4kdp(r) __dr
R r

ioODd i4k-d
dr

Xo, (r)

4k-d0--Wd- (R)O(R)

where A 1/R and O(s)= X(O,1)(S)s4k-dE L(N*+). The calculation is valid because of
the Plancherel theorem and because the hypotheses allow us to use Lemma 5.5.

Also,

o(O)(p) rO,O(r
dr 1

r 4k-d+ip

so that I(o)1 > o on (+*)^.
Next, we have

1 fB I(t)12dt=
IB(0, R)I (o,g)

1

JO rd-l(I)(r) dr

I0Wd-R
a rd-l((r) dr

OOd -1
KA(R)(R),

where the last step follows from Example 2.3 and where [B(0, R)] tOd_Rd/d. Thus,

1 fB ]q(t)]2dt=( d

IB(O, R)I o,) OOd--1KA)(R)(R).
Recall that [o(KA)[ > 0 on (O*+) ^.

We now apply the Tauberian theorem, Theorem 2.2. If

( )lim d KA (d(R)
R-eo (.Dd (.Od

dr
gA(r) --,

then

lim O(R)(R)= C. O(r)
dr

R-oo r

and vice versa. Consequently,

1
lim O(R)(R)lim KA@(R) JroIo KA(r) dr/r R- O( r) dr/ R
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and so,

lim Iq(t)l dr= lim (4k- d)(2,Tr)4ke4k-d ISk,R()I2 d’- IB(0, R)I o,)

lira (4k-d)R- I(t)l
1

u (O,R)-
dt.

The limit in (5.5) involving s,/ can be replaced by one involving s,/ at least
in the case where the first limit of (5.5) is assumed to exist, e.g., Example 6.3.

THEOREM 5.7. Let Loc(Ne), which is bounded in a neighborhood of the origin,
and given an integer kfor which 4(k 1) < d < 4k and d > 2k (d > 4(k 1) implies d > 2k
for k2). Assume eL(N). en s (E)’() and

(5.6) lim
1 fs ,(t)12 dt=limC(d,k)(2)4 f-]X ID,s()l2 d%IB(0, R)I o,) xo wa_

where c(d, k)-’= I[KIL’()[I. Equation (5.6) signifies that if the left side exists then
the right side exists and they are equal

Proof (a) The hypotheses allow us to invoke Proposition 4.3. To see this we
proceed as follows. The function s E is Borel measurable, and s L2(B(0, R)-)
since L() and 4k> d. Furthermore, lt]Zs (t) Lo(a since

f [(t)le fo(O,R) Ill 4(k-1)
dt wa_llI[g()ll rd-4k+3 dr

and 4(k 1) < d.
Finally, we must show s ,(d). Since d > 2k we know from Theorem 3.2(a)

that E ,(d) Lo(d). For 0 (d) we have the estimate

(OIC(e, R
(2)2k [i[5g dt

(O,R)

1)2k IIl w(d)l[ (ff ]O(t)12(1Wltl2)d)+
(2 O.R- it[4k

dt

where I(t)lf(,R) on B(O,R). The right side is finite by Theorem 5.4, the
hypothesis d > 2k, and the fact 0 (d). If lim Om 0 in (d) then it is clear
that the right side ofthe inequality tends to zero with 0 replaced by 0. Thus, s ,(d ).

Therefore, Proposition 4.3 applies and thus DSk L2(d) for all A > 0, and (4.2)
is valid for f= Sk.

(b) We can now compute

IO()ld= s() -.2 (1)_(_/j_/(211) de
d-I

(1 rd_4kf
(2,n.)4k (r) 1-

2 dr27r (rA)_(d_2)/2j(d_2)/2(Z,rrrA)
O)d -1 r

Therefore, if R 1/A then

(27].)4k I frO4k-d ID,s(3,)l 2 dy= (r) 1-
(X)d_ r

Kk(R)(R).
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(c) Recall from the proof of Theorem 5.6 that

1 IB Iq(t)12dt=( d KA)(R)(R)IB(0, R)I o,)

and ]o%(Ka)l > 0 on (+*)^. Therefore, we can apply the Tauberian theorem, Theorem
2.2, to conclude that if

(-Od -1 / 2lim Iq( t)l dt

then

lim
c(d, k)(2r)4 I 12

AO ,4k-d DAs (3’) dy Ca,. [3

6. Computations and zeros of Fourier transforms. The following lemma plays a
role in Logan’s incisive analysis of bandlimited functions [L]; the method used to
prove the accompanying proposition is standard. The proposition is of the type that
can be used to study the function Lk defined in Example 6.3. The function Lk arises
in the Wiener-Plancherel formula involving the mean of Sk, R.

LEMMA 6.1. Given L> O, there exists a real and even function qL e L2() having
the following properties" ql <0 on (-oe,-(1/2L))U((1/2L), oo), q3/> 0 on (-L, 0)
(0, L), and supp q3/ [-L, L], e.g.,

qL(t)
L cos2 (rtL)
r 1 (2tL)2

and

L lYl<L’

PROPOSITION 6.2. Given a nonnegative function 0 e (LI() ("1L2())\{0} and
assuming t)=0 on (-1/2L, 1/2L), there is poe (-L, L) for which (Re q)(po)=0.

Proof Choose q/ as in Lemma 6.1. By Parseval’s formula and hypothesis, we
compute

tl>(1/2L)
d/( t)qL( t) dt I (t)qL(t) dt

(y)q3L(--y) dy= (t)L(--y) dy
L

(Re (y))q3/(-y) dy+ (Im (y))q3/(-y) dy a + ib.
L

Clearly, a < 0 and b 0. Also, (0) O(t) at > 0 and so q(0) (Re )(0). Since
a <0 and q3L(-y)> 0 on (-L, 0) U (0, L), we can conclude that Re 0 <0 on some
subset of positive measure of (-L, L). This combines with the continuity of and the
fact that (Re q)(0)> 0 to yield the result. [3
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Example 6.3. Define the function

Lk(r) d-4k I

where

I(s)
27r

O)d -1

s-(d-z)/2j(a_2/z(2rrs

Clearly, Lk(R/r)=O if r<R and

for re (0, 1),

for r>-l,

2 1
2 [/2a-,(27rs)l 2-

(-/) d

(6.1) Vr>R, Lk(__) ( 27t. (_)2J(d -2)/2
(.0d_

(a) We first observe that Lk LI(R*+) if 4k > 1"

IL(r)l dr= rd_4kli(r)l dr< rd_4k_
r r

2rrC r_(d_2)/2r_i/2
OJd_

(2rrC)2 I (re-4k-1 r-(d-1) dr
2rC 2 1

\ Wd-1 \rOd_l/ 4k- 1

dr

if4k> 1.
(b) Next, if e L(R*+) and 4k> 1 then Lk(R)(r) exists and

Lk (R)(r) Lk alP(s)
ds d-ak ds

I d(s) --.
S S

(c) The reason for considering the function L is that the limit in (5.5) involving
s,/x can be replaced by one involving s,/, at least in the case where the first limit
of (5.5) is assumed to exist. This follows from the proof of Theorem 5.6 and the
following calculations:

’/RSk’R(Y)()2kI= e-2i"v ( 2 ()-(d-2,/2wd-,
J(d -2,/2(2 t,) (t)(2k XR (t)) dt

and, by Plancherel’s theorem,

(2)4k f [I/RSk,R(T)[2 dy

J(d-2)/2 tl4k
dtg_, o, R

--1 R -d+2 J(d-2)/2
r

2R-4 J(-2)/2 (r) Re-4L@(R),
d-1 R r

where we have used (6.1) in the last step and where is defined in terms of as in } 5.

7. Remarks n spectral estimation.
DEFINITION 7.1. Given e Loc(Ne), define

VR>0, (+x)(x)&.
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Suppose that there is a continuous positive definite function P for which limR_ Pq,R
P in the tr(M(Nd), Cc (Nd)) topology, where M(Nd) is the space of measures on Nd.
Then P L(d) is the autocorrelation of q, and the positive measure/z, =/3

9 is the
power spectrum of q.

Remark 7.2. (a) Depending on the particular problem, the weak topology in
Definition 7.1 can be replaced by various other convergence criteria, including pointwise
convergence.

(b) Given q L2oc(d) with power spectrum /, assume there is an increasing
function i(R) on (0, o) for which supltl__< R Iq(t)[_--< i(R) and limR_ i(R)2/R=O. Then
we can prove that

l f(7.1) V0m G(u). llB(0. R)I (o.)

[B2, 5].
If we take 0 8 in (7.1) then the left side of (7.1) is the arithmetic mean on the

left side of our Wiener-Plancherel formula (5.6). Given q Llo(d) and combining
formulas (5.6) and (7.1), it is then reasonable to expect that

c( d, k)(2,rr)4k
(7.2) lim

in some weak topology, e.g., [B1, 2.1] for the case d 1. In this same spirit we
provide the following calculation which Wiener made for the case d 1 [W2, pp. 155-
159].

Formal calculation 7.3. Given o Lo(d) with autocorrelation P, for d,

(7.3) lim
(d, k)(2)

AO O)d_lt4k-d
IDs(7)le e’’ d7 P. (t).

Proof. (a) A direct calculation gives

1 f. q(t+x)q(x)dxG(t)-- li.m ]B(0, g)l 0,

lim
1 j {[o(t/x)/o(x)12_l(t/x)_o(x)l

4 ,- IB(0, R)I _o,
(7.4) + i]o( + x) + io (x)]2- il( / x) i( t)l} dt

1

4
K1 K2 q- iK3 iK4).

(b) Let 6(x)=q(t+x)+cq(x), where Ic[= 1, and write Sk(O)(y)=(OEk)^(y), SO

that Sk()= Sk. By the Wiener-Plancherel formula we compute

lim
1

dx
IB(O, R)I

liE
c(d, k)(27r)4k

-o o.-_i-_- IDs(’-,q)(V)+ DSk(Cq)()’)l d’y

(7.5) lim
c(d, k)(27r)4k

-,o o9.-i-q-i=--d IDxs ’-’q )( 7) e2"’trDs q)( 3’)

+ (C+ e2"itv)U,xSk(qg)(3,’)l 2 d7

E + lim
c(d, k)(2r)4k

A--->O OOd-1l4k-d 3
]as()()l:lc+ e2itel2 dT’
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where the "error" E is estimated by

(7.6) lim
-+0

c(d, k)(2"a’)4k fO.)d_l,4k_d IOs,(r_,,)(3,)-e="Os,(q)(3,)[2 d%

Under natural hypotheses, and implementing Example 2.4 and Proposition 4.3, we
can show that the limit in (7.6) vanishes, i.e., E 0.

(c) We now combine the right side of (7.4) and (7.5) with E --0 for the four cases
c + 1, + i. Thus,

1
lim

c(d, k)(ZTr)4k fP(t)= x-,o (.Od_lt 4k-d
ID s ( )I2

{(2 + e_,(y) + e,(3,)) (2 e_,(y) e,(3,))

+ i(2+ ie_,(y)-ie,(y))-i(2-ie_,(y)+ ie,(y))}

where e,(y)= e2iu’v. Combining terms, we obtain (7.3).
Formally, (7.2) and (7.3) are compatible. If we are given data qs on a set S, these

formulas lead us to consider multidimensional spectral estimators molded from
expressions of the form

(7.7)
c( d’ k)(Z’rt’)4k
OOd_la4k-d IDA(S* Ek)l2.

Instead of continuing this section with a quodlibetic discussion of spectral estima-
tion, we shall view (7.7) as the prologue to our forthcoming work on the subject vis
a vis classical algorithms, e.g., [IEa-d], [Ma], and evolutionary spectra for nonstation-
ary processes, e.g., [AGT], [P, Chap. ll].

7.1. Notation. If G is a locally compact Abelian group, then Lo(G) is the space
of locally integrable functions with respect to Haar measure and L(G) is the subspace
ofintegrable functions. C(G) consists of all continuous functions on G having compact
supports and C(G) consists of all continuous bounded functions on (3.

The Fourier transform of 0 e t’(a) is defined by qS(y) 5 e-2="0(/) dr, where
5 designates integration over a; fv is the inverse Fourier transform off. A(a) is the
set {q3- q LI(a)} and 0o(d) is the set {f6(a)’fv=o on a neighborhood of 0}.
If q LP([a), then its usual LP-norm is denoted by

If S is a set then S is its complement and Xs is its characteristic function. For R > O,

XR XB(O,R)-"

We denote translation by (rf)(y) =f(y-A). Finally, the unit sphere in d is Ed-1
{td’ltl=l}.
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SPECTRAL THEORY OF JACOBI MATRICES IN /2(7/) AND
THE su(l, 1) LIE ALGEBRA*

D. R. MASSON AND J. REPKAf

Abstract. The connection between orthogonal polynomials, continued fractions, difference equations,
and self-adjoint Jacobi matrices acting in/2(7/+) and the extension of these connections to/2(7/) are reviewed.
This yields three different representations for the resolvent of the Jacobi matrix: an integral representation
in terms of orthogonal polynomials, a representation in terms of continued fractions, and a representation
in terms of the subdominant (or minimal) solution to the associated difference equation. This latter
representation is given explicitly in terms of hypergeometric functions for the cases of associated Meixner,
Meixner-Pollaczek, and Laguerre polynomials. It is also shown that it is precisely these cases that occur in

the unitary irreducible representations of su(1, 1) for the resolvent of a real linear combination of the
generators of the algebra.

Key words, orthogonal polynomials, continued fractions, difference equations, Jacobi matrices, spectral
theory, resolvent, Lie algebra, su(1, 1)
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1. Introduction. The classical moment problem [2] provides a natural link between
properties of Jacobi matrices, continued fractions, and second-order difference
equations. The usual setting for these connections is the Hilbert space/2(7/+), the space
of all square summable complex sequences. With standard basis vectors {en}=o,
elements of 12(,+) are written u Y,--o u,e, and v Y,--o v,,e,, and the inner product
is (u, v) =E,=o fi,v,.

Here we will extend these connections to the case of bilaterally infinite Jacobi
matrices acting in 12(7), but limit our considerations to Jacobi matrices which are
essentially self-adjoint on the domain of finite vectors, i.e., the case of deficiency indices
(0, 0). We could also consider the cases of deficiency indices (1, 1) or (2, 2) and weighted
2 spaces. For all of these in the case of Jacobi matrices associated with bilateral birth
and death processes, we refer the reader to Pruitt [16], [17] (see also [7], [10]).

We first recall some results associated with unilaterally infinite Jacobi matrices
and the classical moment problem. Consider the symmetric Jacobi matrix

(1.1)

ao

A:= bl

0

bl
a,, =(e,,,Ae,,),
b,, =(e,,_l,Ae,,)>O,

acting in 12(7+), the associated continued fraction

1
(1.2) CF(z)’- z-ao+ K,,=,(-bZ,,/(z-a,,))

and the difference equation

(1.3) b,,+lY,,+l(Z)-(z-a,,)Y,,(z)+b,,Y,,_,(z)=O, n>=O.

* Received by the editors November 20, 1989; accepted for publication (in revised form) June 11, 1990.
This research was partially supported by the Natural Sciences and Engineering Research Council of Canada.

? Department of Mathematics, University of Toronto, Toronto, Canada, M5S 1A1.
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If A is closed, with minimal domain, and self-adjoint (the determined case for
the moment problem with moments cn-(eo, Aneo)) then for z tr(A), the spectrum
of A, [20],

(1.4) (eo, (zI-A)-leo) CF(z)"

Also

1 Q,,(z)
(1.5) CF(z)- i.rn P,,(z)"

Here Q,,(z)/P,,(z) is the nth approximant of the continued fraction (1.2) (see [21]);
{P,},=o, {Q,},=o are orthogonal polynomial sets (of the first and second kind, respec-
tively) satisfying the difference equations (1.3) subject to the initial conditions Po Q,
1, P_, Qo 0. These polynomials are closely related to properties of A. In particular,
{Pn (z)}=o are orthogonal with respect to a probability measure dw(x) d Co, Ea(x)eo),
where EA(X) is the spectral family of orthogonal projections associated with the
diagonalization of A. This follows from the fact that 1.1 ), 1.3) and the initial conditions
for P, imply that

(1.6) e,,=P,,(A)eo.

Thus using the functional calculus for self-adjoint operators [20] and (1.6) we
obtain

(1.7)
(em, (zi_A)_e,,) f P,,(x)P,,(X)z_x dw(x), zo’(A),

w(x)=(eo, Ea(x)eo).

The leading term in the large z asymptotic expansion of (1.7) gives the claimed
orthogonality

(1.7’) tm,,--(em, e,,)--f_oo P,,(x)P,,(x)dw(x).

Another useful representation for (zI-A)-’ can be obtained in terms of a sub-
dominant (minimal) solution to (1.3) (cf. [12]). Let {YS)(z)} be a solution to (1.3)
which is in /2(7]+). Since for a determined moment problem with z tr(A), we have
that such/Z-solutions exist and are unique to within a constant multiple, this implies
the subdominant property

lim Y?)(z)/Yd)(z)=O, zC_cr(a),

so long as YS)(z), Yd)(z) are linearly independent solutions to (1.3). Pincherle’s
theorem [9] then yields

1 Yo)(z)
(1.8)

CF(z) bo ---lV()(z) z : or(A),

so that (1.4) and (1.7) then give

(1.9) (eo, (zI-A)-’e)=I_ dw(x)z-x Y(o)(z)
boYC_}(z)"
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More generally ([12]; see also Wall [21, Chap. 12]) we have

P(z)Y)(z)
(1.10) (e,, (zI-A)-’e,)-- boY(}(z m <- n.

In 2 we extend the representations (1.4), (1.7), (1.9), and (1.10) for the resolvent
of A to the case of bilaterally infinite Jacobi matrices acting in /2(7/). In 3 these
formulas are made explicit for the bilateral Jacobi matrices connected with associated
Meixner, Meixner-Pollaczek, and Laguerre polynomials. In 4 we give a purely
algebraic calculation for the resolvent of a finite Jacobi matrix; it can be combined
with Pincherle’s theorem to give (1.4) and (1.5). In 5 these results are applied to the
discrete, principal, and complementary (supplementary) series representations of the
Lie algebra su(1, 1).

2. Resolvent representations in 12(7/). Consider the complex Hilbert space of square
summable bilateral sequences (column vectors)

with inner product

l(g) := u (u)lu c, E

(,v):= Z av

and standard orthonormal basis

be a closed symmetric minimal domain operator acting in 12(7/). That is, an (en, Aen),
bn+l (en, Aen+l) (en+, aen), and

(2.2) Aen bn+en+ + a,,en + b,,en-1.

Associated with A we have the difference equation

(2.3) bn+lYn+l(z)-(Z-an)Yn(z)+bnYn_l(z)=O, nZ

and the polynomial solutions { Yn P)(z)}___0o, k 0, 1 satisfying the initial condi-
tions

P(k(z) r3,,,, n, k O, 1.

THZORZM 2.1. A is self-adjoint if and only if
0

(2.4) E [P’(z)[2=, E IP(z)lz=
n0

for some (and hence all) z such that Im z 0.

Proof. Condition (2.4) implies that the left and right lateral sections of A yield
determined moment problems. We show that this is necessary and sufficient in order
for A to be self-adjoint. Recall that A is self-adjoint if and only if A has deficiency

Let

0

a_ bo
(2.1) A := bo ao b an , bn > 0

bl al
0
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indices (0, 0). That is, if and only if AY- zY has no nontrivial solution Y /2(7/) for
some, and hence all, z with Im z 0, since by complex conjugation A must have equal
deficiency indices [18, Thm. X.3]. Now AY(z)=zY(z), Y(z)-(Yn(z)) is equivalent
to (2.3). Hence Y.(z) COrn’(0)(z) -t- 1 P(n1)(z). If.=o p(nl)(z)] 2 < oo,
then from the classical moment problem [2] it follows that all solutions to (2.2) are

o p,O) 2in l2(7) and a has deficiency indices (2, 2). If Y.=o lP(.’)(z)12 < oe, .=_ (z)l =o,
then all solutions to (2.3) are in /2(7/+) and a special choice of Co, , (el
-lim.__ooP(.)(z)/P(’)(z)) ields Y(z)12(7/) so that A has deficiency indices (1, 1).
If .--olP?)(z)l=e, .=_oolP)(z)l<e, then the special choice Co
-lim._ooP(.)(z)/P(.)(z) yields Y(x)12(7) so that A again has deficiency indices
(1, 1) IfY.=o IP?(z)l

o.=_ ]P(.)(z)]2 o, then for no choice of Co, cl can we have
Y 12(7/) (lim._. P.)(z)/P(.’)(z) lim.__o P.)(z)/P)(z) since the former limit is
O(1/z) while the latter is O(z)), and A has deficiency indices (0, 0).

COROLLARY 2.2. A is self-adjoint if
1 o 1

(.5) .E 2 b.=0-- 00, 00.

Proof Condition (2.5) is sufficient for the determinate cases for the right and left
lateral sections of A [2, p. 24]. [l

Assuming that A is self-adjoint, we now derive three different representations for
the resolvent of A. The first two have also been derived by Pruitt for the special case
of bilaterally infinite birth and death processes [16], [17]. (See also [7], [10].)

2.1. Integral representation.
THEOREM 2.3. Let A given by (2.1) be self-adjoint. Let EA(X), X R, be its spectral

family of orthogonal projections. Then

(e,,,(zI-A)-’e,)

(2.6) In (z- x)-l{P(,,)(x)P(,)(x) d/zoo (x) + P)(x)p(,l)(x) d/zll (x)

+[P)(x)P(,)(x)+ p(lm)(X)P)(X)] d/zol (x)},

z C: tr(A)

(2.7)

/zo(x) (e,, EA(x)es).

Proof From (2.2) and (2.3) it follows that

e. P(,)(A)eo+ P’)(A)e,
and from the spectral theorem [20]

(2.8) (zI-a)-’= f (z-x)-’ dEa (x).

From (2.7), (2.8) and the functional calculus for self-adjoint operators we obtain
(2.6) with/zo,(X) =/z,o(X) since A is real symmetric.

Note that as z- oo the leading 1/z term in (2.6) yields a four-term orthogonality

(2.9) 8.., (e., e.)= P(im)(x)p(ni)(x) d/zo (x)
i,j =0

involving four sets of polynomials {P(.i)(x)}, i=0, 1, n >_-0, n <0 and four measures
d/zo, i,j 0, 1 (with d/zoo, d/z l, positive and two equal-signed measures d/zo



SPECTRAL THEORY OF JACOBI MATRICES 1135

This is in contrast with the single set of orthogonal polynomials and positive measure
associated with a semi-infinite Jacobi matrix and a determined classical moment
problem given by (1.7).

2.2. Subdolninant representation. Let YR)(z), YL)(z) be solutions to (2.3) satisfy-
ing the boundary conditions

lim YR)(z)/ YL)(z) O,

lim YL)(z)/ YR)(z)=0.

These will be called right and left subdominant solutions, respectively. Their existence
and uniqueness to within a constant multiple is assured for Im z # 0 when condition
(2.4) is satisfied since the moment problem associated with the left and right lateral
portions of A are then determined [2].

THEOREM 2.4. IfA given by (2.1) is self-adjoint and Im z O, then

y() y(.’()
bk+, W(Y(ka(z), Y(k(z))

(2.10) (em, (zI-A)-’e.)= y(,.R)(z V(,,t(z
rt < m,

bk+l W(y(kR)(z), y(kL)(z))
where

W(Y(kR)(Z), y(kL)(z)) y(kR)(Z) Xk+,’’(L)(Z)- --k+,V(R) (z) Y(kI) (Z).
Proof. Let R.,,.(z)=(e,.,(zI-A)-le.). Then since A is symmetric we have

R.,.(z)= R.,m(Z). From (2.2) we have

zRm,.(z)- b,,+,Rm,.+(z)- a.Rm,,,(z)- b,,R,..._,(z)
(2.11)

=(em, (zI-A)-’(zI-A)e,,)=(,,,,,.
Thus for m n we have

E Ci,j Y(i.,)(z) Y(.J)(z), m < n,
(e,,, (zI-A)-le.) i,j=

2., ci,j Y(/,)(z) Y)(z), n < m,
i,j=

where Yi(z), i= 1, 2, are solutions to (2.3). Now R.,,. is a Fourier coefficient with
respect to either subscript. That is Y.=_lR.,.(z)12<c. Since the right and left
subdominant solutions are, to within a constant multiple, the unique right and left
lateral square summable solutions we must have

cY(z) YR(z), m < n,
(e (zI-A)-le’)= cYr)(z)YR(z), n<m.

The constant c is determined from (2.11) for m n. This yields

c(zY(n)(z) Y(.R)(Z)- b,,+, v(l-) (z) v(R) V(L)
--.+1 --.+,(z) a._,, (z) Y(.R)(z)- b.y(.R)(z) r._,(z)) 1.

That is using (2.3) for Y. Y(.l)(z) c(b.+l Y(.R)(z) V(I-) (Z) b.+l Y(.I-)(Z)’’(R)In+I(Z)) --1an+l

Thus c 1/b.+l W(Y(nR)(z), Y(nL)(z)), which is independent of n.

2.3. Continued fraction representation. The resolvent elements may be expressed
in terms of continued fractions either by taking the limits of the resolvent elements of
the finite portions of A derived in 4 or by applying Pincherle’s theorem [9] to the
representation (2.10). Here we choose the latter.
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Recall that Pincherle’s theorem yields a continued fraction representation for a
ratio of subdominant terms Thus

(2.12) bn+lln+l
Z an+k/

(2.13)
b.+,r,,+,(z) --b.+,_k

r;)’"L)’z" z--a. +Kk=,
Z--an-k /

where we use the standard notation

K k := lim
N

Ul

U2

v2+

UN

VN

THEOREM 25. IfA given by (2.1) is self-adjoint and Im z # O, then

(e,,(zI-A)-e,)
(2.14) 1

z a,,+K 2 2k=l(--bn+k/( z an+k))nt-Kk=,( ,- kb.+ k/(Z--a.- ))

Proof Since A is self-adjoint we have the existence of right and left subdominant
solutions YR)(z), YL)(z) to (2.3) for Im z# 0. From (2.10) with k= n we have

(e., (zI-A)-’e.)= b.+,(an+iv(L) (Z)/ y(nL)(z)- --n+IV(R) (Z)/ Y(nR)(Z))
The representations (2.12), (2.13) then yield (2.14). [3

Remarks. (1) The off-diagonal elements of the resolvent are considerably more
complicated and involve sums and products of continued fractions. We do not derive
them here. However, an expression for the general matrix element of the resolvent for
finite portions of A is given in 4.

(2) Note that for a semi-infinite Jacobi matrix one of the two continued fractions
in (2.14) reduces to a finite fraction. In particular, if bo=0 we have the standard
expression (see (1.2), (1.4))

eo, zI A eo)
z- ao+ Kk=,(- b/(z- ak))"

(3) Note that (2.14) is the Stieltjes transform of a positive measure. It would be
interesting to find the semi-infinite Jacobi matrix

0a b,

A’= b a

0

such that

(e., (zI-A)-’e.)=
z a+ K k__ l(-- b2/(z a,))

and relate the elements a’ and b’ 7/+.+,, n e to the original a. and b, n 7/.
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3. Explicit cases. We derive explicit formulas for the resolvent in cases related to
associated Meixner, Meixner-Pollaczek, and Laguerre polynomials. That is the cases
a, dn, b2, an: + bn + c with a, b, c, d real, a, c 0, and b: > 0.

The resolvent representation (2.10) of 2 is made explicit through the use of
hypergeometric solutions to the associated difference equation and their asymptotic
behaviour. These solutions are given in [5] and [12].

3.1. Associated Meixner. Let an dn, b2n an2 + bn + c > 0, d:> 4a > 0 and con-
sider the difference equation

(3.1) bn+l Yn+(z)-(z-an) Yn(Z)+ bnYn_l(Z)-O.

By renormalizing the solutions in 12, eq. (2.3)] we obtain a pair of linearly independent
solutions

._ (z)=
n+o,n+

/ r(n + ,+/-(z)) n + (z)

(3.2) /x x/d2-4a, an2+bn+c=a(n+a)(n+),

l +/- d/tx z
6+/-=, y+(z) (1 + a +/3)6++--.

2 /x

Note that if d > 0 then 6_ < 1/2. Thus the y(,1),- solution is then well defined either
through the power series expansion of :FI(6_) or its analytic continuation. However,
the Y(,)’+ solution will have an ambiguity if 6_<0 since we then have 6/> 1 and
evaluation of :F(6+) on the branchcut 1, ee). This ambiguity is resolved by a consistent
evaluation of :F and does not affect the final result. For d < 0 the situation is similar
except that we have 6+ < 1/2 and 6_ > 1 if 6+ < 0.

The n oo asymptotic behaviour of these solutions is obtained through the use of
the transformation

"z (l-z) c-a-b2F z
c c

and the estimate

;z =1+O z[1 c)
c Re c

Re c- oo.

Thus we obtain as n- oe

(3.3) Y(nl)’+(z) -’1- /’l(ce+/3--23/+/-)/2(6q=) 7+/---(+fl+n+l) 1 + O

A second pair of linearly independent solutions is given by

(3.4) Yl’(z) r(-n -n -, -n-F(1- n- y(z)) l-n- y(z)

This follows from a renormalization of [12, eq. (2.7)] after correcting a misprint
(replace () by ()"). The n - asymptotic behaviour of these solutions follows
similarly and is given by

(3.5) Y’(z)= (--n)(2-(++l))/2(w)"++- 1+0
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From the above asymptotics it is clear that we have right and left subdominant
solutions

r(l’-(z), d>0,
(3.6) YR(z) Y(,l’+(z), d < O,

Y)’-(z), d > 0,
(3.7) Y()(z) Y)’+(z), d < O.

To apply the resolvent formula (2.10) of 2 it remains only to calculate
bk+l W(y(kR)(z), y(kI)(Z)). To this end we use the identity [8, eq. (34), p. I07]

F(a+b+l-c)F(l-c) F(a+b+l-c)F(c-l)
U2=F(a+l_c)F(b+l_c) u,+

F(a)F(b)
u,

Ul2Fl(a,b) (a,b );Z u2=2F1 1-z
c a+b+l-c’

U zl-c(1 Z) a-b2F
2--C

to obtain the connecting formula

Y(d)’(z) C Y’)’(z) +D Y)’(z),
(3.8) C=w-lF(l+a-y(z))r(l+-y(z))sin wy(z),

D -’s’-’-rl+a y(z))F(l+ y(z))#sin a sin

From (3.5)-(3.8) it now follows that (by calculating bg+,W(Y)(z), Y)(z))
asymptotically as k )

f si T-( d O,
4sin a sin fl’(3.9) bk+ W(YR(z), Y(z))=
] - sin +(z)

We summarize these calculations with Theorem 3.1.
THEOREM 3.1. Let A (A,) be a closed symmetric tridiagonal matrix acting in

l() with A, dn, A,_ A_, a(n + )(n + ), and d> 4a > O. en A is

se-adjoint and for m n,

(-1)+m--a(-/sin sin
((zI- A)-I),

sin _(z)

(3.0 x
r(-m-_(z -m-_(

4r(++r(++e(++,++. _)x
r( + n + _()) + n + _()

1-d/-= -( ( + +l---

where

d>0,
(3. "= --g, <0.

Proo Formula (3.10) follows from (2.10), (3.3)-(3.7), and (3.9).
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COROLLARY 3.2. With the assumptions of Theorem 3.1, A has a discrete spectrum
of isolated eigenvalues {z, } given by

(3.12) z,, m/x +1/2(1 + a +/3)(/x d), m Z.

Proof We have 2Fl(ab; Z)/I’(C) an entire function of c. It follows that the only
resolvent singularities of (3.10) are given by the vanishing of sin 7ry_(z). That is,
y_(z) m, m 72. Solving for z yields (3.12). F!

Remarks. (1) It is curious that the eigenvalues given by (3.12) depend only on
a +/3 while the off-diagonal elements of A involve both a +/3 and aft. Thus, in terms
of the original parameters a, b, c, d, we have the surprising fact that the eigenvalues
depend only on a, b, d and are independent of .

(2) Note that as /x- 0+ the eigenvalue spacing tends to zero and we obtain the
associated Laguerre case of 3.3.

3.2. Associated Meixner-Pollaczek. Let an dn, b an2 + bn + c > 0, d 2 < 4a. The
solutions to (3.1) and their asymptotics are again given by (3.2)-(3.5) with/x i.,/4a d 2.
However, the right and left subdominant solutions are now changed because 3+ is
complex with Re 3+ 1/2 and I1 a! (4a d2). Thus the asymptotic behaviour of (3.4)
and (3.5) now dictates

Yl)’-(z), Im z < 0,
(3.13) y(nR)(z)

Yl)’/(z), Im z > 0,

Y)’+(z), Im z < 0,
(3.14) YL)(z) y(n2)’-(z), Im z > 0.

The connecting formula (3.8) and its asymptotic behaviour now yields

bk+l W(ykR(z), ykL)(z))

(3.15) f 7r/x/F(1 + a y_)F(1 +/3 y_)v/sin 7ra sin 7rfl, Im z > 0,
7r/x/F(1 + a y+)F(1 +/3 y+)x/sin 7ra sin 7r/3, Im z < 0.

The application of (3.13)-(3.15) to (2.10) then gives Theorem 3.3.
THEOREM 3.3. Let A (A,,,n) be a closed symmetric tridiagonal matrix acting in

/2(Z) with An,n=dn, An,n_l=An_l,n=V’a(n+a)(n+8) and d2<4a. Then A is self-
adjoint and for m <- n and Im z 0 we have

((zI-A)-l)m,n F(1 + a y_(z))F(1 +/3 y_(z))x/sin 7ra sin 7rfl

(v/-d] "+1 x/F(l+n+a)F(l+n+fl)2Fl(l+n+a, l+n+fl 3+)(3.16)
\ / F(l+n+ /+(z)) l+n+y+(z)

)r( m /3)
x tz x/F(-m-a

r(1-m-v_(z))
-m a, -m fl. 3_)1-m-y_(z)

6+/-= 1+ y+/-(z) (1 + a +fl)6++--,

ix/4a d 2, Im z > 0,
I i/4a d 2, Im z < 0.
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3.3. Associated Laguerre. Let an dn, b an2 / bn / c > 0, d 2 4a 0. Then by
renormalizing the solutions (2.16), (2.17), (2.19), and (2.20) in [12] we obtain pairwise
linearly independent solutions to (3.1) given by

(3.17) Y(l)(z)=(-1)"+lx/F(l+n+a)F(l+n+fl) U(l+n+a; a-fl+l; x),

(3.18) YT() (-1) "+’ F(l+n+ce)
x/F(l+n+a)(l+n+)

1FI(1 + n + ce; ce-fl / 1; x),

Y(z)=,/r(-n-a)r(-n-l) U(-n-a;-+1;-x),(3.19)

(3.20)

y(4)(z) 4r(-n- )r(-n-)

2z 4b
x=

d d2 1,

r(-n -/3)

x e- iTre 1,

1F,(-n a; fl a + 1; -x),

arg x > O,
arg x _-< O,

an2+ bn+ c= a(n+ a)(n+ fl).

In the above we have used Slater’s notation [19] for the confluent hypergeometric
functions. Again following Slater, we have confluent hypergeometric functions Yi,

i= 1,..., 8 with

y,=lFl(a; b;x), y4=xl-beXlF,(1-a;2-b;-x),

Y5 U(a; b; x), y8 eXx’-bU(1 b; 2- b; -x),

and Y3 Y,, Y4--- Y2, Y6 Ys, Y7-- e-i=(1-b)y8. Thus

Y(’) (-1)n+14F(n + 1 + c)r(n + 1 +/3) ys,

(2) (_ 1 n+l 1-( 1 + n + a

v/F(1 + n+ a)r(1 + n+fl)
Yl,

y(,3)= x/F(-n a)F(-n -[3) e-Xx-y8,

y?) x/F(-n-a)F(-n-fl)
e-xx"-y4

r(-n-t)
with confluent parameters a 1 + n + a, b a -/3 + 1.

From the connecting formula [19, eq. (2.1.54)]

F(b)
iy5

F(b) e,=(,_b)yT,Y=F(b-a) e +F(a)
we then have

(3.21) Y)(z)=F(a-/3 + 1) e=’[sin ryl)(z)-ex-’(sin 7ro sin 7r/3 Y)(z)]
and three other connecting formulas which follow from [19, eqs. (2.1.55)-(2.1.57)].

The large n asymptotic behaviour of Y(,), Y) is obtained from [19, eqs. (4.5.42),
(4.6.43)], This yields

(3.22) Y)(z)= (-1) "+’ eX/2x(t3-)/2F(ce-/3 + 1)I_(2/-h-)(1 + O (--n)),
(3.23) Y(nl)(2) 2(-1) n+l eX/2x(t-)/2K_(2x/-)(1 + O (nn))
in terms of Bessel functions of imaginary argument.
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Now for larg ul < 7r/2, we have

e
I,,(u) K,(u) u-"e

Thus

(3.24) YR)(z) Y(,I)(z), -r < arg x <

Similarly, we obtain the n-->-oo asymptotic behaviour of Y), nk)’(4) so that

(3.25) Y(z) Y(z), -< arg (-x) <

Thus b+ W(YR(z), Y(z)) b,+ W(Y(z), Y(z)), Im z 0, and from (3.21)_
e-iea e-Xx-

b,+, W(Y’(z), Y(z)) b.+, W(Y’(z), Y(z)).
F(-fl + 1 )sin

The right-hand side may then be calculated from the asymptotic behaviour of (3.22)
and (3.23). This yields

e-iea
(3.26) b,. W(Y)(z), Y()(z))=

sin

The above calculations are summarized by Theorem 3.4.
TzogzM 3.4. Let A (A,) be a closed symmetric tridiagonal matrix acting in

l() with A, dn, A_, A,,_ ja(n + a)(n + ), d 4a 0. en A is self-
adjoint and for m n and Im z 0,

((zi_A)_), 2(_1)+ Jsin a sin

d
e

(3.27)

x4r(-m- a)r(-m-/3) U(-m-a;/3-a+l;-x)

x/r(l+n+a)r(l+n+fl) U(l+n+a;a-fl+l;x),

2z 4b
x

d d2 1,

x e-i=- { 1, arg x > O,
x, e=

--1, argx_--<O.

Remark. We should also be able to obtain explicit expressions for the polynomials
and measures in the resolvent representation (2.6). The polynomials are, of course,
the associated polynomials of Meixner, Meixner-Pollaczek, or Laguerre. The measures
would be obtained by applying the Stieltjes-Perron inversion formula to the resolvent
representations obtained above. We do not attempt this here.

4. Finite matrices. In this section we give an algebraic development for the
resolvent formula (2.14), based on a calculation of the inverse of a truncated Jacobi
matrix. Beginning with the doubly infinite Jacobi matrix A of (2.1), for each M =< N
we form the finite truncated Jacobi matrix

(4.1)

aM bM+l 0

A4= bM+l .’. .’.
\ 0 bu ai
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We calculate its inverse by Cramer’s rule If i<j, the ijth minor is

(4.2) det

b 0 0

bi+l ai+l bi+2
0 bi+2

aj_, 0

bj bj+ /lAG’
AJ/1bk+, det (A/M_,) det (N).

By symmetry, this also equals the jith minor The iith minor is

M{ai-1 ,,___0___det I--7---, Ai+l] --det (AIM_,) det (A’),
\ V Z-XN /

i--Iwhich is consistent with (4.2) if we interpret lk=i b/l as 1.
Expanding by cofactors along the ith column, we find that

[Ai+l 2 [Ai+ldetA ai det (AIM_,) det t,u )-bi det (A/M_2) det t,--N

[Ai+2"hi2+, det (A,) det

Cramer’s rule gives the following formula for the entries of the inverse (A)-’. For _<-j,

--1 i/j Aj+I(A) 0 =(-1) b+, det(A,). (N). det (A)-
=i

ai det (A/I) det (Ai+1) 2 det (A/M_2) det (Ai+1) 1-1N bi+l N

(J--y) -bi+’det(Al) det(A2)
(4.3) (-1)i+J

=i

(’iq )[ det (Nai+’) 2 det (A2) det (A1) det (A2)] -’
(-- 1) i+J bk+l ai

det (,-,NAj+I) -bi det (A,) det (AJdi i b2i+l det (AJ’)

Using the cofactor expansion, it is easy to show the following relations with
continued fractions For M =< i, j <- N,

det (a)(-b,+l)Ai+l ai + K-idet (N a+1
(4.4)

det (A) (-bdet (AjM_I)- aj + K r:j
ak-1/

With these formulas it is possible to express the entries of (A)-1 with products
of continued fractions. The simplest case is the diagonal entry:

(AM)-’
ii-- 2

ai bi(ai_l + Kl-i_,( b2/a,_,))-’ -bi+,(ai+,+K[=i+,(-b2k+,/ak+,))
For the case of interest in this paper, we replace the diagonal entries of (4.1) with

ai- z; we then have formulas for the entries of the resolvent (AI- zI)-’.
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For the case of an infinite matrix we can justify the convergence of the infinite
continued fractions using Pincherle’s theorem [9]. This gives an alternate proof of
formula (2.14).

5. Applications. The explicit cases of 3 and their classical limits with b 0 are
closely related to the representation theory of the Lie algebra so(2, 1) or su(1, 1). We
detail this connection here.

Let Tj, j 1, 2, 3 be the generators of the Lie algebra so(2, 1) or su(1, 1) with

(5.1) IT,, T2]=-iT3, IT2, T3]-iTs, IT3, T]--iT2.

Consider an irreducible unitary representation with T3 diagonal and the operator

(5.2) T oz T1+ a T2 + o T3 oj E .
For the highest and lowest weight representations (i.e., "discrete series"; cf. [1])

we have T represented as a one-sidedly infinite Jacobi matrix connected with the
classical polynomial cases of 1 having a, dn and b an2+ bn, n 7/.

However, for the principal or complementary series representations we have T
represented as a bilaterally infinite Jacobi matrix of the form given by the associated
polynomial cases of 3.

The results of 3 and their c - 0 classical limits allow us to calculate the resolvent
and spectral properties of T. Since there are a variety of differential operators which
obey the commutation properties (5.1) (cf. [1], [3], [4], [6], [11], [13]-[15]), this also
gives a unified approach to the properties of a class of differential operators.

5.1. Discrete series. The lowest-weight representation D/(q) with lowest weight
q > 0 has basis {bm}--o and action

T36m =(q+ m)6m,

1
(5.3) Tchm=-([(m+l)(2q+m)]l/26,,++[m(2q+m-1)]l/26,,_l)

1
T2thm= ([(m + 1)(2q + m)]/2b,,+ [m(2q + m

Relative to this basis the matrix for the operator T in (5.3) is (Tin,n) with

Tm, a3(q+ m),

m+l-- Tm+l,m-[(mWl,(2q+ m)]l/2(l-iz2).2

Letting em=exp(miarg(a-ia2))Chm, we see that relative to the basis {e,,}=o, the
operator T-ce3qI has a one-sided Jacobi matrix representation A, where

mm, am c3m,
(5.4)

Am.,+= Am+,m= bm+=1/2[(m+ l)(2q + m)] +a

In terms of the parameters a, b, c, d of 3, we then have

a+a b= al+a(5.5) a=
4 4

(2q-l), c=0, d=a3.

This corresponds to the classical Meixner polynomial case when a l + a2- a 32 < 0,
to the Meixner-Pollaczek case when a+a2-a>O, and to the case of Laguerre
polynomials when a 2 "- C[ CE O.
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The highest-weight representation D_(q) with highest weight q <0 has basis
{bm}..=_oo and action

T3 4),. q + rn 49.,,

1
(5.6) Tlqb,=-([(m-1)(Zq+m)]1/2Chm_l+[m(Zq+m+l)]1/249.,+1)

1
Tzq, -. ([(m 1)(2q + m)]l/2qb.,_l- [m(2q + m + 1)]1/2b,+1).

Zl

Letting e,. =exp (-mi arg (al- ia2))b-m we see that relative to the basis {em}=o, the
operator T-a3qI has a one-sided Jacobi matrix representation A, where

Am, am o3m,
(5.7)

A,,.,+l A,+l,., b.,+l 1/2[( m + 1 )(m 2q)] 1/2x/a21+a, me 7/+

The parameters of 3 are now

,ce+ a22
b= (-2q 1), C=0, d=-ce(5.8) a

4 4

Thus the classical polynomial correspondence, depending on ce2= ce2+ ce22 ce3,
is the same for both the lowest- and highest-weight cases.

In summary, the discrete series representations correspond precisely to the classical
polynomial cases of Meixner (ce2<0), Meixner-Pollaczek (ce2>0), and Laguerre
(c= 0).

5.2. Principal series. The (unitary) principal series representation Dp(0-), 0-

has basis {4m}=- and action

1 )2 1/ +[rn 1/2(5.9) Tldpm = ([(m + 1 + 0"2] 21rn+ nt 0-2]

1 )2 1/21m+ m2 1/2Tzchm=-i([(m+l +0-2] l-[ +0-2] bm-1).

The representations Dp(0-) and Dp(-0-) are clearly equivalent.
Letting em =exp (im arg (al- ice2))m and with T as in (5.2), we see that relative

to the basis { e,,} the operator T=-oo, ce3I has a bilateral Jacobi matrix representation
A, where

Am, am tx3m,
(.o)

Am,.,+1 a.,+l,., b,,,+, =1/2[(m + 1)2 + o-2]l/2v/ce 2 + ce22.
In the notation of 3 we then have

2cel+a22al+ce b=O, c=0-2, d ---03.(5.11) a
4 4

5.3. Complementary series. The complementary series (sometimes called supple-
mentary series) representations D,.(s, t) are parameterized by s, R satisfying

(5.12) -1 +ltl < s < -It I.
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Relative to a basis {(])m}=--oo the action is given by

T3m + m)cm,

1
Tlq,. = ([s+ t+ m)(s + t+ m+

(5.13) +[(s+ t+ m)(-s+ t+ m-1)]’/2b,_l),
1

rzb,, =-] ([(- s + t+ m)(s+ t+ m+ 1)]l/2tm+l

-[(s +t+ m)(-s+ t+ m-1)]/2b,_l).

Letting e,, =exp (ira arg (a- iffz))m and with T as in (5.2) we find that, relative
to the basis {em}=-, the operator T- a3tI has a bilateral Jacobi matrix representation
A, with

Am, am 3m,
(5.14)

Am
In the notation of 3 we now have

2l+a b a+(2t 1),a=
4 4

(5.15)

c=(s+t)(t-s-1), d=a3.4

Thus both the principal and complementary series cases correspond to the bilateral
associated polynomial cases of 3 of Meixner (O2"--O 2 -t- O22- a3

2 < 0), Meixner-
Pollaczek (a 2 > 0), and Laguerre (a 2 0).

Other associated polynomial cases of Charlier, Hermite, and Bessel order related
to representations of H4 and T3 can also be made explicit (compare [12] and [13]).
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ORTHOGONAL FUNCTIONS FROM GRAM DETERMINANTS*

JAMES A. WILSONt

Abstract. Generalized Gram determinants are used to derive explicit hypergeometric series or
basic hypergometric series formulas for orthogonal polynomials and biorthogonal rational functions.
The computations involve some new determinant evaluations.

Key words, orthogonal polynomials, biorthogonal rational functions, hypergeometric series,
basic hypergeometric series, Gram determinants
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1. Introduction and example. It is well known that the orthogonal polyno-
mials pn for a given distribution d# can be expressed as determinants

with #n f xnd#(x). What is surprising is that many of the usual explicit formulas
for orthogonal polynomials can be derived by directly evaluating determinants similar
to this. We demonstrate here how simple determinant reductions lead naturally to
the classical orthogonal polynomials and the related hypergeometric and basic hy-
pergeometric orthogonal polynomials [1], even the 4F3 polynomials in [7] and [8] and
their basic analogues in [2]. In fact, the technique is the source of the 9Fs and 109
biorthogonal functions referred to in [5] and [6], the proof in 2 being the original
derivation from my thesis [8].

Let {k}’=0 and {k}=0 be sequences of polynomials, Ck and Ck of exact degree
k. Then an alternative to (1.1) is

(1.2) pn (x) C

with #i,j f iCjd#. Indeed,

PnCkd# C"

and this is zero if k < n.

0,0 0,I O,n
1,0 l,n

]n--l,0 ]2n--l,n

]0,0 ]0,1 O,n

1,0

Hn--l,O Hn--l,n

k,O k,1 k,n

*Received by the editors July 28, 1990; accepted for publication August 27, 1990.
Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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Here and elsewhere in the paper, C represents a factor which affects only the
normalization of the orthogonal functions.

To illustrate the technique, we take d#(x) (1- x)(1 + x) dx;-1 < x <
1; a,/3 > -1; and derive the explicit series formula for the Jacobi polynomials Pn(a’).
Start with the beta integral

/ ,(x) f(1 x)(1 + ), +,/r( + 1)r(z + )/r( + z + ).
--1

We see that good choices for the basis polynomials are Ck(x) (1- x)k and Ck(x)
(1 + x)k, since these combine with the weight function in a simple way:

-1

++++r( + + j)r( + + i)/r(c + + + + j).

(The computations which follow would be a little longer with Ck(x) Ck(x) (1 4-

x).) In using (1.2), we multiply the columns and rows by appropriate factors to
simplify the #ij’s and make l’s in the first column:

Pn(a’) C.

with [_tij 1/(a + + 2 + i)j and Cj(x) (1 x)J/2J(a + 1)j. Now expand along the
bottom row:

(1.4)
n

P(’Z) C. (--1)k det [Pi,j] 0<i<n-1

k=0 O_j_n,jk

The problem now is to evaluate determinants of the form

A(A, n, k) det [1/(A + i)j] o<i<n-1
O_j_n,jTk

(A(A, 0, 0) 1). Begin by making zeros in the first column by subtracting row n- 1
from row n, row n- 2 from row n- 1, etc. Then expand along the first column to get

1
A(A,n, k) det

(A + + 1)j+l
1 ](A + i)j+ o<i<n-2

O<_j<_-n--,jCk-

The general entry in this determinant simplifies to -(j + 1)/(A+i)j+2 -(j + 1)/(A+
i)(A +i + 1)(A +i + 2)j, so that

n--1

A(A, n, k) (-1)’- II (J + 1) /
j=0

n-2

1)1-I(A+i)(A+i+ A(A+2, n 1, k 1)
i=0

[(-1)’-n!/k(A),-(A + 1)n-] A(A + 2, n- 1, k- 1).
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Iterate this k times:

1 (a r)’(-l)"-- A(A + 2k, n- k 0).(1.5) A(A,n,k) . (A + 2r)n-r-l(A + 2r + 1)n-r-1
In the right-hand determinant, the index j runs from 1 to n- k. If we shift the index,
we get

A(A + 2k, n- k, 0) det [1/(A + 2k + i)j+]o<<n-k-
O<_j<_n-k-1

det [1/(A + 2k + i)(A + 2k + 1 + i)j]0<<n-k-
O<_j<_n-k-1

A(A+2k+l,n-k,n-k) / (A+2k)n_k.
Finally, the last determinant can be evaluated by formula (1.5). These reductions give

A(A, n, k) (factor indep, of k). (--1)k(--n)k(A + n 1)k/k!
and from (1.4)

( )P(’I() C. ’(-1)A(a + + 2, n,k)
1

k=0
2

k=0
( + 1)k k 2

/(a + 1)k

This is a well-known and valuable representation of the Jacobi polynomials. (For the
usual normalization, put C (a + 1),/n!.)

The derivations of the explicit hypergeometric or basic hypergeometric formulas
for other classical and related orthogonal polynomials differ little from this. Whether

f d# is an ordinary integral or a finite or infinite sum, we choose the basis polynomials
Ck and Ck so that, as in (1.3), multiplying the weight function by j has the effect
of shifting parameters. There are interesting determinant evaluations which arise in
these computations, more general than A(A, n, k). Some are given explicitly in 3.

2. Rational function biorthogonalities. After seeing orthogonal polynomials
derived in this way from series or integrals containing parameters, it is natural to try
for something new using more general formulas. Dougall’s theorem [3, p. 27] is

[ 2a, a+l,a+b,a+c,a+d,a+e,a+f; 1 ]7F6 a,a-b+ l,a-c+ l,a-d+ l,a-e+ l,a- f + l
N

(2.1) E wk(a, b, c, d, e, f)
k=0

(2a + 1)N(1 c- d)N(1 c- e)(1 d- e)
(a-c+ 1)v(a d + l)v(a- e + 1)v(b + f)v

provideda+b+c+d+e+f=landa+b=-N. Here

(2.2) wk(a b, c, d, e I) (2a)k(a + k)(a + b)k(a + c)k(a + d)k(a + e)k(a + I)k
(1)k a (a- b + 1)k (a- f + 1)k

The simplest functions Cj, by which we can multiply wk to shift parameters (while
preserving the condition a + b / c + d + e + f 1) are not polynomials, but rational
functions of a quadratic function of k. We choose

Cj(z2) (c- z)j(c + z)j/(1- e + z)j(1- e z)j,
i(z2) (d- z)i(d + z)i/(1- f + z)i(1- f z)i.
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Then
N

ttij E wk(a, b, c, d, e, f)j ((a + k)2) i ((a + k)2)
k=0

(c a)j(c + a)g(d a)i(d / a)i
(1 + a)(1 )( I + )( I )

N

Ewk(a,b,c+j,d +i,e-j,f-i)
i--O

(a + c)(b + c)(c + d + i)(c + f i)j(factor indep, of j).
(1 e- a)j(1 e- b)j(1 d- e- i)j(1 e- f +

by Dougall’s theorem. We define for 0 <_ n <_ N
#o,o #o,1

i,0

(2.3) Rn(z2)
tn--l,0
o(z)

tOn
l,n

n--l,n
(z)

so that

S(.)

tO,O n,O
0,i ,/n,

t0,n--1 I,,tn,n--1
o(z) (z)

N

R. (( + ):) (( + ))
k--O

N

-EwkSn((a+k)2)m((a+k)2)- 0
k=O

for 0 <_ m < n N N, and we have a biorthogonality relation
N

R (( + )) S (( + )) o
k=O

for m,n E {0, 1,... ,N},m n.
The hope is, of course, that the computation in 1 generalizes to give hypergeo-

metric series formulas for the determinants (2.a).
Multiplying the columns and rows by appropriate factors and expanding along

the last row, as in the Jacobi polynomial case, gives

where

n

R,(z) C. E (-1)k (1 e a)k(1 e b)k

k=O
(a + b)k(b + c)k

Ck(z2)A(c + d, c + f, 1 e f, 1 e d, n, k)

(A + i)j(B i)j ]A(A, B, C, D, n, k) det
(C + i)(D i)j O(_i_n--1

O_j_n,jk
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for 0 _< k _< n. (A(A, B, C, D, 0, 0)= 1.)
We need to evaluate (2.5) when A + D B + C. This time, subtracting rows

leads to

A(A,B,C,D,n,k)
(A+i+l)j(B-i)j

det
(C+i)j+2(D-i-1)j+2

{(A + +j + 1)(B i- 1)(C + i)(D +j)

-(A + i)(B + j)(C + + j + 1)(D- i- 1)}[ O<i<n--2

The expression in braces factors into (j + 1)(B + C + j)(A C)(A B + 2i + 1) when
A + D B + C. Because of this fortuitous factorization, the procedure used in 1
may be followed to the conclusion

(2.6)
A(A,B,C,D,n,k)

(factor indep, of k)(--1)k(--n)k(B + C 1)k(B + C 1 + 2k)(C + n 1)k(D)k
k! (A)k(B n + 1)k(B + C + n)k

Upon substituting the value of A(A, B, C, D, n, k) into (2.3), we find

Rn(z2)

C.9Fs [c-e,(c-e)/2+ l,c-z,c+z,l-e-a,l-e-b,l-e-d,n-e- f,-n;11(c- e)/2, 1 e + z, 1 e- z,c + a,c + b,c + d,c + f n + 1, c- e + n + 1.

A 9Fs of this special type satisfies Bailey’s transformation identity [3, p. 27]’
(:.8)

[ a,a/2+l,b,c,d,e,f,g,-n; 1 ]9F8 a/2, a b + l,. ,a g + l,a + n + l

(a + 1)n(a’ e + 1)n(a’ f + 1)n(a’ g + 1)n
(a’ + 1)n(a- e + 1)n(a- f + 1)n(a- g +

[ a’,a’/2+l,a’-a+b,a’-a+c,a’-a+d,e,f,-n;19Fs a/2, a-b+l,a-c+l,a-d+l,a-e+l,a-g+l,a+n+l
witha’-2a-b-c-d+l, providedb+c+d+e+f+g-n-3a+2. In terms of
the rational functions, Bailey’s transformation says that Rn(z2) is symmetric is a, b, c,
and d when we put C (c + a)n(c + b)n(C + d)n(-C f)n/(C e + 1)n in (2.7). In
fact, an iterate of (2.8) gives

Rn(z2) (a- z)n(b- z)n(c- z)n(d- z)n(z- f)n
(-2z)n (1 e z)n

F -n/2,-a-n+l,-b-n+l,-e-n+l,z-d-n+l,-e+l,-f,2+l

(with the same choice for C). By symmetry, S,(z2) is given by the same formula with
e and f interchanged.

The biorthogonality just derived may be written

N

(2.9) Ewk Rm((a+k)2;a,b,c,d,e,f)Rn((a+k)2;a,b,c,d,f,e)=hm,n.hn
k=0
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if a / b 4- c 4- d 4- e 4- f 1; a 4- b -N, m,n E {0, 1,... ,N}, the weights w are
given by (2.2), and

Rn(z2) (a + b)n(a + c)n(a + d)n(-a
(a-e+ 1)n
/ z,o /

(a-e)/2,1-e4-z,l-e-z, a4-b,a+c, a4-d, a4-S-n4-1, a-e+n4-1

Once the formula for R, (z2) is given, direct verification of the biorthogonality is
much easier than the derivation, and carrying this out is one way to find that

hn M n!(n e f)n(a 4- b)n(a 4- c)n(a 4- d)n(b 4- c)n(b 4- d)n(c 4- d)n
(1 e f).

with

M (2a 4- 1)N(1 c d)N(1 c e)g(1 d- e)g.
(a c 4- 1)y(a d 4- 1)N(a e 4- 1)g(b + f)Y

Interchanging a and b in (2.9) is equivalent to summing in the reverse order.
If we let e and f become infinite while preserving the condition a4-b+c4-d4-e+f

1, the biorthogonality (2.9) reduces to a discrete case of the polynomial orthogonality
relation for

pn(Z2) (a+b)n(a+c)n(a+d)n 4F3 r|_n,n+a+b+c+d_l,a_z,a+z;1a + b,a + c,a + d

(a + b -N, 0 < n < N), which polynomials in turn contain the classical polynomials
and others as limiting cases [1], [2], [4], [7], [8].

The rational functions Rn(z2) have basic hypergeometric analogues. We use the
notation (a; q)k (1 a)(1 aq)... (1 aqk-l) if k >_ 1; (a; q)o 1; and

rA-lCr [ a0, al,..,

bl, ,ar;qz,br o (o; q)... (a;q),
z*.

The sums we encounter will actually be terminating ones, ar being q-n for some
nonnegative integer n. Suppose abcdef q, and for n 0, 1,... let

(.0)

rn ((Z 4- z-1)/2;a,b,c,d,e,f;q)
(ab;q)n(ac;q)n(ad;q)n(1/af;q)n

(aq/e; q)n

loo [a/e, qvf,-qv,a/z, az, q/be, q/ce, q/de, qn/ef,q-n;q,q ]V,_-,qz/e,q/ez, ab, ac, ad, qi-=af, q,+ia/e

Then r ((z + z-1)/2) is a rational function of degree n/n in the variable (z + z-)/2,
since

k-
1 --aqJ(z + z-) + a2q2j(a/z; q)k(az; q)k H 1 -qJ+e-(z + z-) + q2j+2e-2(qz/e; q)k(q/ez; q)k

j=o

and the series terminates with the k n term. Replacing a, b, c, d, e, f, z by qa,...
qz and then letting q 1 yields the 9Fs functions Rn(z2). In the same way, the
biorthogonality for rn ((z + z-)/2) contains relation (2.9). The basic analogue of
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transformation (2.8)is [3, p. 68]

lo9 [ a, qv/-d, -qv/-d, b, c, d, e, f g, q-n; q, q ]x/d, -x/d, aq/b, aq/c, aqn+l

(aq; q)n(aq/ef q)n(aq/eg; q)n(aq/fg; q)n
(aq/e; q)n(aq/f q)n(aq/g; q)n(aq/efg; q)n

s’qv’-q/-’sb/a’sc/a’sd/a’e’f’g’q-n;q’q ]109 v/, _x/ aq/b, aq/c, aq/d, sq/e, sq/f, sq/g, sqn+l

with s a2q/bcd, provided a3qn+2 bcdefg. This says that rn is symmetric in a, b, c,
and d, and an iterate of this transformation gives

((z + (Z-2)n(q/eZ)n
z2q-n, zql-n/2,-zql-n/2, az, bz, cz, dz, eq-nz, fq-n+lz, q-n;q,q ]109 zq_n/., _zq_n/2, zql_n/a, zq_n/b, zq_n/c, zq_n/d, zq/e, z/f, z2q

In place of Dougall’s theorem (2.1) we need Jackson’s theorem [3, p. 67]"

[ a2, aq,-aq, ab, ac, ad, ae, af;q,q I (a2q;q)N(q/cd;q)(q/ce;q)N(q/de;q)N
s7 a,-a, aq/b, aq/c, aq/d, aq/e, aq/f (aq/c; q)N (aq/d; q)N (aq/e; q)N (bf; q)N’
provided abcdef q and ab q-N. Mimicking the derivation in 3 leads to a
biorthogonality relation for rn ((z + z-1)/2) on the N + 1 points (z + z-)/2 (a +
a-1)/2, (aq+a-q-)/2, (aqN +a-q-N)/2. The determinant formulas produced
in the computation are given in the next section.

The biorthogonality is again easier to verify directly:

(2.11)
N

(aqk+a_lq_k )(aqk+a_lq_kE Wkrn a b, c, d, e f; q rm
k=o

2 2

(q; q)n(qn/ef q)n(ab; q)n(ac; q)n(ad; q)n(bc; q)n(bd; q)n(cd; q)nM" 5m,n (q/ef; q)2n

and

M
(aq; q)N (q/cd; q)N (q/ce; q) (q/de; q)
(aq/c; q) (aq/d; q) (aq/e; q) (bf; q)"

As in (2.9), interchanging a and b in (2.11) is equivalent to summing in reverse order.
If we let e 0 and f -, oc with abcdef q, this relation reduces to the discrete case
of the orthogonality relation for the 43 polynomials in [2].

3. The determinant formulas. New determinant formulas may have value
in a variety of contexts. The determinants involved in the preceding computations
seem particularly promising because of their intimate connection with hypergeometric
and basic hypergeometric series. Therefore, it is worthwhile to record the complete
evaluation formulas.

with abcdef q; ab q-N; m,n E (0, 1,... ,N};
(a2; q)k(1 a2q2k)(ab; q)k(ac; q)k(ad; q)k(ae; q)k(af q)kqk

Wk (q; q)k(1 a2)(aq/b; q)k(aq/c; q)k(aq/d; q)k(aq/e; q)k(aq/f; q)k
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The determinants involved with the lo9’s are

(3.1) An,k det[(Aq; q)j(Bq-; q)j/(Cq; q)j(Dq-; q)j] o<<n-1
O<_j<_n,jk

with AD BC, 0 <_ k <_ n. (Ao,o 1.) For these, we have

--1

A’,n H q-r(q; q)rDr(1 AC-q-,++r)r(AB-qn-r; q2)r(ADqn-l-r; q2)r

r=0
(Cqr;q)n-(Dq-r;q)r-I

-1 -(r+)/2

H q (q; q)r(-B)r(CA-; q)(AB-q’-r; q2)r(ADqr--; q2)r

r=l
(Cqn-l-r; q)2r(Dq-r; q)2r

(we have given two of many ways to group the factors) and

with

(ADq-; q)k(1 ADq2k-)(D; q)k(Cqn-; q)k(q-n; q)k
(_q)krk (q; q)(1 ADq-)(A; q):(Bq-n+; q)(ADqn; q)

All the similar generalized Gram determinants we have evaluated are limiting
cases of this one. We now give some examples. If A, B, C, D are replaced by qA, qB, qC, qD,
then as q 1, we get the determinants involved in the Rn(z2) computation:

(A + i)(B i) ]An,k det
(C + i)j(D i)j o<i<n-

A + D B + C. For these, we have

/n,k An,nTrk/Trn

n-1

An’n H (-1)rr!(C A)r22r ((A B + n r)/2)r ((A + D + n 1 r)/2)r
r--0

(C + r),_ (D r)n-

(A + D 1)k(A + D 1 + 2k)(D)k(C + n 1)k(--n)k(--1)
rk k!(A + D 1)(A)(B n + 1)(A + D + n)

It is interesting that, with a change of variable, these formulas evaluate the more
symmetric determinants with entries (a; q)i+(b; q)e+j(c; q)i+j, (d; q)i,+j, if ad bc, or

j’=n-l-j(a)i+ (b)e+ (c)i+, (d)i,+ ifa+d b+c, i’ n 1 i,
In the limit as B, D --, oc, (3.2) becomes

(3.3) An,k det[(A + i)j/(C + i)j] o<i<n-

A,r/r,
--1

YI r!(C- +
r--O

7rk (C + n- 1)k(-n)k(-1)k/k!(A)k.
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The basic analogue is (B, D 0 in (3.1))

The symmetrized versions of these determinants have entries (a)i+j(d)i,+j, and (a; q)i+j
(d;q)i,+j,q-iJ.

Other limiting cases are the determinants with entries (A / i)j/(D i)j or (B
i)j/(C -i)j, or their basic analogues.

The entries in the determinants become rational functions of and j (or of qi and
qJ in the basic versions) when A- C and B- D are integers (or when A/C and BID
are integer powers of q). For example, with C A + 1 in (3.3), we can calculate

n-1

det[1/(A -t- / j)]0<i<n-1 1- (r!)2/(A / r)n.
O_j(_n--1
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CONVERGENT FACTORIAL SERIES EXPANSIONS FOR BESSEL
FUNCTIONS*

T. M. DUNSTER? AND D. A. LUTZ?

Abstract. Solutions of Bessel’s equation and the modified Bessel equation are examined where the
argument z c. Convergent series representations are derived for all of the standard Bessel and modified
Bessel functions. These representations involve (inverse) factorial series of the form

c.(u)m!
,,=o z(z+ 1)’’" (z+m)’

and are uniformly and absolutely convergent in the half plane Re (z)= e >0 (e arbitrary). Error bounds,
explicit in the Bessel parameter u, are derived for the difference between the infinite series and the truncated
series.

It is shown that the factorial coefficients have the asymptotic behavior era(U)= O({ln (m)}’-5/Z/m) as
rn-->. The coefficients are also shown to satisfy certain recursion relations, which provide a means of
calculating them in a numerically satisfactory manner.

Key words. Bessel functions, asymptotic expansions

AMS(MOS) subject classifications. 33A40, 34E05

1. Introduction. A general theory for factorial series expansions of solutions of
linear differential equations has long been available, originating with the work of Horn.
However, it does not seem to be widely known, nor used often in practice. This is
perhaps partly due to the fact that while the general theory implies the convergence
of a factorial series (in some half plane), it does not immediately provide all the
information needed to analyze the convergence. Moreover, it does not provide a means
of determining the order of magnitude of the factorial coefficients in a satisfactory
manner.

The purpose of this paper is to investigate factorial series expansions for Bessel
functions. We shall determine factorial series expansions for all the standard Bessel
functions ( 2), each of which converges in a half plane. We will also provide numeri-
cally satisfactory procedures for calculating the coefficients in these factorial series
expansions ( 2, 3), give error bounds for the remainder, including explicit dependence
on the parameter u ( 4), and determine the asymptotic behavior ofthe coefficients ( 5).

A natural question regarding these factorial series expansions would be to ask
how good the resulting convergence is for various fixed values of z, especially with
respect to the parameter u. We shall investigate questions such as these and, as a result,
learn enough about the calculation and convergence of the factorial series so that their
numerical effectiveness can be ascertained. We compare calculations based on factorial
series with other standard types of convergent and asymptotic expansions in 6.

The procedure we follow is based on the general theory (see, for example, [3] or
[7]) that goes back to Horn and Norliind, in which the Laplace transform plays a key
role. Other types of convergent expansions for Bessel functions have been considered.
J. Hadamard gave an expansion for the modified Bessel equation I,,(z) which is
particularly useful (see [8, pp. 204-205]). Hadamard’s series representations for the
other Bessel functions, while convergent, determine the solutions only to within the
addition of an exponentially small error term.

* Received by the editors October 27, 1989; accepted for publication (in revised form) September 4, 1990.
Department of Mathematics, San Diego State University, San Diego, California 92182-0314.
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In a relatively recent paper Rosser [6] discussed a third type of series expansion,
for the modified Bessel function K(z), which involves quotients of gamma functions
(see (5.17) below). The coefficients in such an expansion, which turn out to be somewhat
more elusive than the factorial series coefficients, have been conjectured by Rosser to
have a similar rate of growth. Using the same kind of argument as in 5, we are also
able to prove Rosser’s conjecture, including the form of their complete asymptotic
expansion.

2. Factorial representations for unmodified Bessel functions. In this section we
examine solutions of Bessel’s equation

(2.1)
dz2 t--+zdz

1- w--O.

We assume throughout that u is real and nonnegative, and furthermore is not equal
to 1/2 (in which case the solutions can be expressed in terms of elementary functions).
Extensions of the following results to complex u are feasible, but we shall not pursue
this.

We shall derive a factorial series expansion for Hl)(z), and from this we derive
corresponding results for the Bessel functions H)(z), J,(z), and Y(z). We seek a
factorial series representation for u(u, z), defined by

e-v’n’i/2-’n’i/4 eiZ[1 + u(v, z)].

Note that u(u, z) possesses the following asymptotic expansion as z c (e.g., see [5,
p. 238]):

A.(u)
(2.3a) u(u, z) E i’

s=l Z

where

(-Tr+ =<arg z 27r- 6),

(4u2-12)(4u2-32)... (4u2-(2s 1)2
(2.3b) As(u)

s !8

Following Horn, consider the function f(u, t) defined implicitly by

(2.4) u( u, z) e-Zf( u, t) at.

We make the following assumptions on f(u, t) a priori, and these will be justified
below. We assume

(2.5) lim (tf(u, t))’ e-’= lim (u, t) e-’= 0, arbitrary > 0.

We shall also need the following information, which follows from (2.3) and (2.4) and
integration by pas"

(2.6) f(, 0)= iA,(u)= i/2, 2- ( o).

Here we have introduced a new parameter for later convenience.
From (2.4)-(2.6), and the following inhomogeneous differential equation for

u(, )

(2.7) z2
d2u du
dz

+ 2iz2-u ,
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we find that f(,, t) satisfies

(2.8) t(t 2i) daf+ 4(t- i) df
dt2 --+ (2- cr)f O.

This is a form of the hypergeometric equation. From (2.6) we see that

(2.9) f(v, t)=-- F + v, - v; 2;

with the usual notation. This representation is very closely related to some well-known
integral transforms (e.g., see [2, p. 212, eqs. (1), (4)]).

The hypergeometric function f(v, t) given by (2.9) has a simple pole at -2i (see
[5, p. 166, eq. (10.11)]). Its behavior at the regular singularity at infinity is given by
(see [5, p. 167])

(2.10a) f(,, t).-. ao(u)t -3/2,

where

(2.10b) ao(’)

O.7.21/2- e(2U-1)’rri/4

sin ,)r(1-2,)

trF(2,)21/2 e(2-1)=i/4

(2, 0, 1,2,... ),

(2,= 1,2,3,... ),

and

(2.10c) f(O, t)-- O(t-3/2 In (t)).

The cut associated with the branchpoint at infinity runs along the imaginary axis from
t=ito t=2i.

To derive a factorial series expansion formally, use

m!
(2.11) (1-e-’)’e-Z’dt=z(z+l)...(z+m)’ (m :0, 1,2,...),

and expand f(,, t) in terms of a new independent variable :(t) defined by

(2.12) = l-e-’.

A region T in the plane bounded by the parametric curve t=
-ln (2 cos (0/2)) + i0/2 (-Tr < 0 < 7r) is mapped to the unit disk I1 --< 1 in the plane;
see Fig. 1. The singularities 0, 2i, are mapped to sc 0, 1- e -2i, 1, respectively.
For this section we confine our attention to lying in T, or correspondingly, : lying
in the unit disk I:1 --< 1.

Regarding f(9, t) as a function of :, i.e.,

(2.13) f(, t)=f(,,-ln (1- ))--= b(, s),

it follows that d(v, ) is analytic throughout 1:1 =< 1 except at 1, where it has a
logarithmic singularity:

(2.14) th( ’, sc) O([-ln (1 )] ,-3/2), -- 1-.
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FIG. 1. Domain T in plane.

Therefore, b(v, ) possesses a Maclaurin expansion of the form

(2.15) f(v, t) q(v, :) era(/))m,
m=0

which is convergent for [scl < 1. On substitution of (2.15) into (2.4), interchanging the
summation and integral, and then employing (2.11), we formally arrive at the factorial
series representation

(2.16)
c,,,(v)m!

u(v,z)=,,,=o2 z(z+l)- ]i+m)"
For a justification of this formal process see 4.

A necessary and sufficient condition for absolute convergence in a half plane
Re (z)-> K is that the coefficients satisfy

Cm(V)=O(m"-’)

as m-c; see [3] or [7]. In 5 we shall show that c,(v)=o(m-) as m-c for
arbitrary positive e. This implies uniform absolute convergence of the series for
Re (z)=> e>0.

One way of determining the Maclaurin coefficients is to employ the differential
equation for b(v, ) together with the initial condition ,(v, 0)= icr/2. From (2.8) and
(2.12) we readily find that the equation is given by

(2.17) p(sC)b + q()b + (2- o’)4, O,

where

(2.18) p()=(-l)2t(t-2i), q() (t2- 2it-4t + 4i)(- 1),

with =-In (1- :). Clearly p(:) and q(:) possess Maclaurin expansions of the form

P(sC) E Prr, q(sC) E qrr,
r=l r=0
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Substituting these series and (2.15) into (2.17) we obtain

icr 0"(2-0")
(2.19a, b) Co(U)

2’
c,(u)

(2.20)

1
Cm+’(u)=2i(m+ 1)(m +2)

qmC(P)+ 2 {jc(v)[(j- 1)p,+_+ q,+_]}+(2-o-)cm(v)
j=2

(m=,,. .),
with the understanding that the summation in (2.20) is null for m 1.

Explicit formulas for the coefficients {Pr} and {qr} can be derived by differentiating
the expression for p() r-times, and then using Taylor’s formula pr=p(r)(O)/r!; the
same holds for q(:). After simplification using the binomial theorem, we find

2
p -2i, P2 1 + 3i, P3 =-1- i,

(2.21)
Pr r(r-1)(r-2)

4 --6 4i (re4);
j=lj

qo -4i, ql 4 + 6i, q2 --3 i,

(2.22) 1 { r21 }qr 2 ----6--2i (r>=3).
r(r--1) j=lJ

The above recursion scheme provides a simple and numerically satisfactory means
of evaluating the factorial coefficients {era(V)} (m=0, 1,2,’’’ ).

The factorial coefficients can also be expressed explicitly in terms of Stirling
numbers of the first kind S") and the coefficients {A,(v)} in the asymptotic expansion
(2.3) of the Hankel function. Following [7, pp. 329-330] we find

(2.23) Co(V) ial(v), c,,(v)
(--1)mi’., (-i)JA+I(U)S) (m 1, 2,’’’ ).
m! j=l

These formulas are more difficult to implement in numerical calculations as they.
require calculation of large individual terms to a high degree of accuracy. Another
procedure for recursively calculating the coefficients can be derived by substituting
the expansion (2.16) into equation (2.7) and using known formulas for derivatives of
factorial series.

Finally, to obtain factorial series representations for the other standard Bessel
function we use the well-known relations

We find

(2.24)

(2.25)

HT)(z) =/_/(2)__
(e),

1 HJ(z) = {HT)(z) + (z)},

1
Y(z) {HT)(z)-HT)(z)}.

HT)(z (.) 1/2 [ c.,(v)m!
e vrri/2+rri/4 e -iz 1+ -] :-( m)m=oz(z+l) +

(2)1/2{ [ Re{c=(v)}m,]J,(z) 77z cos (z- vrr/2-rr/4) 1 +
m= Z(7 )- :-7/- m)

-sin (z- v-/2- -/4) 2
Im {cm(_)}m!

,,,=oZ(;Ti)-:-(z+m)
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Y(z) 77 sin (z- vrrl2- rr/4) 1 +,,=,Z z(z + :-: -(z-- m)
(2.26)

Im{c,,(v)}m!
+cos(z-vr/2-rr/4) ,,=oE z(TiiT:Ti77m)

3. Factorial representations for modified Bessel functions. The standard solutions
of the modified Bessel equation

(31) ---d2w l dw (v_2)dz2 -- 1 + w 0,
z dz

are the modified Bessel functions K(z) and I(z). The purpose of this section is to
derive factorial series expansions for these two functions which are uniformly and
absolutely convergent in the half plane Re (z)->_ e > 0.

Consider K(z) first. The derivation of a factorial series expansion for this function
follows in a similar manner to that of the Hankel functions. We define (v, z) by

e-[l+gt(v,z)].

Proceeding in a manner similar to the previous section we find that

(3.3) a(v, z)= e-’f(v, t) dt,

where

(3.4) f(v, t):- F + v, - v; 2;

The hypergeometric function jr(v, t) has a simple pole at -2 and a regular singularity
at infinity. It therefore has no finite singularities inside the region T (defined in 2).
Thus, proceeding as before, we find that

d.,(v)m!
(3,5) l(//’ Z)= m=0E z(z+ l) 7-. iT+ m).

The factorial coefficients {d,,(v)} are found to be real, with do(v)=-ico(v), d(v)
-c(v), and the other coefficients satisfying the recursion relations (2.20)-(2.22) with
replaced by -1 in each equation.
We now turn our attention to the modified Bessel function I(z). Unlike H))(z),

H{,Z)(z), and K(z), this function is dominant at infinity for all values of arg (z). The
dominance makes the construction of a factorial series representation for it less
straightforward than for the other three Bessel functions. We shall use the following
representation:

(3.6) I,(z) {K,(z e-’) _uTrir.
e .(z)},

seeking a factorial series expansion for the modified Bessel function K(z e-=). Clearly,
K(z e-) is recessive at infinity in the sector rr/2 <arg (z)< 3r/2.

We next define u+(v, z) by

(3.7) K(z e-)
7r

e[ 1 + u+(v, z)].
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Again, we could write u+(v, z) as a Laplace transform

(3.8) u+(v,z)=[ e-Z’f(v,t) dt (Re (z)-> > 0),

where the path of integration F runs from 0 to infinity such that Re (zt)-+ +oo. For
any choice of F satisfying these requirements we find that f(t*, t) is a hypergeometric
function which is regular at 0, but has a simple pole on the real axis at 2, which
lies inside the region T. The presence of this singularity prevents us from proceeding
exactly as before. If the pole were lying inside T, but not on the real axis, an appropriate
(real) scaling of the variables and z could reduce the problem to an equivalent one
where the pole lies outside T (see [7, p. 326]).

Also we do not have enough information on u/(v, z) to determine the precise
path of integration F in (3.8). This is because F can be taken to lie above or below
the pole at 2 (the integrand remains unchanged in both circumstances). The two
choices of F result in two different functions for the right-hand side, which differ by
the residue of the integrand at 2. It is seen that this residue is O(e-2z) as Re (z)- oo,
and therefore the asymptotic behavior of the integral at z oo will be identical for
either path. (The path F could also be chosen to loop the pole a number of times, or
pass through it as a Cauchy principal value.)

The above difficulties arise from the fact that K(z e-’i) is dominant in the half
plane larg(z)l < rr/2. In order to overcome the difficulty we seek a factorial series
representation for K(ze-=i) in the half plane Re (ze-i/4) >- e >0. To do this we
introduce the scaling factor

7r 7"1" 7r
e irr 4-/i(3.9)

and seek a factorial series in terms of the variable z/= z/09. In place of (3.8) we
therefore define

(3.10) u+(v, z) e-Z+tf+(v, t) dr.

where the path of integration is along the real axis. The pole off/(v, t) is then found
to be at 209, which lies outside the region T. The modulus of 09 was chosen to ensure
this. Then, proceeding as before, we find that

(3.11)
z(z/ ,o -i-ii -.-- o, + m

where

o" r(o’-2)
(3.12) d(v) -, d+,(v)=8o9
and where the other coefficients satisfy (2.20)-(2.22) with replaced by 09, throughout.
Thus from (3.6) we have the compound expansion

e 1+,,=oy z(z/09+l) (z/09+m)

(3.13) +ie""ie 1+,,,=o2 z(z+l)--.iT+m)
Re (z) _-> e > 0, --+ _-< arg (z) -<

4
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A similar expansion, convergent in the conjugate region Re (z)=> e > 0, -r/2 -<

arg z<= 7r/4-6, can be derived from (3.13) and the relation Iv(z)= I().
When z x is real and positive both expansions are valid. A useful formula for

Iv(x) comes from adding these two formulas and dividing by 2. This yields

,,=o x(x/w + l) (x/w + m)

(3.14)
-sin() e 1+ 2

d()m
=ox(x+-:

(x_-> e>0).

4. Error bounds. We seek a bound for 6, (v, z) defined by
n--1 G,(v)m!

(4.1) u(v,z)=,,=o z(z+l)’’’(z+m) +6"(v’z)"

We concern ourselves here with the unmodified Bessel functions. Bounds for the
modified Bessel functions can be derived in a similar manner.

Following [9, pp. 142-144] we derive

(4.2) 6,(v, z)
1 Ioz(z+l)..- (z+n-1)

Next, introduce the supremum

(4.3) M(v, a)= sup {If(u, t) e-’l}.
tr

Because of (2.10a-c) it is seen that the supremum exists for all positive values of
For our purposes it is necessary to impose the restriction that 0< a < Re (z). From
(2.12) and (2.13) we find

(4.4) I(, )1_-< M(, )1 :1 (11-> ).

Therefore, for 0_-< sc < 1, we have from Cauchy’s integral formula and (4.4)

M(v,a)(1-p)-’nV
(4.5) b(")(v, s:)l_-< (0<p < 1-s).p"

Setting p=(1-)n/(n+l) in (4.5) and noting that (l+n-1)"<e (n>0), we obtain
from (4.2) and (4.5) the bound

M(v, or) en!
(4.6) I.(, z)l_-<

]z(z+l)... (z+n-1)l(Re(z)-cr)"
Incidentally, it can be confirmed from this bound that that factorial series is absolutely
convergent for Re (z)>

Since we know that the convergence becomes slow for large u we now examine
the asymptotic behavior of M(v, a) as v-. The asymptotic behavior of f(v, t) can
be established from the differential equation (2.8) written in the normalized form

dt2-
v t(t--2i--4t(t--2i)

(4.7b) ( v, t) t( 2i)f(v, t).

This equation is characterized in T by having a simple pole at 0 and a regular
singularity at c. To obtain an asymptotic approximation that is uniformly valid at
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both singularities we shall apply an asymptotic theory of differential equations having
a simple pole in the complex plane [5, Chap. 12, 9]. Note that Olver’s parameter u
corresponds to our parameter u, and in this application Olver’s u is equal to 1.

The Liouville transformation given by (see [5, pp. 438-439])

,1/2 fo dr
(4.8) -ln[it+l+i(t2-2it)I/2],r/2(r 2i)1/2

( 4" ) 1/4

(4.9) W(u, st)
t(t 2i)

f(t),

takes (4.7a) into the form

d2W {u2 1 0()(4.10) dsr2 4sr 42 - W,

where

(4.11) 0(’) --i- + t(t-2i------
With regard to (4.8) and (4.9) we introduce a branchcut along the imaginary axis
from 2i to joe, and a temporary cut along the negative axis from =0 to

-oo. With these cuts the integrand of (4.8) is taken to be positive for r =is (0< s <2)
and continuous elsewhere. The " domain A corresponding to the domain T is depicted
in Fig. 2. The asymptote at infinity (dashed line) is the parabola

The t--> sr transformation (4.8) is analytic and 1 1 at all points in T, including
the singularity =0 (’= 0). The Schwarzian O(sr) is holomorphic within A.

FIG. 2. Domain A in plane.
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(4.17a)

with

The following can be deduced from the above equations:

1/2(4.13) sr 2it +3 -4it3 + O(t4) as 0,

(4.14) q(sr) 1+ 8" 2

(4.15) exp

We now apply Theorem 9.1 of [5, Chap. 12] to obtain the following solution of
(4.10):

(4.16) W(,, sr) 1/211(,1/2)+ el(U, ),

where II(z) is the modified Bessel function of order 1 and el(u, ) is uniformly bounded
for srA and u>0 by

’el(’,

f
(4.17b) V= | Iv-1/zq(v)l dr.

d

The path of integration of (4.18) links zero to " in the v plane subject to the
first of the conditions (i) and (ii) of [5, p. 457]. The convergence of this integral at

" =0 and sr= in A is readily verified from (4.11), (4.14), and (4.15); compare also
equation (4.7a) with Example 4.1 of [5, p. 369].

In (4.17) l(z) and l(z) are auxiliary functions for modified Bessel functions
of complex argument, satisfying

(4.18) II,(z)l :’l(g),ff/l(Z) COS (01(Z)) ([arg (z)[-< 7r/2),

where O(z) is a real function of z. The constants /Xl and /x2 are certain suprema
involving these auxiliary functions (see [5, pp. 454-456]). The significance of the bound
(4.17a, b) is that it establishes the fact that

(4.19)
as ’-* 0;
uniformly in A except
near the zeros of Ii(,srl/Z).

The function (4.16) is the solution of (4.10) that is recessive at st=0. As such it
can be directly identified with the hypergeometric function of (2.9), since that function
is also recessive at 0. On comparing then both solutions at 0 (r--0) we deduce
that for v>0 (v#1/2), t T (’ A),

(4.20)

f(v, t) =- F +v,-v;2;-

{42--1} "1/4

4u [t(2i- l)]3/4[I1(l’/2)-+-

In deriving this asymptotic formula we employed (2.6), (4.7b), (4.9), (4.13), (4.16),
(4.19), together with the well-known asymptotic behavior of Ii(z) near z =0 (e.g., see
[5, p. 435]).

Before applying the above results to bound M ,, a) we prove the following result.
LEMMA 1. For ,> a(Tr/2+ 1)>0,

N( ,, a sup lexp ,./2_ at)l
tT

(4.21) =<max {2ua e-+=/2+, 2" [2(ln (2) + (7r/2) + 1)]}.
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Proofi We seek an upper bound on Re (/,:l/2-at) for T. First, from the
parametric equation for the boundary of T (see the paragraph following equation
(2.12)) we have for T

(4.22) Itl =< Ixl +-, x Re (t).

Thus, for tc T, x>_-O,

(4.23)

Re(v"1/2- at)= u In {lit+ 1 + i( 2-2it)/2]} ax

=< v In {[ t[ + 1 + (I tl 2 + 21 t] + 1)1/2} ax

=< v In {2(x + (rr/2) + 1)}- ax-= rn(x).

The only stationary point of m(x) in 0<x<oo is x=xc=v/a-(rr/2)-I (note the
hypothesis of this lemma). It is readily verified that the absolute maximum of m(x)
in [0, oo) occurs at x- xc. Therefore it follows that

( rr 1)(tT, Re(t)>O)Re (pl/2_ at) <= m(x) <-- m --On exponentiation and simplification we arrive at the first of the maxima of the
right-hand side of (4.21).

For the complementary case -ln (2) < x < 0 we find

Re v"1/2 at) =< t, In {2(Ixl + (rr/2) + 1)} ax

=< v In {2(ln (2) + (rr/2) + 1)} + a In (2) (tT, Re(t)<O),

noting the monotonicity of the middle expression. Again we exponentiate, and the
second of the maxima of the right-hand side of (4.21) is obtained. This completes the
proof of Lemma 1.

Finally, from (4.17), (4.18), and (4.20), we derive for T the bound

[f(v,t) e-’]<= {4v2- 1}{ sr } 3/4 { gl V’/2)./ (1,’’1/2) exp {-- v’1/2}14 t(2i-t)

Hence, from (4.3),

{exp(vl/2-at)}{l+2exp( i--2v V)}

(4.24) M( v, a <=

where

(4.25) A1 su,p

(4.26) A2 sup {Re(z)O

A1A2A3( p) N( p, a),

t(2i-t)

3/4

(4.27) /3(/t) 1 +/x2 exp /z__ Voo Voo Voo Iv-/z(v)l dv

and where N(v, a) is defined and bounded by (4.21). The existence of al is seen from
(4.13) and (4.15). From (8.09), (8.16), and (8.25) of[5, Chap. 12] it can also be verified
that A2 exists.



FACTORIAL SERIES EXPANSIONS FOR BESSEL FUNCTIONS 1167

5. Asymptotic behavior of the factorial coefficients. For the convergence of the
factorial series derived in 2, it is helpful to obtain some information on the size of
the factorial coefficients c,(,) as m-, including the dependence on the parameter
9. The purpose of this section is to investigate this behavior. We shall suppose that
0, 1/2.

To determine the asymptotic behavior we use the representation

1 b(9, :)
(5.1) Cm (P)

[:p<l -;+ d,

which comes from (2.15) and Cauchy’s formula, or equivalently

1 f(,t) e-’
(.2) c(u)=2 ,=>o(1-e-t)+ldt’

where =-ln (1-). As it turns out, the asymptotic behavior of f(u, t) as t
determines the behavior of c(u) as m.

First deform the contour in (5.2) into a path y consisting of a finite segment yo
from i to =-i, and two semi-infinite lines y+ and y- as depicted in Fig. 3.
The integrals along the infinite segments converge because of the behavior of f(u, t)
near = (see (2.10a-c)). The only finite singularity of f(u, t) is a simple pole at

2i, and in deforming the contour we have taken into account the location of that
pole. Note also that the integrand has an infinite number of poles along the imaginary
axisat t=2ni (n=O,l,2,...).

FIG. 3. Integration path 3/in plane.

Along the finite segment 3’0 the numerator of the integrand is bounded, while the
modulus of the denominator is bounded below by c’, for some real constant c which
is greater than 1. Hence the integral along 3’o contributes a term of order O(c-’) as
m . All such terms of order O(c-’), c > 1, will be considered from now on as
asymptotically negligible. The main contributions come from the integrals along y+ and
y-, since we shall see that they are of much larger order of magnitude. Any further
information about the value of c is therefore unnecessary.

Note that we could have chosen the segments 3, to be semi-infinite lines along
Im (t) A+/-, for any constants A+ > 0 and A- < 0. However, in order that the contribu-
tion from the path 3’o be asymptotically negligible it is necessary that 7r/2 _-< IA+/-[ <_- 37r/2,
since otherwise 3’o would pass through at least one region in which l1- e-’l < 1. Our
particular choices A+/-= + were taken for convenience.
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Now consider the contribution from the paths y+/-. We parameterize y+/- by
+icr+ r (0=< r < oo). Integration along 3,

+ and 3’- then gives

1 fo [f( v, irr + r) -f( v, irr + r)] e
(5.3)

2rri (1 + e-’) m+l
dr.

In (5.3) we now make the change of variable 1 + e-v= e", which yields

1 I0 n(2)

(5.4)
2rri

g(v, U) e du,

where

g(v, u)=f(v, i’n’- In (e 1)) -f(v, -irr- In (e" 1)).

The behavior of (5.4) as m-+ oo depends upon the asymptotic behavior of g(u, u)
as u-+ 0+, which in turn corresponds to the behavior of f(u, t) as t-+ oo along 3,

+ and
3’-. For this we use the following representation of f(u, t):

(5.6) f(u, t)t v-3/2 Z ak(v) t-k + t-v-3 Z bk(v) t-,
k=0 k =0

where both series converge for [tl>2. The coefficients {ak(v)} and {b(v)} (k=
0, 1, 2,.. can be determined explicitly from (2.9) and a connection formula (see [5,
p. 167, eq. (10.15)]).

Then, setting +irr + r in (5.6) and reexpanding yields

(5.7) f(,+irr+r) =r’-3/2 Y a(v)r-+r--3/2 2 b(v)r-,
k=0 k =0

which converges for r> 7r. In this expression a:(v)= ao(v), b:(v)= bo(v), and the
other coefficients in (5.7) can be expressed explicitly in terms of those in (5.6).

If we now write

g(v’ u)=f(v’ irr-ln (u)+ln {uu-1})
-f(v’-rr-ln (u)+ln {e u })

and use the fact that In (u/(e"-1)) is regular at u 0 and vanishes there, we find
(observing that the leading terms cancel)

(5.9)

ak(V)
g(v, u) (-ln (lg)) v-5/2 k=o (-ln (u)) k

+ O(u(-ln (u)) -s/2).

+(-ln (u)) --5/2 k=O (--ln (u)) k

The series in (5.9) converge uniformly for 0 < u-<_ e, for sufficiently small e. Each of
the coefficients dk(U) and/(u) is expressible in terms of the coefficients {a:(u)} and
{b(v)}.

For e as above let

(2) f0 f In (2)

(5.10) g(v, u) e du= g(v, u) e du+ g(v, u) e du.
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Since the contribution of the second integral is easily seen to be asymptotically
negligible, it remains to determine the asymptotic behavior of

fo g(v, U) e du k(V) (--In (u)) ’-/- e du
=0

(5.11) + 2 b,(v) (-ln (u))--/- e du
k=O

+ O(u(-ln (U)) ’-5/2) e du,

as rn-* oo. Clearly integrals of the form

(5.12) L(m, A, a)= (-ln (l,/))ce/,/A-1 e du

play a key role. Such integrals have been discussed by Erd61yi [4] for the parameters
0< e < 1, A > 0, and c real. Erd61yi has shown that

(5.13) L(m, A, c)---,__o (-1) ()Fn)(A)m-(ln (m))-",

as rn -oo. Hence setting A 1 and 2, c +v-- k in (5.13), we finally obtain as m -,oo

c,.(v)
(ln (m)) -/2 c(v)

rn =o (ln (m))
+

+ o ( (ln m )) "-5/:z)
(5.14)

(In (m)) -’-5/2

E (ln (rn)) ’

where the coefficients {a(v)} and {/(v)} are, in principle, computable in terms of
those in the expansion for f(v, t) given by (5.7) above. For example, the leading
coefficient is found to be

(5.15) ao(v) 1/4( u -)2ao(v),

where ao(v) is given in (2.10b).
By using the same analysis it can be shown that the coefficients {dm(p)} appearing

in the factorial series expansions of the modified Bessel functions have similar
asymptotic representations. Also, when v is complex the factorial coefficients (in the
modified and unmodified cases) have similar asymptotic representations. This can be
shown using an analogue of Erd61yi’s result (5.13) for a complex, due to Wong and
Wyman 10].

The above procedure can also be used to analyze other similarly constructed series
expansions and their coefficients. For example, Rosser [6] started with the integral
representation

(5 16) K.(z) I’(.+1/2) o
sZ-l(ln (s)- 2 In (s)) "-’/2 ds,

and obtained the convergent (factorial-like) series expansion

(5.17) sZ-’(ln2 (s)-2 In (S)) v-l/2 ds= , E.,(v)
m=O

r(z)r(m + +1/2)
F(z+m+u+1/2)
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where the coefficients { E,, (u)} are defined implicitly by means of the auxiliary function

(5.18) h(v, t)= [ln2 (1- t)-2 In (1- t)] .-,/2

E Era(v) tin.
m=O

Rosser conjectured that the coefficients should satisfy

(5.19) Em(v) O({ln (m)}M("’) as m -+ oo,
m

where M(v) is some number independent of m. With a similar analysis as above it
can easily be shown that this is indeed the case. In fact the coefficients {E,(v)} have
asymptotic expansions of the form

(ln (m)) 2"-2 ek(v)
(5.20) E,,(v)’-"

rn ko(ln= (m)) k as m,

where the coefficients {ek(v)} can also be explicitly given. When v is half an odd
integer (5.17) reduces to an ordinary factorial series, but otherwise there do not exist
explicit means for computing the coefficients {E,,(v)}. A reason for this is that when
v is not half an odd integer the integral (5.16) does not possess an asymptotic expansion
involving only powers of 1/z.

6. Numerical calculations and conclusions. While the factorial series converge in
principle for Re (z)>0 and for all v=>0, in practice the error bounds ( 4) and the
behavior of the coefficients ( 5) indicate that the convergence becomes quite slow
when Re (z) is small, or when v is large with respect to Re (z). For small zl the
ascending power series converge well, and for moderate to large v the large-order
asymptotic expansions [5, pp. 377, 423-424] are particularly powerful since they are
doubly asymptotic: they are uniformly valid at both z 0 and at z .

Tables 1 (a) (v 0) and 2(a) (v 2) contain, for various values of n and real values
of z (denoted by x), the following partial factorial sums which appear in the representa-
tion for K(x):

[ 1 + d.,(v)m! ]x(x-(--i -’ (x + m)
(6.1)

m=O

The coefficients {d,,(u)} were calculated using the recurrence relations (2.20)-(2.22)
with replaced by -1, and all calculations were performed in double precision. (The
rows labeled "A & S" are values of (2x/r) 1/2 eXK(x) calculated from tables in
Abramowitz and Stegun 1, Chap. 9].) As a comparison, partial sums ofthe correspond-
ing ascending power series [1, p. 375] for (2x/’n’) 1/2 eXKo(x) are given in Table l(b).

Tables l(c) and 2(b) contain calculations for (2x/Tr) V2 e’K(x) using asymptotic
expansions for large argument, and Table 2(c) contains calculations for
(2x/r)/ eK2(x) using the uniform asymptotic expansion for large order; see [1,
p. 378, eqs. (9.7.2), (9.7.8)]). In these tables the values in parentheses are the number
of terms taken in the expansion to attain the indicated value.

For small Re (z) the convergence of the factorial series, while predictably slow,
appears to be numerically stable. For Re (z) large the factorial coefficients are not
significantly more difficult to calculate than the coefficients in the large argument
asymptotic expansions, and the two series have roughly comparable errors after a
moderate number of terms. If better accuracy than available from the asymptotic
expansions is required, the convergent factorial series are a reasonable alternative,
particularly when u is small.
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TABLE
(2X/7r)/2 eXKo(x) (a) factorial series; (b) ascending power series; (c) large argument asymptotic

expansion.

(a) x=l x=5 x=10 x=15

A & S 0.9131494218 0.9773566865 0.9881392704 0.9919594236

n 10 0.9125955022 0.9773565876 0.9881392700 0.9919594236
n 15 0.9128097381 0.9773566695 0.9881392704 0.9919594236
n 20 0.9129104141 0.9773566819 0.9881392704 0.9919594236
n 25 0.9129677449 0.9773566849 0.9881392704 0.9919594236
n 30 0.9130043138 0.9773566858 0.9881392704 0.9919594236
n 40 0.9130477052 0.97735 66863 0.9881392704 0.9919594236
n 50 0.9130722200 0.9773566865 0.9881392704 0.9919594236

(b) x x 5 x 10 x 15

n 10 0.9131494218 0.9772056352 -84972.53414 -8.3380 x 10
n 15 0.9131494218 0.9773566865 -2.889563970 -229477045.2
n 20 0.9131494218 0.9773566865 0.9881318057 -26195.53622
n 25 0.9131494218 0.9773566865 0.9881394196 0.7192550390
n 30 0.9131494218 0.9773566865 0.9881394196 0.9909960580
n 40 0.9131494218 0.9773566865 0.9881394196 0.9909960580

(c) x x 5 x 10 x 15

0.8750000000 0.9773478565 0.9881392701 0.9919594236
(1) (7) (15) (10)

TABLE 2

(2x/7r) 1/2 eK2(x): (a) factorial series; (b) large argument asymptotic expansion" (c) large
order asymptotic expansion.

(a) x=l x=5 x=lO x=15

A & S 3.524072633 1.405741914 1.195422969 1.128560359

n 10 3.488120013 1.405736283 1.195422946 1.128560358
n 15 3.500191625 1.405740864 1.195422968 1.128560359
n 20 3.506299317 1.405741615 1.195422969 1.128560359
n 25 3.509968194 1.405741804 1.195422969 1.128560359
n 30 3.512408185 1.405741866 1.195422969 1.128560359
n 40 3.515441113 1.405741901 1.195422969 1.128560359
n 50 3.517244998 1.405741909 1.195422969 1.128560359

(b) x x= 5 x= 10 x 15

3.387695313 1.405726905 1.195422969 1.128560359
(3) (7) (15) (9)

(c) x x= 5 x 10 x 15

3.523737330 1.405735521 1.195422969 1.128560359
(13) (6) (13) (7)
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In summary, factorial series expansions for Bessel functions are good for small
parameter values and moderate to large values of Re(z), 0<=u-<2 and Re(z)>= 10,
say. Special contiguous relations for Bessel functions have been successfully used for
their efficient numerical calculation; see 1, pp. 385-388]. Factorial series could possibly
be employed in conjunction with these other procedures. For example, as an alternative
means of providing starting values in forward recursion schemes or continued fraction
iterations [8, p. 153], particularly when the usual normalization procedure is not
numerically satisfactory (such as Neumann’s series for Ko(x) when x is large 1, p. 377,
eq. (9.6.53)]).
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n-1 (z-ei(+aj) i(o+aj)) for > 0 and 0 _> 0 withAbstract. Define p(z)- 1-Ij=o (z- e- o

r/2 (n 1)/2 <_ 0 <_ (n- 1)a/2. It is proved that if 0 < a < r/n, then the 2n + 1 coefficients
of p(z) are all positive. It is also proved that if for some point 0, all coefficients ofp(z) are nonnegative,
then each coefficient is an increasing function of 0 in a neighborhood of this point. A similar result
is conjectured for more general polynomials p(z).

Key words, orthogonal polynomials, q-ultraspherical polynomials, absolutely monotonic poly-
nomials
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1. Introduction. For

(1.1) a>0 and 0_>0,

consider the monic polynomial p(z) of degree 2n whose zeros consist of the n equally
spaced points

(1.2) exp(i(0 + aj)), 0 _< j _< n 1,

along with their n complex conjugates, i.e.,

(1.3)
n-1

p(z) H (z (z
j=O

We assume throughout that the variable 0 in (1.3) is restricted to the interval

(1.4) r/2- (n- 1)a/2 _< 0 <_ r- (n- 1)c/2.

Equivalently,

(1.5) :r/2 _< 0 + (n- 1)c/2 _< r,

so that the geometric mean of the n zeros in (1.2) lies in the second quadrant. Condi-
tion (1.5) automatically holds, for example, if each of the n zeros in (1.2) has Argument
E (0, ) and the coefficient of z in p(z) is positive; this is easily seen from (2.12) and
(2.17). When (1.5) holds, the geometric mean of the n zeros in (1.2) is closer to -1
than to +1, and it moves (together with at least half of the zeros of p(z)) towards -1
along the unit circle as increases.
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The coefficients of p(z) are not necessarily increasing functions of 0, even if each
of the n zeros in (1.2) has Argument E (0, r) (in which case each of the n quadratic
factors in (1.3) has increasing coefficients). For example, if n 3, a 5r/12, then
the coefficient of z3 in p(z) is negative and decreasing at r/8, while r/8 is in the
interval (1.4). However, the following theorem holds for all n. The proof, given in 3,
depends on properties of q-ultraspherical polynomials discussed in 2.

THEOREM 1. Iffor some nonnegative o in the interval (1.4), all coe[ficients
of p(z) are nonnegative, then they are each increasing functions of for o

_
0 <- (n- 1)a/2. Except for the coefficients 1 of the leading and constant terms, the

coejficients are in fact strictly increasing, unless a 2r/n.
For a- 2r/n, we have

p(z) Z2n 2 cos(On)zn + 1,

which has nonnegative coefficients for /(2n) <_ <_ r/n, but if n > 1, the coefficient
of z is zero, which is not strictly increasing. This formula for p(z) is proved in 3 (see

Consider for the moment the general polynomial

n--1

(1.6) P(z) H (Z ei(O+ad)) (Z e-i(O+ad))
j=0

where

(1.7) 0 >_ 0, 0- ao al an-1.

The polynomial P(z) reduces top(z) when aj ja, 0

_
j _< n-1. In view of

Theorem 1, we might ask if nonnegativity of the coefficients of P(z) for some 0 00
always implies that the coefficients are increasing for 0 >_ 00, when 0 is restricted to
the interval

(1.8) r/2 (al +... + an-) /n

_
0

_
(al +... + an-) In.

The answer is no. For example, if n 3, al /2, a2 7r/12, then the coefficients
of P(z) are all positive for /4 < < 23r/36, yet the coefficients of z2, z3, z4 are each
decreasing at 0- 2. However, we believe the following.

CONJECTURE. If the coefficients of P(z) are all nonnegative for some 0 Oo >_ O,
then they are each increasing functions of 0 on the interval Oo

_
0 < - an-1.

For convenient application of Theorem 1, we would like to have a simple necessary
condition for the nonnegativity of the coefficients of p(z). This is given in Theorem 2.

THEOREM 2. Suppose that

(1.9) 0 < a < /n.

Then each coefficient of p(z) is positive (and hence increasing in O, by Theorem 1).
This theorem was motivated by the fact that for sufficiently small a, all zeros of

p(z) are closer to -1 than to +1 (because of (1.5)), and so all coefficients of p(z) are
positive. The question is how small a must be.

For n > 1, the upper bound in (1.9) is best possible, i.e., if a > r/n, the coeffi-
cients of p(z) cannot all be positive on the interval (1.4). If a >_ 2r/n, there is no 0
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in the interval (1.4) for which all coefficients of p(z) are positive. If r/n <_ a < 2r/n,
the coefficients of p(z) are all positive only on a subinterval

(1.10) r, < 0 < 7r-(n- 1)a/2

of the interval (1.4). These remarks will be proved in 4. Also in 4 we prove Theorem
2 and the following related result.

THEOREM 3. Let 0 < < r/n. Then all coe]ficients of

(1.11) p(u,v) "=

(n--l)/2

II
j=(1-n)/2

(1 + ueiJ + ve-iJ

are positive, i.e.,

(1.12) p(u, v) E arsurvs’ ars > O.
O<_r,s<_n

(The variable j in (1.11) ranges over halves of odd integers if n is even.)
As an application of Theorem 2, we give in 5 a short proof of Theorem 4 below

in the special case

(1.13) f(z) (z’ 1)/(zk 1),

where m, k are positive integers.
THEOREM 4. Let f(z) denote a monic polynomial of degree N with nonnegative

coefficients and with zeros zl, z2,..., ZN. For fixed t >_ O, write

(1.14) ft(z) H (z- zj).

Then if f(z) ft(z), all coefficients of ft(z) are positive.
Theorem 4 had been open for several years until a proof was found recently by

Barnard et al. [2].
In the special cases f(z) zN + 1 or f(z) 1 + z +... + zN, we can say a bit

more about the polynomials ft(z) in (1.14), namely, the following theorem [4].
THEOREM 5. If f(z) zN -- 1 or f(z) 1 + z +... + zN, and if ft(z) f(z),

then ft(z) is a strictly unimodal polynomial. (In particular, all coefficients of ft(z)
are >_ 1.)

If f(z) is given by (1.13), it is not generally true that ft(z) is unimodal when
f (z) # f(z).

2. The coefficients of p(z) in terms of q-ultraspherical polynomials. We
will use the following additional notation throughout:

(2.1) q ei,

0 + (n 1)a/2 7r/2,
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and

(2.3) x sin.
Observe that (1.5) is equivalent to

(2.4) 0 </ < r/2,

which implies that

dx
(2.5) 0 < x < 1,

dO
> O.

In order to relate p(z) to q-ultraspherical polynomials (see (2.12)-(2.13)), we
begin by replacing j by j + (n- 1)/2 in (1.3) to obtain

(2.) (z)
(-1)/2

II
j=(1--n)/2

(z e(z+-+-/2)) (z

Since the range of values of j in (2.6) is symmetric about zero, we have

(n-)/2

j=(1--n)/2

(n--l)/2

j=(1--n)/2

(z 2zq co(Z + /) + q:)

(n--l)/2

II
j=(1--n)/2

(Z2 -f- 2zqJ sin + q2j).

Replace j by -j and multiply each factor by q2j to obtain

(2.s) p(z)
(n-)/2

j=(1--n)/2

(z2q2j + 2zxqJ + 1).

Note that the coefficients of p(z) are symmetric about the middle, as

(2.9) z2np(1/Z) p(z),

and the leading and constant coefficients of p(z) are 1 for all 0, a.
The generating function for the q-ultraspherical polynomials Ck(x; tlq is [1, eq. (3.4),. 179]

(2.10) Ck(x; tlq)wk H (1 2twxqk + t2w2q2k)

k=0 k=0
(1 2wxqk + w2q2k

0 < q < 1.
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In particular, with t- q-n,

(2.11) E Ck(x; q-nlq)wk H (1 2wxqk A- w2q2k).
k=0 k=-n

The polynomials Ck(x; q-nlq are well defined by (2.11) for q ei. Replace w by
-zq(n+l)/2 in (2.11) and use (2.8) to see that

2n

(2.12) p(z) Ek (x; q-nlq zk,
k=0

where

Ek :-- Ek(x)- Ek (x; q-nlq --(--1)kqk(n+l)/2Ck (X; q-nlq

The Ck(x; tlq satisfy the recurrence relation [1, eq. (1.1), p. 176]

(2.14) 2x(1--tqk)Ck(x;tlq)- (1--qk+l)Ck+l(x;tlq)+(1--t2qk-1)Ck_l(x;tlq)

for k > 1, with

(2.15) C0(x; tlq 1, C1 (x; tlq 2x(1 t)/(1 q).

In view of (2.1) and (2.13)-(2.15), the Ek satisfy the recurrence

(2.16)
Ek 2x

sin((n + 1 k)a/2)
Ek-1sin(ka/2)

+ sin((2n + 2 k)a/2)Ek-2
sin(kc/2)

(k > 2)

with

sin(ha/2)(2.17) Eo 1, E 2x sin(a]2)

3. Proof of Theorem 1. Theorem 1 is trivial for n 1, so let n > 1. For
brevity, write

sin ((n + 1 k)a/2) sin ((2n + 2- k)a/2)(3.1) Ak= Bk= k>_l,
sin(ka/2) sin(ka/2)

so by (2.16),

(3.2) Ek 2xAkEk_ + BkEk-2, k > 2.

By hypothesis, for some x0 with 0 < x0 < 1,

(3.3) Ek(xo)>O for0<k<2n.

By (2.9), it suffices to show that the polynomials Ek(x) are strictly increasing on

x0<x<lforl<k<n.
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Case 1. ( < 2r/n. In this case,

(3.4) Ak>O forl_<k_<n.

In particular, the leading coefficient of Ek(x) is positive for each k, 1 _< k < n.
Suppose there is an integer m with 2 _< m _< n such that

(3.5) Bm< O,

and choose the maximal such m. By (3.1),

(3.6) Bk<O for2_<k<m.

By (3.2) and Favard’s theorem [3, Thm. 4.4, p. 21], El, E2,... ,Em are orthogonal
polynomials with respect to a positive-definite operator. Thus we can apply the theo-
rem on separation of zeros [3, Thm. 5.3, p. 28] to conclude that the zeros of El,..., Em
are all real and simple, and that a zero of Ek-1 lies strictly between every two con-
secutive zeros of Ek, 2 <_ k < m.

We proceed to prove by induction on k that if 1 < k < m, then the largest zero
of Ek is _< x0. This holds for k 1 since E1 2Alx and 0 _< x0. Let k > 1. By
induction hypothesis, the largest zero of Ek-1 is <_ x0, so by separation of zeros, x0
exceeds the second largest zero of Ek. For x between the largest and second largest
zeros of E, E(x) is negative. Thus, by (3.3), the largest zero of Ek is < x0, and the
induction is complete.

It follows for 1 < k < m that

(a.7)
k

1-[
j--1

with Ck > 0 and cjk < x0 (1 < j < k). Thus Ek(x) is strictly increasing on x0 < x < 1
for 1 <k<m.

If there is no integer m with 2 < m _< n for which (3.5) holds, set m 1. It
remains to prove that Ek(x) is strictly increasing on x0 < x < 1 for n >_ k > m. This
follows from (3.2), since Ak > 0 and Bk > O.

Case 2. a 2r/n. In this case, by (2.16) and (2.17), El(x) E2(x)
En-l(X)- 0. Thus by (2.9) and (2.12),

p(z) z2n + Enz + 1.

It is easily seen from (1.3) that

(3.9) p(1) (ein 1)(e-in 1) 2 2 cos(On).

By (3.8) and (3.9), E, -2 cos(0n), so

(3.10) p(z) Z2n 2 Cos(On)zn -- 1.

For r/(2n) < 0 _< r/n, the coefficients of p(z) are nonnegative and they are increasing
functions of 0.
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Case 3. a > 2r/n. In this case, x0 > 0 by (2.2) and (2.3). Moreover, by (1.1)
and (1.5), we may suppose that

By (2.17) and (3.11),

(3.12) E1 (x0) 2x0 sin(na/2)/sin(a/2) < 0.

This contradicts (3.3), so Case 3 is vacuous.

4. Proofs of Theorems 2 and 3.

Proof of Theorem 2. Let 0 < a < r/n. By (2.9) and (2.12), it suffices to prove

(4.1) Ek > 0, 0 _< k _< n.

This follows for k 0, 1 by (2.17). For 2 <_ k _< n, all sines in (3.1) are positive, so

(4.2) Ak>0, Bk>0 for2<_k<_n.

Thus (4.1) follows by (3.2) and induction on k.
Proof of Theorem 3. Let 0 < a < r/n. The proof of (4.1) actually yields the

stronger result

M

(4.3) Ek E bikxi’ 0 <_ k <_ 2n,
i--0

with

bik > O, ifik(mod2),
(4.4)

bik 0, otherwise,

where

(4.5) M min(k, 2n- k).

Thus, by (2.8) and (2.12),

(n--l)/2 2n M

(4.6) p(z) H (z2qy + 2zx + q-Y) EE bikxizk"
j--(1--n)/2 k--0 i----0

Replace x by x/(2z) to get

2n M (n-l)/2

(4.7) EE bik2-ixizk-i H (z2qj + X + q-Y).
k--0 i----0 j--(1-n)/2

Replace z2 by z, then x by x-1, and multiply by xn to get

2n M (n-l)/2

(4.8) II
k--0 i--0 j--(1-n)/2

zxqY + 1 + xq-Y
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Replace z by z/x to get

2n M (n-l)/2

(4.9) EE b’a2-’x-(’+k)/2z(k-’)/2 H (zqi + 1 + xq-i).
=0 =0 =(-)/2

Now (1.12) follows easily from (a.9), completing the proof of Theorem 3.
We close this section by proving the remarks made in 1 between the statements

of Theorems 2 and 3.
Let n > 1. Then the upper bound 7/n in (1.9) is best possible. For, if a is

slightly larger than 7/n, then E2 < 0 for sufficiently small x, since

sin(nc/2) sin((n(4.10) E2 4x2
sin((/2) sin(c)

sin(nc)
sin(a)

If ( _> 2r/n, there is no 0 in the interval (1.4) for which all coefficients of p(z) are
positive, by (3.11) and (3.12). Finally, suppose that

(4.11) 0 < c < 2/n.

Then all coefficients of p(z) are positive on a small interval (1.10), i.e., for x sufficiently
close to 1. To see this, it suffices to show that when x 1 (and (4.11) holds), all
coefficients of p(z) are positive.

By (2.8), when x 1,

(n-1)/2

(4.12) p(z)- I-I (qYz + 1) 2,
j--(1--n)/2

SO

(4.13)
p----0

where the C(n, ) are central Gaussian coefficients (see [5, p. 449]). By (4.11) and
Theorem 3 of [5, p. 449], all of the C(n, ,) are positive. Thus, by (4.13), all coefficients
of p(z) are positive when x 1, 0 < ( < 2w/n.

5. Application to Theorem 4. Let f(z), ft(z) be given by (1.13) and (1.14),
and suppose that f(z) = ft(z). We will use Theorem 2 to show that all coefficients of
ft(z) are positive.

Case 1. t < 2w/k. We have

(5.1) f(z) g(z)/h(z),

where

zmk 1 1 Zk
h(z)

1 z

so

(5.3) ft(z) gt(z)/ht(z).
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However, in Case 1, ht(z) h(z), so by (5.3),

(5.4) ft(z) gt(z)/h(z) (gt(z)(1 z))(1 + zk + z2k +...).

Let

(5.5) d degree (gt(z)).

By Theorem 5 with N mk, gt(z) is strictly unimodal, so all terms of gt(z)(1-z)
of degree _< d/2 have positive coefficients. Therefore, by (5.4), all terms of ft(z) of
degree _< d/2 have positive coefficients. However, ft(z) has degree d- (k- 1) _< d by
(5.4), so since the coefficients of ft(z) are symmetric about the middle one, they are
all positive.

Case 2. t >_ 2r/k. If m is even, say rn 2M, then

ZMk 1
(zMk + 1).(5.6) f(z)

zk 1

Applying Theorem 5, we could then deduce the result by induction on m. Thus assume
that m is odd, so -1 is not a zero of f(z). We have

m--1

(5.7) f(z) l-I A(r) (z),

where

(5.8) A()(z) H
O<u<mk/2
v=r(mod m)

Thus,

m--1

(5.9) ft(z) II A) (z),
r=l

with

(5.10) A)(z) H (z-e2i/’k) (z--e-2i/mk)
mkt/2r < <mk/2

v--r(mod m)

For any fixed r, the zeros of A) (z) on the upper half of the unit circle can be written
in the form

(5.11) exp(i(O,. + aj)), 0 _< j <_ n,. 1,

where

(5.12) 0. > t >_ 2r/k- a

and

(5.13) 0,. + a(n. 1) < < 0,. + an..
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Therefore Ar) (z) has the same form as p(z) in (1.3), and furthermore,

(5.14) zr/2 < Or + (nr- 1)a/2 < r

as in (1.5). Since, moreover, 0 < a < r/nr, Theorem 2 implies that all coefficients of

Ar) (z) are positive. Thus all coefficients of ft(z) are positive by (5.9).
Acknowledgment. The authors are very grateful to Richard Askey for helpful
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CONVEXITY PRESERVING APPROXIMATION
BY FREE KNOT SPLINES*
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Abstract. In this paper the order of shape-preserving approximation of functions f in Sobolev
space by free knot splines is studied. The main result is that the k-convexity of f for general k can
be preserved, and the optimal order of approximation n can be retained at the same time.
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1. Introduction. In many applications, it is desired that the mathematical
model preserve certain geometric properties of the data, such as monotonicity and
convexity. We shall give some results which show it is possible to preserve these prop-
erties without deteriorating the order of approximation by free knot splines. More
precisely, we shall prove a theorem about the approximation order of k-convex func-
tions in the Sobolev space W[0, 1] by k-convex spline functions with n free knots
of order r. We say a function f E C[0, 1] is k-convex if its k-th forward differences

A(f, x) are nonnegative for all choices of x and h > 0 such that 0 <_ x < x / kh <_ 1.
If f has k continuous derivatives, then f is k-convex if and only if f(k) >_ O. It is clear
that k-convexity means f is nonnegative if k 0, nondecreasing if k 1, and convex
if k 2. We will develop our results for the interval [0, 1], but they hold also for any
finite interval Is, b] by a linear change of variable.

Let En be the space of all splines of order r on [0, 1] with n knots:

:= .= S (T, [0,
with the union taken over all knot sequences T on [0, 1] of length n. For any f E
C[0, 1] which is k-convex for some 0 _< k < r, let

(1.2) a*n,k(f) := inf{[[f s[[o s n, s() > 0}.
We now state the main theorem of this paper, whose proof will be given in 3. In this
theorem and throughout the paper, M will denote [[f(r)[[[0, 1] exclusively.

THEOREM 1.1. If f is in the Sobolev space W[[0, 1], and if f(k) >_ 0 for some

0 <_ k < r, then there exists an so Cr-2 N En such that S(ok) >_ 0 and

Ill < c M

with C depending only on r, i.e.,

Theorem 1.1 says that there is a free knot approximation to f which preserves
k-convexity of f, has the highest smoothness of all splines of order r which are not
polynomials, and retains the optimal order of approximation r-r at the same time. We

*Received by the editors November 20, 1989; acepted for publication August 20, 1990.
CDepartment of Mathematics and Computer Science, Georgia Southern University, Statesboro,

Georgia 30460-8093.
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should point out that for nonconstrained free knot approximation the optimal order is
achievable for a wider class of functions than W[. It would be nice if we could prove
our theorem for the same class of functions, but W is the largest function space
contained in that class whose seminorm is suitable for our constructive proof.

There are many similar results in the literature for the case of fixed knot spline
approximation. DeVore [6] proved that the optimal order is achievable by monotone
spline approximation with equally spaced knots in L. He also proved in [7] a simi-
lar result about monotone approximation by polynomials. Several years later, Chui,
Smith, and Ward [5] gave a simpler proof of DeVore’s result in [6] and also proved the
corresponding result in Lp, 1 _< p < . More recently, Beatson gave corresponding
results on k-convex approximation for k 0 and 1 with arbitrary fixed knots ([2],
[3]), and k 2 with equally spaced knots [1]. But [3] has never been published since
he found an elegant short proof to treat the cases k 1 and 2 (for an arbitrary fixed
knot sequence) simultaneously [4]. We emphasize again that the distinction with these
results and our Theorem 1.1 is that Theorem 1.1 is for free knot spline approxima-
tion for which the same order of approximation n-a is achievable for a wider class
of functions. The simplest example of this is Kahane’s theorem which says that a
continuous function f can be approximated by free knot piecewise constants with the
optimal order n-1 if and only if f E BV, while in the case of equally spaced knots
the condition becomes f E Lip1, which is obviously smaller than BV [10].

Theorem 1.1 deals with convexity of a general order k. The proof consists of
three steps. In Step 1, we construct an approximating spline g >_ 0 of order r0 :-
r- k to f(k) with 0 <_ f(k) _g O(n-r0). This step is long and the notation is a
little cumbersome but the idea is simple. We cut the interval in an appropriate way,
construct some overlapping approximating polynomials on the subintervals obtained,
then use a "blending lemma" (Lemma 2.5) to put them together and obtain the spline
g. The k-fold integral of g is a k-convex approximation to f, but its approximation
order is only n-to. In Step 2 we first modify g, then integrate it k times on [0, 1].
The key step in the proof is modifying g so as to prevent the error from building up
when integrating back. In Step 3 we estimate the error. In the proof we need some
preparatory theorems and lemmas which we discuss in the section that follows.

2. Preliminary results. We begin with the following result on approximation
by splines with free knots.

THEOREM 2.1. If f W[0, 1], then for any n >_ 1, there exists a partition T"
0 to < t < < tn 1, and a piecewise polynomial s of order <_ r on T, such that

1 M
(2.1) Ill- sll <- (r- 1)! n-"

Theorem 2.1 is well known, save for the value of the constant on the right-hand
side of (2.1), [9, Thin. 7.2]. Our new proof is based on the following two lemmas
which show that a good partition can be obtained by balancing the values of a certain
"interval function." This idea will also be important in the proof of Theorem 1.1 in
3.

Let T "= {ti} be a partition of [0, 1], and k a nonnegative integer. Let Ii "=

[t_l, t] and

C(T) :=
i--1
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We define the interval function

and the ratio of its largest and smallest values

(2.2) R(T) .=
max F
mini

This R is considered 1 whenever all Fi are equal, even if they are all equal to zero.
LEMMA 2.2. For any partition T of [0, 1], we have

1
(2.3) C(T) _<

nk+l
and

M
(2.4) Fi <_ R(T)C(T)M <_ R(T)nk+

Proof. We can assume k >_ 1 and mini Fi > 0, for the cases k 0 or mini Fi 0
are trivial. We make use of the following inequality, which is a special case of (2.9.1)
in [8]"

(.) aia

_
ai

1
ai

n
i1 i1 "

which holds whenever < 0 < , ai > 0, 1,... ,n. In (2.5) we set -k,
ai I/1, 1, and obtain

or

1 1
n n

1 1 1

This gives (2.3). For (2.4), we simply note

(2.6) M IIS()ll(Z)=
F, mini-> C(T)

Thus

1 < C(T)M
mini Fi

max/Fi
Fi < max Fi < C(T)M R(T)C(T)M.

mini Fi

and

Remark. With k r- 1, the above lemma and Taylor’s theorem give

R(T) M
(2.7) IIS- lloo < (r- )!
for some piecewise polynomial s on T. Therefore the ratio R(T) (with k r- 1)
measures the quality of a partition T with respect to this error bound.
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LEMMA 2.3.
R(T*)- 1, and

There exists a partition T*" 0 t < t < < t 1, such that

(2.8) Fi C(T*)M, 1,..., n.

If M > 0 and k >_ 1, the partition is unique.
Proof. The cases M 0 or k 0 are trivial. So we suppose M > 0 and k >_ 1. We

observe that for any ti-1 and ti, F(ti-1, ti) continuously increases when ti_l decreases
and/or ti increases. If F(ti_, ti) > 0, it increases strictly.

Now we consider the continuous function g(t,... ,tn-1) "= maxi Fi- mini Fi
defined on the compact subset D :- {(tl,..., tn-) 0

_
t

_ _
tn-

_
1}

of Rn-, and suppose g assumes its minimum at (t,... ,t_l). We also suppose,
towards a contradiction, that this minimum is not zero. Let A maxi F(t_, t) > 0
andA’= {j" Fj A}. There must be an indexj such that j E A but one of its
neighbors, say j- 1, is not. That is, Fj_ < F A. We slightly increase the point
t_ so that Fj_ <_ Fj < A. This makes #A smaller by one. We keep doing this
until A is empty, and end up with a new point in D which gives a smaller value for
g than that at (t,... ,t_l), i.e., than the minimum of g. This contradiction shows
that minD g 0, or R(T*) 1. It is obvious from the definition that all Fi > 0 for
such T*, thus all t must be distinct. For W*, we have Ililkllf(r)ll(I Fi Co
with Co a constant. Therefore by (2.6) M Co , IIil- CoC(T*)- which is (2.8).
The uniqueness is due to the (strict) monotonicity of Fi. [3

Theorem 2.1 follows from the lemma and (2.7).
In Step 1 of the proof of our main theorem, after finding a partition by balanc-

ing subintervals, we shall construct some nonnegative overlapping polynomials which
approximate f(k) from below, then construct the spline g by putting these local ap-
proximants together. The following lemma from Beatson [2] will be used to guarantee
the existence of the local polynomials with the required properties.

LEMMA 2.4 (Beatson, [2, aemma 2.1]). Let g Chic, b] be nonnegative. Let p*
be a best restricted uniform approximation to g from W {p e Pn[a, b] 0

_
p(x) <_

g(x), x e [a, b]}, and let r :- g- p*. Then

(2.9) IIr( )ll g (b a)n-iw(g(n), [a, b], b a), 0,... ,n.

Lemma 2.5 below enables us to put the local polynomials together to get the
smooth spline g, which, roughly speaking, approximates the function no worse than
those polynomials. The first version of the lemma was established by Beatson in the
special case of g 0, and equally spaced knots. DeVore then gave a simpler proof of
the special case. The proof of Beatson in [2] is a modification of this one.

LEMMA 2.5 (Beatson, [2, Lemma 3.2]). Let r >_ 2 be an integer and d 2(r- 1) 2.
Let T {ti}=_ be a strictly increasing knot sequence with to a and td b. Let
gl, g2 be two polynomials of degree < r. Then there exists a spline g St(T) such
that

(1) g(x) is a number between g(x) and g2(x) for each x e [a, b],
(2) g g on (-x, a] and g g2 on [b, oc).
In Step 2 of the proof of Theorem 1.1, we shall modify the spline g, without

destroying its positivity, of course, before integration to prevent the error from building
up. This will lead to a system of linear equations with some undetermined coefficients.
The undetermined coefficients should be chosen so that the system has a nonnegative
solution, but it is not trivial to do so directly. We shall make use of the following
Banach perturbation lemma (Theorem 2.6) to change the system into a limiting form
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which is relatively easier to solve. The final stage of the proof was greatly helped
by DeVore, who pointed out that this is a moment problem and so made it possible
for the author to solve it beyond the case of k <_ 3. The author then studied the
moment theory and related areas, which resulted in the final elegant proof for the case
of general k, based on the well-known Gauss-Jacobi quadrature (Theorem 2.7.)

THEOREM 2.6 [11, Thm. 4.3.6]. Let [[. be a matrix norm such that IIXYil <
IIXl[. [[Y[[ for any n n matrices X and Y, and [I/ll 1, where I is the identity
matrix. Let A and E be two n n matrices with A invertible. If [[A-iE[[ < 1 then
A + E is also invertible and

[[A
[[A-l[I 1 -[[d-lZ[["

THOPM 2.7 [12, Thins. ..1, .4.1, .4.2 ]. Ifyl,y,... ,yn denote he zeros

of the nth orthogonal polynomial Pn with respect to the positive distribution da on
In, b], then

(1) They are all real, distinct, and located in (a, b);
(2) There exist positive numbers Christoffel numbers) A1, A2,..., An such that

j-’l

for all polynomials p of degree <_ 2n- 1. The distribution da and the integer n uniquely
determine these numbers

3. Proof of the main theorem. We begin with some comments which will
simplify our analysis. We shall define below an integer l, depending only on r and
k and bounded by a function of r, and prove that if n ml, m 1,2,..., then
O’*n,k(f) <-- CMm-r" The theorem then holds for general n, because if n < l, we can
enlarge the constant C; if Im <_ n < (m + 1) for some m >_ 1, then

M[l (m + 1)] -r
m

< [C(21)r]Mn-r =: C’Mn-r.

We can also assume that M > 0. Otherwise f E Pr-l[0, 1] and we simply set so f.
As mentioned before, we prove the theorem in three steps. We shall use our previous
notation r0 r k for the order of the spline function g below.

Step 1. We shall construct a nonnegative spline g of order r0 which approximates
f(k) from below and whose k-fold definite integral has an approximation order n-to.
Later, in Step 2, we shall make corrections to this g and integrate the resulting spline
to obtain the desired approximant to f. The reason we approximate f(k) from below

is that the corrections will be in the positive direction and the positivity of g will then
be automatically preserved.

Case 1. ro 1 (i.e., k r- 1). This is a trivial case in which g is a nonnegative
piecewise constant approximant to f(r-1). Let k(ro + 1) + 1 2r- 1. By Lemmas
2.2 and 2.3, there exists a partition X: 0 x0 < xl < < Xm 1 such that

:= C(X)M <
where Ji := [xi-1, xi], 1 _< _< m. This estimate, and (3.1) in Case 2, will control the
local errors of the final approximant so to f. We apply Lemma 2.4 to f() on each Ji.
Then there is a constant as >_ 0 such that on Ji

0 <_ f(:) -ai <_ w(f(), Ji, IJil) _< IIf(r)lli(gi) F(r-i)(xi-i,xi).
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Define g(x) := ai, for x e (xi-1, xi), we obtain the desired approximant to f(k).
Case 2. ro_>2. Letl=2[2(r0-1)2+l+k(ro+l)]+l_<6r2+2r+3. Then,

as in Case 1, there is a partition (which we index by even integers)" 0 x0 < x2 <
< X2m 1 such that

(3.1) F(-X)(x2_2,x2) := IJ2l-xllf()llx(J2 Mm-r,
where Ji [xi-2, xi]. Since M > 0, we have F(r-1)(x2i-2,x2i) > 0 (see the proof
of Lemma 2.3). We choose the points Xl,X3,’’’,X2m--1 in the following way. We
choose Xl as the midpoint of [xo, x2]. We then find x3 such that F(r-)(Xl,X3)
F(r-1)(xo, x2). Since r ro+k _> 2, we have r-1 >_ 1 and therefore the Fi are
strictly increasing as the first variable decreases and/or the second increases (see the
proof of Lemma 2.3 again). We have x2 < x3 < x4. We continue in this way to find
Xh,XT,... ,X2m-1, and end up with a partition X: 0 xo < xl < x2 < < X2m 1
such that F(r-1)(xi_2, xi) are all equal for 2 <_ _< 2m.

If we apply Lemma 2.4 to f(k) on each J "= [x-2, xi], 2 < < 2m, we know
there is a polynomial pi >_ 0 of degree < r0 such that

0

_
f(k)_ Pi

_
IJl-xo(f(-x), J,

We then blend these overlapping polynomials as follows" We insert 2(ro- 1) 2 + 1
simple knots in each I := (x_l, x) for 1 <_ _< 2m in an arbitrary way, and then
apply Lemma 2.5 to each pair pi, pi+, 2 _< <_ 2m- 1, to obtain a spline g of order
ro satisfying the conditions (1) and (2) in the lemma. Define g by setting g :- g on
Ii, 2 <_ <_ 2m- 1, g := g2 p2 on I, and g := g2m-1 P2m on I2m. Then g is a
spline on the knot sequence consisting of the knots inserted above as well as those in
X.

From the construction of g, Lemmas 2.4 and 2.5 show that g >_ 0 and on Ii
max F(r-l)(xj-2, xj), 2 < < 2m- 1

je{,+}

(3.2) 0 <_ f(k) _g <_ F(ro_)(xo, x2), i= 1,

F(ro-1)(X2m_2,X2m), 2m.

Step 2 (error correction). Having constructed g, a natural candidate for our so is
the solution .0 of the following initial value problem:

.J)(0) f(J)(O), j 0,...

First we take a look at what kind of errors this choice would give. Denote the error
function by r(x)"= f(x)-o(x), then r(k)(x) f(k)(x)--g(x). The first k derivatives
of r(x) at Xl, for example, will be

(3.3)

r(-)(x) f
r(-)(x)

r(k)(t) dt =:e0,

(x t) r(k) (t) dt =" e,

(xl t)k- r()(t) dt ="
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Here we have used the Taylor’s expansions at x0. In the trivial case that r(k) is
identically zero on Ix0, Xl] no correction is necessary. Hence, attention can now be
restricted to the case where fxx r(k)(t)dt > 0. In this case we have to control all of
them or they would build up and end up with, roughly speaking, order rt-r0 rtk-r.

To correct these errors, we will add some spline ml(x) ’=1 jMj(x) to g,
where Aj >_ 0, Mj are the B-splines of order r0 on some knots which will be inserted
into 11 later, with f Mj(t)dt 1, such that

(3.4) (xl t)iml (t) dt ei, 0,..., k 1,

i.e., we will add a nonnegative spline supported on I1 to g which will eliminate all the
errors in the first k derivatives at x l. We need to show that there exist coefficients Aj
and knots for the B-splines Mj which satisfy (3.4). For this we use the mean value
theorem to rewrite (3.4) as

k xl k

(3.5) e EJ f (xl t)Mj(t) dt E j(Xl i,j)

or

(3.6) AA =e,

where := (1 ,k)T e (co,... ,ek_l)T, and . is the k k matrix
((Xl- i,j)i)i,, with i,j lying in Supp(Mj). We shall choose in I1 the supporting
knots for Mj such that (3.6) has a nonnegative solution . This is difficult to solve
directly, so we first consider an ideal problem in which the knots of Mj are allowed to
coalesce. That is, suppose Mj 5vj are the Dirac functions with a unit mass at some

yj E I, then , yj will depend only on j. In this case it is easy to see that we can
choose the points yy so that (3.5) has a solution A "= (A1,"", Ak)T with Aj > 0:

(3.7) A e, where A ((x- yj)),.
Namely, we apply the Gauss-Jacobi quadrature (Theorem 2.7) to the integrals in (3.3)
with n := k, and da(t) "= r(k)(t)dt >_ O, and find

xl k

/ (xl t)ir(k)(t)dt EAJ(xl yj)i, O,...,k- 1,
j=l

for some y E I and Aj > 0. Since all the y’s are distinct, A is a Vandermonde matrix,
thus invertible. We can write the solution as A A-le.

We can now solve the original system (3.6) as a perturbation of this ideal problem.
By Theorem 2.6, if we insert into I for each Mj r0 + 1 simple knots which are
sufficiently close to yj, then A will be so close to A (in the a-norm) that it will also
be invertible, and the solution A A-e of (3.6) will be so close to ) that it will be
nonnegative. This proves the existence of

We call ml a correcting function on I1 since it completely corrects all the errors
in the first k derivatives of g accumulated on I1. We are now ready to construct the
final approximant so to f: we find a correcting function mi(x) for each Ii, and let
(x) g(x) + -i m(x) >_ O. Since Supp(m) c I, we have

(3.8) (x) g(x) + m(x) for x
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Let so(x) be the solution of the initial value problem

S(oy) (0) =/(Y)(0), 0 _< j < k.

Then so is a k-convex Cr-2 spline function of order r on the knot sequence consisting
of all the knots we inserted: x’s (called the test points), those inserted in the blending,
and those for My’s. The only thing that remains to show is the approximation order
of so, which we will establish in Step 3 below.

Step 3 (error estimate). It is easy to see from our construction that so interpolates
f k times at each test point x, that is to say, the situation at each x is exactly the same
as that at x0 0. Therefore the errors on different subintervals I are independent of
each other, and can be estimated locally. We shall do this on I1 for the case r0 >_ 2
only. Estimates for other I and the case r0 1 are similar.

Since r(k)(x)

_
O, we have

0 <_ ek- := (x --t)k-r(k)(t)dt <_ IIl k-1 (f(k)_ g)(t)dt

<_ IIlk- IIlF(ro-)(xo, x2)

_
IJ21r-llf(r)ll(J2 <_ Mm-r.

Here (3.2) and (3.1) have been used. Therefore, using the Taylor expansion at xo,
(3.9), and (3.8), we have, for any x [xo, xl],

If(x) so(x) Co (x t)k-(f(k) S(ok))(t) dt

Co (x t)-(f( m)(t)dt

<_ Co (x t)k-r(k)(t) dt + Co (x t)k-m(t) dt

where Co :- 1/(k- 1)!. The last two integrals are both equal to ek- by (3.3) and
(3.4), therefore

2 M
If(x)- so(x)l <_ 2C0 ek- <_

(k- 1)! mr.

This finishes our proof.
Acknowledgments. I would like to thank Professor Ronald A. DeVore for inter-

esting me in this problem, and for his patient guidance and valuable ideas, especially
those for the case of general k.
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THE LARGE DEFORMATION OF NONLINEARLY
ELASTIC TUBES IN TWO-DIMENSIONAL FLOWS*

MASSIMO LANZA DE CRISTOFORIS? AND STUART S. ANTMAN:

Abstract. This paper treats the large deformation of closed nonlinearly elastic cylindrical tubes
(rings) under an external pressure field generated by the steady, irrotational, two-dimensional flow of
an incompressible, inviscid fluid. The flow is assumed to have a prescribed velocity U and pressure
P at infinity. The deformation of the tubes is described by a geometrically exact theory of rods.
The parameters U and P and the deformed shape of the ring uniquely determine the velocity field
of the steady flow exterior to the tube. It is shown that velocity of the flow on the tube depends
continuously and compactly on the function describing the shape. The pressure field on the ring,
depending on U, P, and the velocity field on the tube, is substituted into the equilibrium equations
for the tube, yielding a system of ordinary functional-differential equations. These are converted into
a fixed-point form, which is analyzed by a global implicit function theorem. Refined results from
conformal mapping theory are used to handle serious technical difficulties with regularity, which
apparently do not arise in the study of flows past rigid obstacles.

Key words, fluid-solid interactions, two-dimensional perfect flows, nonlinearly elastic tubes,
global continuation theory, boundary behavior of conformal mappings
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1. Introduction. In this paper we study the large deformation of closed nonlin-
early elastic cylindrical shells (tubes) produced by the action of an external pressure
field generated by the steady, irrotational, two-dimensional flow of an incompressible,
inviscid fluid. The flow is assumed to have a prescribed velocity U and pressure P
at infinity. The two-dimensionality of our problem means that the generators of the
cylindrical shell in any deformed configuration remain perpendicular to the flow so
that every section of the shell perpendicular to the generators suffers the same defor-
mation. The equations for the deformation of a typical section are those for the planar
deformation of a ring. We accordingly refer to such a section as a ring. We describe
the deformation of these rings with a geometrically exact theory of rods (cf. Antman
and Rosenfeld (1978)) that accounts for flexure, compression, and shear. We allow
the material properties of the ring to be described by a very general class of nonlinear
constitutive relations. We limit our attention to problems having a line of symmetry.

We begin our analysis by observing that U, P, and the deformed shape of the ring
uniquely determine the velocity field of the steady flow exterior to the ring. Then we
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show that the velocity of the flow on the ring depends continuously and compactly on
the function describing the shape. We use Bernoulli’s theorem to express the pressure
field on the ring in terms of U, P, and the velocity field on the ring. We substitute
this pressure into the equilibrium equations for the elastic ring. We transform these
equations into a fixed-point equation for the shape, involving a compact operator and
depending parametrically upon U and P. We apply a generalization of the Global Im-
plicit Function Theorem of Alexander and Yorke (1976) to these equations to deduce
the existence of connected families of solutions. In this program we encounter serious
technical difficulties in showing that the pressure on the rod depends continuously
and compactly on an appropriate function describing the shape and in constructing a
suitable fixed point equation. To handle these difficulties we determine detailed reg-
ularity properties of the operator describing the dependence of the boundary values
of the pressure field on the shape of the rod. (These properties can be and, to the
best of our knowledge, have been ignored in the study of flows past rigid obstacles.
Consequently, the presence of a deformable obstacle raises the fluid mechanical part
of our problem to a level of difficulty higher than that for rigid obstacles.) To,obtain

the requisite properties of the pressure field we exploit refined results from confor-
mal mapping theory. For clarity of exposition we relegate this technical analysis of
compactness to 6.)

Thus we replace the coupled problem for the deformation of the ring and the
external flow of the fluid with a single problem for the deformation of the ring in
which the pressure field on it depends nonlocally on its shape. In this process it is
necessary to marry the material (Lagrangian) description, which is natural for the
ring, with the spatial (Eulerian) description, which is natural for the fluid. This fact
contributes to the complexity of the formulation.

Two of the goals of this paper are to treat the nonlinear deformation of a solid
under the pressure field arising from a correctly posed theory of fluid mechanics (rather
than by some ad hoc approximation of the pressure) and to develop effective methods
for treating well set nonlinear problems from mechanics with nonlocal terms. (Similar
problems arise in electromagnetism.) Finnila and Sloss (1966) discussed a problem
related to ours for a solid linearly elastic cylinder by reducing it to an integral equation.

Let us define a solution-parameter pair to consist of the parameters (U, P) and a
set of functions that determine a configuration of the ring. (Each solution-parameter
pair determines the flow.) Our fundamental result is Theorem 5.38. Informally it says
that there is a connected two-dimensional family of classical solution-parameter pairs
of our problem that has some very nice topological properties.

Notation. Partial derivatives are denoted by subscripts and ordinary derivatives
by primes. If f and g are functions of u and v, then O(f, g)/O(u, v) denotes the matrix
of partial derivatives of f and g with respect to u and v. We denote the closure of a
set t by cl $ and the set of elements belonging to set A and not belonging to set B by

The space of m-times continuously differentiable functions on a compact set (usu-
ally the interval [-L,L]) with the usual norm II" llm is denoted Cm. The domain of
the functions under consideration will be evident from the context. The subspace of
Cm whose functions have ruth derivatives that are HSlder continuous with exponent

are denoted Cm,a; If u is in C0,a on a region , then its c-HSlder quotient is

.u, =_ sup I ’U(X) u(Y)’ }]x-y]a
x, ye, xCy
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The space Cm, on an interval of R or on a region of C is equipped with the usual
norm "l[U[Im,a =_ [[Ul[m + [u(m)[a where u(m) is the mth derivative of u.

To conduct the analysis effectively, especially in 6, it is necessary to employ a
very precise notation. For example, the pressure at a material point s on the ring
depends on the whole shape of the ring, defined by , and on U and P. We denote
it by p[, U, P](s). We need such a notation in 6, where we must carry out limit
processes simultaneously in the variables and s.

2. Equilibrium equations for nonlinearly elastic rings. Since the problems
we treat are two-dimensional, we express all vectorial quantities in complex notation.
We describe the deformation of the ring by the planar equations for a rod that can
suffer flexure, extension, and shear (cf. Antman and Rosenfeld (1978)). The configu-
ration of such a (Cosserat) rod is a plane curve every point of which is equipped with
a coplanar unit vector. The theory is geometrically exact in that no variable charac-
terizing such a configuration (such as the sine of an angle) is ever approximated (by
the angle itself or any finite Taylor sum for the sine). The plane curve characterizes
the gross behavior of a slender body and can be identified with the deformed shape of
some material base curve. The unit vector characterizes the deformed configuration of
a material cross-section. Such a body can sustain forces and torques. Indeed, the the-
ory we employ is the most general for which equilibrium can be completely described
by equations involving no stress resultants other than the classical contact force and
contact couple. (Moreover, it is more than adequate for many practical purposes.)

Formally, a configuration of a ring is specified by the pair of continuously differ-
entiable functions

(2.1a) [-L,L] s H ((s), O(s)) e C x R

with _-- x(s) + iy(s) a simple closed curve having positive (counterclockwise) orien-
tation so that

(2.1b,c,d) (-n) (n), ’(-L) (’(n), o(n) o(-n) + 2r.

Such a configuration is an intrinsically one-dimensional concept. Solely for the
sake of interpretation, we can regard (,0) as defining a deformation of the two-
dimensional body

(2.2) B--{Z(s)+ei(s) e C -L <_ s <_ L, O <_ <_ h(s)}
where s H (Z(s), 9(s)) C x R is a prescribed continuously differentiable function
satisfying (2.1b,c,d) and

(2.3) Z’ -iee

and h is a prescribed positive-valued continuous function representing the thickness
of the ring. (Equation (2.2) defines the reference (undeformed) configuration of the
body.) h must satisfy the relation h(-L) h(L). (See Fig. 2.4.) A point in B is
called a material point. Equation (2.3) requires that Z’(s) be a unit vector normal to
eie(8). This condition is not critical; it can be relaxed at the cost of complicating a few
formulas. The requirement that there be a locally one-to-one orientation-preserving
correspondence between the material points of B and pairs (s, ) of curvilinear coor-
dinates in {(s,)"-n < s < L, 0 _< _< h(s)} is ensured by

(2.5) h(s)tg’(s) < 1.
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Z(s),h(s)ei(R)

Z(s)

FIG. 2.4. Reference configuration of the ring regarded as a two-dimensional body.

This condition implies that the curvature vectors from nearby points of Z do not
intersect inside B. One could formulate mild additional geometric restrictions on B to
ensure that the correspondence be global. We assume that this is so.

s may be interpreted as the scaled arc length parameter of the bounding curve Z
of the ring B in its undeformed reference configuration. Thus s identifies a material
section Z(s)+ei(8) of the ring. The configuration (, ) may then be interpreted
as defining the deformation

(2.6)

Thus (s) may be interpreted as the deformed position of the material point Z(s)
originally on the bounding curve Z of the ring in its reference configuration/3, and
0 may be interpreted as characterizing the orientation of the deformed configuration
of the section s with respect to the positive real axis. O(s) is the given value of O(s)
in the reference configuration. (It is more common to interpret Z not as a bounding
curve of/3, but rather as its curve of centroids. Since the material points of Z are
those in contact with the fluid, our choice of interpretation proves to be more natural
for the problems we study.)

We can regard (2.6) as constraining the deformations of/3 to be those for which
plane sections remain plane and do not change their length. Since we are not confined
to representations of the form (2.6), we can assign more general interpretations to
(, 0). A virtue of the abstract definition (2.1a) is that it admits any one of a multitude
of such interpretations and is not tied to (2.6).

We denote differentiation with respect to s by a prime. We decompose the vector
’(s) tangent to the curve at (s) by

’(s) =_ -i(u + in)ei

where u and y are real-valued. The function u can be thought of as measuring elon-
gation. (It actually contributes to the volume change; see (2.10).) The function y
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measures shear. We set

(2.8a,b) _= 6 O, # ’(s).

# measures the amount of bending. Then

(2.9) q (v, 7, #)
is the set of strains for our rings.

If we adopt the two-dimensional interpretation (2.6) of (,) given above, then
the requirement that the local ratio of deformed-to-reference volume be positive leads
to the inequality

(2.10) (s)- O’(s) > 0 V e [0, h(s)],
which is equivalent to

(2.11) (s) > max{0, h(s)[lz(s) + e’(s)]} t(#(s), s).
a(., s) is convex. This is the essential property of a that we require in our analysis.
(This convexity arises no matter what reasonable interpretation is given to (, 0); cf.
Antman (1976).) We require that. (2.11) hold and for simplicity we take a to have the
specific form shown there. The positivity of following from (2.11) ensures that the
local ratio of deformed to reference length of at s be positive and that the section at
s not be sheared so severely that eie(s) is parallel to ((s). We require to be simple.
We do not bother to impose a global injectivity restriction on (2.6).

Let -i[(s)+ i(s)]eie() denote the resultant contact force and 2t:/(s) the resul-
tant contact couple acting across the section s of the ring exerted by the material of
(s, s + e] on the material of [s e, s] where e is a small positive number. By definition
of contact force and couple, these resultants are independent of e. (., /:/, are
each real-valued.) We assume that the only external force applied to the ring at s is
a hydrodynamical pressure of intensity p(s) per unit deformed length acting in the
direction i(s). (This assumption means that the fluid lies to the right of the oriented
curve . A natural sign convention allows for the possibility, remote from the focus of
our analysis, that the pressure be negative.) Then the equilibrium equations for the
ring are

(2.12) {IN(s) + i(s)]eiO(s)} p(s)’(s),
(2.13) 217/’(s)- Re {’(s)[N(s)- i[t(s)]e-ie(s)} O.

We can put these equations into the componential forms

(2.14)
(2.15)
(2.16)

Let

+

(2.17) Q(s) {q e R3: > a(#, s)},
(2.18) Q _= {(q,s): q e (s),s e I-L, L]}.
The material of the ring is elastic if there are constitutive functions

(2.19) Q =_ (N,H,M) 3
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such that

(2.20) (s) N(q(s),s), etc.

We assume that the constitutive functions (2.19) are thrice continuously differentiable.
In particular, in consonance with (2.1) we assume that Q(q,.), when extended to

by periodicity, is twice continuously differentiable. Q is required to satisfy the
monotonicity condition:

O(N,H,M)(2.21) The matrix Qq(q, s) O(u, rl, #)
(q’ s) is positive definite V (q, s) E .

This assumption can be shown to be inherited from the strong ellipticity condition of
three-dimensional elasticity in the process by which rod theories are constructed from
the three-dimensional theory (cf. Antman (1976)). It ensures, e.g., that an increase
in the bending strain # is accompanied by a corresponding increase in the bending
couple M. We require that:

(2.22a,b)

(2.23a,b)

H N(u, , #, s) is even, H(u, , #, s) is odd,
-, M(u, r, tt, s) is even,

N(1,0, O,s) =0, M(1, O,O,s) =0.

Conditions (2.22b), (2.23) ensure that the reference configuration is stress-free.
Remark. There is no obstacle to extending our entire analysis to a rod theory with

any level of complexity. (Such theories can be interpreted as replacing (2.6) with any
expression having more degrees of freedom.) We would merely have to augment our
geometrical and mechanical variables with a larger set, many of whose members would
lack simple interpretations; cf. Antman (1976) and Antman and Carbone (1977).

3. Steady, two-dimensional, irrotational flows of incompressible, invis-
cid fluids. The force acting on the ring is generated by the two-dimensional, steady,
irrotational flow of an incompressible inviscid fluid. No body force (such as gravity)
acts on the fluid. The velocity and pressure fields are assumed to have limits at infinity
(in the complex plane C). In this section we formulate the governing equations for
the motion of these fluids. The derivations can be found in standard books on fluid
dynamics (cf., e.g., Serrin (1959) and Milne-Thomson (1968)).

Let " denote the (open) domain of C occupied by the fluid. We assume that 9r

is of class C1. Let w(z) u(z) iv(z), p(z), p denote the complex velocity, pressure,
and density at point z x + iy in the closure cl" of 9v. p is a given positive number.
u, v, p are real-valued. Under our assumptions, Euler’s equations for the flow in "are the momentum equations

(3.1) p(uu + VUy) -p, p(uv + VVy) -py in .T’,

the incompressibility condition

(3.2) ux + vy 0 in

and the irrotationality condition

(3.3) Uy v 0 in jc.

Note that (3.2), (3.3) are the Cauchy-Riemann equations so that w must be a holo-
morphic function in .T.

We assume that
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(3.4a,b) w(z)
where U, P are given nonnegative real numbers. Then (3.1), (3.3), (3.4) yield

Bernoulli’s equation

(3.5) p(z) -- +
which shows that p in 9 is determined by w, U, P. This formula can be extended by
continuity to c19r whenever w can be so extended.

Equations (3.2) and (3.3) imply that on any simply-connected subset of $" there
exists a holomorphic function 2 + i such that

(3.6) w(z) Y2’(z).
4 is the velocity potential, is the stream function, and/2 is the complex potential. In
6 we observe that under the assumptions we shall impose on the flow, the circulation

(3.7) c w(z) dz O,

which is precisely the supplementary condition needed to show that for this problem
is also defined on all of $’. Thus/2 is holomorphic on ." while 4 and P satisfy the

Cauchy-Riemann equations here.
Since the boundary 09v of $" is solid, fluid cannot penetrate it, i.e.,

(3.8) Re (nw) 0 on 0"

where n is the unit inner normal to 05". It follows from (3.6) and (3.8) that
const, on 05". Since $" is at worst doubly connected, there is no loss in generality in
taking this constant to be zero:

(3.9) 0 on 0’.

The solution of (3.1)-(3.4), (3.8) can thus be effeeted by finding a holomorphie function
2 on 9r thnt together with its derivative admits a continuous extension to el S" and
that satisfies (3.9) and

(3.10)
Then w and p can be found from (3.6), (3.5).

In the sequel, when it is necessary to emphasize the dependence of ’,/2, etc., on
if, U, we write ’[ff],/2[if, U], etc.

4. The symmetrically deformed ring. In this section we give a detailed
description of the class of functions in which we seek solutions of our equations. In
the next section we carry out a global analysis of the symmetric deformation of a ring
in a symmetric flow under the assumption that the pressure field on the ring has the
right form. We deduce the properties of the pressure field in 6, where we analyze the
flow problem.

We record (2.1b,c,d)"
(4.1a,b,c) ff(-L) if(L), ff’(-L) ff’(L), O(L) O(-L) + 2r.

To ensure that the flow does not apply a net torque to the ring and that the complex
potential Y2 is well defined, we consider only configurations that are symmetric with
respect to the x-axis and have the property that Re(+L) >Re(0) (see Fig. 4.2):
(4.3a,b) (-s) (s), O(s) -O(-s).
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--(-L)

FIG. 4.2. Flow about a symmetrically deformed ring.

Using (2.7), we readily deduce from (4.3) that

(4.4a,b,c) u(s) u(-s), l(s) -l(-s), #(s) #(-s).
By comparing (4.1) with (4.3), we obtain the obvious conditions

(4.5a,b,c) y(0) 0, x’(0) 0, 0(0) 0

together with

(4.6a,b,c) y(+n) O, x’(+L) O, o(+n) +r.
Note that (4.3) and (those equations of) (4.6) (with a plus sign) imply (4.1). For
(4.3) to be reasonable, we require that the reference configuration satisfy it and that
the constitutive functions N, H, M, h be even in s. It is convenient to fix the rigid
translation of by requiring that

(4.) (0) Z(0).
In order to carry out compactness proofs needed to meet the hypotheses of the

Global Implicit Function Theorem (stated below), we require a convenient charac-
terization of simple, closed, continuously differentiable ’s. Let us extend to by
periodicity. Let

(4.8a) a(Sl, s2) -= min{ltl t2]: eirt/L eirs/L, a 1, 2},

(4.8b) /[] =-inf{ ,(s)-(t) }a(s,t) "s, te[-L,L], s#t

For > 0, we set

(4.9)
(4.10)

,,(t) { t Cl: (4.1a,b) holds, /[] > 6},
z U

6>0
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LEMMA 4.11. Z is precisely the set of all simple, closed, continuously differen-
tiable ’s (with [’1 everywhere positive).

Proof. It is a straightforward exercise to show that an element of Z(5), and hence
of Z, is a simple, closed, continously differentiable curve with a nowhere vanishing
derivative. Let us prove the converse. Suppose for contradiction that is such a curve
with/[] 0. Then by the definition of/ (and by the Bolzano-Weierstrass theorem)
there are sequences{sk} and {tk} in [-L,L] with sk < tk converging to soo and too
such that

lim
I(sk) (tk)l O.

If soo too mod 2L, then (,’(soo) (too) and (4.12) cannot hold. If soo too, then
(4.12) implies that ’(soo) 0, a contradiction. If soo -L, too L, then for k
sufficiently large, a(sk, tk) Irk sk 2L I. Since (tk) (tk 2L), equation (4.12)
implies that ’(-L) 0, another contradiction. D

LEMMA 4.13. Z(5) and Z are open in { e C1: (4.1a,b) holds}.
Proof. Let e Z(5) with 5 > 0, let X e { e C (4.1a,b) holds}, and letll

XII < 1/2(/[]- 5). We show that X e Z(5) by showing that l[x] > 5. Definitions (4.8)
imply that

(4.14)

l[x] > inf { (s) (t) ( X)(s) ( x)(t) [-L L] t}" ’te

1 5

In deriving this inequality we have used the inequality for the mean value. [3

Remark. When interpretation (2.6) is used, it would be physically appropriate to
require the deformed inner boundary curve s (s) + h(s)ei(s) of the annular region
B of (2.2) to be simple, closed, and positively oriented. We do not bother to pursue
the technical adjustments needed to accommodate this requirement.

In 6 we prove the following theorem.
THEOREM 4.15. Let (4.1a,b) and (4.3a) hold. For E Z let w[,U](s), which

is independent of P, denote the complex velocity of the (symmetric) flow at the point
(s). Then U-w[, U] is independent of U (and is thus solely determined by ). The
function s U-w[, V](s) is continuous. The operator C2f3{ e Z: (4.3a) holds}

IU-w[, U]I e C is continuous. It is compact on C2 N{ e Z(5): (4.3a) holds}
for every > O. The pressure on the ring at (s) is given by

(4.16) pie, U, P](s) P + 2V2 { 1 V-21w[, V](s)l 2 }
and satisfies pie, U, P](s) p[, U, P](-s). Moreover,

(4.17) p[.,., .]" [C2 N { e Z" (4.3a) holds}] a2 C

is continuous and is compact on [C2f3{ e 2;(5)" (4.3a) holds}] 2 for every 5 > O.
Note that these fluid-dynamical variables are independent of 0, i.e., independent

of the state of shear in the rod.
We introduce the Banach space

(4.18) {(, ) e C2: (4.In,b), (4.3) hold}
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endowed with the C2-norm. (We need this norm in order to use Theorem 4.15.) We
define the operators dl (, ), ft), by

(4.19) ft[] ’, 0[](s) O(s) + ’() d,

(4.20)
Let us set

(4.21)
Z+(5) { e Z(5): has positive orientation},
Z+ { 6 : has positive orientation}.

We define Z-(f) and Z- analogously for (’s having negative orientation. Lemma
4.13 holds with Z+(5), Z+ replacing Z(5), Z. We shall seek solutions of our operator
equations in the following subset of ;:

(4.22a) A-- {(, ) 6 ]2: Z+, Re((:hL) > Re(0), dill, el(s) Q(s)

Clearly j[ contains the pair (Z, 0) corresponding to the reference configuration (Z, (9).
Note that .A does not account for (4.1c). We accordingly define

(4.22b) A -= {(, ) e A: (4.1c) holds}.
We assume that C2. In the reference configuration q (1, 0, 0) (by definition

of this configuration). It then follows from (2.7) that Z is in C3. Our boundary value
problem (BVP) is to find (, ) e ,4 such that the strain-configuration relations (4.19),
(4.20), the equilibrium equations (2.14)-(2.16) with p(s) replaced with p[(, U, P](s),
defined in (4.16), and the constitutive equations (2.20) hold. Note that the reference
configuration (Z, ) satisfies BVP for U 0, P 0. In the rest of the paper we regard
(2.8a) as an identity and express restrictions on in terms of 0 or vice versa.

5. The fixed-point problem. We now recast BVP as a fixed-point problem to
which we can apply the following theorem, whose interpretation follows its statement.

THEOREM 5.1 (Global Implicit Function Theorem). Let X be a Banach space and
let {O(), 0 < < E} be a family of open sets (not necessarily bounded) in X m
for which

(5.2)
(5.3)
Let

(5.4)

(0, 0) e
c

0<e<E,

forO < el

o U
O<e<E

Let F 0 2( be continuous, let F(O, O) O, and let F O(e) 2( be compact for
0 < e < E, where E is a given positive number. Let I denote the identity operator
on 2(. Let the Frdchet derivative I- Fx(O, O) 2( ---, 2( of x x F(x, ) at (0, O)
exist and be invertible. Let $ =_ {(x, A) fi O x F(x, A)} and let 8o be the connected
component ors containing (0, 0). (In a neighborhood of (0, O) , agrees with o.) Then
one of the following statements is true:

(i) 80 is bounded and there is an e* (0, E) such that 8o C O(e*). There is
an essential map (i.e., a continuous map not homotopic to a constant)
a from ,o onto the m-dimensional sphere Sm whose restriction to o \
{(0,0)} is inessential. Moreover, 8o contains a connected subset 8oo
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that contains (0, 0), that has the same properties as ,o with respect to a,
and that has the property that each point of it has Lebesgue dimension
at least m.

(ii) 8o \ O() # .for all e (0, E) or 8o is unbounded. For each (0, E)
there is a modified equation x o(x,,,e)F(x,A) (cf. (7.4)) defined on
all of X Rm that agrees with x F(x, )) on 0(). The one-point com-
pactification ,o+ () of the connected component ,o() containing (0, O) of
the set of solution pairs of the modified equation has the same properties
as ,o in statement (i).

We prove this theorem, which generalizes results of Alexander and Yorke (1976),
in 7. Without comment we shall shift the base point (0, 0) in this theorem to any
other point. In our problem the role of A is played by (U, P). In case (i) the theorem
states that the set of solution-parameter pairs (x, A) of the equation x F(x, ) has a
connected subset So0 containing (0, 0) and having dimension at least 2 at each point.
This means that ,0o contains a subset that looks like a surface. The statement about
the essential map roughly means that 8o cannot abruptly terminate and that it looks
like a sphere to which are possibly attached further solution pairs.

We set

(5.5) f(q,p,s)-- (-Ns/(O’(s)+#)H/py,-Hs-(O’(s)/#)N-pu,-Ms+IN-uH)
where the arguments of N, Ns, etc., are q, s. By substituting the constitutive equa-
tions (2.20) and the pressure equation (4.16) into the equilibrium equations (2.14)-
(2.16), and then carrying out the indicated differentiations, we find that the system
(2.14)-(2.16), (2.20), (4.16)is formally equivalent to

(5.6) q(s) q(0)/ Qq(q(),)-f(q(),p[,U,P](),) d
(5.7) q(0) + g[q, , U, P](s).

In consonance with (4.4b) we take

0.

We define the operators q (u,,#) by

(5.9) q[,,U,P](s) =_ g[61[,],,U,P](s).
We now use (4.7), (4.19), (4.20) to convert (5.5), (5.6) to

(s) Z(O) ei(){uo + u[, , U, P]() + i[,, U, P]()} d

z(0) + , u, p](s) + , u, p](s),

(15.11) (s) #os + #t[, , U, P](()d,

where the unknown constants uo and #o are equal to b(0) and (0).
Remark. System (15.10), (15.11) would have a fixed-point form if the constants

uo and #o were chosen to depend on (, ). To get a useful fixed-point form in
12 N {((, ) (4.1c) holds}, we should like to choose u0 and #o to ensure that the
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right-hand sides of (5.10), (5.11) satisfy (4.6), i.e., so that

(5.12a) y[, , so, U, P](L) 0,

(5.12b) x[, , so, U, P]’(L) 0,

(5.12c) #oL + #[, , U, P]() d 0.

Unfortunately, we have only two constants available to satisfy three relations. The
situation is actually somewhat worse: If we compute the matrix of partial derivatives
of the left-hand sides of (5.12) with respect to uo and o, we get

(.la) sin O(L) 0
0

which reduces to

(00)(5.14) 0 0
0 L

in the trivial state with (U, P) (0, 0). Thus there is no way to use the classical
implicit function theorem directly to solve (5.12) for u0 and #o as functionals of (, )
near the trivial solution or to get any such representation for o. We could solve for
#o as a functional of (, ), by defining it to be the solution of (5.12c) so that (4.6c)
would hold. But while this definition of #0 is useful for certain problems with constant
hydrostratic pressure (cf. Antman (1973)), it does not compensate for the degeneracy
inherent in (5.14). We could replace the () in the integrand in (5.10) with #0 +
f: #file, , U P](w)dw and thus introduce the parameter #0 elsewhere in our equations,
but such a step does not ameliorate the situation. In short, the complexity of our class
of admissible configurations satisfying (2.1) prevents us from setting up our fixed-point
problem in the most obvious way. We now exploit the underlying mechanics and
geometry of our problem to resolve this difficulty by a less straightforward procedure.

Since we have no assurance that the right-hand sides of (5.10), (5.11) take jt or
even 4 into V, we contrive to cast our problem in a more suitable form. We let
and play the roles of uo and #o. Then in place of (5.10)-(5.12) we consider

(5.15a)

2Lx rs
x(s) X(O) + x[, , a, U, P](s) + [, , a, U, P]’(L) cos 2-’

71"8
y(s) y[, , a, U, P](s) y[, , a, U, P](L) sin 2"
e(s) s + ,[. . . ]() a.

+ [,, , , ]’(),
+ [,,, , ]().

We abbreviate (5.15a) as

(5.15b) (, , c, ) k[, , c, , U, P].
It is easy to see that k[, , c, , U, P] satisfies (4.1a,b), (4.3) (and thus k takes

.4 x R4 into ; R2) and that if (, ,c,) in ,4 x R2 satisfies (5.15), then (, )
satisfies all the conditions of BVP, except possibly (4.1c), which is equivalent to (4.6c).
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Furthermore, c (0) and/ ft(0) and conversely, if (, , U, P) in j[ 2 satisfies
BVP, except for (4.1c), then (, , (0), ft(0), U, P) satisfies (5.15). We now show that
under mild conditions (, ) must satisfy (4.6c) as well.

PROPOSITION 5.16. Let (, , ,) e fit 2 satisfy (5.15) and

N(t[, ](L), L)
[, el(L)

H(t[, ](L), L)

(when [, el(L) 0). Then (, ) satisfies BVP.
Remarks. The identity in (5.17), which is used to define the limit of the second

quotient as 0, follows from (2.22b) and the Mean Value Theorem. By virtue of
(2.21), condition (5.17) holds in the trivial state, in which its left-hand side is zero,
and therefore holds in a neighborhood of this state. It also holds when (L) < 0, i.e.,
when the material of the ring at L is in compression. We might expect this condition
to hold, at least for moderate deformations, because such a compression of the ring
is a likely effect of a positive pressure exerted on it by the surrounding fluid (when
P > 0). The violation of (5.17), which could occur when the ring is under sufficiently
large tension at its trailing point, is associated with a shear instability (cf. Antman
and Carbone (1977)). We could show that such a possibility is precluded either by
obtaining a suitable a priori estimate or else by elevating (5.17) into the (reasonable)
constitutive restriction:

(5.18)
N(q, L) H(q, L)< VqE Q(L), 0.

PROOF OF PROPOSITION 5.16. In view of the remarks preceding the statement of the
proposition, it suffices to show that (4.1c) holds. Let be the angle between and
the negative y-axis:

(5.19)
with (0) -0. Equation (4.20) then implies that

(5.20)
Since is a simple, closed, positively oriented, continuously differentiable curve, it
follows that

(5.21) (:t=L) =t=r.

Since the membership of (, ) in. A, defined in (4.22a), implies that (2.11) holds, it
follows that (s) must be positive for all s. It then follows from (5.20) that cos(()-
(s)) > 0, and since (0) 0 (0) by (4.5), it follows from the continuity of -that I(s)- (s)l < r/2. Thus (5.21)yields

(5.22) Jti(L) rl < 7"
Now the integral of (2.12) over (-L, L) yields

L L

(5.23) (1 + i[-I)e0 =/_ p[, U, P](s)’(s)ds.
-L L
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The Kutta-Joukowski Theorem stated in 6 implies that the integral on the right-hand
side of (5.23), which is the net force exerted by the inviscid fluid on the deformed ring,
must vanish, and consequently the left-hand side must vanish. (The fundamental
"stress principle" or law of action and reaction embodied in the integrals of (2.12)
over arbitrary intervals would directly imply that the left-hand side of (5.23) would
vanish, were it not for the distinguished role we have assigned to =t=L.) We now use
(2.20), (2.22a,b), (4.4a,c), and the evenness of H in s to deduce from (5.23) that

(5.24) N (I(L), L) sin (L) + H (I(L), L) cos (L) 0.

From (2.7), (4.6b)we obtain

(5.25) (L) sin (L) + (L) cos (L) 0.

Since (5.24), (5.25), regarded as a linear system for sin (L), cos(L), cannot have a
trivial solution, we conclude that

(5.26) (L)N(t(L), L) (L)H(t(L), L).
(The arguments of the functions in (5.26) are understood to equal those of (5.17).)
Condition (5.17) implies that (5.26) is satisfied if and only if O(L) 0. From (5.20) we
thus find that sin((n)-(L)) 0. It follows from (5.22) that (L) (L) r.

We now introduce the subsets O(e) of the domain of definition of k that are used
in Theorem 5.1. Let (, ) E A. We define

(5.27a) [(, ] min {/[], min{[, el(s) (’(s), s) } },
(5.27b) E [Z, 0].
For each e E [0, E), we define

(5.28) O(e) {(, ,a,, U, P) R4: [, ] > e, has positive orientation}.

(Note that O(e) C .4 R4.) Clearly O(e) satisfies (5.2)-(5.4) with O O(0) ,4 4
and with (0, 0) replaced with (Z, 0, 1, 0, 0, 0).

PROPOSITION 5.29. k is continuous on fit 4 and is continuously Frdchet dif-
ferentiable with respect to (, ,a,,P) if V O. The restriction of k to O(e) is
compact for every e (0, E).

Proof. The continuity and Frchet differentiability follow immediately from their
definitions and from Theorem 4.15. The compactness follows from the Arzelk-Ascoli
Theorem and Theorem 4.15 in a straightforward way. (Note that for arbitrary e > 0
the set {(, ?, ,s) : - (, s) >_ e, + I1 + I#1 -< l/e} is a compact subset of
e.)

The way we have replaced (0), (0) with a, fl was designed precisely to com-
pensate for the degeneracy inherent in (5.14) and to enable us to prove the following
proposition.

PROPOSITION 5.30. The Frdchet derivative of I- k with respect to (,,a,)
about the trivial state (, , a, fl, U, P) (Z, 0, 1, 0, 0, 0) is an invertible linear mapping
of V R2 onto itself.

Proof. In view of Proposition 5.29, we can use the Open Mapping Theorem
and the Fredholm Alternative to reduce the proof to showing that this derivative is
injective, i.e., to showing that the linearization of (5.15) about the trivial solution has
the unique zero solution. By an argument analogous to that leading up to Proposition
5.16, we can show that the linearization of (5.15) is equivalent to the linearization of
BVP. (In particular, the treatment of the linearization of (4.6c) follows that for (4.6c)
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itself.) This linearization of (5.15) can be formally obtained by assuming that all the
variables depend upon a small parameter T with the trivial state corresponding to
T 0, then by differentiating the governing equations with respect to T, and finally
by setting T 0. The value of the derivative of a variable such as with respect to T

at T 0 is denoted . Variables with dots are the unknowns of the linearization. The
values of constitutive functions at the trivial state are identified by the superscript
0. Thus, e.g., N(s) Nv(1, 0, 0, s). In deriving the linearization we have used (4.4)
and the evenness of Q(q, .) to show that various constitutive functions, such as N
are zero in the trivial state. We use (4.16) to show that i5 0. The linearization of
BVP is accordingly given by

(5.31a) :b’ sin 4- (// t) cos (9, )’ -9 cos 4- ( 4- ) sin (9, ’ ,
(5.31b)

)(:t:L) 0, (:t=L)=0, 0(+L) 0,

(5.31c) 2Q’=O’/:/, /:/’=-O’]Q, 2t;/’=-/:/,

(5.31d) ]Q N0) + 0.Nh#, /:/= Hn/, M + Mu/t.
From (5.31c) we obtain (the principle of virtual work)

(5.32) [)(-2Q cos O +/:/sin (9)’ + b(]Q sin O +/:/cos O)’ + 0(2i)/’ +/:/)] ds O.
L

We integrate (5.32) by parts and then use (5.31a,b,d) to obtain

Since the integrand of (a.aa) is positive definite by (2.21), we find that ) =/ i O,
whence the triviality of the solution follows.

From Propositions 5.29, 5.30 and the Implicit Function Theorem in Banach space
we deduce the following theorem.

THEOREM 5.34. Let U O. There exists a neighborhood of (,,a,)
(Z,O,I,O) in 4 x 2 and a number D > 0 such that if lPI < [, then (5.15) has
exactly one solution ((P)(.),b(P)(.),5(P),(P)) in . The mapping taking P into
this solution is continuously differentiable.

Since the set of bounded linear invertible mappings is open in the space of bounded
linear mappings of a Banach space into itself, we can choose P so small that the
Frchet derivative I-k(,,a,)((P)(.), (P)(.), 5(P), (P), 0, P) of I-k is invertible.
Accordingly, we define

(5.35)
V -= {P e R" (5.15) has a solution (*(P)(.), *(P)(.), a*(P), *(P)) for U 0,

I k(,,a,)(*(P)(.), *(P)(.), a*(P), *(P), O, P) is invertible}.
By Theorem 5.34 we know that :P contains a nonempty interval containing zero. Let

(5.36) S _= {(, , a, , U, P) jt x 4 (5.15) holds}.
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It is the set of solution-parameter pairs of (5.15). Let Po E P and let

o, Zo) (*(Po)(.), *(Po)(.), Z*(Po))
be defined as in (5.35). We define $0 to be the connected component of $ containing
(o, o, co,/o, 0, P0). Proposition 5.29, the membership of P0 in :P, and Theorem 5.1
now yield our fundamental result, which asserts the existence of a two-dimensional
connected set of solution-parameter pairs of (5.15) having nice topological properties.

THEOREM 5.38. At least one of the following statements holds:

(5.39a) 3 el E (0,E) such that ,o C 0(), ,90 is bounded,
(5.395) SoCq[O\O(e)] V e (O,E) or So is unbounded.

If (5.39a) holds, then there is an essential mapping a from o to $2 whose restriction
to ,90 \ {(o, o, co, o, 0, Po)} is inessential. Moreover, 8o contains a subset 8oo each
point of which has topological dimension at least 2. The restriction of a to oo is
essential. If (5.39b) holds, then for each there is a compact and continuous opera-
tor k on ]) x 4 such that the equation (, , a,/) k[, , a, , U, P] on ]) x [4

agrees with (5.15b) on 0(). The one-point compactification 8o+ () of the connected
component ,o() of its solution pairs containing (0, O) has the same properties as 8o
in statement (i).

Remark. We have not yet been able to show that k is Frchet differentiable
with respect to (, , a,/) when U : 0. For this reason we cannot invoke the local
Implicit Function Theorem in Banach space to assert that 80 (or 8) is a C-surface
of dimension 2 near (@, o, a0,/0, 0, Po). Such a result would be necessary to justify
the most primitive of perturbation methods.

We now study solutions of (5.15) with P fixed at a value Po in P.
THEOREM 5.40. Let Po 7) and let (5.37) hold. Then there is a number U > O,

depending on Po, such that the set

(5.41) $,(Po) U {(, , a, #, U, Po) e,9}

contains a connected subset joining the planes U +/-U1. (Thus there is a solution for
each U with IUI < U.)

Proof. The existence of a branch bifurcating from (5.37) follows from a one-
parameter version of Theorem 5.38. Since I-k(,,a,#)(o, o, co, #o, 0, P) is invertible,
it follows that (o, o, co, #o, 0, P) is an isolated solution of (5.15) in the space 1) x
R2 x {0} x {Po}. Thus the values of U on the branch cannot be confined to zero.
Since (5.15) is even in U, the values of U must be symmetrically disposed about
U =O. []

Remark. These theorems describe the connectivity properties of solution sextuples
(, , a,/, U, P) of the modified problem (5.15). It is easy to use the relations a

b(0) and/ (0) to show that the same results apply to the solution quadruples
(, , U, P) of the original BVP, except possibly for (4.1c), which can be handled with
Proposition 5.16.

Remark. For P held fixed at a positive Po P, the continuity of p[.,., .], defined
in (4.16), ensures that the pressure on the ring is everywhere positive if U is small
enough. If the pressure becomes negative on part of the ring, then cavitation occurs.
Note that the speed [w[ of the flow has a strict maximum on c15"[] on its boundary
(as can be shown by mapping ’[] onto a bounded region and applying a maximum
principle). Thus the second summand in (4.16) is negative somewhere on the ring.
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For P held fixed at 0 and U 0, there must be a place on the ring where the pressure
is negative.

6. The conformal mapping problem for the flow about a symmetric
ring. Our main goal in this section is to prove Theorem 4.15. We use the results of
3. Let E C1,a f3 Z+ be a simple closed positively oriented curve satisfying (4.3a).
Without loss of generality we assume that 0 lies inside of . Our flow problem FP is
to find a complex potential f2 / iP holomorphic on $’[] with J continuous on
cl$’[(] that satisfies (3.9), (3.10), and the symmetry condition

(6.1a) /2()- Y2(z) or, equivalently, (x, y)- (x,-y).

By virtue of (3.6a), this condition is in. turn equivalent to

(6.1b) u(x, y) u(x, -y), v(x, y) -v(x, -y).

Condition (6.1b) ensures (3.7), which states that the flow has zero circulation
(cf. Brezis and Stampacchia (1976)). The Kutta-Joukowski Theorem states that the
resultant force on the ring produced by the flow w[(, U] is -ipU f w[(, U](z)dz. This
vanishes when (3.7) holds (in which case we have d’Alembert’s paradox that the resul-
tant force on the ring is zero). The Blasius Theorem states that the resultant moment
on the ring produced by the flow w[(, U] is -2ae f zw[, U](z)2 dz. That (6.1) forces
this integral to vanish is our main motivation for adopting this restriction. We can
prove Theorem 4.15 when the circulation is zero without invoking (6.1), but we do
not emphasize this point. At several places our analysis makes contact with standard
results on existence and uniqueness of solutions to FP. It is nevertheless necessary for
us to reiterate some of the steps in order to show precisely how the boundary values
of solutions depend on (.

Let

(6.2) D--{weC" Iw[<l}.

We shall reduce FP to finding a conformal mapping f from
For technical reasons it is convenient to study conformal mappings from bounded

sets to bounded sets. For this purpose we express f as a composition of the inversion
$’[4] z 1/z followed by a mapping g[{]-i and then followed by another inversion
w 1/w. See Fig. 6.3. Since our aim is to determine precisely how the flow variables
depend on , we must determine precisely how g[4] depends on . Nevertheless, for
notational simplicity we shall often suppress the dependence of variables on in our
computations, but not in the statements of important results.

We now introduce a class of boundary shapes that are compatible with the anal-
ysis of the ring problem in 4 and 5 and that promote the analysis of the conformal
mapping problem formulated below. For 0 < a <_ 1, 0 < h < h2, 0 < we define

Z+/-(a, h, h, 5) A(h, h) C, Z+/-(5),
(6.4) Z+(a, h, h2) -= A(hl, h2) f3 C,a f3 Z+,

A(h,h2)-- {’h < [[ < h2, (4.3a) holds, Re(+L) > Re(0)}.

DEFINITION 6.5. For Z+(a,h,h2), Z[] is the domain of C enclosed by the
curve 1/.

The following result is immediate.
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iiii:ili:::::

:iiiiii (s) (k[] (X))

:i:i:i:!!iiiiiiiiiii!!!!

e i(Tr-Y)

I/f[tj](t; (s))

I/z plane

I/ (L)

-plane

FIG. 6.3. Conformal mappings. The positive (counterclockwise) orientation we have adopted for
is a negative orientation .for the boundary of 7. The counterclockwise orientation of is reversed

by the inversion z 1/z so that the boundaries of .r and P are shown with clockwise orientations.
The parameter ff for 01) corresponds to this orientation.

LEMMA 6.6. Let 0 < a < 1, 0 < hi < h2. The mapping Z+(a, hl, h2)
1/ e Z-(a,h,h-) is continuous in the C,a-norm.

For 0 < a _< 1, 0 < h < h2, let E Z+(a, hl,h2). Our conformal mapping
problem (CMP) is to find a continuously differentiable homeomorphism

(6.7a) / cl’[] C \

with

(6.7b)

(6.7d)

f(oy[])
f x oc,
f(c) exists and is a positive real number,
f()-- f(z)
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such that the restriction of f to $’[] is conformal. This problem is equivalent to that
of finding a continuously differentiable homeomorphism

(6.8a) g" cl T) --, cl:Z’[]

with

(6.8b) g(OT)) 02"[],
(6.8c) g(0) 0,

(6.8d) g’(0) is a positive real number,
(6.8e) g() (z)

such that the restriction of g to 7) is conformal. We denote the solutions to these
problems, each designated CMP, by f[(] and g[]. They are related by

1
(6.9a) f[(](z) g[(]-(1/z)"

We readily find that

(6.9b) f[]’(oc) g[]’(0).

THEOREM 6.10. Let f[] satisfy CMP. Then FP has a solution

(6.11) Q[(, U]- f[f]’(cx)) f[(] +

unique to within a real constant.
Proof. All the assertions, except the uniqueness, follow from direct computation.

To prove uniqueness, let/2 be the difference of two solutions of FP. Set

(6.12) H(w) f2(1/g(w)), w e clD {0}.

Since w ’(1/g(w)) is holomorphic on {0} and tends to zero as w tends to zero
by (3.4a), it follows that

(6.13) lim wH’(w) lim lim e C.

Since (6.1a) implies that for H’(w)dw f ’(z)dz O, it follows that H’ is holo-
mophic in 9. Conditions (3.9) and (6.8b) imply that ImH 0 on 0. Therefore H
and consequently are real constants.

We now obtain some preliminary lemmas that will enable us not only to solve
CMP, but also to determine how solutions depend on the shape of the deformed
ring. Our attention is focused on the boundary behavior of g.

LEMMA 6.14. Let 0 < a 1 and let C,a satisfy [’(s)[ > 0 everywhere. Let
[](s) be (a branch of) the angle from the negative imaginary axis to (’(s). Let []
be continuous. Then there is a positive constant a depending only on [](0), L, a

(and otherwise independent of ) such that

g + 1) 4/" (mi 
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Proof. [](s) satisfies
[](0) 0. Therefore,

Without loss of generality we take

’(s) ’(t) ReRe -il(,(s) i(,(t) i,(s)

’() ’(t) < 1111,1 tl.
I’()1 I’(t)l mil’(,)l

Let us choose an integer k[] >_ 1 so that

-2/c, L
(6.17)

L < 4_/a(minl,(s)l)2/llll,a <
k- 1k-

Then

1 L
(6.18) Isin((s)- (t)) _< when Is- t _<

It follows that can vary at most by r/3 on an interval of the form [jL/k, (j / 1)L/k],
j -k,... ,k- 1. Therefore,

kTr
(6.19) I1 <- --.
Thus

(6.20) ](s) (t)l isin((s (t))l < 2r
I(s) (t)l Isin((s (t)) --Isin((s) (t))

L
when Is- t < -.

We combine (6.16) and (6.20) to estimate the Hhlder quotient for when Is-tl <_ L/k.
Otherwise, we find that I(s)- (t)l <_ (2k/La)llllols- tl <_ (2k2r/3La)ls- tla by
(6.19). We now estimate k from the second inequality of (6.17) to obtain (6.15). [:3

We now state some results from complex function theory that are needed in the
ensuing analysis.

LEMMA 6.21. Let n be a simple closed continuously differentiable curve in C with

Inl everywhere positive. If h is a one-to-one holomorphic function taking 7) onto the
interior of n, then h can be extended to c17) so that the extension is a continuous
bijection of cl 7) onto h(cl 7)).

The proof is given by Hille (1962, p. 367).
LEMMA 6.22 (Warschawski (1932), (1961), (1968)). Let n: [-L,L] --. C and h

be as in Lemma 6.21. Let (a) be the angle (mod 2r) that the tangent vector n’(s)
makes with the negative imaginary axis at the point s with arc length parameter

a

If the function is Hhlder continuous with exponent a E (0, 1], then h has a contin-
uous extension to cl 7) with h vanishing nowhere on cl

LEMMA 6.23 (Rad6 (1923, p. 182); cf. Gattegno and Ostrowski (1949, p. 29)).
Let n, nn [-L,L] --. C, n 1,2,... be simple closed continuously differentiable
curves enclosing 0 with with In’l, lanai everywhere positive. Let h[a], h[nn] be one-
to-one holomorphic mappings from 7) onto the interiors of n, an, respectively, with
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hill(0) h[,](0) 0, hill’(0) > 0, h[n]’(0) > 0. /f , converges uniformly to on
I-L, L], then h[n] converges uniformly to h[] on el 7).

We can now prove our first basic result about the solvability of CMP and the
regularity of its solution.

THEOREM 6.24. Let 0 < a <_ 1, 0 < hi < h2, E Z+(a, hl,h2). Then there is
a unique con.formal mapping g[] satisfying CMP such that g[]’ can be continuously
extended to c17) and vanishes nowhere on c17). Moreover, if {k } is a sequence in
Z+(a, h, h2) converging to in the C,a-norm, then g[k] converges uniformly to g[]
on c17) and g[k]-(1/k(.)) converges pointwise to g[]-(1/(.)) on [-L,L].

Proof. The existence and uniqueness of a conformal mapping g[] from 7) to
2"[] such that (6.8c,d) hold is ensured by the Riemann Mapping Theorem. Condition
(6.85) follows from Lemma 6.21. By (4.3a), z g[](2) satisfies (6.8a-d). Hence
(6.8e) is satisfied by the uniqueness ensured by the Riemann Mapping Theorem. That
g[] enjoys the regularity properties at the boundary follows from Lemmas 6.14, 6.21,
6.22. The uniform convergence of g[k] follows from Lemmas 6.6 and 6.23. To prove
the last statement, let a0 1/(s), s e [-L,L]. Then g[k]-(1/k(s)) e OT) and
is accordingly bounded. By the Bolzano-Weierstrass Theorem, it has a subsequence
(denoted the same way) converging to woe 07). Now

< + Ig[k](g[k]-(1/k(S)))
+

As k c the terms on the right of (6.25) approach 0 because g[k] and Ck converge
uniformly to g[] and and because g[] is continuous. Hence wo g[]-(ao).
Since this argument holds for all subsequences, the last statement of the theorem is
established. []

We must supplement the results of Theorem 6.24 in order to prove the assertions
about compactness made in Theorem 4.15. The next lemma introduces a function k,
which intimately connects g and and which intervenes in the explicit formulas, like
(6.33) below, for the boundary values of fluid mechanical variables.

LEMMA 6.26. Let 0 < a <_ 1, 0 < h < h2, Z+(a, hl,h2). Let a typical point
of 07) be denoted by ei(r-’) (cf. Fig. 6.3). Then there exists a unique function
(6.27) k[]" [-r, r] I-L, L]
(which associates the parameter s of with the angle " parametrizing 07)) such that

k[] is continuously dierentiable and k[]’ is everywhere positive. Moreover, if
Z+(,h,h2) and if in the C,"-norm, then k[] converges pointwise to k[].

Proof. Since is simple, the mapping [-L,L) s 1/(s) E 02 has an inverse
/[]. We define k[](-f) _-- j[] (g[](ei(’-))). Thus (6.28) is satisfied. Since vanishes
nowhere, the classical Implicit Function Theorem enables us to deduce from (6.28) that
k[] is continuously differentiable. Since g does not vanish on 07) by Theorem 6.24,
we obtain from (6.28) that k does not vanish on [-r, r]. Since conformal mappings
preserve orientation, we conclude that kiWI is everywhere positive.

We now turn to the convergence properties of k. We fix f. Since {k[](’y)} is
bounded, it has a subsequence, denoted the same way, that converges to s [-L, L].
Now

(6.29)
1 1 1 1 1 1



1214 MASSIMO LANZA DE CRISTOFORIS AND STUART S. ANTMAN

It follows from the uniform convergence of --, and from the properties of our
subsequence that the right-hand side of (6.29) approaches zero as . It then
follows from this observation, from (6.28), and from Theorem 6.24 that

(6.0) /() limg[t](ei("-)) g[](ei("-))
Therefore s k[](). Since our argument holds for all subsequences, we conclude
that limk[t]()= k[]().
om (6.9) and (6.11) we compute

(.) ,(z) u[- -(), ))z,(0)-() (-(
Let z (s), s k(), so that g-() e(-). Provided that the hypotheses of
Lemma 6.26 hold, we find that the complex velocity at (s) is

2U sin
(’) 9’ (()) ’(0)’()’(Z)’ ()"

om Bernoulli’s equation (3.5), we thus obtain a form of (4.16) that makes the role
of explicit:

PU{1 4 Isin k[]-l(s)l }(a.aa) p[, u, P]() P + g le,(0),([]-())i
To obtain H61der and C bounds needed to establish Theorem 4.1g we employ

the following lemma.
L 6.a4 (Warschawski (19a2, pp. 491-492)). e , h, be s in emmas

6.22 nd 6.2a nd le 0 < < 1. If here eiss positive number A such h

(6.aga) diam h(’D

(.a)

where (z,z) is he length of he shores rc of joinin9 o ,
1 < I’(s)l ds,(.d)

(.e) 0, < A,

then there exists a positive number C depending only on A and a (and independent of
) such that

(.) /c < h,() < C V e c9,
(.b) hc,() < C.

We now convert these results to those for g.
LEMMA 6.37. Let 0

Z(a,h,h2,5) with ]]],a c. Then there exists a positive number C depending
only on c, a, h, h2, (and independent of ) such that

(.s) /c < [],() < c v e c9,
(.Sb) ][]]c,(c) < C.
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Proof. We identify h and of Lemma 6.34 with g[] and 02"[]. (In particular,
(6.30) holds.) The properties of g listed in Theorem 6.24 imply that (6.38) is a conse-
quence of (6.36). Thus we need only find an A, depending only on c, a, hi, h2, 5 such
that (6.35) holds. Since diamg(:D) < sup{l(s) -1 -(t)-l s t} 2ch2 and since

fL [(1/)’] ds 2Lh2, we ensure (6.35,d) by taking A > 2ch2, hL--2-.
We ensure (6.35b) by taking A > h2. To verify (6.35c) we let s < t and observe that
(6.39)

(()-, ()-)

min ]’(u)(u)-2 du + ]’(u)(u)-2 du, ]’(u)(u)-2 du
L

]]’]]0h2 min{2n (t s), t s} ]’]loha(t, s)

where a is defined in (4.8a). Since e Z(), we have

(t, )I() (t)- >(.40) (()-(t)-) (t,)

Thus we ensure (6.35c) by taking A > ch/Sh. We now use (6.15) with replaced
by 1/ and use the definition of Z(5) to ensure (6.35e) by taking A > a[h + ch2 +
s(1 + e(eL)-)h4 + 1]/(Sh)-/.

We need the following technical and intrinsically interesting lemma (a proof of
which we could not find in the literature).

LEMMA 6.41. Let 0 < < a 1 and let m be a nonnegative integer. Let {f} be
a sequence offunctions on I-L, L] that is bounded in Cm,. If fk converges to f C
either pointwise almost everywhere or in the sense of distributions on (-L, L), then
f Cm,a and fk converges to f in the norm of Cm,Z.

Pro@ By hypothesis there is a positive number C such that l]f]m, C. Since
Cm,a is compactly embedded in Cm,, the sequence {fk } has a subsequence, denoted
the same wy, that converges to a limit g Cm, in the Cm,-norm. (A fortiori fk
approaches g pointwise almost everywhere and in the sense of distributions.) Our
bound on ]]fk]],a implies that

dm dm
(.4e) ()-() Cl 1 v,,

whence we obtain

dm dm
(6.425) smg(S) d----g(s2 < CIs s2la Vs, s2.

Thus g E Cm,a. Since fk converges to both f and g either pointwise almost everywhere
or in the sense of distributions and since both f and g are continuous, we conclude
that f g. The full sequence {fk } converges to f in the norm of Cm,Z, for if not, there
would be a number e > 0 and another subsequence {fk} such that Ilfk--fllm,/3 >-- e. We
apply the preceding argument to this subsequence to derive a contradiction. El

The following lemma is the culmination of our analysis of of the function k, which
plays a central role in determining the boundary behavior of the fluid-mechanical
variables.

LEMMA 6.43. Let c > O, 0 < < a < 1. For all positive integers n let n,
{ 6 Z+ (4.3a) holds} N C,a; 0 6 2"[], 2"[n]; IInlll,a, IIll,a < c. Let n --* in
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the Cl-norm. Then

in the C,-norm.

Proof. Since ,, in the Cl-norm, there is a number N such that
! min8 I(s)l for n > N. We define2

h[(]-- max {2maxl(s)l, max.n(s)l, n= 1,... ,N} < oc.

Thus we find that

(6.47a)

Using Lemma 4.13 we likewise show that there is a 5[] > 0 such that

(6.47b) /[], l[n] >

(cf. (4.8)) and that there is an e[] > 0 such that

(6.47c) min 14’(s)l, mn I((s)l > e.

Thus , Cn e Z+(a, h[], h2[], 5[]).
We now show that

(6.48) IIk[]ll,., sup{

Clearly; Ilk[n]llo L. From (6.28) we obtain

(6.49)
rn(/) =- ig[n]’ (ei(r-7))n (k[nl(/))2/n (k[n](’)’)),

the inequality following from (6.38a), (6.47c). From (6.28) we also obtain

The continuity of k[(,,]’ (ensured by Lemma 6.26), the hypothesis that IlCnll,a, I1111,a <
c, and the inequalities (6.38b), (6.47c) ensure that there is a positive number C inde-
pendent of n such that

(6.51)

Since lei(-7) -e(r-’r) 21sin 7-271 < 1/2- "hi, we readily deduce that (6.48)
holds.

We now prove that (6.44) holds pointwise. Let us assume for contradiction that
it does not. Then there would be a number t [-L,L], a number e > 0, and a
subsequence such that Ik[n]-(t)- k[]-(t)l > e. Since {k[,,]-(t)} is bounded, it
has a further subsequence converging to T [--r, r]. Since
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It- k[](T)[
_< I[] ([;]-(t)) [] ([]-(t))l + i[] ([]-(t))

we can use Lemma 6.26, Lemma 6.41, and inequality (6.48) to deduce that t k[](T),
a contradiction. Thus k[(,] -1 converges pointwise to k[n] -1. That this convergence
is actually in the norm of C, follows from Lemma 6.41 because the inequality

(6.53)

rains k[n]’ (k[n]-l(s)) rains lea(s)[ 2 minclz Ig[n]’(w)

together with (6.38a), (6.46), and the hypothesis that [l,[l,a, [lll,a < c imply that
there is a number C depending on ( such that

(6.54)
We now turn to the proof of (6.45). In view of (6.48), we can use Lemmas 6.26 and
6.41 to show that k[(n]’ converges uniformly to k[(]’. Since

I[]’ ([1-()) []’ ([1-())
(6.) < I[]’([]-()) []’([1-())1

+ I[]’ ([]-()) []’ ([]-())
we can use the continuity of kiWI’, the uniform convergence of kiln]’ to kiWI’, and
the pointwise convergence of kiln]- to k[] -1 to deduce that (6.45) holds pointwise.
Conditions (6.48), (6.54) imply that there is a number C depending on such that

(6.56)
Property (6.45) now follows from another application of Lemma 6.41.

Having collected these technical results, we are now ready to put them together
in the following lemma, which leads immediately to the proof of Theorem 4.15.

LEMMA 6.57. Let {n, Un,Pn} be a sequence bounded in [{ E Z+: (4.3a) holds}
nC,] x 2 and let there be a number a E (0, 1] such that this sequence converges in
the norm of C, 2 to {,U,P} C [{ C Z+ (4.3a) holds} n C,] 2. Then
for each e (O,a), the functions g2’(n(’)) and p[n, Un,Pn], defined in (6.32), (6.33)
converge to Y2’((.)) and to pie, U,P] in the norm of C,.

Proof. Since t2[]’(z) Y2[ + a]’(z +a) for all real a, there is no loss of generality
in assuming that 0 e :Z’[], 2"[n] for all n. Then just as in the proof of Lemma
6.43, we can show that there are positive numbers h, h2, depending on , such that, n e Z+(a,h, h2) for n sufficiently large. In particular, Il, I’1 are everywhere
positive. It follows from Theorem 6.24 that g[]’(0), g[n]’(0) - 0 and from Lemma
6.26 that k[]’, k[n]’ are everywhere positive. Consequently the corresponding flow
variables can be defined as in (6.32), (6.33). The convergence of the terms involving
the function k follows from Lemmas 6.26 and 6.43. Let us identify glen] with fn of
Lemma 6.41. We choose m 1 and replace I-L, L] with cl :D. By (6.38b) and Lemma
6.23, fn meets the hypotheses of Lemma 6.41. We thus conclude that glen]’(0) ---*
g[]’(0). El

Proof of Theorem 4.15. Clearly Z Z+ U Z-, Z+ g Z- O, and
are both open and closed in 2; with respect to the C-norm. Hence it suffices to prove
the statement when Z is replaced with Z+. Now Z+ is the disjoint union of those ’s
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for which Re ((+/-L) > Re (0) and of those ’s for which the reverse inequality holds.
It suffices to consider just the former subset of Z+.

We must verify that (6.32), (6.33) have the requisite properties. We use (3.6a).
That U-1Y2’((.)) is independent of U follows immediately from (6.32). Let 5 be any
positive number. The continuity of

C2 gl { E Z+(5) (4.3) holds, Re(+/-L) > Re(0)} IU-lw[, U]I CO

p[.,.,.]: C2 N { e Z+(5): (4.3) holds, ae(+/-n) > Re(0)} x R2 CO

follows from Lemma 6.57. To prove the compactness, let {n, Un, Pn} be a se-
quence bounded in C, N{( e Z+(5): (4.3a) holds, ae(+/-L) > ae(0)} xR2. Since
C, is compactly embedded in C1,a for a (0, 1), there is a subsequence converging
in the norm of C1, x R2 to {, U, P}. Since In(S)- n(S2)I <_ sup IInll,lS
and since In(sl)- n(82)1

_
5(7(81,82) (cf. (4.8)), we find that e C1, n Z+(5/2).

Since Re (,,(+/-n) > Re Cn(0), it follows that Re ((+/-n) >_ Re (0). Hence the injectivity
of E Z+(5/2) implies that Re (+/-L) > Re (0).

Lemma 6.57 thus implies that IU-w[n, U]I and P[(n, Un,P,,] converge in the
norm of C,n, which is compactly embedded in CO

7. Proof of the Global Implicit Function Theorem. We deduce the Global
Implicit Function Theorem 5.1 from the following theorem.

THEOREM 7.1 (Alexander and Yorke (1976)). Let 2( be a Banach space. Let
F Xm A’ be continuous and compact with F(O, O) O. Let I denote the identity
operator on X. Let the Frdchet derivative I F (0, O) 2d X of x x F(x, )
at (0,0) exist and be invertible. Let $ =_ {(x,) e A’ Rm x F(x,)}, let
o be the connected component of S containing (0,0), and let o+ be the one-point
compacti]ication of o. Then there is an essential map (i.e., a continuous map not
homotopic to a constant) from o+ onto the m-dimensional sphere 5m whose restriction
to o \ {(0,0)} is inessential. Moreover, o+ contains a connected subset o+o that
contains (0, 0), that has the same properties as ,o+ with respect to essential maps onto
5m, and that has the property that each of its points has topological dimension m.

Remarks. That each point of $0+0 has topological dimension m was observed
by Alexander and Antman (1981). Alexander and Yorke (1976) actually stated the
somewhat stronger result that the conclusion of Theorem 7.1 holds when the domain
of F is a set/ in A’ Rm that is homeomorphic to X Rm. (Alexander and Antman
(1981) made an analogous assertion.) We could reduce the more general problem to
Theorem 7.1 provided that /4 and F admit a homeomorphism from 5/ to A’ Rm
that preserves (i) the fixed-point form of the equation and the distinguished role of
the parameter in R", (ii) the compactness of the appropriate operator, and (iii) the
existence of an invertible partial Fr(!chet derivative at a base point. Problems that
admit such homeomorphisms must have very special forms. Thus we believe that the
stronger result of Alexander and Yorke (and the corresponding result of Alexander and
Antman) do not hold without further qualification. Since our problem apparently fails
to have the requisite special form, we resort to Theorem 5.1, a corollary of Theorem
7.1, which not only retains much of the force of the stronger version, but also applies
to a wider class of domains and operators. Continuation theorems related to Theorem
7.1 are given by Fitzpatrick, Massabb, and Pejsachowicz (1983) and by Ize, Massabb,
Pejsachowicz, and Vignoli (1985).
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Proof of Theorem 5.1. The result about 3 in a neighborhood of (0, 0) is a con-
sequence of the classical Implicit Function Theorem in Banach space. Let us first
suppose that the first statements of (ii) and (iii) do not hold. Then the first statement
of (i) must hold. We prove the rest of statement (i).

Let E > 0 be given. We choose e* accordingly. Since X x m is a Banach space
and thus a normal topological space, Urysohn’s lemma implies that there exists a
continuous function

such that

X x Rm (x,A) (x,A,e) e [0, 1]

(7.3)
(x, A, e) 1 for (x, A) e O(e),
v(x, 0 (x, e x x \

for each e e (0, e*) (provided that O(e/2) X x Rm, which we may assume. We shall
apply Theorem 7.1 to the mollified equation

(7.4) x (x, A, e)F(x, A).
Let

(7.5) 8(e) _= ((x, A) e X x m: (7.4) holds}
and let ,o(e) be the connected component of 8(e) containing (0, 0). We reduce our
proof to a sequence of lemmas. The properties of imply the following lemmas.

LEMMA 7.6. Let 0 < e < e*/4. Then S N O(e*) S(e) q O(e*).
LEMMA 7.7. Let j[ be an open subset of a metric space J) and let C be a closed

connected subset of J; with C q cl A compact and C \ A . Let x E C N ,4. Then there
exists a connected subset C1 of C clA such that x e C1,

Proof. The connectedness of C suppports a simple proof by contradiction that
C q OJ[ and x are not separated in C q cl jr. Hence a well-known result from topol-
ogy (cf. Alexander (1981, Cor. 4)) implies that x and
clA.

LEMMA 7.8. Let ,o be bounded, let 5’o C O(e*), and let 0 < e < e*/4. Then
So

Proof. By Lemma 7.6 ,o C S C O(e*) S(e) R O(e*) C $(e). The connectivity
properties of o and So(e) then imply that So C So(e).

We now prove the reverse inclusion. The compactness of F on O(e) and the
boundedness of 8o imply that 8o is compact. Since So C $ q O(e*), it follows that

(7.9) d dist{$o, X x m \ O(e*)} > 0.

Let

(7.10) ,4-- {(x, A) e X x m" dist{(x, A),80} < d/4}.
Clearly, j[ is open and bounded and ,o C ,4 C (.9(e*). We now prove by contradiction
that So(e) c clA. Suppose that there were a p e So(e) \ clA. Since F is compact
on A’ Rm, we find that So(e) q cl j[ is compact. Lemma 7.7 implies that there would
exist a connected subset 81 (e) of o(e) gl cl,4 such that (0, 0)
Since 0 < e < e*/4, Lemma 7.6 implies that 81(e) C S0(e)
$ O(e*). Thus Sl(e) C S. Since (0, 0) 81(e) and S(e) is connected, it follows
that 81(e) C 8o. Hence, 8o 0A 0. But this is impossible because ,4 is an
open neighborhood of 8o. Thus S0(e) CclA C O(e*). Lemma 7.6 now implies that
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S0(e) C ,(e) N O(e*) , N O(e*) C S. Since S0(e) is connected, contains (0, 0), and
is contained in ,, it follows that S0(e) c So.

Since Lemma 7.8 and the compactness of S0 imply that o(e)U{c} oU{c}
So+ (with c isolated), we can apply Theorem 7.1 to (7.4) to deduce statement (i) of
Theorem 5.1. The mollification argument we have used enables us to apply Theorem
7.1 directly to (7.4) in order to obtain statement (ii).

Acknowledgment. We are grateful to J. C. Alexander and J. A. Hummel for a
number of helpful comments. The work reported here represents a significant extension
of part of the doctoral dissertation of Lanza de Cristoforis (1987).
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THE POISSON EQUATION WITH NONAUTONOMOUS SEMILINEAR
BOUNDARY CONDITIONS IN DOMAINS WITH MANY TINY HOLES*

SATOSHI KAIZU

Abstract. This paper discusses asymptotic behaviors of the solution of the Poisson equation in domains
with many tiny holes, where the number of holes grows to infinity and the diameter of each hole tends to
zero. The solution satisfies a nonautonomous semilinear boundary condition on fragmentary boundaries of
many tiny holes. Sufficient conditions are given, under which an extension of the solution to the domain
with no hole converges, and the equation satisfied by the limit of the extension of the solution is determined.
The convergence properties of Radon measures are applied, and also the convergence properties of the
resolvent of subdifferentials together with variational inequalities are applied.

Key words. Poisson equation, semilinear boundary condition, domains with many tiny holes, homogeniz-
ation, variational inequalities, subdifferentials, asymptotic behavior

AMS(MOS) subject classifications. 35B25, 35B40, 35J05, 35J20

Introduction. Let l) be a bounded domain in EN, N => 2, with smooth boundary
0I and let Y [-1/2, 21-]. Let T be a starlike, subdomain of Y, with smooth boundary
0 T, such that T 9 0 and, with some c*> 1,

(O.O)a C* T Y.

We simply denote by e and re the values of each sequence of {e} and {re} of positive
numbers decreasing to zero, such that e/2_-> re. Let yi =pie + eY and T P re T,
where Pe N, are lattice points of edge length e, by measurement in a parallel
direction to each coordinate axis, i.e., eT/N= {P’e, e N}. Let

(0.0)b T (.J { Tie p + c*reT c fl-} and 12 f\T
We call T the holes in 12e, and a domain with holes (Fig. 1). Let/3 be a maximal
monotone graph in Ex such that/3(0)90. Let f L2() and gH1/2(OT). We set
g(x)=g((x-p)/r) for xOTe.

We consider the boundary value problem (P)"

(0.1) -Aue =f a.e. in fe,

(0.2) Ou/Ov+ afl(ue) g on 0T,

(0.3) u=O on 01,

FIG.

* Received by the editors October 10, 1989; accepted for publication (in revised form) October 3, 1990.

f Department of Computer Science and Information Mathematics, Faculty of Electro-Communications,
The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu-shi, Tokyo, 182, Japan.
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where v denotes the outer unit normal to Of and a denotes a positive constant. We
call g a nonautonomous term, which is usually called a nonhomogeneous term in
linear cases. Let V {v Hl(f); vl0f=0}. Let us recall that there exists a unique
weak solution u V f’) H2(f) (see Brezis [4]). In particular, the boundary condition
(0.2) includes the following conditions"

(a) Dirichlet’s homogeneous boundary condition (an autonomous boundary
condition), flo()= for : # 0 and riD(O)= R.

(b) Neumann’s boundary condition,/3(:)= {0}.
(c) Robin’s boundary condition, /3R(:)= :.
(d)p /3(:) :1:1 p-1 with p > 0.
(e) cll--< I()1--< c=ll and/3(:) C(R) with positive constants C and C2.
(f) Heaviside’s boundary condition"

f{l} for :> 0,

/3H(:)=[0, 1] for so=0,
{0} for < 0.

(g) Signorini’s boundary condition:
for :> 0,

fls(:) [0, ) for := 0,

({0} for : < 0.

Thus, condition (0.2) covers a wide class of nonautonomous nonlinear boundary
conditions (see Remark 0.1).

Remark 0.1. The type of (0.2) contains the homogeneous Dirichlet boundary
condition as seen in the above (a). But it does not contain the nonhomogeneous
Dirichlet boundary condition, which is represented by (a)’ below using flo with c 0.

(a)’ Dirichlet’s nonhomogeneous boundary condition (a nonautonomous bound-
ary condition), 3()=3D(--C) for --cD(flD) (=D(fl)) with c0.

For the definition (0.0) ofthe domain 12, later we show that there exists a sequence
{u e H(12)} of extensions of {u}, bounded in the space H(I2). Our aim is to seek
sufficient conditions, under which u converges weakly in H(12) as e-->0, and to
determine the equation in 12, satisfied by the weak limit u of u.

For the autonomous case in condition (0.2) with/3 such as (b), (c), (d)p, and (e)
we have three parameters c, a, and 0a, 0<_-h <_-N, that play an important role in
determining the behavior of u. Here

0x lim 0x,,
e-->0

where

(0.4)

(0.5)

Ox={r/eu for O< =< N,
e-(log r-l)-+ for O,

6=limi and cT=r,
0

and

(0.6) a =lim a and a aOr_,.
0

All limit equations on u" are drawn in a picture (see Kaizu [15]).
Thus our question is whether these parameters , a, and 0h are still available for

the nonautonomous case in (0.2) with/3 such as (b), (c), (d)p, and (e), and whether
they are also applicable even for (0.2) with fl such as (f) and (g).



1224 SATOSHI KAIZU

Recently, Conca and Donato [10] and Cioranescu and Donato [6] have shown
that no different limit equation on u appears in the nonautonomous case of (0.2)
with fl such as (b) and (c), provided that Ig 0, where Ih IoT g dcr. However, if Ig 0,
the behavior of u differs greatly from that in the autonomous case.

The other purpose of this paper is to understand the works of Conca, Donato,
and Cioranescu [6], [10] in a unified way under the boundary condition (0.2).

We review some works around the case of homogeneous linear boundary condi-
tions, i.e., autonomous linear boundary conditions. Systematic works are done by
Khruslov in [17] and [18] for the Dirichlet boundary condition, and in [19] and [20]
for the Neumann boundary condition. In his work 18], strongly elliptic operators of
order 2m, m _-> 1, are considered. He shows that the parameter 0N-2m plays an important
role together with the notion of capacity, in the process e --> 0. Vanninathan [24], [25]
and Cioranescu and Saint Jean Paulin [8] have studied the Neumann boundary
condition case. In particular, Yanninathan [24], [25] has considered the behavior of
eigenvalues of the Laplacian. The homogenized operator ’ is introduced by each
study of Cioranescu and Saint Jean Paulin [8], Khruslov [19], and Vanninathan [24],
[25] for "the Laplacian in domains with many tiny holes," and there it is shown that
0 is critical. Different approaches are given by Rauch and Taylor [23] for the Laplacian
with a general linear boundary condition, and by Cioranescu and Murat [7] and Ozawa
[22] also for the same operator with the Dirichlet boundary condition. For the Robin
boundary condition Kaizu considered in [12], under the special form of T (i.e., T is
a ball) the author has shown that the parameter ON-1 is important. We see in 15] that
it remains true even for a general T.

The Laplacian under autonomous nonlinear boundary conditions is considered
by Kaizu [13]-[16]. In [16], Kaizu has shown that the Hausdorff dimension and the
Hausdorff measure play some roles, where domains {} in 16] are more complicated
than those presented here. An interesting family of domains has also been studied
recently by Damlamian and Donato 11].

Among various methods for our asymptotic problem, we apply and extend those
of the notion of epi-convergence of functionals. Several ideas, inequalities, and some
special test functions have appeared in Attouch [1], Cioranescu and Donato [6],
Cioranescu and Murat [7], Cioranescu and Saint Jean Paulin [8], Conca [9], Conca
and Donato [10], and Vanninathan [25].

Notation. We denote by C, C1, C2," , positive constants which are independent
of e. By I1 11 , we denote the Lp norm, (G Iv[ p dx) 1/p" In particular, we simply denote
the norm by I111 if p 2.

1. Theorems. Let E" V - H(O) be a linear bounded extension operator such that

IIV(Ev)tlT, <--_ CIIVvltn and IIEvll
where C is independent of e. For the existence of {E} see Corollary 3.3 (for a special
case p 2 and e---r as e 0; see also 4 of Cioranescu and Saint Jean Paulin [8]).
All the results in our paper are available for such a family of extension operators. But,
to fix the extensions V - H(f) in a simple and quick way, we adopt the following
special mapping.

Let u e H(I) be the extension of the solution u of (P) defined by

Au’=O on T and u=u on cgT.

We consider the following conditions.
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(/3-0)a /3 is a monotone graph in R xlR, i.e., for r/i/3(sci), iD(/3)=
{: R;/3() # }, i= 1, 2, we have

(n2-- n,)(2-- 1) O.

(/-o) /3 is maximal in the family of all monotone graphs in R x R, and further
we suppose that/3(0) 90 and D(fl) {0}.
/3 is continuous in D(/3) except at finite points.
Let/3(:) r/, where r/ fl(sc) and =min for D().
We have C1 -> 0, C2 > 0, and r -> 0 such that

I/3(:)1 <= C, / C=[[ for all O(fl).

(,8-3) We have that C > 0 and s > 0 such that

_-> fill for all : D(fl).

We do not consider Dirichlet’s boundary condition (see (a) in 0); thus, D(/3) # {0)
in (/3-0) is supposed. The nonnegative value r is regarded as the minimum exponent
satisfying (fl-2), while we regard s as a certain positive number satisfying (/3-3). If
D(/3) c (0, az) is a bounded interval, C2 and r are determined by the graph of flo(:),
: D(/3)n (-c, 0). Now, for a fixed r we simply set

I! (r) fr N->3’
(1.1) p= for N=2 and r=0,

number of [c(r), 2) for N=2and0<r<c,

where p(r) 2N(N+ r(N- 2))-1 and c(r) =max {1, 2/(1 + r)} (see the proofofLemma
4.2). For N >_-3 we have 2 >_- p(r)>_- 1 if and only if0<_- r <- N/(N-2). Let p*= p/(p- 1)
with convention 1"= c, and let

(1.2)
(re/E) p-1)N/p for l<=p<N,,
(r/e)-l[log (coe/r)] (N-1)/N for p N,

where co=max {N1/Z/(2lyl); yaT}. We give rh), which plays a scale for the size of
each hole Ti in 1, as follows:

rh> e N/h for O< A_--< N and r exp {--E-N/(N--1)}.
The inequality 0 <-X </z <-N implies that r as e--> 0. We get re ---r as e-> 0
if and only if 0 < 0h < o, rh) << re as e --> 0 if and only if 0h , where 0h is determined
by (0.4).

1.1. Estimates.
THEOREM A. We suppose condition (-0) holds. Then we have

0T

Let

(1.3) b lim be and be ON--l,e/Ol 1Is
0

THEOREM B. In Theorem A we suppose condition (/3-3) holds. Let tr= s+ 1 and
tr’= min {s, 1}+ 1. We further suppose that f L’’*(II), g6 L*(OT), (0.6) with a--o,
(1.3) with b O, and

r(N-,’) << re <= e as e -> O.



1226 SATOSHI KAIZU

Then u converges strongly to zero in W’’(). Furthermore, we get

iiv.ll < c[llfll,..o-/, .. ;1/,.. ,,-,. + II/11 ,.,.a + b I111 *,o].
THEOREM C. In Theorem A we suppose that Ior g dtr 0 and

r(N-1)<< re < e as e -->0.

(I) We have

IlVu I1, <-- co,,_,,,
(II) In addition to (I) we suppose that D(/3) , (/3-2) with 0 <= r <- 1, and (0.6)

with 0 <- a < oe. Then we have

IIv I1. >-- co,,_...
(III) In (I) we suppose condition (/3-3) and (0.6) holds with a =, O< b <__c. Then

we have

(1.4) IIvu ,.. <= c

(1.5) u. =,,.: <- Cbl/’(O-’/’N_,,+a21/),
and

uT/b’/’’-- 0 in W’’(12) as e -->0.

Remark 1.1. For the bounds in (1.4) and Theorem C(I) we want to know
lim 0N-I,/b1/’. Let

(1.6) ah,=--a(ON_l,) h.

Then we have ON_l,/b/ =_,l/2ss, for s>l= and Or_l,/b =_o 1/’,,, r"= s2, for
0<s<l.

1.2. Convergence.
THEOREM a. We suppose (/3-0), (fl-1), and (/3-2) with

0=<r=<l forM>-3,
r=0 forM=2.

In the case where 1 > r >= 0 with N >- 3, using (0.5) and (1.1) we suppose that

(1.7) c7 < oo, ON-p* 0 and re Cr(eN-p*) as e --> O.

Let c eTa(log r21) (u-x)/u*. In the case where r= 1 with N>-3, we suppose that

(1.8) c7 lim < oo, C70o 0 and re <-- Cr() as e --> O.
e-->O

Let c (log (toe re))1/2. In the case where r 0 with N 2 we suppose that

(1.9) c lim c < oo, k0o 0, and re <-- Cr( as e -> O.
e-->O

Then u7 weakly converges to u in H(I)), where u is the solution of
-Au =f a.e. in 1.

THEOREM b. We suppose conditions (fl-O), (fl-1), and (/3-2) hold with

(1.10)
O<-r<N/(N-2) frN>-3’
O--<r<c forN 2.
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We suppose (0.6) holds with 0 <-_ a <-_ o, and

r(N-o)<<e re < Cr(eN-l) as e - O

Let S(OT) be the surface area of O T. Then u converges to u weakly in H(f), where u

satisfies

(1.11) -Au+aS(or)fl(u)f+Ol_l Io7" gdtr a.e. in a,

for 0 <= a < c, otherwise, if a o, then

u-O a.e. in ,
provided that

(fl-4) j"
+/-

o
fl(:) d:>0 for any 6>0.

1.3. Convergence after renormalization. We have renormalization on ue as follows"

Z Ue/ON--l,e.

We recall (I) and (II) in Theorem C. It is natural to consider the behavior of ze when
ON_l,e’-’)O0 as e-0.

(A) Let h be a fixed positive number such that h _-> r and let

[3e ) [3 ON_l,e)/ OhN 1,e for sc D(/3

where D(fle) ={:; ON_l,e D(/)}. A multivalued function fie satisfies (fl-0) and
(fl-1) as . Each element B of {; 0s_,- oo} also satisfies (-2) with the same r
as ft. We have Be for a homogeneous function of degree h. In this section, one of
the following conditions, (3,-1), (7-2), (7-3), is supposed.

(B) Conditions.
(3,-1) fl satisfies (-2) with (1.10). Besides, D(fl)=D(fle)=R and [fle(:)_

fl(sc)[_--< ce(1 +1:1)’ with ce0 as e0 and O<-t<-_r.

(3,-2) /3 satisfies (/3-2) with (1.10). Besides, D(fl)=D(fle)=R and fle’/3 or
/3e$/3 as e$0.

(3,-3) fl satisfies (fl-2) with r=0, D(fl) =liminfe_o D(fl e) and/e converges to

flo as e 0 pointwise in D(fl) except at discontinuous points of flo.
(3,-4) flo satisfies (fl-0) and (fl- 1).

Example 1.2. Let 0e 0V-l,e. For fl(s) [s[-s, we get fle(s or-h(). We have
(3,-1) with flo= fl for h =r, and flo= fls for h > r. For

1 for _-> 1,
fl(:)= : for0_-<-<l,

0 for =<0,

which satisfies (fl-0), (-1), and (fl-2) with r=0, we have
-h for-->O-1,

e(:)__ 1-h forO<< 01
for ’ _-< O;
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(y-2): fie ,fl/_/as e$0 for h=0; (3’-2):/3e$/3N as e’0 for h_->l; (y-l):
as e-->0 for 0< h < 1. If

v for so=> 1,
/3(s) for0<_-:-<l,

0 for :<=0

is chosen, we have (fl-0), (fl-1), and (/3-2) with r=0. Then

o for 0
e() ole-h for 0<__ <= 0-1,

0 for :<-- 0.

Thus (3’-3) is satisfied with/30=/3s.
(C) The homogenized operator. Let Y* Y\ T* and T* 0NT. Let IY*[ be the

Lebesgue measure of Y*, and let

for 0N 0,
N 02gg=
qij for0<0N--<--l,

i,j=l tgXiOXj

where qij, 1 =< i, j _-< N, are constants defined by qi Y*[ ..VV dy. Here
K Wo, is defined by

V Vv dy + ,v dtr 0 for all v Wo,
Y* OT*

where Wo--{vHl(y*)’,y.ldy=O and v is Y-periodic} and v={v;l<=i<=N} is
the outer unit normal to 0 Y*.

(D) THEOREM C. In Theorem C(I) wefurther suppose conditions (/3-0), (/3-1), and
(3’-4) hold and one of the conditions (3’-1), (3’-2), (3’-3) holds.

(I) We suppose that ah lime ah, < o with (1.6). Then z- weakly converges in
H(f) to z, where z is a unique solution of

(1.12) z

(II) [fah O0 and (fl-4) is satisfied by flo, then z- converges weakly to zero in H(II).

1.4. Convergence for continuous functions ft. For continuous functions fl we have
more results as below for the case where Cr(eN-2)>= r than in Theorem a, and for the

(N--l)case where r(N-2 << re <--tre than in Theorem b, respectively.
THEOREM a’. We suppose that N >-3, and conditions (fl-O), (/3-2), and (/3-3) hold

with C1 O, r 1 s, and (- 1)o below.

(fl- 1)o D(fl R and fl is continuous in

Besides, we suppose (0.5) holds with 6 o, and Cr(N-2>- re with a fixed ON-2 as
e--> O. Then u- converges weakly to u in H(fl) as e--> O, where u satisfies either

--Au + ON_2CTU f a.e. in f for ON-2 <

or

u =0 a.e. in f forON_2--O3,
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where Cr denotes the capacity of T defined by

Cr=inf {IN lVv]2 dx; v HI(RN) and v>- I on T}.
For 6 <, we can have a value C(6, T) also like the capacity of T (for more

detail see Theorem A.1 in Kaizu [15]).
THEOREM b’. We suppose (fl-0), (fl-3), and (/3-1)1 below hold.

(- 1)1 D( and is Lipsehitz continuous.

We also suppose (0.6) holds with O<= a <-o, r(N-2)<< re Cr(N-l). Then uTconverges in
H(I) weakly to u, where u is the solution of

+ aS(OT)(u) =f+ 0_1 f g dtr a.e. in gl for a <,
T

u=0 a.e. in l for a c.
_(N-2) < Crv-1) of in Theorem b’ is slightly widerRemark 1.3. The range e << re

than that of re in Theorem b.

2. Convergence of subdifferentials. To our asymptotic problem we shall apply the
theory of the convergence of a sequence of subdifferentials, described below.

Let H be a real Hilbert space of lower semicontinuous convex functions
[0, m] with q"(0)= 0. We set D(o")= {x e H; q"(x)< m}, which we call the effective
domain of q". Let H" be a closed linear subspace which contains the closure of D(
in the topology of H. Let p" be the projection from H onto H" (see Example 2.3).
Let qo be a lower semicontinuous convex function from H into [0, m], with q(0) 0.
Let D(q) be the effective domain of o. We suppose the following conditions"
(c-1) There exists a sequence {E"} of linear mappings E"" D(q")- D(q), satisfy-

ing the following properties"
(i) p"E"=p" and (x, y) (E"x, p"y) for all x, y D(q");
(ii) If lim sup,+ q"(x")< m, then the sequence {E"x"} is totally bounded.

(c-2) There exists a positive constant 7 such that the strong convergence x"- x,
implies the weak convergence p"x" - qx.

Now, we write tO" (e) q0, if and only if the following two conditions are satisfied:
(e-l) For any x e D(q) we have x" e D(q") such that E"x" x and

q(x) _-> lim sup q"(x").

(e-2) The convergence E"x" - x, implies the inequality

q(x) _-< lim inf q" (x").

It is clear that, for the case E" the identity map, we have o e) qo if and only
if is the r-epi-limit of , where r is the topology of H (see Attouch [1, Prop. 1.14,
p. 30]).

The subdifferential 0q of a lower semicontinuous convex function q is defined
as follows: Oq(x) {ye H; q(z) > q(x)+(y, z-x) for all z e H}. It is well known that
we have the equivalent relation between Mosco’s convergence and the convergence of
the resolvent mappings of the subdifferentials (see [1, Thm. 3.26, p. 305]). Even for
the above convergence we still get the following theorem.
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THEOREM 2.1. We suppose conditions (c-1) and (c-2) hold. Then the following
statements are equivalent:

(I) qn (_AY)__) qO.
(II) Let fn .fo and x be the solution of (h0qgn+ I)x fn, h >0. Then Enx

converges strongly and the limit x satisfies (hOp+ I)x rlf.
(III) Let x" be the solution of (h0p" + I)x" f, h > O. Then Enx converges strongly

and the limit x satisfies (h0p+ rlI)x .
PROPOSITION 2.2. (a) The following statement (IV) is sufficient for the statement

(III).
(IV) Let f"-f and x be the solution of otpn(x) fn. Then E"x converges

strongly and the limit x satisfies Op(x) qfo.
(b) If ((0pn)-1} is uniformly bounded, the statement (IV) is necessary for (II).
Example 2.3. Let H-L2(f) and V- HA(I). We denote by {en} a sequence of

positive numbers decreasing to zero. Let f" be a subdomain of fl defined by (0.0).
We consider H" LE(n), as a subspace of H, which consists of functions of H,
vanishing outside fn. We write V"= V with e- en. Let p", : H [0, c], be lower
semicontinuous convex functions defined by

"(v)=lJa" Ivvlz dx/2 forv V",

otherwise,

qO(v) =Ifo (Vv, Vv)odx/2 for ve V,
otherwise,

where

and

N Ov Ov
(Vv, Vv)o= E Q

i,j= OX OXj

the Kronecker delta for ON O,
QiJ

qij, constants given in 1.3 for 0 < ON <---- 1.

For v V" we define E"(v)=v V, where Av-=0 on T and v-= v on OT with
e e, (we can choose another extension family {E"} in Corollary 3.3). Let p"v X"v,
v H, where X" denotes the characteristic function of f". Then (c-l) is satisfied by
combining Corollary 3.3 with the Rellich theorem. We see that X" - Y*I( ) weakly
star in L(f) as n. We consider (P) with a=0 and g-=0, and have Oo"(u")f.
According to Cioranescu and Saint Jean Paulin [8] and Khruslov [19], we have that
u u weakly in H(Ft) as e-0, where

-Au =f in for 0N O,

Ygu r/f in f for Ou > O.

The convergence of u to u remains true, even iff is replaced with f", which strongly
converges to f, in the equation Op"(u) f. By Proposition 2.2(a), we get

(2.1) q. (e) .
We consider a perturbation of (2.1) as follows.
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PROPOSITION 2.4. We suppose that tp (e). > (0. Besides we suppose that j", jo. H->
[0, oo], satisfy the following conditions"

(i) qn +jn is a lower semicontinuous convex function for each n I.J {0}.
(ii) We have maps F’D(t#n)-> D(q

D(q), and EF"x->x for any E"x"-> x D(tp+j) as n->3.

(iii) j(xn)->j(x) asn ->foranysequence {xn} such that sup {q"(x")+j"(x")} <
co and E nxn "-) X.

Then we get

q +j
(e)

(0
0 +jo.

Proof of Theorem 2.1. It is trivial that (II)- (III). We show (III)- (I). Let J-
(hOq’+ I)-. The Yosida approximation of q, h > 0, is defined by

q(x) inf {q(y)+ [[y x[[:/(2h); y H}

for all x H. The following properties are fundamental.
(a) q is of class C and its derivative A is Lipschitz continuous with constant

1/h. Besides we have [Ax[<-_ly[ for all yOnq(x), xD(Oq).
(b) q(x)’q"(x) as A$O.
(c) p(x) AIIAxxI]2/2 + "(J"xx).
(d) AA + J7 I.
(e) p" s limx_,o J.
(f) A J,A.
LEMMA 2.5. Under (c-2) and (III), we have
(a) (Ay,x")(A/,y,x) as no,for any yH, x"D(o"), E"x"x,
(b) (Ay,x)-(y-p"y,x)/h(A/,y,x) as no,for any x and yH,
(c) (Ay,x)(A/,y,x)+(1-rl)(y,x)/h as noo, for any x andy H.
Proof. By (c-2) and (III), we have E"Jy

By (d) we get Lemma 2.5(a) as follows"

(Ay, x’) [(y, p’E’x) -(E’Jy, p’Enx’)]/A

-> r/[(y, x)-(Jx/,y, x)]/h (A/,y, x).

Combining (d), (c-2), and (III) with (Jy, x)= (p"E"Jy, x), we get

(Ay, x)= [(p"y-p"EnJ"y, x)+ (y-p"y, x)]/ A,
0(Axy, x)-(y-p"y,x)/h-->(Ax/,y,x) as n --> 0.

Lemma 2.5(b) implies (c) together with (c-2).
LEMMA 2.6. Under (c-2), (III) implies the following:

o (x),(a) lim,_ tpx(x)- (]]xll2-1im,_ Ilpnxll2)/(2A)= qgx/n
(b) lim,_oo a(x) o

Proof. By (a), Lemma 2.5(b), the Lebesgue convergence theorem and q"(0)=0=
(0), we get

,t, ,(x)- (llxll=- llp"xllZ)/(2A)

[(A2(sx), X) S-I(x --pnx, X)] ds
o

o x ).--> (A/,(sx), x) dx

This.shows (a) of this lemma. So, we get (b) of this lemma, lq
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First we show (e-2). By (c), (d), and (f) we get

q"(x") >= q "(J"xx) + (Ax, x" J]x)

(q(x) AIIA]xlI2/2) + (Ax, x J"xx)+ (A]x, x" x)

,7(x)+,xllaTxll=/2 + (a]x, x" x)

,(x)+(x-JTx, ATx)/2 +(A"x, x"-x) BT(x).

Applying (d), Lemma 2.6(b), and (a) and (c) of Lemma 2.5 we have

BZ(x) -, /,,(x) / ,x IIm/,,xll2/(2 r/) + 1 r/)( 1 A) IIx 112/(2)
as n . Thus, we get

o (x).lim inf q (x) _->

By (b) we have shown condition (e-2).
Next we show (e-l). It suffices to show that, for any subsequence, still denoted

by {q"}, there exists a subsequence of {q"} satisfying (e-1). By (e) we have A, such
0 1,that I]x-J/,xll<=(2n) A <,,, ne. By (IXI) and Lemma 2.6(a) we get m’(n) such

that o o (x)+Jo/(x)- E Jo(x)ll--< (2n) -1 and qx.(x)-(llxll
1In for m>=m’(n). For X"’=Jxm:(x), n’=-m’(n), we get IlE"’x"’-xll<-_l/n. By (c), we
have

o 4_1_. n’

"’(x"’) + (11 A.aox112"’ / lip "’x = x I1=)/(2A.)
qg"’(x"’)+ C](x)/(ZA,,).

By (d) we have CT(x)= IlJ?,’.xll2+ IIp"’xll-2(x, JT’.x). Since p"’x x +(p"’x-x), we
get

cT,’(x) "’ "’=(Jx,,x, Jx,,x-x)-(Jnx’,,x-p" x,x)

}lJ"x’.x-x}l 2 II(i-p"’)xll 2

Thus, by (b) we have

( o ,(x)+)>lim sup q"’(x"’).q(x) _-> lim sup q./

Since E"’x"’ x, we have shown (e-l), and so, (I).
Finally, we show the implication (I)- (II). We have

(2.2) q"(z)>-"(x")+A-l(f"-x",z-x")

for all z H. Since J is contractive, {x"} is bounded. By o" (0) 0, together with (c-l)
and (2.2), {E"x"} is totally bounded. We extract a subsequence, still denoted by {E"x"}
such that E"x"x as nc. By (e-l), for zD(q) we have z" such that E"z" z as
n-, and lira sup,_ q"(z")<=q(z). Applying (c-2), we get

(f" x", z") (f" E"x", p"E"z") rl(f- x, z),

IIx" 2 (p"x", E"x"), Ilxll 2 as n .
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Putting z z" into (2.2) and applying (e-l) and (e-2), we have

p(z) >= lim sup

-> lim inf o" (x") + A-17 (f- x, z x)

> qg(X) + A-1 r/(f- X, Z X).
o oThis shows Jx/nf= x. Thus, the full sequence {E"x"} converges to Jx/nf as n

This means that (I)- (II).
Proof of Proposition 2.2. (a) Let x" be the solution of (AOq"+I)x"f i.e.,

Oo"(x") (f-x")/A. Since J] is contractive, {x"} is bounded. By the definition of0q"
with (c-l), we see that {E"x"} is totally bounded. We extract a subsequence such that
E"x"-x, and we also have that Oq(x")(f-E"x")/A. By (IV) we get Oq(x)
q(f-x)/A. This means that (III) is true.

(b) Let x" be the solution of Oq"(x")f". Since {f"} is bounded and {(0q")-1}
is uniformly bounded, {x"} is bounded. By the defintion of 0q" with (c-1), {Ex} is
totally bounded. We suppose E"x - x. We have (0q" + I)(x) f" + E"x" and f" +
E"x -f+x as n-.. By (II) we get (Oq+qI)(X) q(f+x). This means that (IV)
is true.

3. Lemmns. Recall that c* be a constant larger than one given in (0.0). Let A(T)
be an annular set c* T\ T.

LEMMA 3.1 (Rauch and Taylor [23, Ex. 1, p. 40]).
(a) For p[1,), we have a constant C and extension operators

ET,p" WI’p(A( T)) - WI’p(c*T), such that

(i) < CIIVvlI ,A(  ,

(ii) =<

for all v WI"p(A( T)).
(b) For p 2, we can replace Er,pv with v-- in (i) and (ii) above.
Remark. The extension operators in Lemma 3.1(b) are used in [15]. There is

another way to construct extension operators, satisfying properties in Lemma 3.1, due
to Cioranescu and Saint Jean Paulin [8].

Let r* r/e, T* r* T and Y* Y\ T(e)*. We often write T*(e) T* and
Y*(e) Y*

COROLLARY 3.2.
(a) Forp 1, o), we have a constant C and an extension operator E.p WI’P(Y*)

WI’P(Y), such that

(i) <

(ii) <

for all v e WI’p( Y* ).
(b) For p 2, we can replace E,vv with v in (i) and (ii) above.
By the method of scaling together with Lemma 3.1 we see

and
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Thus, the above corollary is true. By the same way we also obtain the following corollary
under (0.0) for our sequence {f}.

COROLLARY 3.3 (uniform extension property, [15, 4]).
(a) We suppose (0.0) holds on {f}. Then for p [1, oo), we have a constant C and

extensions E {v WI’p (12); v 10 0} W"p(), such that

(i) IlV(Eo)ll,-r CIIVvll., and

(b) For p 2 we can replace E,v with v- in (i) and (ii) above.
Remark. Corollary 3.3(a) with p=2 and er as e0, is introduced by

Cioranescu and Saint Jean Paulin [8] and ruslov 19]. Their results are also extended
to the case where e >> r. The method of scaling for extension mappings in domains
with many tiny holes has been previously applied by Rauch and Taylor [23, p. 40].

COROLLARY 3.4. For p 1, ), we have a constant C such that

for all v WI’p() such that vlOO=0.
LEMMA 3.5. For p (1, ), we have a constant C such that

I111,*) cIlvll,*)

for all v WI’p( Y) such that y.) v dy O.
Proo We suppose the contrary. Let u. W’P(Y) and a sequence

such that Y*(n) Un dy =0 and Ilu.llp, y..) 1 > nllvull,*) for n, where Y*(n)=
Y with e e.. We have extensions v. E.u. W’P(Y) satisfying (i) and (ii) in
Corollary 3.2, where E. Ep, with e e.. Note that y v. dy= r..)v. dy= c. and

vdy Clr*(n)l’/*llv.ll,..)O ase0.
Y

For ,o . c, we have $ ,o dy 0, ,o11, 1 and I1 V.,oll. 0 as n . There
exists a subsequence, still denoted by V.,o, such that V.,o Vo in LP(Y). Then Vo 0
almost everywhere in Y and this contradicts to Ilvoll. 1.

The next lemma appeared as Lemma 6.1 of Conca [9] in the case where r e. It
is proved by the same spirit as in [9].

LEMMA 3.6. Let p 1, N]. We have a constant C such that

Ilvll...< co-’/ +

for all v V.
LEMMa 3.7 (Conca and Donato [ 10, Lemma 2.1]). Forp [ 1, ) we have a constant

C such that

vll,. <= C{c(, )’/’llVvll .. + 0 ’/’-,,11 vil,..}.
Here c(r, e)=r-eP-forp> N, c(r, e)=ci(r) forpN,

c(r)_ ON-,
ON-p,e

j" r- for 1 p < N,
(r log r)- forp N.
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We consider test functions introduced first in the case where r e with p 2, by
Vanninathan [25]. Let v { vi; 1 -< -< N} be the unit outer normal to 0( Y\ T*) and let

Av=-., 0
i=1

p--2

N

Bv=E v
i=1

LP*(OT*)
Oyi

for v WI"p(Y*) (note that the mapping vLP(Y*)Iv[ p-2

valued duality mapping). We consider (Q*)"
V LP*(Y*), is the singly

AO, -C(e), a constant, in Y*,

(BO)(y) g(y/r*)

O dy =0,
Y*(e)

for yeOT*

O is Yperiodic,

where C(e) satisfies the compatibility condition, i.e., C(e)--(r*)N-11y*1-1o g dtr.
LetX {v WI"p( *Y ), v is Y periodic}. We consider (Q*) in a general form.

We consider the following problem. For hlLP*(Y*) and h2LP*(OT*), find
v X/N such that

(3.1) Av hl inY* and By=h2 onOT*.
When there exists a solution v, we get a compatibility condition

(3.2) I hdy+fo h2do’=O.
Ye* T*

We show that there exists a unique solution v X/R of (3.1) under (3.2).
Let X* be the dual space of X, which is reflexive. Generally, for a fixed reflexive

(respectively, uniformly convex) normed space E, we can say that any closed subspace
of E, or any quotient space modulo a closed subspace is also reflexive (respectively,
uniformly convex). Let F= {l X*; (l, 1)=O}. We have R={vX;(l, v)=0 for all
e F} and {X/N, F} as a dual pairing. Let p be a lower semicontinuous convex

function, X/N [0, m], defined by

(v)=p-’ f IVv[pay.
YZ

Since II vll , : is a norm on X/N, we have as We
have A( =Oq):X/g- F with its range, R(A)= F and have the bounded inverse of A,
A- (see, for example, Barbu [2, Prop. 2.6, p. 56]). Generally, if we denote by I’1 a
norm on a reflexive space E with its dual E*, we have the duality mapping E x
G(x)--0([ .[P/p)(x) E*, 1 <p<. When E* is strictly convex, G is single-valued
and demicontinuous (see [2, pp. 13, 53]). In our case X/N is isometrically isomorphic
to a closed subspace Z of Lp(y.)N and the dual space F is isometrically isomorphic
to the space Lq(Y*e)N/Z+/-, where Z+/- is the polar set of Z in Lq(Y*) Thus, F is
uniformly convex, so, strictly convex. We see that A and A- are single-valued.

The operator A with 2 _-<_ p < c, is frequently considered, while A with general p,
1 < p < o, and the boundary operator B is not so often seen. Here, for this point we
cite only Proposition 4.1 of Lions [21, p. 205].
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(3.3)

for all v X.
Let

Therefore, we have a solution of (Q*), which satisfies

I N

Y*(e) i=1

p 2 0lff (91)
dy
Oyi Oyi

Y*(e) T*(e)

K,p for p 1, N],
K’P= (r*)N-1 forp (N, ).

LEMMA 3.8. Let Ig oT g dtr and g LP*(c T) with 1 < p < o.
(a) We have a constant C such that, for all v WI’p( Y*),

g*,=l Oy, Oy,
de c(lIl+

(b) Let y {y; 1 N} be a vector function defined by

where y x p / e and x p + eYrT) for all . en, for v W’p 0 we have

To show this we need the lemma below, which is proved as in the proof of
Lemma 3.7.

LEMMA 3.9. For q 1, ) we have a constant C such that

Ilwll aa,o* =<C{c-(r)llwll*,+(r)-llwll,*)
for all w wi’q(Y), where c-(r)= c(r, 1), c(., is as in Lemma 3.7.

ProofofLemma 3.8(a). We suppose vX. By (3.3), Lemmas 3.5 and 3.9 with the
H61der inequality applied to y. vdy and or* g(y/r)v(y) d(y), we get

y. i=1 oyi oyi
dy

cIlvll,.[Ic()l + Ilgllr,o{(r)- +(r)s-/P*c-(r)l/P}]

c(I/l + Ilgllr),llvll,*.

Substituting v into the above inequality, we have

(3.4) I1 I1- < c(lIl+p,Y*(e)

For v WI"p(Y), the inequality in (a) also stands.
Proof of Lemma 3.8(b). is directly follows (3.4).
Let ff U {T } and ff ff. Let g be a signed measure defined by

(g, C)= f gd for ff Co(S).
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Using we introduce test functions Pe c Wllcp r" and Ye c L{’*(We) by Pe (x)
e((x-pie)/e), ye(X)=(Vpe)((x--pie)/e) for all xpe+(eY\reT), iN. We get

ePAqe =-C(e) in re,
ep-lBqe ge(x) on0ff-e,

e is eY periodic, and

(3.5) (gete, V) ON-l,elg f v dx/I Y* + f 3,V v dx

for all v WI’p(RN) such that supp v is compact (for (3.5) with p 2 and e "re see
(11.6) of Vanninathan [25]).

LEMMA 3.10. Let p (1, do).
(a) In the case where p > Nwe suppose only that e O. In the case where p 1, N],

we suppose that ON_p --(20, as e- O. Then we have

(3.6) gd3e/ ON-l,e " Ig dx in W-I’P*(I)

(b) If aet 7 0 and a < as e O, then we have

as e -O.

(3.7) ae6e -- a dx as e 0 in W-I’P*(-).

(c) Let (ge6-, st) o7- ge_dtr for C(f). Then we have all the results in (a),
(b), even if 6e is replaced with 6e.

Assertions (a) and (b) follow from (3.5) with Lemma 3.8(b), while (c) follows
from the estimate If f’l (3-e \ T)[ <= clonl .

It is a generalization of Theorem 2.2 of [15] from a case where g 1 to g LP*(OT).
Another generalization is considered in [16].

4. Proofs of theorems. Let Ig =or g dtr, Oe ON-l,e and 0= ON_ Let B(:)
ofl(’) d’ for D(fl)- and B()= for R\D(fl)- (for /30 see 1; /30 is
single-valued, monotonously increasing in D(fl)). Let ms =inf{ D(fl)} and Ms
sup {: D(fl)}. We can define B e, m, M, and B, m, M, in the same way as B,
ms, and Ms, using fie,/30, instead of using/3 in the integrand above or the region in
which the infimum and the supremum are taken. We see Oem m, OeM Ms, and
Be()=B(Oe)/oh+1 (see 1.3).

Let K {v Ve; B(v)lOTe LI(oTe)}. The weak solution ue K of (Pc), satisfies
the next inequality:

(4.1)
[VueV(v- ue)-(v- ue)f] dx-(ge6e, v- ue)

+ae(t3e, B(v)-B(ue))>-O forall vKe.

4.1. Estimate. Theorems A, B, C, follow from (4.1) combining with estimates in 3.
(A) Proof of Theorem A. Let Ke- Ke,2. After substituting v=0 into (4.1) and

applying (3.5) and Lemma 3.8(b) we get

(4.2)a
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Corollary 3.4 implies that

and

(4.2)b ae(t, B(u))<-- C(]]f]]a + O]Ig[ + Kellg[ + r ]]g]]or)2

(B) Proof of eorem B. By H61der’s inequality we get

(4.3) [[u < Cu[
and

where u L(OT). By (4.1) with v =0, together (4.3)a, (fl-3) with Lemma 3.6 we get

/ Ilfll o-,*,, u, o-,,o,/0Y’
+ oY*llgll.,o-Ilull,o).

Young’s inequality with (4.3)b implies

(4.4)
-... + Ilfll ..*./a + Ilgll .*.o-o/,

By Corollary 3.3 we have u7 - 0 in W’’(I) as e- 0.
(C) Proof of Theorem C(I). This directly follows Theorem A with 0 c.
(D) ProofofTheorem C(II). Note that/3 OB. Let y be the Yosida approximation

of (OB) and let v be the solution of

-Av =f inl,

+y(v)=g on0T and v=0 on0fl.
Ov

By a slight modification ofthe proofofTh60rme 1.10 of Brezis [4], to a nonautonomous
boundary condition on OT, we have v u in H2(1) as A - +0. Thus, we can extract
{v } such that IIv( u)ll= / I1,= - 0 as - 0, whr with A A. It
suffices to show that Ilvv I1=--> co, we get

[VvV-f]dx+a(8, y(v)’)=(g6,’) for’eCo(f),

where y yx with h hE. For , 0_--< sr =< 1, and " 1 on a nonempty open set G 12,
we have C such that a sr dx _>- C > 0. Property (a) in 2 implies that ]y(:)[-<_
for all : e . Thus, (fl-2) with 0<_-r<_-1, fl, =-co, and/3 , give an estimate,

la(, y(v))l<=Cla(,lvl+l).

Applying (3.5) to a8 and g6 together with Lemma 3.10(b), (c), we get

Oellg[ <= C2([[VV [[n + a v [[as + ar [[Vv line + [[f[[ + aS(oT + ).
But aS(OT)<= a[OT[ and lim_o ar 0. Using Corollary 3.4, we then have

But 0 and so we get 0i11 <--cllvll=.
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(E) Proofof Theorem C(III). The estimate (4.4) with 0N_, o a, implies (1.4)
and u ,o < Cb/a. By (4.3)b we get Ilull ’,,o -< Cllull ’,o7- 0(-’)/ Lemma 3.6
implies

u ,... c, Ilvu ,,../0_,. + Cll u ,,o./ole/’
Clbl/2a-1/’ 1/0-’)/’-1/’_,,+C(b,/)

< Cb’/’(o;(’ + a?’/).

Thus we get (1.5). The estimates (1.4), (1.5), with Corollary 3.3 imply u/b1/’ 0 in
W’’(O) as e 0.

4.2. Convergence. Theorems from 1.2-1.4 follow Theorem 2.1 combining with
Propositions 2.2, 2.4 and Lemma 3.10.

Problem (P) is rewritten with a subdifferential. Let H L(fl). We then use the
terminology in Example 2.3. Let =" and j =k +m, e e,, where k()
-(g,, ) for L(aL) and

B()) for L(aL) and B() L(aL),
m ()

for others in L(a L).

We see that D(aj’) { L2(aL); there exists ’ L(aL) such that ’(x) a#((x))-
g(x) almost everywhere on aTe}. Let @’H[0,] be

(v)={(v)+(vlOT)
otherwise,

fr v e K’

We set i n/(o) as in Brezis [4, p. 32]. A basic Nct below follows the argument
in 1.2.1, Thorme 1.10 of [4, p. 33] and Theorem 12 of [5, p. 112].
Pooso 4.1. (I) Forfe L(a) and g e L(OT), there exists a unique soluion

u of (4.1). is u is also the soluion of the problem"

-u =f in (a)’,

0U H_+O(u)0 in /(OT),

u.=0 on01,

where (f)’ is the space of distributions.
(II) In addition to (I), if we suppose g H1/2(c T), then u H2(f) f-) V, and u

satisfies (0.2).
(III) If gH1/E(oT), then we have that D(Od)={vHE(O,)f") V; v satisfies

(0.2)} and Od(v) -Av for v D(OOp).
The condition g H1/(OT) in the Introduction implies

(4.5) Od’ u f
As seen in (2.1), we have

(4.6) q o,
if e0 with a fixed value 0N. When {} and a certain o satisfy the conditions in
Proposition 2.4 and {(9)-1} is uniformly bounded, Proposition 2.2(b) is applied to
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LEMMA 4.2. (a) Let F’vV->Fv=max{min{v,c},Ce}, ce, Ce. Then
F -o (Fev)<= (v) and( v) -vforv -vinH(t),Co<V<Coprovidedthatce->Co

and Ce -> Co as e O.
(b) Wesuppose (/3-1) and (/3-2) with (1.10). Then, B(ve) B(vo) weaklyin W’P(f)

as e O, for any v - Vo in H(O) as e 0 such that ,, <= ve(x) <-M almost everywhere
in f, where for p given in (1.1).

Proof. We can easily see (a). The boundedness of {B(v)} in W’V(fZ) follows the
growth condition of/3 together with the H61der inequality. By this argument we get
p=2q(q+2r)-1, where q is taken as the injection, H(f)-> Lq(f), is bounded. The
continuity of B in (b) follows the growth condition on B" [B(sC)[ <- C(1 + [stir+l), combin-
ing with the compact imbedding, H(f) - Lq’(o), 1 _-< q’ < q 2N/(N 2) for N => 3
and 1 _-< q’ < o for N 2. The mapping, B" Lq’(f)-> LP(f), is continuous, if r+ 1 <_-

q’/p < r+ q’/2, which implies q->2 for N 2 (from here we get c(r)<-p). Thus, we
have (1.1) for p (see the proof of [15, Lemma B.1].

(A) Proofs ofTheorems a and b. Before giving the proofs we consider the relation
between the value r and the value are,,, which plays a key role in Lemma 3.10(b).
The definition of p implies p* > 1. In Theorem a we see that r <- 1 if and only if p* =< N
for N => 3. For N- 2, we get r- 0 if and only if p* N( 2). Using t, ce, and
we have (a)l aee,o te01/*N-p*,e for N > 3 and 0 < r < 1, (a)2 aete,o c0(ff as e -> 0,

1/2for N-> 3 and r 1, (a)3 ae:e,o ae"o,e as e -> 0, for N 2 and r 0. These relations
are used for Theorem a. In Theorem b we again consider the relation between r and
the value ar,,. For the case N->_ 3 and r->_ 0, we always have p < N and note that
1 _-< p if and only if N(N 2) >- r. For the case N 2 and r => 0 we have 2 => p => 1. The
relation, (b) aneo aeO-1/ holds and is useful in Theorem b. The relations (a)l,N--p

(a)2, and (a)3 work well for the case where re <-- Cr(- and we get Theorem a, while
the relation (b) is applied to the case re >> r(eN-E) and we get Theoerem b. In more
detail, we describe the proofs as follows.

Proof of Theorem A. Since re <- Cr(N-o*)<< r(N-l), Theorem A, and Corollary 3.4
hold true, {(0)-1} is uniformly bounded. By Proposition 2.2(b) it suffices to show that

(4.6)1 e (e) t.
To show this we take F" in Proposition 2.4 as F in Lemma 4.2. Besides for e

we putj"(v)=j(v[OTe) for v K. The condition aee-->0 in Lemma 3.10(b) follows
any one of (1.7), (1.8), or (1.9). We get a 0 < oo from N- p* -<_ N- 2 and ae
The assertion (4.6)1 follows (4.6), Propositions 2.2(b) and 2.4, Lemma 3.10(b), (c),
and Lemma 4.2.

We prove Theorem b. For a <oo let o=qo+jo and jo= kO+ m, where the
functionals k, m" H- [0, oo], are defined by

v) -OIg [ v dx for v L2(I)k(

and

m(v)=aS(OT) ___J.o. B(v) dx for L-(n) and B(u)

oo otherwise.

The uniform boundedness of {(0)-1} follows the same reason as in the previous
argument. As in the proof of Theorem a, the convergence (4.6), Propositions 2.2(b)
and 2.4, and Lemmas 3.10(b) and 4.2 imply that e (e)) 0. This shows Theorem b
in the case where a <
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In the above argument, the point is as follows. For any ms _-< v _-< Ms, v- v in
H(fl) we have B(v), B(v) W’(), B(v) -- B(v) in W’(fl) and ag .z_> a dx in
W-,,*().

Now, it remains to prove Theorem b with a oo. Even in this case, {u} is bounded
in H(f). After dividing both sides of (4.2)b by a and applying (3.6), we get
a B(u) dx =0. By (/3-4) we see that u =0 almost everywhere in

(B) Proof of Theorem c. We suppose ah 00. First recall the definition of m,
M and B in the first paragraph in this section. We take weK,-
{ve V; B(w)eLI(oT)}; i.e., m<-_w<-M on OT. After substituting v=Ow into
(4.1) and dividing both sides of (4.1) by 02, we get

(4.7) fa [VzeV(w-ze)-(w-z)o-lf] dX+ah’e(o-lg’Be(w)-B(ze))

-(g6, w z)/ O >-- O.

Let k, and m, be the new functionals defined by

k(:) =-021(gg, ) for L2(OT),

{ah,O-l(g, B()) for sc L2(OT), B()e LI(oT),
m,()=

otherwise.

Let ], L2(OT)->[O, o] and j, L2(fl)-> [0, c] defined by ],=k,+m, and j(v)=
](v[OT) for v V with ](v[OT)<, ](v) =o, otherwise. Furthermore,

q(v)+j,(v) forveK,,,(v) o otherwise.

(v) ahS(OT) n B,(v) dx for v H(I), andWe set k,(v)=-Is n v dx for v H, rn,
oB,(v)Ll(f)andm,(v)=o,otherwise. Letj,=k,+rn and 0 o .o, (I), q +j,. Inequality

Z
0(4.7) and (1.12) are rewritten by using subdifferentials as 0,() o-lf and 0,(z) 3 0,

respectively. It suffices to see the convergence of w7 to w in H, where O(w)3f,
O,(w)qf and f-f as e-0, where r/= [Y* I. {(0)-1} is uniformly bounded by
the inequality obtained from (4.7) replacingf/0 withf, wheref belongs to a bounded
set in H. By Proposition 2.2(b) it suffices to show that

(e) 0(4.8) O, O,.
It suffices to show the conditions in Proposition 2.4. By the definition of m and M
we see that rn -* rn and M-M as e - 0. We regard F in Lemma 4.2 with e rn
and C M as F" in Proposition 2.4 with e e,. Lemma 4.2(a) implies (ii) of
Proposition 2.4. We have to show (iii) of Proposition 2.4.

For this aim we need some p such that

B,(v) e -- B(v) in(4.8)1 B,(v), o W’P(l)), B(v
and

(4.8)2

for any {v} such that

ah,eO21ge " ahlOT dx in W-I’P*(-)

rnt v and v ----> v in H as e -> 0.
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LEMMA 4.3. (i) We have (4.8)1 withp pprovided that 7"- 1) or (7’-2) are satisfied;
in this case, ms =-03 and Ms 03.

(ii) We also have (4.8)1 with p 2 provided that (3,-3) are satisfied.
Proof The functions e and/30 satisfy (/3-2) with the same r and coefficients C1

and C2, as those of/3, because 0e --> 03 and h => r.

For/3 satisfying (3-1) or (3-2) with (1.10), the inclusion, Be(re), B(v) W’P(fl),
and the boundedness of {B(ve)} in W’P(II), is derived from the definition of Be(re)
using the Sobolev imbedding theorem together with H/51der’s inequality as in the proof
of Lemma 4.2. The convergence of {Be(re)} in Lo(II) under (7"- 1), is implied by the
growth condition of/30 (cf. [15, Lemma B.1]).

The case (7"-2) is proved by analogy with the proof of Dini’s theorem for a
monotone sequence of continuous functions defined on a compact set as follows.

We get B(ve)- B(v) in W’o(fl) by Lemma 4.2(b). It suffices to show that

(4.9) Ilne(ve)-n(ve)ll,,n--)O as e-)0.

We see that {Be(.)-B(-)} is a continuous mapping from La’(l)) into Lo(I), where
2<=q’<=2N/(N-2) for N>-3, and 2-<_q’<03 for N=2, because of IB(s)l =<
C<l /11/1) with (1.10) (see [15, Lemma B.1, p. 78]. Suppose that (4.9) is not true.
Let B" B with e e, and v,, ve with e e,,, n, m . There exists {v,,} such that
[[nn(vm) B(v,,)[[ .a -> 8>0 for all m, n with some 8>0, where the sequence {Vm}
converges to Vo in Lq’(fl). Let I,={Vm, m, Vo; IIn=(v)-n(v)ll,.>-/2). By
(7"-2) we get In In/l. Since {Vm, m[, Vo} is compact, Bn-B is continuous, and

n--1 In , we have no such that I . This is a contradiction.
We suppose (7"-3) holds. Then we have Be(ve)-Be(vo)L2(f), OBe(ve)/Oxi

fle(Ve)OVe/OXi L2(II), and Be(ve) Be(vo) H(fl). The class {Be} is equicontinuous
because B (v.) B (Vo)II <- c v roll G. On the other hand, we have

n(Vo) B Oo) 11- -" 0 as e --) 0.(4.10)
In Jfact, since

o((Vo) o(Vo))/

1(/3 (Vo)- 3(Vo))Vo/xil- <= C[Ovo/X,],
and (/3 (Vo) -/3(Vo))0Vo/oxi --> 0 as e --> 0, we have I1(n (Vo) n(Vo)) II. - 0 as - 0
by the Lebesgue convergence theorem. Thus, (4.10) follows from the Poincar
inequality. We have shown the lemma.

_(v-l (4.8)2 is implied from Lemma 3 10(a) withSince 0r-o 03 ON-2 for re >> ,-e

ah <03, where p=p for (7’-1) and (3,-2) and p=2 for (7’-3). Thus, we have (4.8).
For the case where ah =oo, {z;-} is bounded in H(ft). We take a subsequence,

denoted by {zT} again, such that z7 - z in H(ft) as e--)0. We substitute w 0 into
(4.7), and divide both sides of the inequality by ah, We apply Lemma 3.10(a) with
0r_= 03, and get a B.(z) dx =0. By (/3-4) we get z 0. This concludes the proof of
Theorem c.

(C) Proof of Theorem a’. The proof is done in the same way as the proof of
Theorem A.2 of [15], because, in that proof the differentiability of/3 is not used at
all. Thus, we can omit the proof of Theorem a’.

(D) Proof of Theorem b’. This proof is also derived directly from the proof of
Theorem B in [15] together with Lemma 3.10. Thus, we omit it.

5. Asymptotic behavior in il2. Theorem a’ says nothing for the case where N 2,
nor does Theorem a cover the case where

(5.1) N =2, re <= Cr() with t =03.



THE POISSON EQUATION IN DOMAINS WITH MANY HOLES 1243

Let c c(log r-l) 1/2 and c, =lim c. We have t< if and only if c, <c. Let
c 0o,/a and c lim c. We also have

k 2(log r-l)l/2/ c.
Here, rT is supposed to be a ball {xRU; Ixl<-_r/2} together with/3(:) in (0.2).
We are interested in the case where 0 < c <, and the case where c 0. The state c 0
follows both

(i) 0o[0,) and a=
and

(ii) 0o=0 and a(0,].
The state 0 < c < follows

(iii) 0o, a (0, ).
The remaining case of (Oo, a) such that 0o=0 and a=0 may imply various
values of .

The test function in [12], w(r)=[1-ag(log(r/e)-log(r/g))]/(1-
a log (r/e)) with r-lxl, g- e/2, and r/2, is useful. Let 0 (e2 log (e/r))-1.
The formula Ow/Or]== gOff,,(1 + Off,,/a) -1, together with the method in Cioranescu
and Murat [7], imply the proposition below.

PROPOSITION 5.1. We suppose r <= Cr), (0.4) with a fixed 0o< and a fixed
c [0, ] as e - O. Then u7 u weakly in H(f), where u is determined by the equation

-Au + 27rOo( c + 1)-lu =f a.e. in f.

Remark 5.2. If instead of (0.2) we consider the Dirichlet boundary condition, we
get (5.2) with c =0, using the method in Cioranescu and Murat [7].

6. Applications.
Application 6.1. The theorems in 1 are applied to monotone functions/3 such

as (b), (c), (d)p, (e), (f), and (g) described in the Introduction. We give Table 1 for N _-> 3.
Application 6.2. Let C1, C2 > 0. We suppose oT g dr 0,

for_-<O,
/3(:)

C: for :-> 0,

TABLE

Theorem To be applicable Not to be applicable

A (b) (c) (d)p (e) (a)
(f) (g)

B (c) (d)p (e) (a) (b) (f) (g)
C(I) (b) (c) (d)p (e) (a)

(f) (g)
C(II) (b) (c)(d)p (a) (g)

(e) (f)
C(III) (c) (d)p (e) (a) (b) (f) (g)
a (b) (c) (d)p (e) (a)

(f) (g)
b (b) (c)(d)p (e) (a)

(f) (g)
c (b) (c) (d)p (e) (a)

(f) (g)
a’ (c)-=(d)p (p=l) (e) (a) (b) (f) (g)
b’ (c)=(d)p (p=l) (e) (a) (b) (f) (g)
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-1

FIG. 2

TABLE 2

Number Equations or behavior Number Equations or behavior

0 Unknown -Au + CT-u =f
2 -Au =f 3 -Au+ S(OT)fl(u)=f
4 u7 u =0 5 -Az + S(OT)fl(z)= Ig
6 -Az Ig 7 Ygz + S(OT)(z) Ig
8 Ygz= Ig 9 u/bl/q’o

10 u-O

and relations among e, r., and a as follows:

E--r m e (0, 1],

Let /- Nm (0, N]. Then all the limit equations are displayed as points having
coordinates (/, n) in (0, N] x. Theorem a’ derives limit equations number 1, 2 in
Fig. 2, for points of ((, n); N-2 and n ). Theorem b’ also derives the equations
number 2, 3, 4, which are settled in the region, ((u, n); N-2 < N-1 and n
Theorems B and c concern the set {(, n); N-2<N, n<-N+l and n<-+
N- 1} and ((, n); N- 1 < N and n N+ 1}, respectively (number 4, 5, 6, 7,
and 8). Last, by Theorem C(III) we get limit equations (number 9, 10) for points of
((, n); N- 1 < N, n <-N+ 1 and n -+ N- 1}. Thus, limit equations are
drawn in one picture as Fig. 2 in [15]. Unfounately, by our theorems we can show
no limit equation corresponding to a point (N-2,-1) (number 0), when C1 C2.
The exact equation corresponding to each number is described in Table 2.
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ON THE NEWTONIAN POTENTIAL OF A HETEROGENEOUS
ELLIPSOID*

HENRIK SHAHGHOLIAN"

Abstract. In this note the Newtonian potential of a heterogeneous ellipsoid in n is calculated. It turns
out that for polynomial densities the potential is also a polynomial in the interior of the ellipsoid. As an

application, it is shown that the solution of Au= P near 0E and u =lVul =0 on 0E, where E is an ellipsoid
and P a polynomial, has a harmonic continuation to En\Eo, where E0 is the focal ellipsoid of E.

Key words. Newtonian potential, Schwarz potential, ellipsoid

AMS(MOS) subject classifications. 31C99, 35J05

Introduction. This paper consists of two parts"
(1) Calculation of the Newtonian potential of a heterogeneous ellipsoid, at an

internal point. Here we prove that the Newtonian potential of an ellipsoid in n with
polynomial density is a polynomial in the interior of the ellipsoid. This was proved in
R3 by Ferrers (see [Fe]) using special techniques of ellipsoidal coordinates; it seems
difficult to extend this method to more than three dimensions.

In any case, it seems of interest to give a new proof of this fundamental result in
n. We do this by adapting the celebrated method of Dirichlet [Di], based on Fourier’s
integral, combined with Ferrer’s [Fe] idea that any polynomial can be expressed by a
finite linear combination of P, P:,. and their derivatives of different degrees (see
Lemma 1.4).

(2) Application to the Cauchy problem for the Laplace equation. Here we use
part (1) to solve the following Cauchy problem"

Au=O nearOE
E is an ellipsoid in

u=- P onOE

It turns out that the solution of this problem is harmonic in n\Eo.

Notation. We will use the following notation.
(i) By g=-f, we mean g=f and Vg=Vf, where f, g C() and V denotes

gradient.
(ii) The solution of the following Cauchy problem, when it exists, will be called

the Schwarz potential Ur of F, where F is a hypersurface in

Au 0 near F,

u-=1/2[x[: onr.
(iii) K,(x,y) is defined as follows. Set b(x-y)=w-llx-yl:-n, where ton=

(2-n) An An is the surface area of the (n- 1)-dimensional unit sphere. For a
xn, andxa set

K(x, y):= d/(x-y)- E
(y- a)’

Il< ! z q,(x- z)[=o,

Km(x,y):=Km(X,y).

* Received by the editors November 28, 1989; accepted for publication (in revised form) October 3, 1990.
Department of Mathematics, Royal Institute of Technology, Stockholm, Sweden.
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(iv) Let [1 c R and [l.# n. Then we define the generalized Newtonian potential
with polynomial density R, with respect to a Rn by

K (x, y)R(x) dx, where m deg R + 3 and a II.

(v) For a a2 >-. >_- a. > 0 we define E and Eo"

E= xn" __<-1
j= aj

Eo= xN"" xj <landx,,=02 2--"
j=l aj an

Eo is the so-called focal ellipsoid of E.
(vi) We also define o, S, and P as follows"

02(s)=(s+ a)(s+ a) (s+ a2n),
2 2

YJ and P(x)=I- xjS(s,y)= 2 __2"
j=l a + s j=l a

1. Calculation of the Newtonian potential of a heterogeneous ellipsoid, at an internal
point. Here we calculate the potential of E (ellipsoid) with polynomial density. To
do this we begin with the following theorem.

THEOREM 1.1. Let m >-- 0; then

IPm(X) dx
1- Y -1

]x yl"-2 m + l --l s + a]
q(s) ds

where cn rn/2al an" (n-2)/2F(n/2), and A is the largest of the ellipsoidal coordin-
ates of y g! E and A 0 if y E. Consequently, if m is a nonnegative integer then the
Newtonian potential of E with density Pro(X) is a polynomial of degree m + 2 in the
interior of E.

Proof. Set

P’(x)
dx and Vk:= (y).V(y)

ix_ yl,_ Oyk

We first calculate Vk(y) for y e n, and m > O. Define

-ll)m, I1 < 1,
f()=

0, Il -->1,

Then

(1) f() Re fo f(t)
eit* dr,

where

](t)= f_f() e-it d

is in LI(), for m > 0. We have

R j:l a.] (x<-y)lx-yl-"
dx.



1248 HENRIK SHAHGHOLIAN

Here we want to use (1) with : Yj=I (x./a]) and then change the order of integration,
but since (x,-y,)lx-yl" isnot integrable over R", we first introduce a convergence
factor exp (-lxl=) which gives

(2) Vk _limfu f( x] e_lxl2
n 2 o a] (Xk--Yk)lx--y[-" dx.

Now we inse (1) into (2) which implies that (2) becomes

(2’) Re f(t Ii(x, y, t) dt dx

where Ii(x,y, t)=(x-y)lx-yl-" exp lit E=I (x]/ a])- lxl2] Here we change the
order of integration, so (2’) becomes

(2") lim Re of t f I x, y, dx dt.

The idea is to split the integration over " into n products of one-dimensional integrals.
For this we will use the following known formula:

exp [-(e i#)u] (e i#)-. r(r),pr--1 d

where r> 0, e > 0, 6", and F is the gamma function (see [GH, p. 62]). To make
the formula applicable to our purposes, we set fl lx-yl2 and r n/2. Then

I(x, y, t) dx

(3) --lim (-i)/ [e ilx yl]-/(x-y) exp it x lxl dx
e0 j=l aj

lim (-i)/(r(n/))- exp (h)" (x-y). (-/ d &,

where

Set

2

j=l aj

-,/ ilyl,/ iv +__-5- x 2iyvx
aj

and Q=-yv, j=l,2,...,n;

then

Iz---e+ ilylZu+ [(iP-6)x.+2iQx].
j=l

Now changing the order of integration in (3) we can reduce it to

(3’) lim (-i)"/2(F(n/2))-1 v(’-2)/2 exp [-ev+ ilyl2v]a(t, y, v) dr,
e-->O
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where

G(t, y, v)= IR exp [(iPj-6)x. +2iQjxj] (Xk--Yk) dx
j=l

=I f-
I (Xk--Yk) exp [(iPk--t)X2k+2iQkXk] dXk.

By calculating these integrals we find

I_exp [(iP-)x+2iQjxj] dxj
exp [-Q./(6- iP)]

x/6-iP
and

I _o (Xk Yk) exp iPk 8)Xk + 2iQkXk] dXk

( iQk ) exp [--Q2k/( 6 iPk)] x
6 -i--k- Yk --iPk

--6 + it/ a2k) exp [- Qk/( 6 iPk) ]"
(8--iPk) Yk V/6-iPk

G(t, y, v)= Tr,/Z (--3+(it/azk)) exp [-EjI Q]/(6-iP)](4)
iPk Yk x/( iP1) 6 iP.

Now, inserting (4) in (3’) and making the variable changes s t , we get, after recalling
the definition of P and Q, that (3’) is reduced to

lim dn I ((--iaEk/t)--l)yk" exp[--et/s+iYnj= ((ia+ t)/R)y]
ds

e-0 .]0 Rk /RI" R2"" R,
(3")

f ((--iaEk6/ t)-- 1)yk. exp [i "=1 ((i6a+ t)/Rj)y.]
d. ds,Jo gk x/RI" R,

2where Rj =((i6a}s/t)+ a + s) and

d, r"/2. (F(n/2))-. a. a,-
2Cn

Summing up we arrive at

where

Ii(x, y, t) dx d, Fds,

((--iakS/t) 1)yk exp [i "j=l ((i6a+ t)/Rj)y]]F=F(y,s,t, 6)=
Rk x/RI" R,

Now we put this into (2"); then we have

I/k
Re lim d f t.__) Fds dr.

n -2 -o
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Since Jo IFI ds < c we can change the order of integration and let 6- 0. This gives

Vk _dn Re f(t____) Fo at ds,
n 2 7r

where

Fo= F(x, y, t, O) --Yk exp it ’jn= y}/(ay + s)
2(a+ s). [(al + s)... (a,,+ S)] 1/2

Recall the definition of S and o; then we observe

(5) V=(2-n)d,y [($)(s+a2k)]-1 f(t)- exp [itS(s, y)] dt ds.

Now let A be the positive root of S(s, y)= 1 for fixed y, i.e., A A(y). Then the inner
integral in (5) is zero for s < A and is equal to f(S(s, y)) for s >= A. Therefore

and, integrating,

(6) V(y) (m + 1)
1 --1

j=l S -- a o (s) ds + c.

For y E, A is replaced by zero in the above integral. The case m 0 could be obtained
by letting m go to zero in (6). Thus the proof is completed.

Remark. In (6) we see, by letting [yl-* , that V(y) 0 and the absolute value of
the integral on the right is bounded by

A -I(s) ds, where A =(n-2)d"-
2(m+l)

and this goes to zero, as lyl-c (since A A(y)- o). Thus c=O.
Remark. Theorem 1.1 is a special case of a much more general theorem, which

we state without proof (the proof is similar to the proof of Theorem 1.1). Let g have
compact support in (0, o) and be (for example) piecewise continuous. Set

a(= g(, a,.

Then

g(jn_-- (X/a)) dx_- (n -2)A.

2 2(9(0) G(E;= (yj/(aj + s)) ds

4 --(i
We also want to mention that the case m 0 (for n 3) is the goal of classical papers
such as those by Lagrange, Gauss, Chasles, and Dirichlet. For references see 3.

COROLLARY 1.2. Let P be as in the notation, and let m be a nonnegative integer.
Then the Newtonian potential ofE with density pm is harmonic in the exterior ofE and
has a harmonic continuation into E\Eo.

Proof. Define

Cn q)-l(s) 1-- 2 ds,W(y)
m + 1 = a + s
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where c,=Tr"/Zal a,(n-2)/2r(n/2), A=A(y) is such that j=l (y/(a.+A))=l.
Then it is easy to show that W is real analytic in "\Eo. Moreover, by Theorem 1.1,
we have W= V in "\E, where V= JE (pm(x)/Ix--YI"-2) dx. Thus V can be continued
into E\Eo as a harmonic function.

THEOREM 1.3. The Newtonian potential of the ellipsoid E in "(n >-3) with poly-
nomial density Q of degree m is a polynomial of degree m + 2 in the interior of E.

To prove this theorem we need the following two lemmas, which are essentially
due to Ferrers [Fe].

LEMMA 1.4. Define 3 to be

span bOP-j
j=0 lal=m-2j tn=O

whence

m/2 m even,
m’=

(m-l)/2 modd,

0
b eR, a" =aT,a= a., a ax

and P is as in the notation. Set

{polynomials in n variables with real coefficients}.

Then .
LEMMA 1.5. Let m >= 0 be an integer. Then for a[<= m,

fp Oapm(x) fp pm
(7) Ix-yl2-" dx=

>o Ox Oy >olx-Yl"-2 dx Vy

The lemmas will be proved by induction.
Remark. That the derivative in (7) exists depends on the fact that the function

e>oP(x)’lx-yl:-"dx is of class C’(E’). This in turn depends on the following.
Set g=pr" for P>0 and g=0 for P>0. Then a.g(x)lx-y]2-Edx=
J>o P"(x)lx-yl=-’dx and g C’-I("), which implies that a" g(x)lx-Yl2-’dx is
of class C (,).

Proof ofLemma 1.4. Define

k {polynomials of degree <-k in n variables with real coefficients}:

(i) oc is clear.
(ii) Suppose k ?" Then we will show that every monomial of the form

for I1 k and j 1, 2, , n is in 9. Set (without loss of generality) j 1, then x
implies

k k

(8) XlXT Xl b,O’Pk-j E _, bo,[XlO’pk-j],
j=O Icl=k--2j j=O Il--k-2j

where

k’= k2 if k even,
(k- 1)/2 if k odd.

We introduce the notation fl (al+ 1, O2, an) O" (O 1, O2, an). Then by
the Leibniz formula

(9) -XIOaPk-j a2 OPk+l-j -Jr- otlOPk-j

2(k + 1 -j)
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Substituting (9) into (8) we have

k’ ( a O3p/_+--X1Xy’-" Z Z b
j=o Il=k-V 2(k + 1 -j)

i.e., xxe for all y (y, ,..., %) and k, which gives that + e N, and
the proof is completed.

ProofofLemma 1.5. For m 0 there is nothing to prove. Now let m > 0 and lal N m.
If al 0, then there is nothing to prove, so let al > 0. Then a > 0 for some j.
Soletj=l and a’=(a-l,a,...,a,),then

fp opm(x)
dx

>o OX

f 0__ O’pm(x).
>oOXl OXa’

(10)

x yl2-" dx

(’P’(-x) Ix- yl-P>O OX1 OXa’ >0 OXa’
O’pm(x)

Summing up,

P>0

Ix- yl=-" dx
OXl

0 j O’’pm(x)" Ix-yl)--’dx.
Op’(x)

P>O OXa

Proceeding in this way we can move the differential operator 0 outside the integral
sign, and this will complete the proof of the lemma.

Proof of eorem 1.3. By Lemma 1.4

Q(x)= boPm-
j=o Il=m-Ej

and

m/2 m even,m’=
(m-1)/2 modd.

Thus

E j=0 lal=m-2j

=Z Y,
j=0 [al=m--2j

b Ix yl 2-’ dx

b, pm-Jlx- y dx (by Lemma 1.5).
Oy

Now by Theorem 1.1 the last integral is a polynomial of degree 2m-2j+2 in the
interior of E, and since la]- m-2j, (O/Oy) P"-J(x)]x-yl)-n dx is a polynomial of
degree m 4-2 in the interior of E. Thus E Q(x)]x-Yl 2-" dx is a polynomial of degree
m 4- 2 in the interior of E.

Remark. In [DF] the authors prove the following theorem.
THEOREM [DiBenedetto, Friedman]. Let be a bounded domain in R and suppose

that the Newtonian potential of with constant density is a polynomial in the interior

of . Then is an ellipsoid.
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It is very natural to ask whether or not this is true when the density is a polynomial.
In the following proposition we will show that this is generally not true. But we still
have the following problem.

PROBLEM. Give conditions on R (= polynomial) such that

f dx polynomial for y f f is an ellipsoid.
R (_x._)

ix_yl-PROPOSITION 1.6. Let f be a bounded domain and suppose Q is a polynomial
such that

(11) Q=-O on o.
Then the Newtonian potential of f with density AQ is a constant multiple of Q.

Proof. The proof is an easy consequence of the fact that Alx- yl n-E-- Cty where
8 is the Dirac distribution, and that Q-= 0 (on of). Thus

faAQ,,dx=oo,,Q(y) yl-l.

w, is defined in the notation.

2. Application to Cauchy’s problem for the Laplace equation. In [KS] the authors
conjecture the following.

CONJECTtaE [KS]. Let F be an analytic hypersurface in " whose Schwarz
potential Ur(x) is real analytic in the domain f. Then, for any polynomial R(x)=
R(x,..., x,) the solution of the following initial value problem can be continued
analytically into

(12)
Au 0 near F,
u= R onF.

Here we want to prove this conjecture in some special cases, namely F
is such that there exists an increasing sequence of ellipsoids E with

-__n [.j Ei"

(In particular, this holds if F is an ellipsoid.) It is not difficult to show that 0f is a
hyperplane or a (elliptic or parabolic) quadratic hypersurface if 0 is not empty.

First we prove the following lemma.
LEMMa 2.1. Let Ei be an increasing sequence of ellipsoids such that

"U El.
i=1

Set f/’:= U il Ei and let (without loss of generality) 0 :,’. Then the generalized
Newtonian potential of ’ with respect to a 0 with polynomial density R is a polynomial
of degree deg R + 2, in the interior of ’.

Remark. Since K(x,y)=O(lYlm/Ixl m+"-2) for Ixl large, the generalized
Newtonian potential is well defined.

Proof. Define Ni(y) E, K,(x, y)R(x) dx and N(y)= , Km(X, y)R(x) dx. Then
by Theorem 1.3, N(y) is a polynomial in Ei and N(y) converges uniformly to N(y)
on each compact subset of f’. Thus, N(y) is a polynomial in the interior of

THEOREM 2.2. Let E, 1, 2,..., and f’ be as in Lemma 2.1. Then the solution

of (12) is real analytic in f := R"\’.
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Proof (without loss of generality 0 l)’). Let R be the polynomial in (12). Then,
by Lemma 2.1, the generalized Newtonian potential of l)’ with respect to zero with
density AR is a polynomial in the interior of Rn\gl -l)’. Define Q to be the polynomial
such that

Q(Y) fa’ Kin(x, y)AR dx Vy

Set Uo Q(y)-Ia, K,(x, y)AR dx in f, and let u be the solution of (12) with
i.e.,

Au =0 near

u --= R on

Since Q(y) =- Ia’ K,,(x, y)AR(x) dx on 0 we have

(13) AUo=AR in

Uo 0 on

Define

R- Uo in ,
u in fl’ "\12.

Since u R- Uo on 0, u is harmonic near 01 and R- Uo is harmonic in 1. They are
the harmonic continuations of each other (see [Ke, p. 261]), and v will be harmonic
in a neighborhood of 012. Now, by the uniqueness part of the Cauchy-Kowalevsky
theorem, u v, that is, u R- Uo in . Then by (13), Au 0 in 1, i.e., u is harmonic
in 1) and the proof is completed.

Remark. In Theorem 2.2 when Ei=E for all we obtain uo=Q(y)
-1 dx, where Q is a polynomial such thatoo, I Ag. [x-Yl-"

Q(y) to-’ I ]x-YI2-"AR(x) dx

for all y 6 E. Now define

v {R- inin=R"\E’E.
Then as in the above theorem, u v in R", and Uo is analytic in 1 n\E, and by
Corollary 1.2, in conjunction with Lemmas 1.4 and 1.5, it has a continuation into
E\Eo. Thus the Schwarz potential of OE is harmonic in "\Eo.

Remark. For a ball B centered at Xo, we get that the solution of (12) with

F the boundary of B has a harmonic continuation into "\{Xo}.
3. Concluding remarks. The kernel K, appears, for a general elliptic operator,

earlier in L. Nirenberg and H. F. Walker [NW].
The following are some references mentioned earlier. A. Wangerin, ed., ber die

Anziehung homogener Ellipsoide, Abhandlungen yon Laplace (1782), Ivory (1809), Gauss
(1813), Chasles (1838) and Dirichlet (1839) [W].

As for the case n 2, the only reason we left it out is the passage of formula (5’)
to (6). In (6) we obtain that

c, ds

m+lJx q(s)’
2 --1where 2(s)=(al+s)(a+s), i.e., o LI(A, oe), hence v(0)=m. Thus this formula

ceases to be true for n 2. But at any rate we do have an explicit formula for Vk (which
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is (5’)). All other results here are true for n 2, and we just have to replace the potential
Ix yl--n by log Ix y1-1.

Acknowledgments. I thank Professor Harold S. Shapiro for suggesting the problem
to me and encouraging me during this work. I also thank Lavi Karp for showing me
his (unpublished) work on the generalized Newtonian potential and D. Khavinson for
suggesting some improvements in an earlier version of this report.
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ARTIFICIAL BOUNDARY CONDITIONS FOR INCOMPLETELY
PARABOLIC PERTURBATIONS OF HYPERBOLIC SYSTEMS*
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Abstract. Artificial boundary conditions are devised for small incompletely parabolic perturbations of
hyperbolic systems, which are local, consistent with the hyperbolic equation, well posed, and produce weak
boundary layers. The general strategy is applied to the Navier-Stokes system.
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Introduction. A general model for a fluid motion is the following time-dependent
compressible Navier-Stokes system"

-’-+ div pv O,
Ot

Opv

Ot
+div (pv. v + pI) pg + div/x%

--+div(e+p)v=pg.v+div(K grad T+txv’’),
Ot

where p represents the density, p the pressure, T the temperature, and v the velocity
of the fluid. - is the momentum flux density tensor due to friction: r=

-I div v+grad v+(grad v)L /z and K are the coefficients of viscosity and heat
conductivity, respectively. An equation of state relating p, p, and T is added to close
the system. Those equations are a special case of a class of equations called incompletely
parabolic equations.

Although the mathematical analysis of these nonlinear equations is not entirely
satisfactory, and due to the increasing complexity of the physical problems involved,
the Navier-Stokes model is more and more widely used in today’s computational fluid
dynamics.

In many problems of interest, the computational domain is infinite, so that an
important task is the design and analysis of reliable numerical boundary conditions.
Very often the Euler equations have replaced the Navier-Stokes system in computations
(i.e., assuming the viscosity and heat conductivity coefficients negligible). In that case
stable boundary conditions are provided by prescribing the entering characteristic
quantities (see, for instance, [OS]). For better accuracy strategies were described in
[EM1], [EM2], and [BT1], [BT2], [BT3], which led to higher-order differential
operators on the boundary.

For the Navier-Stokes system, it is well known that more boundary conditions
are needed to ensure the well posedness. Considering the Navier-Stokes equation as
a perturbation of the Euler system, it has been suggested that extra boundary conditions

* Received by the editors August 7, 1989; accepted for publication (in revised form) August 28, 1990.
This work was completed while the author was visiting the University of California, Berkeley, California,
and was supported by Office of Naval Research grant N00014-86-K-0691.

" Ecole Polytechnique, Centre de Math6matiques appliqu6es, 91128 Palaiseau Cedex, France, and
D6partement de Math6matiques et Informatique, Centre Scientifique et Polytechnique, Universit6 Paris
Nord, 93430 Villetaneuse, France.
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be added to those derived for the Euler system [OS]. The artificial boundary is usually
set in a "smooth" region, where the equations can be linearized about a regular state
(in general, it is supposed to be constant). The derivation and analysis can then be
carried out for the linear equation. In [GS] boundary conditions were built by adding
conditions on the normal derivatives to the "hyperbolic" boundary conditions to
produce dissipation. In [RS1 and [RS2] "hyperbolic" boundary conditions were tested
for a flow over a fiat plate to force the convergence to the steady state. More recently
in [ABL] Abarbanel, Bayliss, and Lustman worked directly on the Navier-Stokes
equation for the flow past an airplane. They decoupled the domain into the boundary
layer region and the hyperbolic region, and in the former region used a modal expansion
and an approximation of the solution. This approximation is made in the regime of
long wavelength.

We develop here a general strategy for the derivation of artificial boundary
conditions for incompletely parabolic perturbations of hyperbolic systems. Because of
the remark above we shall consider linear systems with constant coefficients. Using
the Fourier transform as an essential tool, we shall write artificial boundary conditions
for a half-space in such a way that the well posedness and the convergence to the
hyperbolic equation are ensured by the well posedness of a reduced hyperbolic problem.
The strategy has been introduced in [HI and [HS] for incompressible flows and consists
of expanding the modes in terms of the small parameter u. For the analysis of these
boundary conditions we shall rely on the results by Strikwerda in IS] on the well
posedness ofincompletely parabolic systems, and by Michelson in [M] on the boundary
layer expansion and convergence to the "inviscid" equation. This strategy theoretically
allows for a convergence up to any accuracy, but the well posedness is not guaranteed
(note that in the hyperbolic case, no well-posedness proof is available for general
artificial boundary condition; see [EM1]).

Consider an incomplete singular perturbation of a hyperbolic system, i.e.,
N N

(0.1)
Ow A(j) Ow 02w

+v p(k)+F(x,t),
Ot =1 OXj j,k=l OXj OXk

where the n x n matrices p(jk) are assumed of the form

(0.2) p(jk) ( "(jk)O )
with rank (k=r, (k is nonsingular, and p(k= p(k. The matrices A( are parti-
tioned in the same way:

(0.3) A(J)-- ( B(j) c(J))D() fi,()

A()OWe require the operator O,-Y to be hyperbolic, the partial operator
1]E= p(jk)Ojk to be Petrovski parabolic, and the reduced operator Ot --Eft----1 z(J)oj" to
be strictly hyperbolic. These assumptions ensure the well posedness of the Cauchy
problem. In order to consider an initial boundary value problem in a half-space Xl > 0
or Xl < O, we shall assume that the boundary F {Xl O} is noncharacteristic, i.e., that
A(1) is nonsingular. Its eigenvalues are denoted by /1,"" ", An where 1,"" ", Am are
negative and Am+l, ", A, are positive. The corresponding eigenveetors are A1, , An.
For convenience and simplicity, we shall assume that fi(1) is a diagonal matrix, with
p negative eigenvalues"

(0.4) (1) ()- (1)+
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where

z(1)- "’. <0, (1)+-- "’.
p+r

We further assume the existence of a symmetrizer S for the full operator

N a N O2
(0.5) Q= y A()+ , p(k)

j=l OXj j=l OXj OXk

which implies in particular that the symbol of Q,

N N

(0.6) Q(is) _, A()- Z P(k)k,
j=l j----1

is diagonalizable through a transformation analytic in s. S is a symmetric positive-
definite matrix. We shall denote by A( and (jk) the symmetrized matrices/( SA(,
fi(jk) sp(jk). Both the Navier-Stokes and shallow-water systems fulfill all the condi-
tions above.

In 1 we shall recall the modal analysis for the Cauchy problem. Most results in
this section are known (see, for instance, [YS] for Navier-Stokes, [S] for the general
case), but we need to set our notation clearly.

In 2 we derive the local and nonlocal boundary conditions for a half-space. The
transparent boundary condition is first written in terms of generalized eigenvalues and
eigenfunctions for the system. It is then approximated with respect to the small
parameter , we shall call viscosity for obvious reasons. This yields boundary conditions
that are differential of first order in the normal direction, but still integral in time and
the tangential derivatives (like the transparent boundary condition for the pure hyper-
bolic problem). Those boundary conditions are, in turn, approximated by differential
operators which are of order zero in time and one in the tangential direction, using
the strategy in [EM1].

In 3, necessary and sufficient conditions for the well posedness ofthe correspond-
ing initial boundary value problem are set. The same conditions ensure the convergence
to the unperturbed hyperbolic problem, with an error estimate. These results are a
direct application of the general analysis in [M].

In 4 the construction above is carried out explicitly for the two-dimensional
compressible Navier-Stokes system.

Finally in 5, we indicate how to produce more accurate boundary conditions.
For the sake of clarity, explicit calculations are made in the special case of the
two-dimensional linearized shallow water equation. Nevertheless, the construction
carries over to any incompletely parabolic system provided the diagonalizability
assumption (0.6) is fulfilled.

1. The Cauchy problem.
1.1. Normal modes for the Cauchy problem. The following analysis can be partly

found in [S], but we include it here in order to set our notation and to study more
particularly the eigenmodes as functions of the parameter ,.

The normal modes are the solutions of (0.1) with F---0, of the type

W eSt+x+i"Yt, Re s >_-- O,
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where

X---(Xl, ,XN) y (x2,’’’, xv).

They satisfy the equation

(1.1) Q(, iq sI)O O.

Here s and ir/are the independent variables and sc is considered as a function of (s, 7).
The equation in sc is of order n + r. By an abuse of notation, but for simplicity, we
shall often refer to : as a "generalized eigenvalue."

We shall first need a general lemma on matrices.
LEMMA 1.1. Let M and S be two matrices of same order n. IfM is nonnegative, if

S is symmetric positive definite, and moreover ifSM is symmetric, then SM is nonnegative.
Let us recall that a matrix M is nonnegative if for any u, (Mu, u) >- O, where (.,

denotes the usual scalar product. M is positive definite if there exists a constant ee > 0
such that for any u, (Mu, u)>= ol111,112,

Proof For convenience, we choose a basis where S is diagonal: S=
diag (Sl,"" ", s,), M (rn0). Using the identity SM= MrS, we can write (Mu, u)=
(Nv, v), where u Sv, and N is defined by

no =- SiSj 1 + mo,

no ji, >j.

On the other hand, we can express SM as

(SMu, u)= 2(Cu, u),

where

1
Co no

si + ss
We know that a matrix defines a nonnegative bilinear form if and only if all the
principal minors are nonnegative. For the matrix 1 / (si + s), they are equal for k _-< n to

Hi<j<=k (Si Sj)2

2kIIsi Hi<jk (Si "Jr- Sj)2"

We now use the following classical result" if A and B are two symmetric nonnegative
matrices, the matrix whose general term is aobo is also nonnegative. Hence C is
nonnegative and the proof is complete.

LEMMA 1.2. For Re s > 0, there are precisely r +p) generalized eigenvalues with
a negative real part, and n-p with a positive real part.

Proof We first prove that there are no purely imaginary generalized eigenvalues.
Let us assume that : i’, where " is a real number. We apply S to (1.1) and multiply
by . We now take the real part of the Hermitian product:

By assumption, the matrix P(qs is nonnegative, and so is /3(qfl by Lemma
1.1. If Re s >0, since (S, ) is positive, we obtain the contradiction.
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Now let N+ be the number of eigenvalues such that Re < 0, and N_ the number
of eigenvalues s such that Re > 0. We have N/ + N_ r + n, from above. N/ and N_
are constant functions of r/ and s. Furthermore, they are constant functions of A and
P, as long as, for instance, p(11) 0.

Let us choose =0 and B(1)= C(1)= D(1) =0. Equation (1.1) for reads

det ,p(l:2+ A(lsc sI] 0 or

det ,/5(11:2_ sI]. det [/(1s- sI] O.

N/ (respectively, N_) is then the number of solutions with positive real part (respec-
tively, negative) of the equations

det [/p(ll)2 sI] 0, det [/(1)__ sI] O.

The first equation is even in . Hence there are r solutions with positive real part and
r with negative real part. Moreover, the second equation reduces to : s/i, which
gives p values with a negative real part and n- r-p with a positive real part. So

N+ r+p, N-= r+n-r-p- n-p.

We now turn to the behavior of these generalized eigenvalues as the parameter
, tends to zero.

THEOREM 1.1. If Re s > 0, as u tends to zero, r values of tend to infinity as 1/u,
and n values have a finite limit.

Proof Let us write : a +0(u), where a is a solution to

(1.2) det [Aa+ iAJqj-sI] =0.
jl

By assumption this equation has n solutions, denoted by a(s, ), , a, (s, r/),
and

(1.3)
l<__j<__m, Re aJ__< 0,

S

m+l<_j<=n, Re a>_0
S

to any a is associated an eigenvector IF(s, r/), and 171,..., 17" span

(1.4) (A(1)Cek d- iA)rl-sI)Hk=o.jl

If now : 0/u + O(1), 0 is a solution of

(1.5) det (P(I)0 +A(1)) =0,
which is an equation of degree r in 0, and has r roots 01"’" Or, then 01," Or+p_
are such that Re 0j < 0, and Or+p-re+l, ", Or are such that Re 0 > 0. The corresponding
generalized eigenvectors 1... or are defined by

(1.6) (p(ll)oj -b A(I)o 0.

In summary, every solution (s, ) of (Q(, iq)- sI)d 0 for Re s > 0 is such that
either

(s, n, ) (s, n)+ o(), O(s, n, ) =n(s, n)+ o(),
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where

A(1)a+ irI.A(J)-sI]II=Ojl

or

1
(s, q, v)=- O+ O(1), (I)(s, n, v)=O+ O(v),

where

(p(ll)o+A(1))O--O.

We shall denote by rl. :m the values of : of the first form with negative real part,
i.e., corresponding to "propagating modes," and :m/l" :r/p the values of : of the
second form with negative real parts. We define ’j(s, r/) and Oj(s, r/) as follows:

(1.7)
l<=j<=m, (s, n, )= (s, n)+ o(),

m+l<=j<--_r+p, j(s, r/, v):1 (s, r/)+ 0(1)

(’j does not actually depend on s and r/ if j _-> m + 1) and

(1.8) l<-_j<-r+p, J(s, rl, v)= J(s, rl)+O(v),

so that

(1.9)
1 <--_j <--_ m, (s, rl) aj(s, rl), J(s, rl) IF(s, rl),

m+l<-j<-_r+p, j(s, r/)=0j_,, J(s, r/)=(R)j-’.

1.2. The transmission conditions. Let us first write a weak formulation of (0.1) in
a domain f with smooth boundary 0f. For any v sufficiently smooth, we multiply
(0.1) by S, apply it to v, and integrate on I. Using the Green formulas

l’( )Io(  )Ioow ov (,w, v)n,
n Ox

,= x ax ,= x

j,k n OXj

where n is the normal exterior to 0, we get

j.k=l OXj

+- () ov A() ow
2jl Oxj’

w
Oxj’

v

, v n + E A()w, v)n + Fv.
j,:l OXj j=l
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We define two bilinear forms a and p, by

a(v, w)=: , w , v dx,
= Ox Ox(1.10)

p(v, w)
j,k=l OX:’ OXk

where a is antisymmetric and p is symmetric, nonnegative (Lemma 1.1).
S being symmetric definite positive, defines a scalar product

(1.11) s(w, v)= . (Sw, v) dx

and we can write

(1.12) s v + ,p(v, w)+ a(v, w)- (Sg’w, v) d/= Fv,

where gw is the normal stress

( O___w 1A(k) )(1.13) g’w
k=l

1, j p(jk)OXjd__2 W nk.

Suppose now that

the orientation of n being from [2- to [l+. We define a-, a/, p-, p/, s-, s/ as we did
for a, p, s, but the integral being taken over fl- and lI+, respectively. Let v be compactly
supported in ll. We thus have

(1.14) s v + ’p(v, w) + a(v, w) Fv,

but

p(v, w):p+(v, w)+p-(v, w),

a(v, w)= a+(v, w)+ a-(v, w),

S ,’/) ,5 "-t-S- ,/5

and we can write

(1.15)+/- s+/-(Ow+/- v)+up+/-( w+/- = F
Ot

w ,v)+a( ,v)-
a
(Sw v) d7 v,

where F=F/ and w= w/O, so that adding (1.15)+ and (1.15)-, and subtracting
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from (1.14) we get

(Sw, v) dy+ Io (Sw, v) dy=O.
fl fl-

Since v is compactly supported in 1, 01 reduces to F and (w)-= (gw-)]r if w is
defined in 1-, (gw)+= (w+)lv if w is defined in 1+, and the normal on F is exterior
to f- (thus interior to f+). The transmission conditions then read

(1.16)
(w)-=(w)+

on F,
W---W+

or

(1.17) k=lE u Ej p(jk)
Ox --2 w- nk

=1

u E p(k)O___+_0x2 nk.

In particular, if f/=R", 1-= {Xl<0}, f/+= {Xl>0}, so that F= {Xl=0}, then the
transmission conditions are

N N OW+

(1.18)
v E p(jl)OW /(jl)
j=l OXj j=l OXj on F.

W---W+

Condition (1.18) is equivalent to (1.16). The Green formula with the constraints is
more useful when we want to prove the well posedness through energy estimates, and
it is the reason we include it here. Again, (1.18) can also be written

+ OW-I OW+I
(1.19) w--w -,

OX OX

where (wI, wn) corresponds to the decomposition of the matrices p(jk), i.e.,

(1.20) w’ (Wl, Wr) W
II (Wr+l, Wn)

but we prefer to use the form (1.18), which seems more fitted to the multidimensional
case.

2. Derivation of the artificial boundary conditions. We shall use the transmission
conditions we wrote above to derive the transparent boundary condition. Let F and
w be compactly supported in -; consider the Cauchy problem:

N NOw A(j) Ow

(2.1) - j’=l OXj-1
t- U

.k=l
] p(k)

w(0) w.
It is equivalent to the transmission problem

(2.2) -Qw- F(x, t)

w-(O) w,
(2.3)

OXj OXk
+ F(x, t),

in

ow

lw+(0)=0
=0 in 1+,
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with the transmission conditions

(2.4)
v p(jl)

oxj
W---W+

N +

v ’ ow
Ox on F.

2.1. The transparent boundary condition. We introduce the initial boundary value
problem in f+"

(2.5a)
OW
--Qw=O in lq+,

(2.5b) w(t 0) =0,

(2.5c) g on F.
Wr+p

THEOREM 2.1. The boundary value problem (2.5) is strongly well posed. The solution
is given in Fourier variables (rt, s) by

r+p

(2.6) l(Xl, r/, s) Y A, e’X’ ’,
i=1

where (,) are defined in (1.1) and the coefficients A are determined by the boundary
conditions.

Proof According to Strikwerda [S], the problem is strongly well posed if and
only if the two initial boundary value problems

OW
I N oZwI

Ot j,k=l OXj OXk
W gI on ,

and

OWII N OWH

Zcgt =
on F

Wr+p \gr+p

are strongly well posed. The first problem is a strongly parabolic problem with a
Dirichlet boundary condition, and hence is strongly well posed. As for the second one,
since J) is diagonal, the boundary condition reduces to specifying the entering
characteristics which is, again, a strongly well posed problem.

Let us now consider Fourier-Laplace transform (2.5a) with respect to and y.
The corresponding variables are (s, r/), with Re s>0. We then get a second-order
ordinary differential equation, whose solution is

Y Z Ai e’X’aPi,
where (:i, cI)i) are given in (1.1), since we supposed that Q(is) was diagonalizable. In
order for to be in L2, the coefficients Ai must vanish when Re :i -> 0. We thus are
led to (2.6).

,)1 is aRemark. We have assumed that Q was diagonalizable, so the
nonsingular matrix and thus the boundary condition determines the Ai’s.
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THEOREM 2.2. The transparent boundary condition at F for the half-space - is

N 0 I r+p r+p

(2.7a) v 2 p(lj) -/, 2 p(ll) 2 iMlt wj-4-1 2 ill(11)1I,
j=l OXj j=l i=1 11

r+p r+p
k r+ +1,’. ,n,(2.7b) Wk Mlj(k, P

i=1 j=l

where Mq is the r +p) x r +p) matrix defined by

(2.8) Mq =cI), and M-1 is the inverse of M.

Proof. w+ is the solution in fl+ of the initial boundary problem (2.5) with gk W-,
+1 <-- k - r+p. Theorem 2.1 then enables us to calculate explicitly Wk, r+p+ 1 -- k - n

and Ow+’/Oxj. The transmission conditions then give the result

N tI tI /(lj)
j=l OXj OX1 jl

From (2.6) we deduce that

Y q) on F,
03Xl i=1

so that

/ O+I

// 2 p(lj)
j=l 0Xj

r+p
^q-w ,,

i=1

r+p r+p

j=l j#l i=1

k= r+p+ 1, , n.

The coefficients Aj are determined by

r+p

i=l

j=l,. .,r+p.

So, if the matrix M is defined by (2.8), we have

r+p

j=l

and finally - satisfies (2.7a), (2.7b): (2.7a), (2.7b) is actually the transparent boundary
condition.

Remark. If (1) were not diagonal, the same study could be carried over, by
choosing an admissible boundary condition (2.5c).

Remark. If n r+p, the transparent boundary condition reduces to (2.7a)" the
"hyperbolic" part does not require any boundary conditions. (It is the case for instance
for Navier-Stokes equation when the flow is supersonic and the boundary is on the
outflow.)

2.2. Nonlocal approximate boundary condition. Since we are seeking boundary
conditions that are consistent with the hyperbolic problem (i.e., v=0), we shall
approximate the transparent boundary condition (2.7) with respect to the parameter
v. We thus shall obtain boundary condition relating w and Owx/oxl, whose kernel is
a nonrational function of s and r/, and thus integral in the time variable and the
boundary variables. This boundary condition will eventually be approximated by local
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boundary conditions in 2.3, using the techniques in [EM1] for hyperbolic problems.
Let us consider the limits as v tends to zero of the various terms in the right-hand

side of (2.7). By (1.8) the vectors i tend to the corresponding i, and hence the
matrix M tends to N, where

(2.9) No l <= i,j <- r+p.

As for the coefficients ui, by (1.9) if 1 -< m, ui tends to zero, and if m + 1 =< =< n,
u:i tends to a finite limit ’i(s, ) (which actually does not depend on s, /). Taking the
limits in the right-hand side of (2.7) as described, we are led to the boundary condition

N r+p

(2.10a) u E p(1,j) 01I
r+p

Z P’I E iNl’ff’twjI’,
j=l OXj i=m+l j=l

r+p r+p

(2.lOb) Wk Z Z Nlk, r+p+l <= k<= n.
i=1 j=l

We shall see in the next section how this boundary condition leads to a well-posed
problem in the left half-space -, whose solution converges as , tends to zero toward
the restriction to fl- of the solution of the full hyperbolic problem in R". The latter
will be done using a boundary layer expansion and the criterion in [M]. Before carrying
over the analysis we shall write local boundary conditions. In order to make the
mechanisms clear, and since we shall need it later, we shall first recall the derivation
of transparent and approximate boundary conditions for the hyperbolic problem.

2.3. Absorbing boundary conditions for the hyperbolic problem. Here we will follow
the lines drawn in [EM1]. We keep the notation and assumptions set in the first section.
The hyperbolic system is

N

(2.11)
Ow ., A(j) Ow/F.
Ot = Ox

By Laplace-Fourier transform in and y, the solutions of this equation in the full
space when F- 0 are given by

N

(2.12) k E Ai e’’’’IIi,
i=1

where (ai, II i) are the eigenvalues and eigenvectors defined in 1

(2.13) (A(1)tk / iA(g)qg-sI)Hk=O.
j#l

If (Re s Re aj)_-<0 (respectively, (Re s Re ag)_->_0), the corresponding mode in (2.12)
propagates in the (xl > 0)-direction (respectively, xl < 0).

The transparent boundary condition at x 0 for the half-space ll- expresses that
no wave can propagate from the boundary toward the interior of fU, i.e.,

(2.14) m + 1,. , n, hi O.

Let us define T as the matrix of the eigenvectors"

(2.15) T0(s n)= II(s, r/).

By (2.15), (2.14) can be rewritten as

(2.16) Vi rn + 1,. ., n T-t)i O.

This is the transparent boundary condition at xl 0 for the half-space ll-, i.e., the
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equivalent of (2.7) for u=0. We shall see in the next section that (2.7) (or (2.10))
actually reduces to (2.16) when v tends to zero, so that the solution of (0.1) coupled
with (2.7) (or (2.10)) tends to the solution of (2.11) with the boundary condition (2.16).
This boundary condition is nonlocal in time and space. Following [EM1], we shall
make an approximation with respect to the angle of incidence of the wave on the
boundary. This is easily achieved by letting r/=0 in (2.13), so that ak is nothing but
S/Ak where /k is an eigenvalue of A(1), and I-Ik= Ak.

Thus, the first absorbing boundary condition for (2.11) in - is

(2.17) Vi=m+l,...,n (-lw)i=0,
where

To A, l<-_i, j<-_n,

which is simply writing that the entering characteristics of the system are prescribed
the value zero on the boundary.

2.4. Local boundary conditions for the full problem. We thus want to make the
same kind of approximation in (2.10), and it is now clearer: for rn + 1 <-_j <= r+p, neither
’j nor J depends on (s, r/) and therefore both remain unchanged. For 1 =<j_-< m,
and are approximated by s/.A, and A, respectively.

We then define the vector J, 1 _-<j_-< r +p by

(2.18)

and the matrix N by

=A, l<--j<=m,

=, m+l<--_j<--r+p

(2.19) Nu , l <= i, j<= r+p.

The approximate boundary condition takes the form

(2.20)

N ,.q I r+p r+p

j=l OA,j i=m+l j=l

r+p r+p

Wk
"--1 r+p+ 1 <-- k<-_ n.,E jZ Nij 21’ k Wj

This is our local boundary condition. It is of first order in x, and zero order in time.
For (2.7) and (2.16), we shall see that it converges to (2.17) when u tends to zero, so
that the solution of (0.1) coupled with (2.20) tends to the solution of (2.11) coupled
with the first absorbing boundary condition (2.17).

We shall discuss in 5 further approximations to these boundary conditions, with
respect to either parameters u or the angle of incidence on the boundary. These
boundary conditions will involve higher derivatives in time and the tangential variables.

3. Analysis of the approximate boundary conditions. We shall use here the analysis
by Michelson [M] of the well posedness and boundary layer for initial boundary value
problems related to parabolic perturbations of hyperbolic equations.

3.1. Well posedness of the boundary value problems. As already pointed out by
Strikwerda IS], the well posedness of the initial boundary value problem for (0.1) is
equivalent to the well posedness of the purely parabolic problem for P and purely
hyperbolic problem for A, provided the boundary conditions satisfy certain decoupling
conditions, which are automatically satisfied for boundary conditions of the form (2.7).
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Furthermore, if the problem satisfies a uniform Lopatinski condition stated by Michel-
son in [M], then we can get estimates uniform in v. Let us define in f- the weighted
norms:

(3 1) Ilull = E II(,D, v’rl)’(xD, Drml ,/2, ’i"/

Ilm=

where X(Xl) is a fixed smooth nondecreasing function of X such that (X1)= X

for [x[ <, and X(x) 1 for [x[ > 1. Denote by [u(x,. ),,, the obvious restriction
ofthe above norm to the hyperplane Xl const. Let be the pseudodifferential operator
with symbol Re(l+vs+Jv]2)l/2(s=iw+n). If w is paitioned in the natural way
mentioned before w (wW,), we define v by

H Dxw(3. v el

We sta by writing the decoupled problems
The parabolic problem is

(3.3a)
O ,= Ox Ox
N

2 (0 o on r,
(3.3b) = Ox

(t=0)=0,
and the hyperbolic problem is

(3.4a)
Own Own

Ot

r+p r+p

k=r+p+l,.., n onF,w= E E *,
i:1 j:r+l

(3.4b)
w"(t=O) =0,

for the boundarconditions (2.10). For the boundary conditions (2.20) N and must
be replaced by N and , respectively.

Then we have Theorem 3.1.
THnOgM 3.1. e boundary value problem (0.1) coupled with either boundary

condition (2.10) or (2.20) is well posed ifand only if the reduced hyperbolic problem (3.4)
is well posed. Furthermore, if (3.4) is well posed in the sense of Kreiss, let integers
m m 0 be such that m-m 1. en there exist positive constants k, o, o such
that for all > o and 0 < o the following a priori estimate holds"

wll + lIDxwll + I(0,. )l + [1/(0, )l,,ml ,m2, ml ,m2

(3.5) + sup (]W(Xl
x1

<k-llIFll ,m2

Proof The first asseion is a mere consequence of the result by Strikwerda in IS].
As for the second a priori estimate, it follows directly from the general theory on
parabolic peurbations for hyperbolic systems by Michelson in [M].

The a priori estimate justifies the boundary layer expansion and proves the
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convergence of the initial boundary value problems (0.1) coupled with either of the
boundary conditions (2.10) or (2.11) as described in 3.2.

3.2. Boundary layer; Convergence results. A physical phenomenon related to
incompletely parabolic approximations of hyperbolic equations with a small parameter
u is the formation of a boundary layer. It is mathematically represented by a formal
expansion

The functions w represent the smooth pa of the solution, while the functions w
represent the boundary layer: they are exponentially decreasing in x/. Michelson
proved in [M] that under the same hypothesis as in Theorem 3.1, the expansion (3.6)
was actually valid. We shall apply this result to our paicular case.

THEOREM 3.2. Let w(x, t, ) be the solution of (0.1), (2.10) (respectively, (2.20))
with a suciently smooth F. Suppose, as in eorem 3.2, that the reduced hyperbolic
problem (3.4) is well posed. en, as tends to zero, w converges to the solution u of the
hyperbolicproblem (2.11), (2.16) (respectively, (2.17)). Moreprecisely, ifml mE m3 0
and m- m2 1, we have

c(+ 3/-)(3.7) [[w(x, t, v)-u(x, t)[[m,m2,m3,
where the norm above is defined by

(3.8) Ilull = E =
ml ,m2 ,m3 ,

i=0

Remarks. (1) This result tells even more about the boundary layer" it says that
in expansion (3.6) the first term w1 is indeed the solution of the associated hyperbolic
problem, and the first term w2 vanishes: the boundary layer is "weak."

(2) Boundary condition (2.16) is actually the transparent boundary condition for
the hyperbolic problem, so that the solution of (0.1), (2.10) converges to the solution
of the Cauchy problem for (2.1).

Proofof eorem 3.2. According to Michelson [M], the following estimate holds:

< C( U + U(3/2)--m3).3.9 IIw, t, wg), t- wg)l/, y. tll.m...
We merely need to check that w) is u and w2 is zero. These terms are obtained

by substituting the expansion (3.6) into the equation and the boundary condition,
separating the scales Xl and Xl/u, and equating to zero the successive coefficients of
the resulting series"

From the equation we deduce that w1) and w2 are solutions of the following
equations:

(3.10) A(1)W(o2) + p(11)0W(o:Z-----) 0,
t(Xl//

N tgW(01)
(3.11)

Ow(l)
A(j) + F,

O Ox
and W1) and w2) are solutions of

(1).
(3.12) y. A(j) O

+ , p(jk)
Ot j=l OXj j,k=l OXj OXk
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02 (2)

A(1) 0W2) p(ll) wi

o(x,l) o(x,l)
(3.13)

02Ow{2--)l
Y A(j) Ow2--)l

2 , p(lj) 02w{)l p{jk) W
Ot j#l OXj j#l O(Xl/P)OXj j,k#l OXj OXk

with the convention thatw 0 if 1. We shall assume here the boundary conditions
(2.10) are imposed. The calculations are the same for (2.20). For Xl =0 we have

02)I r+p r+p

’o,j + ’o,j)(3 14)
O(Xl/) ,==+S=l

r+p

(3.15) :,(1}+ ,*(2} (,*(1 ,*(2}
,O,k "O,k Na "’o,j + ,,od), r+p+ 1 k n.

i,j=l

For >_- 1,

P"> LO;) /=m+l j=l

(3.16) /(1) )1 1)+ E lO,l-+ + =0,
j Xj Xj ] X

r+p

(3.17) ,+ ,2
,l. N( + r+ +1 =n.

i,j=

Let us sta with (3.10). From this form, we deduce that w2 is a linear combination
of the "exponential modes" defined in (1.6). Here w is supposed to be exponentially
decreasing in -, so that

W2) joJ e1, x 0.
j=r+p-m+l

We substitute into (3.14), remembering that for m + 1, , r+p, (,) is actually
(0_, O-). We thus get

W0,1 Wo,
j=r+p-m+l j=l i=1

This amounts to stating that there exist coecients a such that g= agoI =0. It
implies that k= agO =0, for equation (1.6) can be written

fi(loO’ + B(}Og’ + C(1O" =0,

D(O’ + g(1}O" 0.

And if aOg’
=0, then aD(}O’ =0, so that a(}Og’*

=0, and since ( is
nonsingular, the result follows. From the assumptions (0.5) on the operator Q, the
Og’s are independent, and hence the ag’s vanish for any k.

Then h =0 for r+p-m + 1 j r, and thus w2 vanishes identically in -. We
substitute into (3.14) and (3.15), which indicates that w1) is a solution of the following
problem in

Ot
A( Ou
+F,

j=l OXj

with the boundary conditions
r+p

(3.18a) Y Nltj 0,
j=l

i= re+l, , r+p,
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r+p

(3.18b) /k E N VkUj, k- r+p+ 1,. , n.
i,j

We will now prove that (3.18) implies the transparent boundary condition (2.16)
(T-lt)i- 0, m+l<_i<=n

r+p
T -la)i T’aj 2 T ij’aj + T ij’ aj.

j=l j=l j=r+p+l

In the second term of the right-hand side we substitute (3.18b)"
r+p r+p

Tlk T i-k1 E E NjlxIIkaj,
k=r+p+l k=r+p+l 1=1 j--1

k=r+p+l

r+p r+p r+p r+p r+p

Tik tik= E 2 2 Nj’T’p’Iku)- E ’. 2 Nj’Tilxlta),
k=l I=1 j=l k=l 1=1 j=l

but

r+p r+p r+p r+p r+p

Njltlk=tkj and F , NjlitkTi-klj= TIj,
1=1 k=l 1=1 j=l j=l

so that

(T-1/)i
r+p r+p., E Nj Tlataj

k=l /=1 j=l

On account of (3.18), the latter reduces to

r+p

(T-la)i E E Njlaj E TI*
l=l j=l k=l

For 1 m, corresponds to the hyperbolic pa of Q, so that=T and

(T-) =0 form+lNiNn. S

4. Application to Navier-Stokes equations. We consider here the two-dimensional
compressible Navier-Stokes equations:

(4.1a) /x \x+--0x,3 ’ div u i= 1, 2,

(4.1b) pd=-pdivu+. k+----8odivu --+ k0
,= Ox 3 Ox = Ox Ox /

do(4.1c) --p div u.
dt

Here p is the density, ui is the velocity component, p is the pressure, T is the temperature,
/ and k are the coefficients of viscosity and heat conductivity, respectively, and cv is
the specific heat at constant volume. The pressure p is related to p and T by p pRT,
where R is the gas constant. We shall introduce y as the ratio of specific heats, i.e.,
y Cp/co (recall that R =Cp- co), and the Prandtl number of the gas Pr ia,Cp/k. Pr is
supposed to be constant here. As usual d/dt=O/Ot+Ul(O/Ox)+u2(O/Ox2). We shall
assume that the artificial boundary is sufficiently far from any turbulent regime, so
that we can consider (u, p, T, p) as a small perturbation of a smooth regime (u, p, T, p).
Since in our analysis the lower-order derivatives are not of much importance, and the
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results of Michelson carry over to variable coefficients as well by freezing the coefficients,
we shall concentrate here on the case where the reference regime is constant as a
function of time and space Let us call (,/, T,/) the perturbation. It is a solution of
the following problem:

dffl+ O [ 02f1 02f1 1 02f2 ](4.2a) P dt
RT OP +pR=

OX OX OX + OX 3 0X10X2

dT
(4.2c) p+(- 1)pT div =
(4.2d) + p div 0.

dt

We shall normalize these equations by redefining / as /p and introducing the
undisturbed kinematic viscosity u I/p. So that the equations can be written in the
form (0.1)

2/
(4.3) 0U_ A(1) 0___U+A(2) 0___U+ v p(jk)-t- F(x, t),

at t)x1 Ox2 j,k=l OXj OXk

where U (/.,1 /2, )

A(1)=

i/,/2

A(2) 0

0

0

p(ll) 0

0

0

1

p(22) 0

0

0

0

p(12)
0

0

--U 0 --R
0 --//1 0

(y-1)T 0 --U

-1 0 0

0 0

-u2 -R
-(y- 1)r -u2

-1 0

0 0 0

1 0 0

0 yP71 0

0 0 0

0 0 0

i0 yP7
0 0

o o
0 0 0

0 0 0

0 0 0

They satisfy all the assumptions we made in the Introduction. We shall write here the
precise formulation for the local boundary conditions (2.20). We shall start by studying
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the eigenvalues of A(1), and recalling the corresponding boundary conditions for the
Euler equations (cf., for instance, [EM1]).

4.1. The Euler system. It is well known that the eigenvalues of A(1) are

(4.4) A=-u-c, 2 --/3 -Ul, /4 -Ul -- c.

The corresponding eigenvectors are

c 0

A 0
A2 1

(3,-1) 0

1 0
(4.5)

0 c

A3
0

A4
0

T -(-1)
-1 -1

So that A(1) is diagonalizable and the matrix " in (2.17) is

c 0 0 c

(4.6)
0 1 0 0

3,-1)T 0 T -(3,-1)T
1 0 -1 -1

and

0
A()= . A2 .-.

0
’4

The number of boundary conditions required by the system at xl 0 in 12- depends
on whether the flow is super or subsonic and the boundary is inflow or outflow, as
summarized below.

The subsonic case" lull < c.
inflow: ux<0.

A1 <0, A2, A3, A4>O, m 1:

(’-lu) O, i=2,3,4.

outflow: Ul>O.
A1, A2, A3<O, A4>O,

(--lu)4= 0.

The supersonic case: lull > c.
inflow: ul <0.

A1, A2,/3, /4 >0, m =0:

ui O, 1, 2, 3, 4.

outflow: ul > O.

A1, A2, A3, A4>O, m=4:

m=3:

3 boundary conditions.

1 boundary condition.

4 boundary conditions.

0 boundary conditions.



1274 LAURENCE HALPERN

The matrix ’- is given by

(4.7) --1

/1
2c

0

1

1
0

2yT
1 0

1
0

yT
1

0
2yT

1

27
0

y-1

1

23,

so that the boundary conditions are as follows.
Subsonic inflow:

c yT yp
=0,

(4.8a) /2 -"0,

TT y p

Subsonic outflow"

(4.8b)
c yT yp

Supersonic inflow"

(4.8c)

Supersonic outflow:
no boundary condition.

We reintroduced here the density p for the sake of consistency. These boundary
conditions are stable in the sense of Kreiss (see [EM1]).

4.2. The Navier-Stokes system. Here the number of boundary conditions is n-p,
where p is the number of negative eigenvalues of ). fil) reduces to -u, so that we
must distinguish only between the inflow and the outflow cases"

Inflow boundary: u < 0.

p=0:

Outflow boundary: U > 0

4 boundary conditions.

of

p 1" 3 boundary conditions.

We must determine the other part of the family (J), i.e., the 0j and (R) solutions

[p(1,)O+A(1)]O--O.

The cubic equation for 0 has an immediate root we shall call 03

(4.9) 03=ul.
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The two other roots are solutions of the quadratic equation

(4.10) -Ul(-O Ul)(aO Ul)- RT(aO 3’Ul) 0,

where, for simplicity, we set

a TP-1.

We have

3
01-[-02

5/’/1](u2_c2) 3 [a(Ul-C2/7)+4 2

0102
4 1

4 aUl

with c2- 3,RT.
Recalling that 3’ > 1, we can determine the signs of the roots. We order 07 and 02

so that 01 < 02 (01 cannot be equal to 02).
Subsonic case: 01 < 0 < 02.

Inflow case: 03 < 0;
Outflow case: 03> 0.

Supersonic case.
Inflow case: 01 < 02 < 0, 03 < 0;
Outflow case: 0 < 07 < 02, 03 > 0.

The corresponding generalized eigenvalues are

Ul

(4.11) t9’= 0

T -1) TUl/ OzO, Ul

-1

We now have all the elements to (2.20).
Subsonic inflow: rn 1, p O, r +p 3.

i- 1,2,

0

03_. 1

0

0

1"--1, 1=A1, 2=01, --’O 1, 3---03

and

0 0 ]Q_, 1

(7-1)T U1
-det ]Q (/-O1)T

where Ui (7 1) Till/(aO Ul) det N (3, 1) Tu, Uc

0

det N

+-v
0X 8 0X2

01 (film c/ TeOm ill)

(4.12a)
O T_ (’y -1) T01 [/1 c

0X ’yP- 01 U C ’y 1

-1 [Ul(1- c/ TP-/ OI Ul)) "yP-;l Ol U

This system reduces to (4.8a) when v-0.
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Subsonic outflow" m 3, p 1, r +p 4.

i--Ai, ti-Ai, i=1,2,3,

c 0 0 u
0 1 0 0

N=
y-1)T 0 T U

1 0 -1 -1

T-U1 0 U u T
1_ 0 TZ 0 0

TZ U1-TT 0 Ul+C T(u1+c)-Z
+TT 0 -c -cT

where Z yul c( U1/ T- 1). Condition (2.20) reduces to

j=l OXj j=l

or

(4.12b) ate2+ 1

OX 6 OX2

OX Z T

Again, these equations reduce to (4.8b) when v =0.
Supersonic inflow: m O, p O, r +p 3.

i Oi, ti O i, i=1,’’’,3,

and

)r__ 0 0 )r-1 1

U1 U2
Ul(Ul_ U2 -- 0

0

Ul( U1 U2)

Ul /
The boundary conditions are

OX 8 OX2 4Ul
3C2

47 T’

(4.12c)

0/2 1 0/
/,,+--p Ult2,
OX 6 OX2

y-1OX

P Ul
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If v 0, the system reduces to 1 =/2-- " ----0.
Supersonic outflow: m 4, p 1, r 4- p 4.

so that the boundary condition is

O/2 1 O
4-- O,(4.12d)
Oxl 60x2
OT

OXl

The results in 3 apply to these equations as follows.
THEOREM 4.1. The initial boundary value problem for (4.2) and the zero-order

boundary conditions (4.12) is well posed in 1-. As the viscosity v tends to zero, the
solution converges to the solution of the Euler equation with the corresponding boundary
conditions (4.8), the L- norm of the error decreases linearly in v.

Proof. We merely need to check that the reduced hyperbolic problem is well
posed, which is extremely simple here since/(1) =-Hi. The boundary condition then
reduces to fi 0 (when there is a boundary condition for fi) and the following problem"

at; o at;
--Ul U2, X0,

Ot OX OX2

=0, X =0

for Ul < 0 is obviously well posed.
Remark. In [GS] the authors introduced for the Navier-Stokes compressible

equation artificial boundary conditions by requiring them to be dissipative. Further-
more, these boundary conditions produce a weak boundary layer. Therefore Theorem
4.1 also holds in that case. We have not been able to decide whether our boundary
conditions are dissipative or not. However for more general systems or higher
dimensions, it seems difficult to extend their techniques which consist of studying the
boundary form (w, w) and matching coefficients of the boundary condition to get
the right sign. It does not allow for higher-order boundary conditions either.

5. Higher-order boundary conditions. We discussed earlier the goals of our work:
provide boundary conditions which would be (1) local and (2) consistent with the
Euler equation. A first step was made in 3 by an approximation of order zero of the
right-hand side in (2.10). We now want to increase the accuracy of our boundary
conditions. This means, from our point of view, expand first the transparent boundary
condition (2.10) up to higher order in v. By doing this, we shall keep terms like ai(s, 7),
for 1 =<i_-< m, where ai is the traveling mode defined in (1.3). These will correspond
to pseudodifferential operators of order 1 on the boundary, which are, of course, far
from being local. We thus shall in turn approximate these modes with the techniques
described in [EM]. The first realistic approximation is similar to (2.17): we shall set

7 0, and approximate the quantities in (2.7) to first order in v.
We shall restrict ourselves here to the particular case of the viscous linearized

shallow-water system, though the procedure carries over without modification to more
general systems, provided they possess a symmetrizer. This property ensures that the
eigenvalues :i for the system have an expansion (s, *1, v) (s, q)+ vx(s, q)+ O(v2),
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1 --<_ <_-- m, and :i(s, r/, v) (sri + vXi + O(v2))/v, m + 1 <- <-_ r+p, with a corresponding
expansion for the eigenvectors .

Let us consider the shallow-water equations, linearized about the steady-state
(u, 0).

OW A(1) OW_FA(2) Ow (p(ll) 021’tl 02w( 1) -+- V p(22)
O OX Ox2 k Ox

-J- x22J
where w (Ul,//2, (4))"

U 0 -/U/(5.2) A(1)-- 0 -U
-c2 0

(5.3) A2)= 0

me2

(5.4) p(ll) p(22) 1

0

with c > 0.
In our notation of 0, r 2,/5(iJ) 6012 and/(1) U. The eigenvalues of A(1) are

(5.5a) ---U-c, t2--U i3---U---c
and the corresponding eigenvectors are

(5.5b) A1-- A2- A3- 0

The solutions of (P(a’I)O+A())O=O are

U2
C
2

(5.6a) 01 , 02 U,
U

and the corresponding generalized eigenvectors are

(5.6b) 1 12
---17

2

The signs of the A’s and O’s depend on whether the flow is sub or supersonic, and
ingoing or outgoing, as in the case of the full Navier-Stokes equations.

We shall approximate the generalized eigenvalues and eigenvectors :i(s, 0, v) and
(s, 0, v) up to first order in v.

(5.7a)
sC(s, v)= ffi(s) + vX,s2+ O(v2),

$

’(s)

’(s, , =*+ ,Zs+O(,,
(5.7b)

i= A.

For l<--_i<-m
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For m+l<-i<-r+p:

1
’(s. .)=- .+x._s+o(.).

(5.8a)
’i 0i_,,,

.’(s. ) ,’+ _’-s + o().
(5.8b) i .__oi-m

(in the formulas above, the variable r/, being zero, has been omitted).
The X’s and E’s are obtained by substitution of the expressions above in formula

(11) for r/=0:
(:A(1) + p2p(ll) sI)d O.

To h x, h2, h3 are associated three values of sc and vectors :
S /)S

2

" 1 2; o(,,,

S PS
2

(5.9a) 2-12 132
+O(v2),

S /2S
2

’- x 2x

()1= a’+ vs 0 + O( v2) 0 + O(v2),
0 c

(5.9b) 2 A2+ O(v2) + O(v2),

)3 A3 + vs 0 + O(/]2) 0 -- O(0 --c

and to 01, 02 are associated two values of s and (I)"

, U2- c2 U2..4y c2
1 --/.T"[- S

U( U2
C2)

-[- O(

: t /(5.10a) (I)1 01 -I" VS 0 + O(/,,2)
c2/(U-c2)

0 + O(v2),
-c2(1 vs/(U2-c2))

U s
=--+--+ 0(,,),

v U

(5.10b)
(2 02 + O( v2) + O(
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We cannot go any further without dividing the analysis into four cases: subsonic or
supersonic, inflow or outflow.

--Subsonic inflow case: -c < U O, p- O.

A (0, A2, A30" m 1,

01>0, 02<0.
p is equal to zero. We have three boundary conditions

=, =,1,

By a zero-order approximation of the ’s and ’s, we get the first set of approximated
boundary conditions:

Ox1

(5.11)o Ou
u- Uu2 =0,
OXl

CUl =0.

By a first-order approximation in u, we obtain a new set of boundary conditions, which
contains differentiation in time:

(5.11)1

OX U+ c Ot

OU2 1] OU2
v= Uu2+m
OX U Ot

(0 Clg

2(U+ c) Ot

--Subsonic outflow case: 0 < U < c, p 1.

A1,A2<O, A3>O: rn=2,

01 < 0, 02 > 0.

The generalized eigenvalues and eigenvectors with negative real parts (when Re s > 0)
are

The analogue to (5.11)o becomes

0U C- U
(5.12)o v (--CUl -- (9),

Oxl c

and the first-order boundary condition is

t9//1 C- U
1, (-- CU + 0)+
OX C

(5.12)1
0U2 / Oil2
OX U Ot

(I)3 $1

OU2
l O,
OXl

v 0

2c2(c U) O (-c2ul + Uo),
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In the supersonic case, the calculations are much easier.
--Supersonic inflow case" U <-c, p O.

A1, A2, A3>0" m=0,

01, 02<0.
We have three boundary conditions:

U2 20U --C
12
0X U

(5.13)o 12= Uu2,
OXl

2c
(= uUl,

and

(5.13)1

OU U2_c2

12 --Ul+ V
OX U

OU2 12 OU2

OXl U Ot

C
2

12C
2 0U

(4) --- U14 U( U2- c2) Ot

mSupersonic outflow case" U > c, p- 1.

A1, A2, A3 (0:

01, 02>0.
Here we have two boundary conditions:

(5.14)o

(5.14)1

in this case"

Subsonic inflow case:

(5.15) u2=0, (--CU

Subsonic outflow case:

(5.16) o-cul =0;

Supersonic inflow case:

(5.17) ul= u2= o =0;

Supersonic outflow case:

(5.18 no boundary conditions.

The analogue of Theorem 4.1 holds.

We shall not repeat here the calculations for the inviscid case, i.e., 12 0. They are
identical to those for the full Euler equations. The local boundary condition (2.17) is

0U 0U2v=O, v=O,

12 U2 c
(- UUl -]- ( ),

Oxl Ot

OU2 120U2

Oxl U Ot
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THEOREM 5.1. The initial boundary value problemfor (5.1) and any ofthe boundary
conditions (5.11 / i)o, 0, , 3 is well posed in 12-. As the viscosity 12 tends to zero,
the solution converges to the solution of the inviscid equation with the corresponding
boundary condition (5.14+ i), and the L2-norm of the error decreases as 0(12).

The proof is exactly the same as for Theorem 4.1.
Remark. In this case, the well posedness in the classical sense can be expressed

by energy estimates, using the variational formula (1.14). Let us denote by E(t) the
quantity defined by

(5.19) E(t) = _[c2(u21+u)+2] dx

and the analogue on F"

Er(t) = [c2(u+u)+2] dx2.

The energy equality then reads

dE

dt
+ v (Vu +Vu) dx

(5.21)
UEr(t) + c2 vu

Ox

It can be easily checked in each case that the quantity integrated on F is negative.
Unfortunately, the decoupling conditions prescribed in [M] to obtain the well

posedness and the error estimates do not apply to our higher-order boundary conditions
(5.11+ i)1. We have not been able to establish a priori estimates in this case either.
However, the formal expansion (3.6) is still available. It is an easy matter to check
that for the higher-order boundary conditions (5.11 + i)1, the next term in the expansion
vanishes. For instance, in the subsonic inflow case, it is due to the fact that (O/Oxl +
1/( U + c)O/Ot)(W(o1)) -’0. So the boundary layer is weaker than in the former case, and
the solution of the corresponding initial boundary value problem convergesformally to the
solution of the inviscid equation with boundary condition (5.14 + i), the error being O(u2).

Remark. Consider the boundary conditions derived from (5.11+ i)1 in the four
cases by neglecting certain terms:

Otl 12 OU

OX U+ c Ot

Oll C- U
(5.23) 12

0X C

(5.24)

0/,/1 U2- c2
12

Otl2 120U2

OXl U O

Oil2 12 O 2

OX U Ot

U2 -.]- C
2 OU

U U2 c2) 0

2
C

(, --’ 1,/1,

(5.25)
0/,/1

Ox
O tl2 120tl2

Ox U Ot
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These boundary conditions are well posed in the classical sense: we have neglected
the terms which could prevent the energy from decreasing in time. Furthermore, they
still give an approximation to the inviscid problem with boundary conditions (5.14 + i)
in O(,2)" the relevant equations are unchanged. However, the last statement remains
formal, since the decoupling conditions still do not hold.

So far we have considered approximations to the inviscid equations with the
"zero-order" boundary conditions (2.17), which are those used in practice. It is tempting
to try to approximate the Euler problem better. This adds new important difficulties:
as pointed out in [EM] the choice of the "good" boundary condition in the hyperbolic
case is not canonical, and furthermore, it is not clear whether or not it is well posed
in the sense of Kreiss. An analysis of such boundary conditions, together with numerical
experiments, will be presented in a forthcoming paper.
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ADMISSIBILITY CONDITIONS FOR SHOCKS IN CONSERVATION LAWS
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Abstract. Systems of conservation laws which are not of classical hyperbolic type appear in models for
some complex flows. To formulate admissibility conditions for shocks, a single shock is regularized between
a point where the system is hyperbolic and a point where it is not, by the addition of a higher-order term
("viscosity matrix"), to obtain an admissibility criterion based on the existence of connecting orbits in a
related dynamical system. This criterion is more sensitive to the structure of the viscosity matrix than in the
classical hyperbolic case.

Key words, conservation laws, viscous profiles, shock admissibility
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1. Introduction. We consider a pair of conservation laws,

(1.1) wt + hx=- wt + A(w)wx =0,

where

h h(w), w (u, v), h (f, g).

The characteristic speeds Ai satisfy

A2 tr AA + det A 0.

They are ordered, by convention, A1 < A2, when they are real. The system is hyperbolic
or elliptic according to whether

D(w) (tr A)2-4 det A

is positive or negative. We assume that there are open sets

-{wlO(w)>O}, -{wlO(w)<O}
representing each type, and that their common boundary,

(1.2) ={wlD(w)=O},
is a smooth curve.

Systems with this feature appear as models for propagation of phase boundaries
in elasticity [10], in fluids of van der Waals type near the critical temperature [19],
and in the dynamics ofsome models for shape-memory alloys or austenitic to martensitic
transitions in solids 1]. Change of type has also been noted in models for pressure-
driven, convection-dominated, three-phase flow in porous media [3]. Some unusual
models of flows have also led to systems that change type; these include a kinematic
model for two-directional traffic flow [4] and an ecological model [9].

The theory we formulate in this work indicates that there are at least two classes
of flows that change type, and we observe that this corresponds to a distinction in the
observed phenomena. In models for the dynamics of phase transitions, the presence

* Received by the editors February 27, 1990; accepted for publication (in revised form) December 7,
1990. This research was supported in part by the Air Force Office of Scientific Research under grant 86-0088,
and the Air Force Office of Scientific Research and the National Science Foundation under grant DMS-89-
03768.

t Department of Mathematics, University of Houston, Houston, Texas 77204-3476.
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of an elliptic region is coexistent with a physically unstable range of the order variable
(density or strain), as manifested by the behavior of the constitutive relation. A typical
system is

(1.3) ut v,, =0, vt cr( u ),, =0.

This system is a nonlinear wave equation whose characteristic speeds +x/-’ are real
and opposite when tr(u) is an increasing function of u, and complex, with real part
zero, when tr(u) is decreasing. The symmetry of the wave speeds expresses Galilean
invariance of the system: this system is of wave equation type. Symmetry is absent in
three-phase porous medium flow, where the pressure differential breaks the reflectional
symmetry; it is absent also in the kinematic model of traffic flow and in abstract models,
such as general perturbations of quadratic flux functions [8]. Also, there is no obvious
physical instability connected with the elliptic region in these models. The theory
presented here finds the second class to be generic; all wave-equation-type examples
exhibit a degeneracy.

Change of type occurs also in steady transonic flow; the model equations are of
the form

(1.4) h, + ky =- A(w)w, + B(w)Wy =0,

and the characteristic directions (:, r/), which are the roots of

Oct [A(w)+ qB(w)l =0,

are real on one side of the sonic line and complex on the other.
There are significant mathematical differences between (1.4) and (1.1).
An attempt to formulate admissibility conditions for systems of mixed type based

on the model (1.4) was made by Mock 17]. Although there is some overlap, the results
in [17] cannot be applied without modification to (1.1). Conversely, the normal form
analysis which is the main result of the present paper can be applied to (1.4), but a
different normal form is required [16].

2. Conservation law considerations. We study the admissibility of uniform planar
shocks: solutions of (1.1) of the form

(2.1) w(x, t)
Wo, X st,
W X > st

where Wo and Wl are constant states, related to the shock speed s by the Rankine-
Hugoniot relation:

(2.2) s[w] -[h] -= S(Wl- Wo) (h(Wl)- h(wo)) O,
which makes (2.1) a weak solution of (1.1). For fixed Wo, the set of values w such that
(2.2) is satisfied for some s forms the wave locus,

(2.3) W(wo)--{wlss(w-wo)=h(w)-h(wo)}.
Locally, W is a curve, parameterized by s.

Not every configuration (2.1) that satisfies (2.2) is an admissible solution. In the
equations of isentropic gas dynamics in Lagrangian coordinates (equation (1.3) with
tra monotone function) W comprises four branches, which may be labeled S and
S*, 1 or 2. Each extends from Wo to infinity; $ and S* are tangent to r, the right
eigenvector of A corresponding to A, and s--> A as w--> Wo along each branch. In
addition, s is monotonically decreasing on S*, and increases along S, as w-> Wo.
Admissibility is determined by the Lax geometric entropy condition (LGEC):

X,(Wo) > s > ,(w)
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for 1 or 2, where w is the state on the right in (2.1). Figure 1 illustrates the situation
schematically: points on the Si branches correspond to admissible shocks in (2.1),
while if w S*(Wo), then an admissible shock is obtained if left and right are reversed
in (2.1). (See [20] or [11] for a discussion.)

The LGEC cannot be applied to equations that change type. In this paper we
apply a well-known method that is not sensitive to type, the viscous profile criterion:
admissible shocks are those solutions of (2.1) that are limits as e- 0 of self-similar
solutions of

(2.4) w, + h, e(Mw),,

(2.5) w w(:)-= w w(:)-->
E W1 :--> 00.

Such a w(:) is a heteroclinic orbit of the vector field

dw
(2.6) g-= h(w) sw + c,

where c is the value SWo-h(wo)= sw-h(w), from (2.2). The matrix M is called the
viscosity matrix.

3. The Hugoniot loop. The fact that there are solutions of (2.2) with real s for
which one state is in and the other in $ is well known from many examples. The
first theorem of this section is a local result which gives a qualitative description of
the wave locus W(wo) when Wo is near .

A nondegeneracy hypothesis VwD(w) 0 on Y3, which guarantees that Y3 is a
smooth curve, will be assumed throughout. This implies that

S(w)=A(w)-h(w)I

is a nilpotent matrix of rank one on [15]. Thus N has a unique right eigenvector r
and left eigenvector on . We impose a second nondegeneracy condition

(3.1) lTd:h(r,r)>O
on . (Points where this condition fails are interesting, and are discussed in [15].) If
(3.1) holds, then (1.1) is genuinely nonlinear in Y(, sufficiently close to , and also

FIG. 1. Admissibility for hyperbolic systems.
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satisfies the Smoller-Johnson interaction condition [ 11]"

lfd2h(ri, ri) > 0 for i,j= 1, 2.

Here ri and li are right and left unit eigenvectors of A dh corresponding to
normalized by ri. V Ai > 0 and 1. r > 0. Figure 2 illustrates W(Wo) in a neighborhood
of Wo when Wo is near . (Necessarily, S* and $2 are the branches that turn toward
.) It can be seen that

lim rl(W r(w,), lim r2(w)---r(w.), lim li(w)= l(w.)
as w- w. through points in . Also, writing N as fla , we have r-fl/[fl[ and

-a/]a [. Finally, r is directed strictly into .
THEOREM 3.1. Letw. be apoint in where (3.1) holds. Thenforwo in a neighborhood

V of w., W(wo) has the following structure:

If Wo , then Wforms a cusp opening into , with axis tangent to r(wo). The
value of s at Wo is h(Wo), and ds/dtz= (7(1/V) near Wo, where tx is arclength on

If Wo , then W is the union of Wo itself and a smooth curve lying entirely in
(and therefore disconnected from Wo); s is monotonic on W.

If Wo , then W consists of a loop which crosses , and two segments which
leave dV in the opposite direction; thus, W is a curve with a self-intersection; s is
monotonic along the entire curve.

Remark. The first and third possibilities are illustrated in Fig. 2. We shall refer
to the segment between the two self-intersections as the Hugoniot loop.

Proof The zero-set of (2.2),

G(w, Wo, S)=- h(w)-h(wo)-S(W-Wo)=O,

can be analyzed as a bifurcation problem, using the singularity theory approach of
Golubitsky and Schaeffer and the notion of t-equivalence [5, p. 129]. This type of
equivalence reflects the persistence of the trivial solution w Wo for all values of the
bifurcation parameter s. Since dG has rank greater than or equal to 1, G can be reduced
to a one-state-variable problem; we use a Lyapunov-Schmidt reduction that preserves
the t-equivalence. Fixing Wo w. , dGIo= N(w.); a basis for ker N is r and a basis
for (Range N)+/- is I. We express w implicitly in terms of a reduced variable x as

w xr+ Wp(X, v)+ Wo

where v s- A is the bifurcation parameter. A straightforward calculation shows that
G is t-equivalent to

FIG. 2. The Hugoniot loop.
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where

2
rl lTd2h(r, r) > O,

This normal form has t-codimension 1, and an unfolding,

(3.2) ’lX
2 "-[- 6X/22 "[" ax O,

is obtained by perturbing Wo away from , say

W0 W, + at.

The conclusions of the theorem now follow upon examining the nontrivial solution
of (3.2), x ,2_ a, and noting that x and a refer to distances along the vector r.

When a < 0, so that Woe , the solution x has two zeros at u + x/(-a) correspond-
ing to the two ends of the loop. We can parameterize the loop by arclength so that s
is monotonically decreasing on the loop. At , 0, x > 0, so that the loop contains a
subinterval inside .

A similar theorem was proved by Mock [17], using expansions of h near .
Theorem 3.1 clarifies the hypotheses and shows that the size of depends on the
region of validity of the Lyapunov-Schmidt procedure, which can be determined in
specific examples.

To study the vector field (2.6) for Wo in ff and wl in W(wo), we again choose a
degenerate case and unfold it, this time using vector field unfoldings.

THEOREM 3.2. Under assumption (3.1) and an additional nondegeneracy condition

(3.3) ITd2h(r, l)+rT"d2h(r, r)0;

then (2.6) at Wo Wl w. , and M I is equivalent (in the sense of vector field
equivalence) to

--y,
(3.4) A, B, #0.

Ax: + 2Bxy,

Furthermore, varying Wo, Wl, and M in a neighborhood of these values gives a universal
unfolding of the vector field.

Remarks. (1)System (3.4) is the Takens-Bogdanov normal form. It has
codimension two, in the sense of vector field unfoldings, and is discussed in detail by
Guckenheimer and Holmes [6, p. 365]. For the application to (2.6), we wish to unfold
under t-equivalence, so that the solution Wo wl is preserved. The unfolding in this
case was worked out by Hirschberg and Knobloch [7]. Unfolding theory for vector
fields (as in [6] and [7]) does not consider a distinguished parameter, so an interpreta-
tion in the spirit of Theorem 3.1 requires further discussion. This follows the proof.

(2) It is not necessary to vary M to obtain the universal unfolding, but it is useful
to recognize that M ! is included in the application of this theorem.

(3) The additional nondegeneracy condition (3.3) is necessary to obtain the normal
form (3.4), and it is not always satisfied. For example, the nonlinear wave equation
(1.3) is always degenerate. On the other hand, the model equation devised in [12] to
explain some features of a three-phase porous medium flow system and quadratic
models, such as [4], [8], and [9], satisfy this condition, except for special values of
the parameters. For this reason, such systems were called generic in the Introduction.
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Proof Without loss of generality, let c =0 and Wo w1--w --0 in (2.6). By sub-
tracting A(0)w from h we may assume A(0)=0 also, and so s =0. The linearization of
(2.6) at the critical point w 0 is

(3.5) dw_ dh(O)w =- Nw,
d

where N is the nilpotent matrix previously encountered. By performing a linear change
of coordinates, w--Pw, if necessary, we may assume r (-1, 0) , (0, 1) T and

Expanding h through quadratic powers of w now yields

h(w) Nw/ d2h(w, w).

Write w= xr-yl, and expand d2h, which is bilinear in its arguments. Equation (2.6)
(with signs reversed) now agrees with (3.4) through linear terms; the higher-order
terms must be removed by a nonlinear change of variables. Noting that

d-h(w, w)= xd:h(r, r)-2xyd:h(r, l)+ y:dh(l, l)

and that multiplication by r and -l, respectively, gives the contribution to the first and
second equations, we obtain

(3.6) A=-lT"d2h(r, r), B= lT"d2h(r, l)+ rT"d2h(r, r)

upon carrying out the nonlinear change of variables explicitly.
A universal unfolding of (3.4) that respects the trivial solution but has no other

symmetries is [7]

(3.7) : Y, .9 Ax2 + 2Bxy + tXlX + tx2Y.

The fixed points are (0, 0) and (-Ixl/A, 0), and the linearization at zero is

In identifying unfolding variables, we may choose xl (w-wo) r. If we specify
_->0, we avoid some redundancy. Now wo is the origin, and is a saddle in the
dynamics, while w e W(wo) is to the left of it in the Hugoniot loop. As discussed
earlier, we must have woe if w - wo, and then the approach is along a 1- or 2-shock
branch. If wo N, then the steady-state bifurcation as wl crosses wo is transcritical,
and x2 is any parameter that measures the nondegeneracy of this bifurcation: for
example, x2 12(wo)-1(wo) is adequate locally. As wo- N, we use a smooth determi-
nation x2 ,i(wo) ,j(wo) of the eigenvalues. We did not attempt to find an unfolding
using the minimum number of variables.

If M I, the linearized system (3.5) is associated with the matrix M-N, which
may not have a double zero eigenvalue. However, if M is close to I, there will be a
codimension-2 bifurcation point near w wo w.: perturbing M is yet another way
of unfolding the singularity.

This completes the proof of Theorem 3.2. We now turn to a qualitative analysis
of the vector field (2.6) for Wo and w in . Assume Wo to be in Y, and wl in the
Hugoniot loop of Wo; allow Wo to represent either the forward or the backward limit
in (2.5). We describe the sequence of vector field bifurcations as w traverses the
Hugoniot loop, introducing s as a distinguished parameter; this gives a path
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(/.I(S), 2(S)) through unfolding space. We refer to Fig. 3, which follows [7]. The
coordinate axes are/1 and/z2. The Hugoniot loop traces a path in this space beginning
on the negative/z2 axis (when Wl Wo and s- A2) and ending on the positive jt2 axis
(wl- Wo and s- hi), and traversing three open regions in the right half plane. For s
near A2, there is a connecting orbit: a solution of (2.4), (2.5) with limit (2.1) as e - 0.
In this region, states Wl near Wo are on the classical $2 branch of W(wo), and these
are classical 2-shocks as long as Wl remains in . The transition of wl into does not
affect the existence or qualitative properties of the orbit. It is true that if M -/, then
Wl marks a change of type of the unstable critical point, from a node to a spiral,
but this transition occurs at a different value of Wl if M I.

The other end of the loop, near the positive/z2 axis, corresponds to a state Wl in

SI*" the admissible shock wave represented by this pair is

w, x < st,
w(x, t)

Wo x > st.

This orbit also persists as Wl crosses into g.
Two curves Bh and Bc, which separate the $2 and S* branches, enclose an open

region in which there is no orbit connecting the fixed points of (3.7). According to the
sign of B in (3.7), Bh and Bc are as shown here (B <0) or interchanged. At a point
on Bh, a Hopf bifurcation occurs at Wl. For M -/, a simple calculation in (2.6) shows
that this occurs when

(3.8) S(Wl, Wo)= Re hi(w1)= Re hE(Wl),

and hence that Wl is in g at this point. For any other choice of M, the point may be
similarly calculated; this is always a local condition.

In the wedge between lh and Bc, Wl is a stable spiral, and an unstable limit cycle
separates all orbits containing Wl from any orbit reaching Wo. Geometrically, this limit
cycle grows in size as the point (/-l(S),/2(s)) moves away from Bh. The curve Bc
represents a line of saddle connections" the limit cycle coincides with a homoclinic
loop at Wo, which disappears on the other side of B (the "blue sky catastrophe").
The existence of B could be inferred from the necessity of continuous transitions of
the vector field along the Hugoniot loop, but the fact that it is unique, under the

Bh: Hopf ,u. ’0, P.2 ,u-I

Bsc: Homoclinic P.I O,
p.2 6/7p.

Transcritical:

FIG. 3. The vector field bifurcations.
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nondegeneracy conditions holding for (3.4) and its unfolding, is a consequence of the
theory in [6] and [7]. Furthermore, it is theoretically quite difficult to find the point
on the Hugoniot loop at which Wl Bsc, since this, unlike (3.8), is not a local condition.

4. The viscous profile criterion and shock admissibility. We restate the conclusion
of Theorem 3.2 as it applies to a shock configuration on the Hugoniot loop. (See Fig. 4.)

FIG. 4. Admissibility conditions on the Hugoniot loop.

COROLLARY TO THEOREM 3.2. Under the nondegeneracy conditions VD(w) 0 at

w. on , and (3.1) and (3.3), andfor Wo and Wl in a neighborhood At(w.) in which the
reduction to normal form is valid, the Hugoniot loop of Wo is divided by two points, Bsc
and Bh, into three open intervals: in $2 and S’1, there are connecting orbits that give
shock profiles that extend the 2- and 1-shocks, respectively. These profiles are not
necessarily monotone.

Between Bh and B is an open interval where no connecting orbit exists.
For a given value of Wo, the locations of Bc and Bh depend on the choice of M.

When M is near/, both points are in .
Existence of traveling wave orbits for (2.6) can be related to other admissibility

criteria. In [13], Keyfitz suggested an extension of the LGEC for states in : for a
2-shock with wl g,

(4.1) A2(Wo)> s> Re/2(Wl), /I(W0)<S, Re/I(W1)<S.

This condition is insufficient: it does not take into account Bc and the possibility of
a limit cycle. Furthermore, while the analogous condition for a 1-shock appears correct
for the case where M ! and B < 0, it is incorrect when M L A simple geometric
condition equivalent to the viscous profile criterion does not exist in this case. Since
the LEGC is based on properties of initial boundary-value problems, we can pose
such a problem when change of type occurs. We have some preliminary results in [2]
that are consistent with the present paper.

The results in 3 explicitly exclude system (1.3), for which B 0. For M =/, the
curve Bh exists and along this curve the system is Hamiltonian. Perturbation to M I
will introduce both the cases B > 0 and B < 0. The normal form for this singularity
requires third-order terms.

For some model problems, such as (1.3), a singular viscosity matrix may be
appropriate. For example, Shearer used this as an admissibility condition in 18]. We
have excluded singular viscosities from the theorems by requiring M to be near/, but
have examined them in numerical experiments. We conjecture that they describe a
limiting case for the $2 and S* intervals on the Hugoniot loop.
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Abstract. This article studies the behavior of the weak solution of the Cauchy problem to quasilinear
degenerate parabolic equation ut=(u’ux)x+u+1, where tr>0 is a fixed constant, with a nonnegative
bounded compactly supported initial function. Let T be the finite blowup time for solution u(x, t). The
estimate supx u(x, t) <= M(t) for all (0, To), where M(t) is defined from some nonlinear ordinary differen-
tial equation, is proved by the comparison of intersection methods (based on the theory of lap number or
zero set) with explicit noninvariant blowup solution.
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variant explicit solution, upper bound
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1. Introduction. Main results. In this paper we consider the Cauchy problem for
the quasilinear degenerate parabolic equation

(1.1) ut=(u’ux)x+u+1 for xeR=(-,oo), t>0,

(1.2) u(x, O)= Uo(X) in R.

Here cr > 0 is a fixed constant. We assume that the initial function satisfies the hypotheses

Uo-->0 inR, Uo0, supuo<O,

(1.3) Uo has compact support supp Uo {x 6 RI Uo(X) > 0},

uff is uniformly Lipschitz continuous in R.

Equation (1.1) describes the evolution of initial temperature Uo in a medium with
nonlinear heat conduction coefficient k(u) u and heat source Q(u) u/1 depending
on the temperature u u (x, t) => 0.

It is well known [4], [20, p. 208] that for any nonzero, nonnegative, initial function
problem (1.1), (1.2) has no global (in time) solution and u(x, t) blows up in finite time
To, i.e., the weak solution u(x, t) exists in R x [0, To) and

(1.4) lim sup u(x, t)= +.
t->T xR

Here To To(uo), depending upon the initial function Uo, is called the finite blowup
time of the unbounded solution u (x, t).

In this paper some global properties of the unbounded solution of the Cauchy
problem (1.1), (1.2) on the whole time interval (0, To) are investigated. Detailed
information concerning different properties of unbounded blowup solutions of (1.1)
and of the equation with power nonlinearities of a more general kind,

(1.5) tlt tl ’l,lx)x + U, xR, t>0,

where tr > 0 and/3 > 1 are abitrary fixed constants, are given in [20, Chaps. IV, V,
VIII; see also the list of references given there. Properties of blowup solutions of the

* Received by the editors November 20, 1989; accepted for publication (in revised form) June 24, 1990.

" Keldysh Institute of Applied Mathematics, Academy of Sciences of the Union of Soviet Socialist
Republics, Miusskaya Square 4, 125047 Moscow, Union of Soviet Socialist Republics.
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Cauchy problem for (1.5) are quite different for three cases: (i) so-called LS evolution
of blowup solution, fl > or+ 1, when u(x, t) may go to infinity as t- To in a domain
of zero measure or single point blowup (see [7], [20, p. 253]); (ii) S evolution, fl tr + 1,
when under the hypothesis (1.3) the spatial blowup set for the solution u(x, t) is a
bounded domain of nonzero measure (see [20, p. 230], [3]); (iii) HS evolution, fl <
cr + 1, when u(x, t) +oo as t- To for any x R (see [20, p. 238]). This classification
(LS, S, and HS evolutions) of different types of unbounded blowup solutions was
introduced approximately twenty years ago. See a full list of references in [20].

Thus the case /- or+ 1 is the interesting "boundary" one between the region
{fl > tr + 1} of single point localization of blowup solutions and region {fl < cr / 1} of
nonlocalized solutions of total blowup.

We now state the main result of the paper.
THEOREM 1. Let the hypotheses (1.3) hold and let To (0, oo) be the finite blowup

time of the solution to (1.1), (1.2). Then

(1.6) I[u(.,t)llLoa)=-supu(x,t)<-_{q(t)[d/(t)+l]} 1/’, t(0, To),
xR

where the function d/(t) (-1, 1) satisfies the ordinary differential equation

(1.7) ’=o’(cr+1)-1Co(1-2) -/2, t(O, To), (0)=-1,

(1.8) Co= Co( To)=- [(cr + l)/tr]TlB(l + tr/2, 1/2)

B p, q) is the beta-function), and

(1.9) (t)- Co[1-d/E(t)] -+2)/2, (O, To).

Note that the upper bound (1.6) holds for the arbitrary blowup solution and the
right side of (1.6) depends only on the finite blowup time To and does not depend on
the initial function satisfying (1.3) (except through the value of To).

Estimate (1.6) allows for the possibility that the amplitude of the solution may
be nonmonotonic in time. For example, supx u(x, t) may decrease for small > 0 and
supx u(x, t)- oo as t- To. Under some additional conditions on the initial function
(Uo(-X)-Uo(X) in R and Uoconst. is a nonincreasing function in R+=(0, oo)) the
same result was proved in [3]. In order to avoid these restrictive conditions on Uo and
to prove the estimate (1.6) for sufficiently arbitrary initial functions satisfying (1.3),
we use the idea of the so-called "comparison of intersection" of blowup solutions
from [5] and [6] (see also [10]).

If we define asymptotics of the function

(1.10) M(t):--{q(t)[b(t)+l])/’, t(O, To)

as t- 0 and t- To using (1.6) we get the following estimates.
COROLLARY 1. Under the hypotheses of Theorem 1 there exists ’1 O, depending

on cr and To, such that

(1.11) Ilu(., t)ll c<) aot-1/+2)(1 + o(1)), 0< <

where

(1.12)
ao ao(To) =- 2-’/’[(cr + 1)/,]’/(+ 2) -’/(’+z)

T/+Z)[B(1 + o’/2, 1/2)]2/,,+).
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COROLLARY 2. Under the hypotheses of Theorem 1 there exists z2 > 0, depending
on tr and To, such that

(1.13) IlU(’,t)llLa<--[Al(To--t)]-l/(l+o(1)), To-’2<t<To,

where Ao 2(tr + 1)/tr(tr + 2).
We shall show that the upper estimates (1.11) and (1.13) ofthe asymptotic behavior

of the solution near 0 and near finite blowup time To are the best possible.
The plan of the paper is as follows. In 2 we give some preliminary information

and results. In 3 some basic properties of the noninvariant explicit solution of the
equation (1.1) [8], [9] are described. The main result is obtained by the comparison
of intersection (see [20, Chap. IV]) of the solution u(x, t) with the above-mentioned
explicit solution which has the same finite blowup time. Necessary preliminary informa-
tion about the comparison of such an intersection is given in 4. Theorem 1 is proved
in5.

The explicit solution from 3 shows the existence of the weak solution of the
Cauchy problem for (1.1) with singular initial function

(1.14) u(x, 0) 15(x) in R

(5(x) is Dirac’s measure). It is shown that the weak solution u.(t, x) of (1.1), (1.14)
exists in R x [0, T.) where

(1.15) T.= 2-10"-(r+l)(o" + 1)+2/2B(1 + o’/2, 1/2)B(1 + 1/o-, 1/2)
and u.(x, t)-++oo as t--> T in the localization domain oL=(-L,/2, L,/2), where
L, =2rr(r+ 1)1/2/O is the so-called fundamental length of the nonlinear medium
described by (1.1) [20, Chap. IV], and u.(x, t)=0 in (R\o)x [0, T,).

The explicit solution u.(x, t) gives another general property of the localization of
blowup solutions to (1.1). It was shown in [3] by the comparison of intersection that
the right front h+(t) -= sup {x e R] u(x, t) > 0} of any unbounded solution satisfies the
estimate

h+(t)<=h+(O)+(L,/2rr) [w/2+arcsin q,(t)] < h+(0) + L,/2

in (0, To), where the function ,(t) is as defined in (1.7), (1.8). Hence the right heat
front does not move more than a distance L,/2 from its initial position. This upper
estimate is exact since the right front of the explicit solution u.(x, t) moves exactly
through the distance L,/2 as -+ TT. Therefore L, is really a fundamental characteristic
of the nonlinear equation (1.1), since the property of the heat front mentioned above
does not depend on the initial function.

The explicit solution (from 3) illustrates several of the most general properties
of a wide class of blowup solutions, i.e., it possesses the "fundamental" characteristics
of the nonlinear equation (1.1).

2. Preliminary results. In the general case, the Cauchy problem for the quasilinear
degenerate parabolic equation (1.1) admits a weak blowup solution.

A bounded continuous function u(x, t) satisfying (1.2) is said to be a weak solution
of the problem (1.1), (1.2) in Qr- R x [0, T] if there exists a weak derivative (u+),, e
Lo(Qr), and if the identity

(2.1) f f {(o’+ 1)-l(u’+l)xfx--u’+lf--uft} dxdt=O
QT
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holds for arbitrary test functionsf C(Qr). The function u(x, t) is said to be a blowup
weak solution of the problem (1.1), (1.2) in R x [0, To) if it is a weak solution in Qr
for all T (0, To) and if (1.4) holds.

Local existence, uniqueness, and the comparison theorems for quasilinear degener-
ate parabolic equations of type (1.1) are proved, for instance, in [17]-[19] and [14].
See the detailed survey in 11 ]. For any points where u > 0 and where the equation is
uniformly parabolic with smooth coefficients, the weak solution is classical and has
derivatives of arbitrary order. Nonexistence of the global weak solution to the problem
(1.1), (1.2) for Uo 0 was proved in [4]. See also [20, p. 208]. We shall use the well-known
property of finite speed of propagation of disturbances for the degenerate equation
(1.1), i.e., under hypotheses (1.3), u(x, t) has compact support for any (0, To). See
the references in 11 ].

3. Explicit solution. It has been shown in [8] and [9] that for arbitrary o" > 0 the
quasilinear parabolic equation (1.1) admits an explicit weak blowup solution ofthe form

u,(x, t)={(t)[b(t)+cos (2,rx/L)]} 1/ for x(-L/2, L/2),
(3.1)

u, 0 for x R\(-L/2, L/2), (0, To),

where the function q(t) satisfies the ordinary differential equation (1.7), (1.8) and the
function q(t) is defined in (1.9). It can easily be shown that this explicit solution (for
Co from (1.8)) has the finite blowup time To.

Consider the main evolution properties of the explicit solution (3.1). It describes
the behavior of the blowup heat structure with nonmonotone spatial amplitude

(3.2) IlU,(’,t)l[t(R)=--u,(O,t)=M(t)={q(t)[(t)+l]} 1/, t(O, TO),

and u,(0, t)= M(t)-+o as t To. Using (1.7)-(1.9), we have that

(3.3) u,(O, t)=M(t)=aot-1/+2)(l+o(1))+ as t-0,

(3.4) u,(0, t)=[al(To-t)]-l/(l+o(1))->+ as t-> T-,

where constants ao, Ao are as defined in Corollaries 1 and 2.
Thus, the formulas above show that the spatial amplitude M(t) of the solution

u.(x, t) is a nonmonotone function. It is easy to calculate that

min M(t)= TI/B1/r(1 + tr/2, 21-)[tr(tr +2)/(tr + 1)2] -(+2)/2r
(O, To)

for

=tm ToB-I(1 + o’/2, 1/2) (1 z2) ’/2 dz (0, To/2).
1/(tr+l)

For any (0, To) this explicit solution has the compact support with the right front

(3.5) x=h*+(t)=-g(t)=-(Ls/27r)[r/2+arcsin q(t)], t(0, To).

Therefore u.(x, t) is the localized solution, since h+*(t)< Ls/2 for all (0, To) and
h*+(T) L,/2. Note that (3.5) leads to the following behavior of the right heat front"

(3.6) h*+(t)=b/2tl/(+Z)(l/o(1)) as t-0,

where

bo bo(To) -= (tr + 1 tr-(tr + 2) 2/(+2) T-E/+2)[B(1 + tr/2, 1/2)]/+2.
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Consider now a more detailed asymptotic space-time structure of u.(x, t) near
0. Such results are important for comparison of intersection. First, we note that

u.(x, t) is the nonnegative bounded weak solution of (1.1) in R x z, T] for arbitrary
fixed z(0, To) and T(’r, To). From (1.7) and (1.9) it follows that b(t)=
-1 + bot2/(+2)(1 + o(1)) and p(t)=Aot-l(1 + o(1)) as t--> 0. Therefore

u.(x, t) (Aot-l(1 + o(1))[bot2/(+2(1 + 0(1)) + cos (27rx/Ls) 1]) 1/+ as t->0.

Since 1 -cos (27rx/Ls) 2 sin2 (Trx/Ls) 2r2x2/L+ o(x2) as x-->0 we get

(3.7) u.(x, t) aot-1/(+2([(1 + hi(t, x))-(x/b/2tl/(+2)2](1 + h2(t, x))) 1/4-

where hi(t, x) and h2(t, x) are sufficiently smooth functions such that hi( t, x) o(1)
as t/lxl-0, i= 1,2.

Hence, for To T. (see (1.15)) the explicit solution u.(x, t) satisfies the initial
condition (1.14) in the weak sense:

lim [- u.(x, t)(x) dx (0)
O

for arbitrary test functions : C(R).
4. Comparison of intersection. Main preliminary statements. We now give some

preliminary statements concerning the comparison of intersection of the solution of
the problem (1.1), (1.2) with the explicit solution u.(x, t).

Let u(x, t) be the solution of the Cauchy problem (1.1), (1.2) in R x (0, To) with
the initial function satisfying (1.3), and let To be the finite blowup time. We suppose
that suppx u(x, t) =-- {X I[ U(X, t) > 0}= (h_(t), h+(t)), i.e., the support of u(x, t) is the
finite connected interval for any [0, To). Then h+/-(t) are continuous functions in
[0, To), h+(t) is a nondecreasing function, and h_(t) is a nonincreasing one. See the
references in [11]. By the results of localization [3] (see also [20, p. 230]) we have the
estimate suppx u(x, t)c (h_(O)-L/2, h4-(0) + L/2) for all (0, To).

Let v(x, t) be the weak solution of the Cauchy problem for (1.1) in R x (0, To)
with some initial function v(0, x) Vo(X) satisfying the same hypotheses. We suppose
that v(x, t) has bounded connected support for any (0, To).

Proof of the main results of this paper are based on the following preliminary
lemmas concerning the comparison of intersection method of different solutions u(x, t)
and v(x, t) of the equation (1.1) [20, Chap. IV].

The functions u(x, to) and v(x, to) for fixed to [0, T] are said to be intersected
on the finite interval [a, hi, if the difference w(x, to)= u(x, to)-V(X, to)=0 in [a, hi,
w(x, to) 0 in [a e, a] and [b, b + e] and w(x, to) changes sign in the interval [a e, b +
e] for arbitrarily small e > 0. In other words, the finite interval [a, b] is said to be an
intersection if w(x, to) 0 on [a, hi, and for any small e > 0 there exist Xl [a e, a],
x2 [b, b + el, such that W(Xl, to)W(X2, to)< 0. If a b then this is the point of intersec-
tion. However, for the quasilinear degenerate parabolic equation (1.1) with weak
compactly supported solutions there exist intervals of intersection.

We shall denote by N(t), the number ofintersections for fixed [0, To). Evidently,
N(t) is equal to the number of sign changes in R of the function w(x, t).

The first statement of the comparison of intersection is the most general one.
LEMMA 1 (see [20, p. 240]). Let N(O) <. Then N( t) is a nonincreasing function

and in particular

(4.1) N( t) <= N(O) for all (0, To).
This result is well known for linear and quasilinear parabolic equations (see other

such results in [1], [2], [5], [6], [10], [15], [16], [21]).
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The second statement is a specific comparison theorem for different weak blowup
solutions with the same finite blowup times.

LEMMA 2 (see [20, p. 231]). Let To be the finite blowup time for v(x, t). Then

{ [0, To)[ Supp v(x, t) c supp u(x, t)

(4.2)
and v(x, t) <-- u(x, t) in R} .

From the simple properties of weak solutions it follows that if (4.2) is not valid
and for some toe [0, To)

(4.3) supp v(x, to) c supp u(x, to), v(x, to) <- u(x, to) in R

then blowup time for v(x, t) is greater than blowup time for u(x, t). It is easy to show
by the strong maximum principle and comparison theorems that under conditions (4.3)
there exist small - > 0, 7"2 > 0 such that v(x, to + 7"1 + 7"2) U(X, to + ’) in R, and hence
by the usual comparison theorem v(x, + ’2) -< u(x, t) in R x [ to + ’1, To) (see [20,
p. 231]). Letting t= To- ’2, we get v(x, To) <- u(x, To- ’) <+ in R, i.e., To is not the
blowup time for v(x, t), which leads to a contradiction of the hypothesis of Lemma 2.

5. Proof of Theorem 1. We shall compare the solution of the Cauchy problem
(1.1), (1.2) with the explicit solution (3.1) (more precisely, with the two-parametric
family of such explicit solutions).

Consider, for fixed arbitrary e>0 and 6R, the function v(x,t; e, 6) =-
u.(x 6, + e), where O(t), q(t) satisfy (1.7), (1.9), and Co Co( To + e) is given in
(1.8). Then v(x, t; e, 6) is the weak blowup solution in Rx(0, To) of the Cauchy
problem for (1.1) with the initial function v(x,O;e, 6)---- u.(x- 6, e) satisfying
hypotheses (1.3). Clearly, v(x, t; e, ) is the continuous function with respect to x,
and e, 8. By construction, for any fixed e > 0 and 6 R, solutions u(x, t) and v(x, t; e, )
have the same blowup time To.

Let N(t; e, 6) be the number of intersections of the functions u(x, t) and
v(x, t; e, 6).

LEMMA 3. There exists sufficiently small Co> 0 such that for any e 6 (0, co], 6 R

(5.1) sup v(x, 0; e, 6) v(3, 0; e, 6) -= u.(0, e) > sup Uo(X)
xR x.R

and

(5.2) N(0; e, 6)_---_2.

Proof Estimates (5.1), (5.2) for arbitrary fixed e(0, eo], 6R follow from
asymptotic behavior of u.(x, t) near 0, given in (3.7).

From (5.2) and Lemma 1 it follows that

(5.3) N(t;e, 6)<-<_2 for0<t<To for any e (0, e0], 6R.

We now prove that

(5.4) sup u(.x, t) =<sup v(x, t; e, 6) v(6, t; e, 6)
xR xR

for all [0, To).
Let

t. =sup {s (0, To)l (5.4) hold for all 0,--ts}< To
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(t, > 0 by (5.1)). Then there exists x, R such that

sup u(x, t,)= u(x,, t,)
xR

and hence for 6 x,
sup v(x, t,; e, x,) -= v(x,, t,; e, x,),
xl

i.e., x=x, is the maximum point for u(x, t,) and v(x, t,; e,x,). Without loss of
generality we suppose that x x, is the point of strict maximum for u(x, t,), i.e.,
u(x, t,)< u(x,, t,) in a small deleted neighborhood of x x,. Evidently, the same
assertion holds for the explicit solution v(x, t, e, x,). This assumption about zeros or
maximum points is valid for arbitrary classical solutions of parabolic equations with
sufficiently smooth coefficients. See different results in this direction [2], [5], [15], [21].
Note that all coefficients of (1.1) are smooth (and analytic) functions for u > 0 and
therefore we may assume that solutions of the Cauchy problems considered are C
(and analytic in x) functions at any point of positivity of the solution [12], [13] (see
also 1 where analyticity results were obtained for a wide class of nonlinear degenerate
parabolic equation including our quasilinear equation (1.1)). Under these hypotheses
any positive maximum of u(x, t,) is the isolated point. The same holds for any
intersection of u(x, t,) and v(x, t,; e, 6) if these solutions are strictly positive near the
intersection. But the above-mentioned assumptions are not the principal parts of our
proof.

Two cases are possible. Certainly, we may assume that u(x, t,) v(x, t,; e, x,).
Case 1. x x, is the point of inflection (see [6], [10]) of functions u(x, t,) and

v(x, t,; e,x,), i.e., x=x, is the isolated point of intersection and the function
w(x, t,; e, x,)-= u(x, t,)-v(x, t,; e, x,) changes sign in any small neighborhood of
the point x x, and

(5.6) w(x,, t,; e, x,)= w,(x,, t,; e, x,) =0.
Since w(x, t,; e,x,) is not of constant sign near x=x,, we suppose that
w(x, t,; e, x,)> 0 in a small left neighborhood of x x, and w(x, t,; e, x,)< 0 in a
small right one. Then there exist Xl < x, < x2 such that

(5.7) W(Xl, t,; e, x,) > 0, w(x2, t,; e, x,) < 0.

Fix small A > 0 and consider the function v(x, t,;e, x,-A). Since x x, is the
point of strict maximum for functions u(x, t,) and v(x, t,; e, x,) we can see that the
difference w(x, t,; e, x, A) u(x, t,)-v(x, t,; e, x,-A) satisfies

(5.8) w(x,, t,; e, x,-A)> 0, w(x,-A, t,; e, x,-A) <0.

The function v(x, t,; e, x,-A) is continuous with respect to A. Hence, inequalities
(5.7) hold for any small A > 0, i.e.,

(5.9) W(Xl, t,; e, x,-A)> 0, w(x2, t,; e, x,-X) <0.

From (5.8), (5.9) we see that w(x, t,; e, x,-A) has at least three sign changes in the
interval (Xl, x) near the point x x,, i.e., N(t, e, x,- A) _>- 3, which contradicts (5.3)
for 6 x, A.

Case 2. x x, is the point of tangency ofthe functions u(x, t,) and v(x, t, e, x,),
and in particular w(x,, t,; e, x,)=0 but w(x, t,; e, x,) does not change sign near
X--X.

If v(x, t,; e, x,)>= u(x, t,) near x= x, and v(x, t,; e, x,) u(x, t,), then by the
strong maximum principle and the usual comparison theorem the same inequality
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holds for any t,, where t- t, is sufficiently small, which contradicts the choice of
t, in (5.5).

Thus, it remains to consider the case where v(x, t,; e, x,) <- u(x, t,) and
v(x, t,; e,x,) u(x, t,) in a small neighborhood of x-x,. Then we can choose
Xl x, x2 such that

(5.10) W(Xl, t,; e, x,) 0, w(x2, t,; e, x,) 0.

If v(x, t,; e, x,)-< u(x, t,) in R and suppx v(x, t,; e, x,)c suppx u(x, t,), then we
get a contradiction to Lemma 2 since, by construction, To is the finite blowup time for
u(x, t) and v(x, t; e, x,).

Consider now the case where

(5.11) v(x, t,; e, x,)-<_ u(x, t,) in R,

i.e., N(t,; e, x,)= 0 (the difference w(x, t,; e, x,) does not change sign in R), but the
condition supp v(x, t,; e, x,)c supp u(x, t,) is not valid. Clearly, (5.11) means that
supp v(x, t,; e, x,) supp u(x, t,) and one or two boundary points of the supports
suppx v(x, t, e, x,) =- (x, g( t,), x, + g( t,)) (see (3.5)) and supp u(x, t,)
(h_(t,), h+(t,)) coincide. For instance, let the right heat fronts of v(x, t,; e,x,) and
u(x, t,) coincide, i.e., x, + g(t,) h+(t,). Then we can obtain that for any small A 0
the number of intersections N(t,; e,x,+A) of the functions v(x, t,; e,x,+A) and
u(x, t,) satisfies the inequality N(t, e, x, + A) _-> 3. Evidently, since
suppv(x,t,;e,x,+A)=(x,+A-g(t,),x,+A+g(t,)) and hence w(h+( t,), t,
e, x, + A) -v(h+(t,), t, e, x, + A) 0 u(h+(t,), t,), one new intersection arises
near the right heat front x h+(t,) of the function u(x, t,). Using the second inequality
(5.10), we get that for any small A0 there exists at least one intersection of the
functions v(x, t,; e, x, / A) and u(x, t,) on the interval (x2, h+(t,)). Two new intersec-
tions arise near the point x- x,. Since x x, is the point of strict maximum of the
functions v(x, t,; e, x,) and u(x, t,), it follows that

(5.12) w(x, + A, t,; e, x, + A) < 0.

By continuity of w(x, t,; e, x, + A) with respect to A, inequalities (5.10) remain valid
for all small A > 0, i.e.,

(5.13) W(Xl, t,; e, x, + A) > 0, w(x2, t,; e, x, + A) > 0.

From (5.12), (5.13) we get that w(x, t,; e, x, / h) has at least two sign changes on the
interval (Xl, x2).

Thus, N(t, e, x, / A) >_- 3 for all sufficiently small A > 0 and we arrive at a contra-
diction to (5.3) for x, / A.

Consider the last situation where v(x, t, e, x,) <- u(x, t,) in a small neighborhood
of the point x x, and N(t, e, x,) _-> 1. Then we can see by the same "A-translation
the x-axis of the function v(x, t,; e, x,)" that two new intersections arise near the
maximum point x x,. Together with the intersections for A 0 which do not disappear
for any small A > 0 this leads to the estimate N(t, e, x, + A) _-> 3, which contradicts
(5.3) for x, + h.

Thus, t, To, and (5.4) holds for all [0, To). Letting e0 and 8 =0, we get
(1.6) which completes the proof of Theorem 1.

Using (3.3), (3.4), we obtain results for Corollaries 1 and 2. Evidently, these
estimates are the best possible since the explicit solution u,(x, t) satisfies (1.11) and
(1.13) with equality signs instead of inequality signs.
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Remark 1. Equation (1.1) admits the weak blowup self-similar solution of the
form (see, e.g., [20, p. 175])

where

UA(X t) (To- t) -1/’r 0(X),

O(x)
\--(r7 2)

cos - for Ixl < LI2 7r(cr + 1)1/2/

O(x) 0 for Ixl >= L/2.
This solution is localized in the bounded domain {Ixl < Ls/2}, UA(X t)=0 in R\{Ixl <
Ls/2} for all (0, To) and UA(O, t) [Aft1( To- t)]-/ for (0, To). The last equality
coincides with the right-hand side of (1.13).

Remark 2. It follows from the proof of the Theorem 1 that the estimate (1.6)
holds for any blowup solution u(x, t) such that supx u(x, t) is attained at a finite point
x x. R for arbitrarily fixed [0, To). Hence, for instance, Theorem 1 is valid for
an arbitrary initial function Uo such that u(x, t) 0 as Ix[- o for any fixed [0, To),
i.e., (1.6) holds for more general initial functions Uo than those with compact support.

Acknowledgments. The author thanks the referees for useful suggestions.
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INVERSE PROBLEMS IN MULTIDIMENSIONS*

LI-YENG SUNG AND A. S. FOKAS

Abstract. The direct and inverse problems associated with off-diagonal N N matrix-valued
potentials in ]n+l are studied rigorously. For N 2 and n 1, they are related to the Davey-
Stewartson II equation. The components of the potentials are assumed to be rapidly decreasing
Schwartz functions. Under small norm conditions, both the direct and the inverse problems are
shown to be uniquely solvable. The inverse data are characterized by certain nonlinear equations.
Furthermore, the general problem of reconstructing the potential is reduced to the reconstruction of
2 2 potentials.

Key words, inverse problems, multidimensions
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1. Introduction. In this paper we shall study rigorously an inverse problem
formally discussed in [5]. Let Q(x0, x) be an off-diagonal NN-matrix-valued function
defined on ]n+l. To facilitate the discussion, we shall assume that the components
of Q are rapidly decreasing Schwartz functions. The space of such matrix-valued
functions will be denoted by Svg. We want to reconstruct Q from solutions of the
following system:

(1.1) o +aJ, =Q, a=aR +iaI, al #0, n> l,
=1

where the Jt’s are constant real diagonal N x N matrices and is an N x N-matrix-
valued function.

We assume that n _< N, otherwise (1.1) can be reduced to a problem with fewer
variables. In order to reconstruct the potential Q we look for bounded solutions of
(1.1) in the following form:

(x0, x, k) #(x0, x, k) exp I n

--1

where k E Cn and I is the N N identity matrix.
following equation for the Jost function #:

Direct substitution yields the

(1.3) #o + aZ (J# + ik[Jt, #]) Q#.
=1

in view of the decay of Q, it is natural to require that

(1.4) lim # i.
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In 2 we consider the direct problem: In Proposition 2.1 we show that if Q E

SVN and certain norms of Q are small enough (see (2.11)), then (1.3) with the
boundary condition (1.4) has a unique bounded solution for each k E Cn. In Proposi-
tions 2.2 and 2.3 we study the regularity of # and its asymptotic behavior for large k.
The inverse data T is introduced in Definition 2.2, and in Proposition 2.4 we derive the
05 equations expressing O#/Op in terms of # and T. We show in Proposition 2.5 that
T satisfies the characterization equations, i.e., 2(n- 1) constraints. In Definitions 2.3
and 2.4 we define the Frchet space Dvg of inverse data and the scattering map
that takes Q to T. The results of 2 are summarized in Theorem 2.1.

In 3 we study the inverse problem: In Proposition 3.1 we show that ifT DvN
and certain norms of T are small enough (see (3.8)), then the 0 equations have unique
bounded solutions #p (1 <_ p <_ n). The regularity of #1 is discussed in Proposition 3.2.
In Proposition 3.3 we show that #1 #2 #n, and hence the v5 equations have
a unique simultaneous solution #. The asymptotics of # for large k is studied in
Proposition 3.4. In Propositions 3.5 and 3.6 and Corollary 3.1 we show that if Qp is
defined in terms of # via

then Q1 Q2 Qn Q (Q is therefore independent of k), Q e xN, and Q
and # solve (1.3)-(1.4). We define the inverse scattering map , which takes T to Q
in Definition 3.2. The results of 3 are summarized in Theorem 3.1.

In4 we study the relation between $ and : We show in Proposition 4.1 that
S and $ are inverses of each other. As a result, we obtain Theorem 4.1, which states
that S is a homeomorphism from a neighborhood of 0 Svg onto a neighborhood
of 0 Dvxg.

In 5 we consider the problem of reducing the reconstruction of N x N potentials
to the case of 2 x 2 potentials: In Proposition 5.1 and Corollary 5.1 we show that the
2 x 2 matrix

f_ lim (#hak--,o ba bb

(the limit is taken in a certain direction determined by the indices a and b) satisfies
(1.3)-(1.4) where the coefficient matrices jt and the potential ( are the restrictions of
Jt and Q to the ha, ab, ba, and bbth components, and the inverse data of the 2 x 2
system can be obtained from the limits of the inverse data of the original system. In
Proposition 5.2 we obtain an equivalent characterization of inverse data. An efficient
way of reconstructing the potential is then discussed.

There exist several physically significant cases of the above problem: (1) Equation
(1.1) with a i, N 2, n 1, and Q21 =t:Q12 can be used to integrate the Davey-
Stewartson (DS) II equation. This equation is a two-spatial dimensional generalization
of the celebrated nonlinear Schrhdinger equation. DSII was discussed formally in [4]
and [6] and rigorously in [1]. Furthermore, it is shown in [2] that for the case of
Q21 Q12, the small norm assumption for both the direct and the inverse problem
can be relaxed. (2) Equation (1.1) witha- 1, N- 2, n- 1, andQ21 =kQ12
is associated with the DSI equation while (1.1) with a 1, n 1, and arbitrary N
is associated with the N-wave interaction equations (see [4], [9]). Although the case
a 1 can be considered as the limit a 1 / i0+, it is more convenient to study this
case directly. This problem is rigorously discussed in [19].
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The novelty associated with inverse problems in greater than two spatial dimen-
sions stems from the fact that the inverse data depends on more variables than the
potential. Indeed, in the case studied here the potential Q(xo, x) depends on n+ 1 real
variables, while the inverse data T(kR, k, m), kR E , ki , m -1, depends
on 3n- 1 variables. This has important implications: (1) The inverse data must be
appropriately constrained. Actually, the "characterization" of the inverse data now
becomes the central problem. Such a characterization problem was first considered by
Faddeev [3] in connection with the multidimensional Schrbdinger equation, and later
by Newton [13]-[17], who introduced the so-called miracle condition. This problem
has recently been studied using the (0 approach [10], [11], [18], which is the approach
followed here. (2) The existence of redundant scattering parameters can be used to
simplify the problem of reconstruction. Indeed, in the case of the Schrbdinger equa-
tion, this redundancy yields the well-known Born "approximation," which implies that
the potential can be reconstructed in closed form. The novelty associated with (1.1)
is that, although the reconstruction problem can be simplified, it remains nontriviah
We reduce the general problem of reconstructing an N N potential Q in n -4- 1 di-
mensions to one with N n 2. Henkin and Novikov [7] have subsequently shown
that a similar situation arises in a number of physically important cases.

Equation (1.1) was also discussed in [12], where the characterization problem was
formally solved but the reconstruction of Q remained open (see the discussion in [5]).

2. The direct problem. We will make the following nondegeneracy assump-
tions on the coefficient matrices J.

(2.1) J-0 for 1 < a< N.

(2.2) J-J#O forl<_t_<n and l<_a<b<_N.

For the moment we shall concentrate on the abth component of (1.3).
simplified by the following change of variables:

It can be

(2.3)
x0 2y0,

xl 2J[aRyo + a y],
x y + 2J[aRyo + ay], 2<l<n.

In the y-coordinates, the equation for the abth component in (1.3) is

+ a + iakaa [g]a,

where kab ,n= k (J- J). _Note that the partial differential operator on the
left-hand side of (2.4) is just the 0 operator for the complex variable z yo / iy.

There exists a bounded fundamental solution

1
(2.5) G(z, kab) .exp [-i (akab + akabZ)]

for the operator 0/0 + iakab. Observe that

(2.6) lim G(z, kab) O.
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Therefore, if (2.4) is satisfied (in the sense of distributions) by a continuous and
bounded #, then it will follow from (2.6), (1.4), and Liouville’s theorem that

fab(YO, Y, k) 5ab / 2 G(, kab)[]ab(YO 0, Yl 1, Y2,’" ", Yn, k)dod,

where o + i and 5ab is the Kronecker symbol.
In the original coordinates, we have

(2.8) #ab(XO, X,k) 5ab + f2 G(,kab)[Q#]ab(XO 2o,x J(a+ ),...

xn J(a + ), k)dod.

In summary, if # is a bounded continuous (generalized) solution of (1.3) with
boundary conditions (1.4), then # satisfies

(2.9) # I + NQ,k#,

where NQ,k CNN
__... CNNb (Rn+) is defined by

(2.10) [NQ,k()]ab G(, kab)[Q]ab xo 20, X J(a + ),’",

xn (r+ #())d(od(.
Here CVN (n+) is the Banach space of bounded continuous N x N-matrix-valued
functions on Rn+ equipped with the norm defined by

max sup ]ab(XO, X)l.
l_a,b_NRn+l

Conversely, if # is a solution of (2.9) in CbNN(]n%I), then # is a generalized
solution of (1.3). Moreover, the decay of Q(xo,x) and (2.6)imply that # will also
satisfy the boundary condition (1.4).

PROPOSiTiON 2.1. (Existence and uniqueness of the solution of the direct prob-
lem.) If Q satisfies

(2.11) sup jf: IQab(Xo 2o, xl J(a- + ),’",
71"

xn Jan(a + ))ldodl < 8(N -1)2

then equation (2.9) has a unique solution in CbNN(n+I).
Proof. For each (a, b),

N

Rn+

xn J,(+
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Note that there are only (N- 1) terms on the right-hand side of the inequality
because Q(xo, x) is off-diagonal. For simplicity of expression, we shall suppress the
arguments of the integrand Qaj. From (2.5), we have

<_ 2A r -t- --,
7rr

where
A I[Q[[ and

[su f I a (Xo-B
_a,b_N LRn+l ,]I2

xn J(a+ )) Id0dl].
The minimum of 2At + is attained at r v/B/2Ar. For this choice of r, we have

f IG(, kab)Qajldod <_ v/8AB/r and the proposition follows from the contraction
mapping theorem. [:]

From now on we assume that (2.11) holds. Therefore there exists a number T

such that

(2.12) IINQ,II _< -r < 1 for all k E Cn.

So far k is acting as a parameter, but we can also consider #(xo, x,k) as the
unique solution in CbNN(Rn+ X Cn) of

(2.13) # =I+NQ#,

where NQ CbNN(]n+ Cn) CbNN(]n+ Cn) is defined by (NQ)(xo, x,k)
[NQ,k(.,., k)](xo,x). In view of (2.12), NQ is also a contraction on CxN(Rn+

In fact, NQ makes sense for a wide range of spaces.
DEFINITION 2.1. For each nonnegative integer l, let Xxg (’ is an

N x N matrix-valued function on Rn+ Cn such that (i) is uniformly continuous
on g x Cn for any compact subset g of n+ and (ii) (sup+xC[ab(Xo,x, k)
(1+ Ix0] + Ix]) -t] < } for 1 g a,b N. The norm on XxN is defined by
II1111 maxlSa,bN sup,+ xc.[lCab(Xo,x, k)l(1 + Ixol + Ixl)-q.

Remark 2.1. It is easy to see that (i) XxN is a Banach space, (ii) XxN is
a closed subspace of CxN, (iii) XxN contains 1 and hence H (see Lemma 2.1

below), and (iv) the natural embedding of XxN into "NxNYe+I is bounded.
Moreover, if a bounded sequence {n} in XxN converges uniformly to on

sets of the form K x Cn where K is a compact subset of n+l then XNxN
and lim in +1NxN

LEMMA 2. I.
(i) Nw i onga yomX imo X} o W S.
(ii) p(zo, z)Nw6 X o n W S X potomiat

p with degree i.

(iii) (I- No) XxN XxN is inveaible and (I- NO)- oN.
Proof. (i) and (ii) follow from he decay of W and he definition of G(, kay).

Since NO is in XxN by (i), .No converges in XxN Therefore
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N, and hence -]=m=0N also converges in XNN. It is then straightforward to
show that (I- NQ)m=0N =0N[(I- N)].

t-1 (t>l) for a<l andp(xo,x)LEMMA 2.2. Let Wj e SN OaCj e XNxN
t- satisfiesbe a polynomial of degree g l for 1 j m. Suppose that XyxN

m

(2.14) ZpjNw Cj + NQO;
j-’l

then the following statements hold.
(i) 8 is C on ]R+ x Cn.

.-1(ii) If X is a first-order derivative of O in the (xo, x) variables, then X 6 XNxN
and it satisfies an equation of the form

m

(2.15) X ZP’Nw / NQX,
j’-i

where W E SVN, XNg is either 0 or a derivative of the ’s of order <_ 1,
and deg pj

(iii) /f is a first-order derivative of 0 in the k variables, then e XNN
and it satisfies an equation of the form

(2.16) ZihjNwj + NQ,
j=l

where Wj e SVN j XNxN i8 either 0 or a derivative of the ’s of order <_ 1,
and deg i5 <_ t + 1.

Proof. We will only discuss the case of the klR-derivative of . The same argu-
ment can be applied to the other derivatives.

Let 5F 71[F(x0,x,k +eel)- F(xo, x,k)] for any function F(xo, x,k) where
el (1, 0,..., 0) e Cn From (2.14), we have

m

/i0 Zp/i(Nw Cj) + 1 (NQ,k+el NQ,k)0(x0, x, k + eel) + NQhO.

Therefore,

(2.17) 50 (I- NQ)-+,

(NQ,k+el NQ,k)O(xo, x, k + ee)].where [En=I p/5(Nwj) + -By the decay of Wj and Q, {+ lel _< 1} is a bounded subset of XNN
Let K be a compact subset of ]n+l. From (2.5), the decay of Wj and Q, and
the assumptions on and its first-order derivatives, it follows that converges
uniformly on g x Cn as e -+ 0 to a sum of the form ’;=i5Nj. Each I/Vj is the

product of one of the Wt’s with a polynomial in (x0, x) of degree _< 1, j is either 0
or a derivative of the Ct’s of order <_ 1, and deg 5 <_ + 1. Therefore, converges
to __1 ihiNcj in ":NxNt+ by Remark 2.2. Part (iii) of Lemma 2.1 and (2.17)
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then implies that 60 converges to (I N)-(E/hjNwqj) in "gxNY+l. Hence

O0/OklR exists and is continuous on n+ x Cn. Since jjNj e Xxg by
part (ii) of Lemma 2.3, O0/Oka actually belongs to Xxg. Moreover, O0/Oka
satisfies

00 00

We are now ready to prove results for the regularity and growth of (xo, x, k).
PROPOSITION 2.2. (Regularity and growth of .) Let solve (2.13), where Q

satisfies (2.11). Then

(i) is C on n+ x Cn, and

(ii) 0a 0, e ,max(IZl-,o)
(xo,x) NxN

Pro@ We can rewrite (2.13) as

(#- I) NQI 4- NQ(#- I).

Lemma 2.2 implies that # I E XVN. Repeated applications of Lemma 2.2 yield

that (xo,x) gY and it satisfies an equation of the form

m

(2.18) 0n ,)0k# ypjNwj + NQ((o,)(0

where deg pj _< I/1, w e SVxN is the product of a polynomial in (xo, xl) of degree
< [131 with a derivative of Q of order _< [a + I/3[ and Cj is either I or a derivative
of # of order < [a[ + [/3[- 1. [3

Remark 2.2. By tracing the dependence of 0n f(o,)0# on Q (cf. (2.18)), it is

easy to see that I[[0(o,)0k#[l[max(Ifl_l,0) only depends on finitely many seminorms of

Q of the form supR+l [(1 + Ixol + [xl)mlOQ(xo, x)[].
PROPOSITION 2.3. (Asymptotics of # for large k.) For fixed (xo, x) and (kl,...,

kp_ kp+ kn we have

(2.19) lim #(xo, x, k) I,

(2.20) lim 0#- b-x (x0, x, k) 0, 0 _< < n,

1
(.1 u(o,x,) + u, + o

where (#p)ab [Qab(Xo,x)]/[icr(J jpb)] for a 76 b.

Proof. Recall that # j=oNI and the convergence is uniform on ]n+l x Cn.
To prove (2.19) it therefore suffices to show that lim%_ NI 0 for j _> 1.

By (2.10) and the Riemann-Lebesgue lemma, lim%_o NQI O. The other limits
follow inductively from the Lebesgue dominated convergence theorem.

The limit (2.20) can be proved similarly.
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We now prove (2.21). From (2.8) we have, for a b,

It is obvious that limk,(kp/iakab)[Q#]ab(Xo, x, k) [Qab(Xo, x)] / [ia(J jpb)].
).)(Recall that kab ’= kt(J On the other hand, the integral

G(,kab)- ([Q#]ab( xo 20, x J(a + d),

",xn J(a+ ))) dodl

converges to zero as kp --, c, by (2.19), (2.20), and the Riemann-Lebesgue lemma.
Hence we have

1 Qab(Xo, x) ( 1 )[# I]ab -p ia(j jbp +

The asymptotic expansion (2.21) now follows from (2.8) and the fact that Q(xo, x) is
off-diagonal.

We next introduce the inverse data for problem (1.3)-(1.4) by relating O#/Okp
and #.

By differentiating (2.13), we have

O#
Op Hp / NQ-pp,

where

and

Op " Okpa
+

l(J Jpb
[U]

By a change of variables, we can rewrite [Hp]ab in the following form.

(2.23)

[Hp]a, -3’a(J J) ./ exp [ia(xo o, xx ,
[.] o, 6 J( 6),’"

j[ j
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where

() ] zo=(2.24) .xo,x,.=() Il.,xo-x and
az J

As a consequence of Proposition 2.2, [Q#] is rapidly decreasing in (xo, x) for fixed
k. Therefore, by the Fourier inversion formula, [Hp]ab can be represented as

(2)- _._-__.
+ iaa(xl , x(2) r/, m)]. [Q#]ab(O, , 1, k)doddldm,

where m (m2,...,mn), x(2) (x2,’",xn), r/ (r/2,’",ln), dl d12""dln,
dm dm2 dmn and

(2.26) aa(x, x(2), m) Em x xa.J
=2 J

DEFINITION 2.2. (Inverse data.)
tion defined on Cn x n-1 such that

T is an off-diagonal N N matrix-valued func-

Tab(k, m) jf+l exp [-i/3a(o, 1, kab) iaa(, 1, m)]

[(/]ab(0, 1, 7, k)doddl for a b,

where a, aa are defined in (2.24) and (2.26).
Remark 2.3. In view of the decay of Q and Proposition 2.2, T(k, m) is C on

C’ ’-. For each multi-index a with 3n-1 components, supcC-[(l+lkabl+
Iml)JlOaTab(k,m)l] < for j 0,1,2,... and 1 _< a,b <_ N.

PROPOSITION 2.4. (0 equation associated with inverse data.) For 1 <_ p <_ n,

where

Oi
N a(J jbp) ]gab)]0 (0,X, ) (.),_

xp [iZ(0,,

f,_ exp [iaa(x, re)]Tab(k, m)#(xo, x, Aab(k, m))Eabdm,

(2.29) )b(k, m)----]1- [ (O’]ab)IO.Ig + =Ymj?J" Jg]

(2.30) $b(k, m) k + me .for 2 < g < n.

Proof. By using (2.25) and the definition of Tab, [H]ab can be expressed in the
following simple form:

(2.31) [H]ab
,ya(J ] exp [il3a(xo x, kab) + ica(x, m)] Tab(k, m)dm.(2)- ._
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From (2.22), we have

(2.32) 07 (I- NQ)-IH (I- NQ)-I(HabEab),
Okv ,

where Eab is the N x N matrix with zeros in all its entries except the abth, which
equals 1. Note that the summation is actually only over a b, since Haa O.

Since (I- NQ)-1 is a linear operator in the (xo,x,k) variable, it commutes
with integration in m. Therefore, in order to compute Hab, it suffices to find Fab

(I- NQ)-1 (exp[i’(xo, xl, kab) "4- ioa(x, m)]Eab), which is the unique solution of the
following equation.

(2.33) Fab exp [ia(xo, xl, kab) + iaa(x, m)] Eab + NQFab.

Note that the integral equation (2.33) is equivalent to the following boundary
value problem:

(2.34)

(2.35)

+ + Q,,
=1

lim exp [-ia(xo, x, kab) ia(x, m)] Fab(xo, X, k) Eab.

Since Fab satisfies the same equation as # but with a different boundary condition,
it is natural to look for a solution in the form

(2.36) Fab exp [ia(xo, xl, kab) + ioa(x, m)] #(x0, x, Aab(k, m))Eab,

where the function Aab(k, m) will compensate for the oscillatory factor exp[i(a +
aa)]. Note that the boundary conditions (2.33) are automatically satisfied since

limlxol+ll_ # I.
Observe that the only nonzero column in #(xo, x, Aab(k, m))Eab is the bth one

with entries identical to those of the ath column of #(xo, x, Aab(k, m)). If we substitute
(2.36) into (2.34) and use (1.3), we see that (2.34) is reduced to

(2.37)
. . }=I =i

ra(XO, X, ab(k, m)) 0 for 1 r N.
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From (2.24) and (2.26) we obtain

0
Oxo

Recall that kab Y]tn___ k(J J). Therefore --kab + En= kt(J[ J)
y]tn= k(J[ J). At this point, we see that (2.37) follows from (2.29) and (2.30).

We have just proved that

(2.38)
(I NQ)- (exp [i3a(xo,x, ab) + iola(x, m)] Eab)

exp [ia(xo,x, kab) + iaa(x, m)] # (xo, x, Aab(k, m)) Eab.

Equation (2.28) now follows from (2.31), (2.32), and (2.38).
From Proposition 2.4, Remark 2.3, and (1.4), we have the following two corollaries.
COROLLARY 2.1. O#/Okp is rapidly decreasing in kp, with all the other variables

fixed.
COROLLARY 2.2. (T as asymptotics of # in large x0.) For 1 <_ a,b <_ N and

ab,

(2.39)

COROLLARY 2.3. (Reconstruction of Q.)

(2.40) Q(xo, { ou }- -p (x’x’k’’’’’kp-’kp’kp+’’’’’kn)dkpR dkpI

for p---- 1,...,n.
Proof. From Corollary 2.1 and the inversion formula for the 0 operator, we have

(2.41)
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Equation (2.40) follows by comparing (2.41) with (2.21).
PROPOSITION 2.5. (Characterization of T.) For any (a, b) such that 1 <_ a, b, <_ N

and a b, we have

LbTab LbTab, 1 <_ r, p <_ n,(.4)
where

(2.43)

(2.44)

Proof. Define

o (z_)oo ( )

(o, x, , .) ZO(xo,, ko) + (,.)
(2.45) 1

lal2(kab)Xo (akab)
xl + mt xt x

j ]a J =2

It follows from (2.29), (2.30), and the definition of kab that

(2.46) Lb O,
and

Applying (2.28), (2.46), and (2.47), we have
0 0 0

0:

ab (XO X,ab(k m))(Ta)(,),

+ r(,)(,)(xo,,(,))].
Therefore, (2.28) implies that

,(o. . a(.l)e

[ p [i(o, , a(,,l]r(a(,,)
R
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It is straightforward (cf. [5]) to show that

AJa (Aab(k, m), M) AJb(k, m / M),
eab(xo, X, k, m) + ja (xo, x, Aab(k, m), M) eJb(xo, x, k, m + M).

If we multiply (2.48) by (2r)n-l(Ta) -1 exp[-ilal2a[-(kab)iXo] and then let
x 0 and x0 in the resulting equation, we have by looking at the abth
component the following equation:

We have used (2.45), (2.49), (2.50), and the boundary conditions (1.4)in deriving
(2.51). From the Fourier inversion formula and (2.51), we obtain

(2.52)

Since

equation (2.52) is equivalent to (2.42).
DEFINITION 2.3. Let DN be the space of off-diagonal N N-matrix-valued

functions (I)(k, m) that satisfy the following conditions.
(i) O(k,m) is C on Cn n-.
(ii) For each multi-index a with 3n- 1 components, supc,,_l (1 / Ikabl +

Iml). IOaOab(k,m)l<c for j=0,1,2,.., and l<_a,b<_N.
(iii) Lbab LbOab, l <_ r, p <_ n
Dg becomes a Fre!chet space if we equip it with the seminorms

Il(a,b,a,j) sup
Cn
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DEFINITION 2.4. (Scattering map.)

(2.53) S(Q) =T.

Remark 2.4. S is defined on a neighborhood of 0 E VN" In view of Remark 2.3
and Proposition 2.5, the range of S is a subset of DVN. By (2.27) and Remark 2.2,
S is continuous with respect to the Frchet space topologies on SVN and DNN

The results of this section are summarized in the following theorem.
THEOREM 2.1. The direct problem is uniquely solvable if Q satisfies (2.11). If

the inverse data T is defined by (2.27), then T DVN (cf. Definition 2.3) and the
equation (2.28) is valid. The scattering map S that takes Q to T is a continuous

map from a neighborhood of 0 VxN into DVN. Both the potential Q and the
inverse data T can be expressed directly in terms of the Jost function # via (2.39) and

Remark 2.5. S is actually infinitely Frdchet differentiable.

3. The inverse problem. Let T Dvxy. The fundamental equations (1 g
p _< n) for the inverse problem are

.a j f exp [ieab(xo, X, k, m)]
(3 1) Op (x’x’k) =E (2r)n-1-

ab J]1n-1

with boundary conditions

(3.2) lim #p(xo,x,k)=I

Tab(k, m)#p (xo, x, Aab(k, m))Eabdm,

for fixed (xo,x, kl,. ,kp_,kp+,... ,kn)

Note that Cab is defined in (2.45). It is useful to observe that any first-order derivative
of cab in the (xo,x) variables is a linear combination of ((kab)R,(kab)I,
m2,’",mn} and that each of the (xo, x) variables can be represented as a linear
combination of ((Oab/OkpR),

Let the differential-integral operator Lo,) be defined by

.a j [ exp [ieab(xo, x, k, m)]
ab

so that (3.1) can be written in the simple form LP(o,)#(xo, x .) O.
The goal of the inverse problem is to find a potential whose scattering data is T.

We start with the solvability of (3.1)-(3.2).
Henceforth we shall denote (k,..., kp_, k, kp+,..., kn) by kp). The follow-

ing lemma is a direct consequence of the inversion formula for the 0 operator and
Liouville’s theorem.

LEMMA 3.1. #p(xo, x, k) is a bounded continuous generalized solution of (3.1) and
(3.2) if and only if it is a solution of the following integral equation:

(3.4)
#p =I + Ea,b r(2r)n- ::..+ kp k

exp [ieab(xo, x, kp), m)]
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Let Po,*) be the operator on CbNN(Cn) defined by

(3.5)
[Po,,)u] (k) E a (Jr jb) jf 1

a,b
7r(27r)n-1 n+l kp k’-p exp [ieab(xo, x, k}p), m)]

Tab(kp), m)u(Aab(kp), m))Eabdmdka dkx.
Remark 3.1. Equation (3.4) is therefore just #p I / Po,)#P" Note that by

property (ii) of Definition 2.3, Po,) is also defined on any continuous function (k)
with polynomial growth. Moreover, for such we have

(3.6)

and

(3.) lim Po,)u 0 (1 < V < n)

for fixed (xo,x,k,...,kj-,kj+,...,kn).
A sufficient condition for (3.4) (equivalently (3.1)-(3.2)) to be uniquely solvable

is stated in the next proposition whose proof is omitted due to its similarity to the
proof of Proposition 2.1.

PROPOSITION 3.1. (Contracting property of Po,)’) Assume that T E Dg

and that it satisfies

(3.s) f,_, suplT(k,m)[dm,
,- [f sup lT(k,m)ldkp dkp]c,-*

8w2(N 1)2’

whr p mx,b (lrllJ Jbl)/(2)-x d IT(k, m)J maxl<_a,b<_N ITab(k, m)
Then Po,) is a contraction on CbNxN(Cn) with

(3.9) IIP’o,,)ll _< "rp < 1 V (xo, x) e n+.

From now on we shall assume that (3.8) holds for 1 < p < n and denote by
#(xo, x,k) the unique solution in CbNN(Cn) of

(3.10)

Since the operator Po,) depends continuously on (x0, x), # is bounded and
continuous on n+l Cn. It is a solution of (3.1) in the sense of distribution, and we
also have by (3.6)

(3.11) lim #p(xo,x,k) I, 1 < p < n,

for fixed (xo, x,k," ,kj-,kj+, ,kn)
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By the same argument in the proof of (2.19), we obtain

lim #p(Xo, x, k) I(3.12)
Izo I+lzl--,o

for fixed k.
PROPOSITION 3.2. (Properties of #1.) #1 E Co(Rn+l x Cn). All the derivatives

of #1 that only involve the (xo, x) variables are bounded on Rn+l x Cn All the
derivatives that involve the k variables are bounded on Cn for fixed (xo, x). All the
first-order derivatives of #1 --* 0 as kp oc with all the other variables fixed.

Proof. We will employ techniques similar to those in the proof of Lemma 2.2 and
Proposition 2.2. But special care must be taken for the kl-derivatives because of the
function Ab(k, m) (cf. (2.29)) that appears in the definition of p1

(zo,)
Starting with (3.1) for p 1, it is easy to show by induction that

(3.13)

for t 1, 2,..., and

#(xo, x, k) is continuous on+ x Cn

(x0, x, e

for I 1,2,... and fixed (xo, x). Here the derivatives are taken in the sense of
distributions.

By elliptic regularity (cf. [8]), 0#1/OklR and 0gl/0klI exist in the classical sense.
Let L aR (O/Okl) al (O/Okl). It follows from (2.29) that

(3.15) [.1 (xo, x, x,

By the technique in the proof of Lemma 2.2, 2#1 is the solution in CbNxN(Cn)
of

where

L#I W + P(o,)

Since W depends continuously on (xo,x), it follows from (3.16) that 1#1 is
continuous on Rn+I C As 0_#1/0k1 and 0#1/0k1 can be represented as linear
combinations of 0#1/0kl and L#I, we see that both 0#1/0k1 and 0#1/0kli are
continuous on ,+1 Cn and bounded on Cn for fixed (xo, x).

The other first-order derivatives can now be handled easily. The same arguments
are then applied inductively as in the proof of Proposition 2.2 to higher-order deriva-
tives.
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Let be one of the first-order derivatives of #1. Then satisfies an equation
of the form

g + Po,),
where by property (ii) of Definition 2.3, limk--+o K 0 with (x0, x, kl,...
kp+l,...,kn) fixed. Since is bounded on Cn for fixed (xo,x), we also have in view
of (3.7) that limk--+oo p1(o,) 0 for fixed (xo,x, kl,...,kp-l, kp+l,...,kn). Hence
limk--+o 0.

Our next goal is to prove that #1 #2 #n, actually.
LEMMA 3.2. /f u(k) E C2(Cn) and Oau is bounded on Cn for lal <_ 1, then

o,)’ ,1 u 0.

Proof. The commutativity of Lo,) and L(ro,) is the consequence of the con-

straint LbTab LbTab in the definition of the space DvxN (cf. (iii) of Defini-
tion 2.3). The following computations are similar to those in the proof of Proposi-
tion 2.5 and we shall use the notation introduced there.

From (2.46) and (2.47), we have

Using (2.49) and (2.50), we can rewrite the second sum as

The proof of the lemma is then completed by observing that (2.52) holds because
LTT. I,T..

PROPOSITION 3.3. (Existence and uniqueness of the solution of the inverse prob-
lem.) Assuming that (3.8) holds .for 1 <_ p <_ n, there is a unique # which satisfies
(3.1) and (3.2) simultaneously for 1 <_ p <_ n.
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Proo]. Since Lo,x)#l 0, Lemma 3.2 implies that for 2 _< p _< n

For fixed (xo, x, k2,..., kn), limkl- O#l/Okp 0 by Proposition 3.2. Since the
integral in the definition of L(o,x)P also tends to zero as kl by the decay of T,
we have

lim L #1 --0
k o,)

for fixed (xo, x, kj,..., kn).
Therefore the inversion formula for the operator and Liouville’s theorem imply

that

[g oL(o,) Po,) ,
Hence Lo,) 0 for 2 p n, by the contraction property of Po,) In view

of (3.11), satisfies the boundary condition (3.2) for 2 p n which means that
also satisfies (3.4) for 2 _< p _< n By the contraction property of P(o,)’P we have
p for 2 p n.
PROPOSITION 3.4. (Asymptotics of for large k.) For fixed (xo, x, k,..., kp_,

kp+ kn and l p n,

,(o. , ) + -;(x0. . )a.a. + o

Proof. We have

The second sum goes to zero as kp - x), by the decay of T. In view of (3.1), the first
sum is just

In view of (2.40), it is natural to define the potential Q by

The problem with this definition is twofold: (i) it is not clear that Q is a function of
(xo, x) alone and (ii) Q apparently depends on the choice of p. Therefore we begin
instead with the matrix-valued functions Qp (1 _< p _< n) defined by

(3.19)
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or equivalently (using (3.1)),

(3.20)

QP =-ia a,b Ta(J JbP)
(2r)n-1 JP’ +1 exp [ieab(x’x’k’m)]

Tab(k, m)#(xo, x, Aab(k, m))Eab] dmdkp dkp.

Hence Qp is C and bounded on ]n+l C,. Note that Qp is independent of kp.
Let Lk be the differential operator defined by

(3.21) LkO Oxo

where 0 is an N N-matrix-valued function defined on n+l. Note that (1.3) can
be rewritten as Lk# Q#.

LEMMA 3.3. Let u E C2(]n+l Ca) and 0a(z0,)u be bounded for I1 < 1 Then

(3.22) [LLo,z), Lk]u O.

Proof. It is clear that O(Lk#)/Okp Lk(O#/Okv). On the other hand, the decay
of T allows differentiation under the integral sign:

Recall (cf. proof of Proposition 2.4) that $ab(k, m) is defined so that

Lk{exp[ieab(xo, x,k,m)]u(xo,x,)tab(k,m))Eab)
exp [ieab(xo, x,k, m)](Lku)(xo,x,ab(k, m)).

The proof of the lemma is therefore complete.
PROPOSITION 3.5. (Equivalence of the reconstruction formulas.)

Q =Q2 Q.

Proof. From (3.22) we have Lo,)(Lk#) 0 for 1 < p _< n, and it follows from
(3.18) that

n

(3.23) lira iaZ k[J, #1 Qp
k---o =I



1322 LI-YENG SUNG AND A.S. FOKAS

for fixed (xo, x, kl,..., kp_, kp+,..., ks). Hence Proposition 3.2 implies that

(3.24) lim Lk# Qp

for fixed (xo, x,k,"’,kp-,kp+,"’,kn).
Since Lk# has polynomial growth in k, we have by Remark 3.1 the inversion

formula for the 0 operator and Liouville’s theorem that

(3.25) P (Lk#) forl< <Lk# Qp .4- P(zo,z) p n.

Recall that Qp is independent of kp. On the other hand, if we keep (xo, x, k.,...,
kp-l,kp+,’",kn) fixed and then let kp in the equation Lk# Qj + Pzo,z)"
(Lk#), it follows from (3.7) that

(3.26) Qp= lim Lk#= lim Qj.

Therefore Qp is also independent of kj. Since j is arbitrary, Qp is a function of
(xo, x) alone, for 1 g p < n. But then (3.26) implies that Qp Qj for any p and j,
i.e., Q Q2 Qn.

COROLLARY 3.1. (Differential equation relating Q and #.)

(3.27) #zo + a (Jt#t + ikt[J, #]) Q#.
=1

Proof. Since Q is a function of (xo, x) alone, it follows from (3.10) that

(3.28) Q# Q 4- Pxo,)(Q#) for 1 < p < n.

Equation (3.27) then follows by comparing (3.28) with (3.25).
It is clear that Q is off-diagonal and C on =+. To study the decay of Q,

we exploit the following integral equation, which is a consequence of (3.1), (3.4), and
(2.30).

(3.29)

where

(3.30) G- Z 9/a(J- Jbl)
exp [icab(xo X,k m)]Tab(k m)Eabdm, (2)- -

DEFINITION 3.1. Let LVxN(C be the Banach space of N x N matrices whose
entries belong to L(C). If u 6 LVN(C then IlUlILvN max<a,b<N IlUabllLl(C).
Let Cb(Cn-,LNxN(C)) be the Banach space of bounded continuous func-
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tions on Cn-1 with value in LNN(C). If u(k2,’",k,) C Cb(Cn-I,LNN(C)),
We shall also write t(k2,.., kn)(kl) asSUpc.- (, -)IL

u(k, k, , k. ).
Let R(o,) be the operator on Cb(Cn-,Lxg(C)) defined by

[(o,)] ()

1
Tab(k,m)(a.a) (a J)

exv [ia(o , )] (,) i, r(2)"- .+

It is clear from (3.1) that (0/0) e Cb(Cn-,LxN(C)). We can therefore
regard (3.29) as an equation in Cb(Cn-,LxN(C)) and rewrite it as

0 G + N(o,l(a.a) o

p--1.
Proof. Note that by (2.29),

(3.33) [,b(k, 0)], k
and

(3.34) [,b(k, 0)] - r5J
From (2.24),

(3.35) w. max
ab (2r)=-

max
a,b (2’)’-x IJl

Using (3.33)-(3.35) and an argument similar to the one in the proof of Proposi-
tion 2.1, we find

ab LN N

N

< 1

"= -i-)---i .+ IAb(k,,m) kll
ITjb(k’ roll

lUad(k[, k2 + m2,..., kn + mn)ldk[adk,dmdkadk

(N 8w III11111 sup IT(k, m)ldm
g n--1 C
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Since we assume that (3.8) holds for i _< p _< n, we can control the norm of R(xo,)
by the same constant that appears in (3.9)"

[IR(o,)ll < < 1 V (o,x) e +.

PROPOSITION 3.6. (Decay of Q.)

Q Sv.

Proof. From (3.32), we obtain

(3.37)

for j 0,1,2,....
Using integration by parts and (3.30), property (ii) of Definition 2.3 implies that

there exists Cj > 0 such that

It follows from (3.36)-(3.38) that

(3.39) o (xo x, k)llll < CIII1(1 + Ixol + I1): 1 --T.
V(xo,x) e +.

Inductively, we have

(3.40)

where

(3.41) III1(- + Iol + IxlPG(o,x,k)llll <- C, V(xo,) e

Hence

(3.42) III1( / Ixol / I1)o o c, V(o,x) e +(o,)b(o,x, k)llll <_
1 T.

Since Q (ia/r)[Jl, ft. Tk (xo,x,k)dklRdkl] the proposition follows from
(3.42).

DEFINITION 3.2. (Inverse scattering map.)

(3.43) (T) Q.

Remark 3.2. If we trace the dependence of Q on T through the arguments in
the proof of Proposition 3.6, we see that is a continuous map from a neighborhood
of 0 E DcxN into Svxg.

The results of this section are summarized in the following theorem.
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THEOREM 3.1. The inverse problem has a unique simultaneous solution # if (3.8)
holds .for 1 <_ p <_ n. The reconstruction formulas in (3.19) are equivalent, and
the potential Q(xo, x) defined by these formulas belongs to Svg. Moreover, (1.3)-
(1.4) are satisfied by Q and #. The inverse scattering map that takes T to Q is a
continuous map from a neighborhood of 0 e Dvg into SVxN.

Remark 3.3. is actually infinitely Frchet differentiable.

4. Relation between S and .
PROPOSITION 4.1.

(4.1) o $ I
and

(4.2) S o I

on the domain o/ o$,

on the domain of So.

Proof. Given Q E SrN belonging to the domain of o S, let T S(Q) and

Q’ (T). Let # be the unique solution of (1.3)-(1.4). Then # is also the unique
solution of the 0 problem (3.1)-(3.2) by Proposition 2.4. In view of Corollary 2.3, Q
defined by

Q
ia [ O# k)dkpRdkpi ]-- Jp, -p XO, x, l<_pgn,

must coincide with Q.
Given T DVN belonging to the domain S o , let Q (T) and T’ S(Q).

Let # be the unique solution of (3.1)-(3.2). Then it follows immediately that

By Corollary 3.1 and (3.12), # is also the unique solution of (1.3)-(1.4). Hence Corol-
lary 2.2 implies that

(4.4) lim exp[-ia(xo, O, kab)] Op (xo, O, x2,’", xn, k)

Comparing (4.3) and (4.4), we conclude that T T. [:l

Combining Remarks 2.4 and 3.2 and Proposition 4.1, we obtain the following
theorem.

THEOREM 4.1. The scattering map S is a homeomorphism from a neighborhood
of 0 e SVN onto a neighborhood of 0 e DNxN

Remark 4.1. S is actually a diffeomorphism.

5. Reduction to 2 2 potentials. We shall show in this section how the
reconstruction of the potential from the scattering data can be reduced to the special
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case of 2 x 2 potentials and 2 x 2 inverse data. As mentioned in the Introduction,
this means that the number of variables involved can be reduced to 3, i.e., n 2.

Throughout this section we assume appropriate smallness conditions so that all
the equations involved are uniquely solvable. We first take a quick look at the simpli-
fication of the theory developed in 2 and 3 when N 2. Let Q(x0, x) be a 2 x 2
potential. The equations for the direct problem are

(.) o___ + , .,
Oxo Ox

OXO =1 =1

(.3)

and

(5.4) 0/222 n 0/222 Q21/212
Oo + o=1

with the boundary condition

(5.5) lim /2- I.

It is clear that there is really only one complex variable involved, namely,
,= k(J 3). In particular, the characterization problem does not exist.

(0/0R) and are related through

O 4ri[a[(2r)n-1 3 exp i(xo,xl,x)+imt xt-x J

(.) (,)(o,,(,))Ed

where

[ ](x),1
lal2Xxo_xl j=12(.) (0,x, x) 3

(5.9)
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and

j 1,2.

Equation (5.6) is essentially the same as (2.28) except for the minor changes due
to the fact that the derivative is taken with respect to 2 instead of the individual p.

In the inverse problem, ft is obtained by solving (5.6) with boundary condition

(5.11) lim ft(xo, x, X) I.

The potential is then given by

(5.12) Q(xo, x)
ia f Of-- 0

(xo, x, x)dxRdxI

and

(5.13) 2. (xo, x)
ia f Of-- 0: (x0, x, x)dxRdxI.

We now show how the general N N case can be reduced to the special case
above. We shall impose the following additional nondegeneracy condition.

for all distinct a, b, c and for p 1.
Let # satisfy (1.3)and (1.4). For fixed h and such that 5 < , let (12(x0, x)

Qas(xo, x), Q21(xo, x) Qsa(xo, x), J, and ? J for 1 _< _< n.
PROPOSITION 5.1. The reduced 2 2 system

n

--1

with boundary condition

lim ft I(’)
io1+11-oo

is satisfied (uniquely) by

(5.17) ftl lim

ft21 lim #Sa, ft22 lim #SS"k

Here the limit is taken with fixed (xo,x,x, k2,’",kp-l, kp+l,’",kn), where X
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Proof. Observe that (5.14) implies that

(5.18) lim kab

for b or , 1 < a < N, and (a, b) { (, ), (, ), ($, ), ($, )}.
Assume that as kp #ab(XO, X, X, k2," kn) converges uniformly on com-

pact subsets of ,,+1 to Cab(XO,X,X, k2,’",kp-l, kp+l,’",kn) for b or and
for 1 < a < N. By (2.8), (5.18), the boundedness of #, the decay of Q, and the
Riemann-Lebesgue lemma, we find for

(x0, x, X, k2,..., k_, k+,...,
lim #ab(xo,x,x, k2,’",kn)
k-cx

Zlim G((, kb)[Q]b(xo 2(o, xl J(a( + ()

--0.

It also follows from (2.8), (5.18) and (5.19) that

(5.23)

Caa(xo, x, x, k2, ..., k_, k+,..., k)

+ a(, o)[a%a](o o, Je(, + e),...,

J(+ e), , ,..., _, k+,..., )a(oa(,
(xo, x, :, k, ..., k_, k+,..., k)

f G(, x)[Qabbb](xo 2o, xl g(a$ + ),...,

xn J,(a + ), X, k2,..., kp-1, kp+, kn)dodl,
(xo, x, :, k2,""", k-, k+,..., k)

I G(,-x)[QbaCaa](xo 20, xl Jt(a + ),...,

xn Jr(a + ), X, k2, kp-1, kp+l, kn)dodl,,(xo, x, ;, k2,’"’, k-, k+,..., k)

1 + [ G(, 0)[QbaCab](xo 2o, xl Jt(a + ),...,

xn J,(a + ), X, k2, kp-1, kp+, kn)dod.

In other words, /2 (’) is the unique solution of (5.15) and (5.16). In
particular, Cab only depends on (x0, x, X).

It remains to show that #ab(XO, X, X, k2,’", kn) actually converges uniformly on
compact subsets ofn+ for 1 < a _< N, b fior , and for fixed (x, k2,...,kp-l, kp+l,.., kn). Since 0n# E CbNN(n+l C") for Icl _< 1, the Arzela-Ascoli theorem implies
that given any sequence j , #ab(Xo, x,x, k2,"’,kp-,j,kp+,’",kn) has a
subsequence that converges uniformly on compact subsets of n+l. But we have shown
that these limit functions must satisfy (5.19)-(5.23), i.e., they are uniquely determined.
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Therefore, #ab(XO, X, a, k2,’", ks) converges uniformly on compact subsets of Rn+l as
the continuous variable kp

Let T be the inverse data of Q, and let

(’) (,) o

be the inverse data of (. By comparing (5.8) and (5.9) with (2.27), we have by (5.19)
the following corollary.

COROLLARY 5.1. (Relation between the inverse data.)

(.4) 2(x,-) i T(,,),
and

(5.25) 21 (X, m) lim Tsa(k, m),

where the limit is taken with fixed (X, k2,..., kp-1, kp+,..., ks).
The characterization equations in (2.42) can be rewritten as

1 OTab (k, m)
1 OTab(5.26)

jg jbp O-p j gb 0-- (k, m) Nabp[T], 2 g p g n,

where

abNp IT] (k, m)
N ,j [ jp jbp j jb ](5.27) (2-)n- n-1 J J JJ Tjb(k, M)

Taj(Ajb(k, m), m M) dM.

Denote by ab and [] the functions representing Tab and abNp[T] in the
(kab, k2,’", kn, m) coordinates. Then (5.26)is equivalent to

Oab kab, k2 "", kn m) j j abNp[](kab, k2,"" ,kn, m),
(5.2s)

2gpgn.

PROPOSITION 5.2. (Equivalent characterization of the inverse data.) Given any
a andbsuchthatl<_abgn,

(.) ob(,, ) - . (g )

Y, [T](kab, k2,’", kp-, k kp+,’",

represent the same function ab(kab, m) for 2 p n.

Proof. By the inversion formula for the 0 operator and Liouville’s theorem, (5.28)
is equivalent to

ab(kab, k2, , kn, m)
1 f (J J)(5.30) lim Tab(kab, k2,"" kn m)+-- rJ k-k

abYp[T](kab, k2,’", kp-, k, kp+,’", kn, m) dk dk,.
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Here the limit is taken with (kab, k2,’",kp-l, kp+l,’",kn,m) fixed. Corollary 5.1
implies that limkp_, ab(kab, k2, kn, m) limkr-, ab(kab, k2, kn, m) for 2 _<
p, r _< n. Their common value is the inverse data of the reduced system, and therefore
only depends on (kab, m).

Conversely, if (5.29) holds for 1 _< a, b _< N, then (5.28) and hence the character-
ization equations (2.42) are obviously satisfied. [:l

Combining these results we can treat the reconstruction problem by the following
procedures. Let T(k, m) be an off-diagonal N N-matrix-valued function that satisfies
conditions (i) and (ii) of Definition 2.3. If condition (5.29) is satisfied, then T E
Dvg and T belongs to the range of S if it is small enough. Let 1 _< 5 < _<
N. Proposition 5.1 and Corollary 5.1 imply that the hth and 5th component of
the potential Q can be reconstructed through (5.6), (5.12), and (5.13) by letting
12(X, m) (I)a(X m) and 2(X, m) (I)a(X m).

In other words, we can replace condition (iii) of Definition 2.3 by (5.29). If (5.29)
is satisfied, we can reconstruct the components of Q two at a time by solving a 2 2
inverse problem, and the inverse data of such 2 2 systems are already computed in
the checking of condition (5.29).
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THERMOSTAT SYSTEMS HAVING STABLE PERIODIC
SOLUTIONS WITH SHORT PERIODS*

GUSTAF GRIPENBERG

Abstract. The local stability of periodic solutions of a system controlled by a thermostat is
studied in the case where the periods are arbitrarily short. If the system is modeled by the equation.:o a(t- s)u(s)ds and the kernel a satisfies certain crucial smoothness assumptions, theny(t)
such solutions exist if (and in most cases only if) (w) : 0 for w _> 0 and either a(0) > 0 or a(0) 0,
a’(0) > 0, and a"(0) < 0.

Key words, thermostat control, short period, stability, hysteresis
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1. Introduction and statement of results. The purpose of this paper is to
study the local stability of periodic solutions of the equation

(1) y(t) a(t- s)u(s) ds, t e R,

when the period approaches zero. Here u :R --. (0, 1} is determined by the require-
ment that, if u(t) 1 and y reaches an upper level high at time t, then u(t+) O,
and conversely, if u(t) 0 and y reaches a lower level Olow at time t, then u(t+) 1,
or, in other words, the system functions like a thermostat. Thus we see that if the
period is short, then high- low must be small and y(t) must stay close to the interval
[Olow, Ohigh]. This is, of course, the reason why we would want to have a short period.

The main motivation for equation (1) is that it is a reasonable model for a system
controlled by a thermostat. For example, consider a situation where a heater is turned
on if the temperature at some fixed point drops to a level low and is turned off if
the temperature rises to a level high where we have low < high. It is convenient to
normalize the equation in such a way that without heating the temperature is zero and
with uninterrupted heating it is 1. The function a is determined by the requirement
that if the heating is turned on at time zero for the first time, then the temperature
should be f a(s) ds at time t > 0. Some external influences can also be added to (1).

Models of this kind have earlier been studied in, e.g., [2]-[9] and [13], but in many
of these references the state equation is not explicitly written in the form (1). In [4]
and [5], the main emphasis is on questions of existence of solutions and on a precise
description of the heating process involving diffusion. In [9] this work is continued
and some sufficient conditions for the existence of periodic solutions are given. In [3]
thermostat control in a diffusion model is considered, and the existence--and in some
cases uniqueness--of periodic solutions is established. In [2] the question of how to
choose parameters optimally (e.g., Oow and Ohigh) is considered. In [8] the existence
and asymptotic behavior of solutions of a diffusion problem is studied, and in [13] it
is shown that there are infinitely many periodic solutions of a heat-control problem
where 0low Ohigh.

*Received by the editors April 16, 1990; accepted for publication September 6, 1990.
fDepartment of Mathematics, University of Helsinki, Regeringsgatan 15, 00100 Helsingfors,

Finland.
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In [1] and [10]-[12] a class of related switching systems is considered. In [1] the
state equation is written as L(y, s) 0 where L is a differential operator (for example,
the heat operator) with respect to y and s is a switching variable and in [10]-[12] it
is of the form y’(t) fj(y(t)) where the index j, and hence the state equation, is
changed when the solution reaches a "switching surface." In [12] sufficient conditions
for the existence of periodic solutions for this kind of system are given.

Equation (1) is an example of a system involving hysteresis, but in this paper no
results from the general theory of such systems will be used.

In [6] the existence of periodic solutions of equation (1) is established, but there
the dependence of u on y is in general a slightly weaker form of thermostat control
(although the difference appears only in the case where y has a local maximum equal
to 0high or a local minimum equal to 0ow). In [7] a criterion for the local stability of
these periodic solutions is given, and the present paper is based on these results.

Here we will use the following notion of thermostat control (which could also be
formulated in many other equivalent ways).

DEFINITION 1. If I C R is an interval and y I R is a continuous function,
then a function u I - {0, 1} is (strictly) thermostat controlled by y with respect
to the higher limit Ohigh and the lower limit 0low on the interval I provided that u is
left-continuous with right-hand limits on I and the following conditions hold for all
tEI:

(i) u(t)= 1 if y(t) < 0ow,
(ii) u(t) 0 if y(t) >Ohigh,
(iii) If y(t) high and u(t) 1, then u(t+) O, and if u(t)- u(t+) 1, then

y(t) =Ohigh,
(iv) If y(t)= 0ow and u(t)= 0, then u(t+)= 1, and if u(t)- u(t+)= -1, then

0 ow.
The question that is asked and (at least to some extent) answered in this paper

is the following. When are there arbitrarily small positive numbers T and S such that
there exists a locally stable periodic solution (y,, u,) of (1) with u, 1 on intervals
of length T, u, 0 on intervals of length S, and u, is strictly thermostat controlled
by y, on R with respect to 0high and 0ow.

In order to define what we mean by stability, we consider the equation

(2) y(t) a(t s)u(s) ds / e(t), t >_ O,

where u is given on (-c, 0] and u is strictly thermostat controlled by y on (0, ).
To fix the notation wedefine the sequences {vn(u)} and {wn(u)} by the requirement
that

i. t e (v.(u).w.(u)].
o, t e e z.

No generality is lost by requiring that vo(u) 0, i.e., u(0) 0 and u(0+) 1. We
define the numbers Tn(u) and Sn(u) by

so that u is 1 on intervals of length T(u) and zero on intervals of length S(u).
DEFINITION 2. If (y,, u,) is a periodic solution of (1) on 1;t with u, 1 on

intervals of length T, u, 0 on intervals of length S, and u, is strictly thermostat
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controlled by y, on R (with respect to low and Ohigh), then (y,, u,) is locally stable
provided that for each e > 0 there exists 5 > 0 such that, if e E C(R+,R), if
u: R {0, 1} is left-continuous with right-hand limits, u(0) 0, u(0+) 1, and if u
is strictly thermostat controlled by the solution y of (2) on (0, c), then the inequalities

IT(u) T[ + [S(u) SI
_ ,

le(t)[

_
5, t

_
O,

imply that for every n _> 0,

[Tn(u) T[ + [Sn (u) S[ < e,

and in the case where limt-+ e(t) 0 it follows that

Tn(u) -+ T and Sn(u) - S asn--,(x).

In [7] it is shown that the following condition is a sufficient condition for local
stability (in fact, a slightly stronger result is obtained)" The function

(3)

has a simple zero at z 1 and no other zeros in { z e C llzl _< 1 ),
Therefore, the main part of the paper consists of a detailed analysis of this func-

tion f when T and S are close to zero.
Some of the assumptions that we use are unnecessarily strong, but the main

weakness in the assumptions is that, kernels a of the form tab(t) with b(0) # 0 and
a > -1 not equal to an integer they do not include.

THEOREM 3. Let 0, (0, 1), let m > 0 be an integer and assume that
(i) a e LI(R+; R), f a(t) dt 1, a(J) e BY(R+; R) AC(R+; R) for j

0,..., m, a(J)(O) 0 for j 0,..., m 1, a(m)(O)

(ii) If m 0 or 1, then a(J) BY(It+; It) AC(R+; R) for j 0,..., 2m + 1,
and

(iii) There are positive numbers T and S such that there exists a periodic solution
(y,, u,) of (1) with u, 1 on intervals of length T, u, 0 on intervals of
length S, u, (0) O, u, (0+) 1, and u, is (strictly) thermostat controlled by
y, on R with respect to glow and Ohigh, satisfying 0 < tglow < 9, < 0high < 1.

Then the following conclusions hold.
(a) /f &(w) # 0 for w e (3 with w > 0 and either m O, or m 1 and

a"(O) < O, then there exists a number # > 0 such that (y,,u,) is locally
stable provided T + S < #.

(b) /f h(w0) 0 for some wo e (3 with wo > O, or m 1 and a"(O) > O,
or m > 1, then there exists a number # > 0 such that (y,, u,) is not locally
stable provided T + S < #.
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We see from the proof that in some of the cases where instability is claimed, it is
due to the fact that there are no periodic solutions at all, so that the assumptions of
the theorem are not satisfied. Note also that if m 0 and a(0) < 0, or m 1 and
a(0) < 0, then there exists a number a > 0 such that a(a) 0, but in these cases it
is also true that there are no periodic solutions with short periods.

When proving part (b) we have to extend some of the results found in [7]. There-
fore we consider the discrete equation

i i, < O.

n>_0;

The criterion for stability of the linear part of (4) is det[}-=0 znan] 0 when Izl _< 1,
so it is no surprise that the trivial solution is unstable if there is a zero inside the unit
circle. (If there are zeros on the unit circle, then we can at least show as in [7] that a
certain stronger kind of stability cannot hold.)

For completeness we state and prove the result that we need concerning (4). Let
us denote the set of integers by Z, the set of negative integers by Z_, and the set of
natural numbers, i.e., the nonnegative integers, by N. By I’1 we denote some norm in
Rm, and also the corresponding matrix norm.

PROPOSITION 4. Assume that the following conditions hold:
(i) a e 11(N;Rrem);
(ii) For each j >_ 0 the mapping e/(N; Rm) Oj() Rm is continuous

(iii) (N; R);
(iv) /(Z_;Rm);
(v) det[=0 zan] 0 for some zo e C with ]zo] < 1.

Then there exists a number e > 0 such that there is no 5 > 0 for which the inequalities

(5) I 1 < 5, < 0,

I nl <5, n>0

imply that, if is a solution of (4), then

2. Proof of Theorem 3(a). It is a consequence of the assumptions that
lima--,oo am+5(a) a(m)(O) and 5(0) 1. Since, moreover, 5(a) 0 when a >_ 0, it
follows that

(7) > o.

Let us introduce the following abbreviations:

T=T+S,
T

q= T+S’
tj(q) (j- q)(T + S).
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Because f a(t)dt 1 it follows from (iii) that limT-,0 (f_t a(t- s)u,(s)ds -q) O,
uniformly for t E R. Hence q is close to 0, when T is small, and this guarantees that
q and 1-q remain bounded away from zero and 1. We may assume that u,(0) 0
and u, (0+) 1.

It follows from the results in [7] that, if we want to show that the periodic solution
is stable, then we have to prove that (3) holds. Let :D { z e C [Izl < 1 }. First we
consider the case where

where 9’’ R+ [0, 1/2] is some continuous function with 7(0) 0 that will be fixed
later. Define

log(z)
w and

T
7-/7" { w e C exp(-Tw 6 :DT" }.

We let
A(t,w) a(t)e-wt, t >_ O, w >_ O,

and by A’(t, w) we denote the derivative with respect to t.
Using an integration by parts we get the following result for p 6 [0, 1)"

(8)

where ho is defined by

(9) ho(t,p) t- X[-p,](t), t e p e

For k > 0 we let

(10)
ck(p) hk(s,p)ds,

h+(t,p) (h(,p) e(p))d,

and then we define

(11) i() (s-t_(O) )A(+)(s,w)ds"
=z _(o) T

Provided a(J) is integrable for 0 _< j g k + 2 we get from an integration by parts that

(12) Rk(P,Z, T) --ck(p)A(k)(O, W) + TRk+l(p,z, T).
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By (8) we therefore have

(3)
1
h(w) ck(p)A(k)(O,w)Tk + Tn+IRn+I(p,z,T),z-PZ a(tj(p))zJ

j=l k=o

where n m- 1 if m > 1 and n 2m if m 0 or 1.
Using an approximation argument we conclude that

(14) Rk(p, z, T) --ck(p)A(k)(O, w) as T 0 uniformly for w - and p [0, 1],

for 0 < k < m if m > 1, and 0 < k < 2m + 1 otherwise. Since Tw/(z- 1) ---, -1 as
T 0 we see from a similar argument that when m 0 or 1, and k 0,..., 2m + 1,

(15)
1 (A(k) (0, w) A(k) (0, 0))T (Rk (p, z T) Rk (P, 1 T)) - ck (p)-z-i

as T 0 uniformly for w E -/r and p E [0, i].

Note that the moment assumption in (ii) is needed for the case k 2m + 1 and once
this is established the remaining cases follow from (12).

It is an immediate consequence of definitions (9) and (10) that

hk+(t,p) (-- 1)k+l ft (t s)kho(s,p) ds ’k cj(p)
(_t)k-j+l

J +-0

and since hk+l(1,p) 0 by the definition of ck(p), we get

(16)
k

Zcj(P) (-1)k-J+l (-1)k+l

j=o
(k- j + 1)! (k + 2)!

(_p)k+l
(k + 1)!"

From this equation it is easy to solve the coefficients cj(p) recursively.
It follows from (3), (11), and (13) that

(17)

f(z) + Ro(q, z, T) + Ro(1 q, z, 7")

+ (Ro(O,z, T)- Ro(O, 1, T)+ Ro(q, 1,

x + Ro(0, z, T) Ro(0, 1, T) + Ro(1 q, 1, 7")

T
D(q, z, T)+ Z(q, z, T)+ F(q, z, T),

where
D(q, z, T) d=efRo (q, z, T) + Ro(1 q, z, T) 2Ro(0, z, T)

Ro(q, 1, T) Ro(1 q, 1, T) + 2Ro(0, 1, T),

E(q,z, T) de=f (Ro(q,z, J/’) Ro(q, i, T))Ro(1 q,z, T)
+ (Ro(1 q, z, 7") Ro(1 q, 1, T))Ro(q, 1, T),



1338 GUSTAF GRIPENBERG

and

Assume first that m 0. If z E :DT, then wT 0 as 7" 0. On the other hand,
we know that wh(w) a(O) as [w[--. oc with Nw >_ 0. Therefore it follows from the
fact that (w) 0 for Nw >_ 0 that

(18) inf --,c as T 0.

From (12), (15), and (16) we get

(19)
D(q,z,T)

z 1 (cl (q) + cl (1 q) 2c (0)) _lw (A’ (0, w) A’ (0, 0))
a(0)q(1 -q) as 7" 0 uniformly for w e 7-/- and p e [0, 1].

Because A(0, w)- a(0) we get from (12) that

(20) Ro(p, z, ) R0(p, ,) r(R(, , -) R(, , )).
Therefore it follows from (14) and (15) that

(21)
E(q, z, T) O(1)
Z--1

as T 0 uniformly for w 7-/-.

(22)

Moreover, since co(p) 1/2 -p, we see from (12) that

Ro(q, 1, T) / Ro(1 q, 1, T) T(R(q, 1, 7") / RI(1 q, 1, T)),
and hence we conclude from (14), (15), and (20) that

F(q,z,T) o() as 7" 0 uniformly for w 7-/T.

Combining this result with (19) and (21) we get from (17) and (18) that

(23) f(z) ( + o()) s - 0 e uz.
z-1

Thus we see that if m 0 then f(z)/(z- 1) has no zeros in a neighborhood of the
point 1.

Next we consider the case where m 1. By using the fact that now a(0) 0 and
c2(q) + c2(1 q) 2c2(0) 0 we get from an argument similar to the one used above
that

D(q, z, T) T2 (ca(q)-t-c3(1 -q)- 2c3(0))1_ (A(3)(0, w)- A(3)(0, 0))z-1 w

=T2(-a’(O) + wa(O)) q2(1-q)2
4

as T 0 uniformly for w 7-/- and p e [0, 1].
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Since a(0) -0 we get instead of (20) that

and also that R0(p, z, T) TRI(p, z, T). This implies that

E(q, z, T) O(T2 as T 0 uniformly for w E 7-/-.
Z--1

From (14), (22), and (24) it also follows that

F(q, z, T) O(T2 as 7" } 0 uniformly for w E 7-/-.
Z--1

Now we know that w2(w) a’(0) as [w[- oc with Nw _> 0 and that -a"(0)/
wa’(O) 0 when Nw >_ 0. Therefore we have by an argument similar to the one used
in deriving (18) that

inf
(w) (-a"(0)+ wa’(O)) --. cx as T 0.

Thus we see that

(1 + o(1))(w)(-a"(0) + we’(O)) as 7" 0 and w e 7-/-.(25)
z- 1

This completes the proof in the case m 1 as well.
Next we consider the case where z does not lie in a neighborhood of i in the unit

disk. Define the function b by

b(t) { o,a (t2")etlg(z)/(2r)

and let

t_>0,
t<0

B(t) _, b(t + 2kr), t e [0, 2r].

It follows from our assumptions that B is of bounded variation and therefore we have
N(note that all sums =_o are to be interpreted as limg--.o En=--g)

1 (B(t-)+ B(t+)) E
where the Fourier coefficients B(n) are given by

(27) /(n) e-int b(t + 2kr)dt e-inb(t) dr.

Choosing t 2r(1 -p) in (26) we get (assuming for the moment that p (0, 1))

(28)

B(t) E a((1 p)T + kT)zkzl-p
k=0

z-" Ea(t(P))ZJ E ei2n(-P)(n)"
j=l n=-oo
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Invoking the definition of b and performing a change of variables we conclude from
(27) that the Fourier coefficients B(n) are given by

(29)

1
e_ina

tT elog(z)/(2r dt

oo l (i2nr-log(z))1
e-(i2n-lg(z))/Ta(t) dt :r

Since we assume that a(J) E BV(R+; R) for j 0,..., m, we get

(30) a(m+)(w) + a(J)(O)
wm+l wj+I

j=O

Let

dj ew(1-p)

dwj 1 ew
j_>0,

For p e (0, 1) we have

ei2nr(1-p)
Hj(w,p) j! E (i2nr-

Because a(m) AC(R+; R) we see from the Riemann-Lebesgue lemma that we have

a(m+l)(w) --* 0 as Iwl --. c with w _> 0. Therefore, from (28)-(30) and the assump-
tions that a()(0) 0 for j 0,...,m- 1 (and a’ e BV(R+;R) when m 0), it
follows that there exists a continuous function - with "(0) 0 such that

(32)
TmE a(tj(p))zJ zpa(m)(O)Hm(log(z),p)--. -t- o(Tm)

j--1

as T 0 and Iz[ _< 1, Iz- 11 >_ "y(T).

It is easy to check that this formula holds in the case p 0 as well. (The function
B may have a discontinuity at zero, but the expression for Ho(w, 0) is modified in a
corresponding way.)

Now let us consider the stability condition (3). In order to simplify the notation
we define

(33) dk(p) k!(ck(0, 1) ck(p, 1)), k >_ 0, p e [0, 11.

If we use (13), (14), and (32), then we see that the stability condition (3) becomes

(34) f(z) a(m)(o)2Pm(z, q)T2m + o(T2m) : O,

where

(35)
Pro(z, q) --Hm(log(z), q)Hm(log(z), 1 q)

(Hm(log(z), O) + din(q))(Hm(log(z), O) + din(1 q)).
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A simple calculation shows that

Po(z,q)=-q(1-q) and P(z,q)=-1/4q2(1-q)2.

We conclude from (34) that, if m 0 or 1 and if T is sufficiently small, then f(z) # 0
when z E

Now the conclusion of part (a) follows from the results in [7] once we have proved
that y’,(0-) < 0 and y,(T-) > 0. Clearly, y’,(0-) ,j%i(a(tj(O)- a(tj(q)) and
y’,(T-) jl (a(tj(1 -q)- a(tj(O)). Thus we see that it suffices to show that

(36) Z (a(tj(O) a(tj(p)) < O, p q, 1 q.
j-’l

By (13) and (14) we have

(37) sign ((a(t(O) a(t(p))) _sign (a(m)(O))sign

for sufficiently small T. Because do(p) p and dl(p) p(1 -p)/2 we see that (36)
follows from (7) and the proof is completed.

3. Proof of Theorem 3(b). We use the same notation as in the proof of part
(a). First we prove that if 7" is sufficiently small, then either there exists a complex
number zo with Iz0] < 1 such that f(zo) 0 or there is no periodic solution (y,, u,)
such that u, is thermostat controlled by y,.

When m 0 or 1 there exists a complex number wo with wo > 0 such that
5(w0) 0 if m 0 and such that (wo)(-a"(0) + woa’(O)) 0 if m 1. In the
argument above it was assumed that (w) #- 0 or t(w)(-a"(0)+ we’(O)) # 0 when
w > 0, but it is easy to see that (23) or (25) holds if w is restricted to some compact
set in the right half plane on which this expression does not vanish. Hence we can
invoke the argument principle to show that the desired point z0 exists.

Let m > 1. First we formulate some results on the coefficients dk(p) defined in
(33).

LEMMA 5. For each integer k > 1 and each p E (0, 1),

d2k (p) -d2(1 p),
d2k- (P) d2k- 1 (1 p),
d2k(p)d2k(1 p) < O,
d4k-l(P) < 0,

d4k+ l (P) > O.

Proof. It is a consequence of (16) and the definition of dj(p) that

sj 1 e-vs de_._f (p, s)d( )":7__P_3,. 1 e-s
j=O

The first two claims follow from the fact that
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It is easy to see that the functions dk (p) can be expressed with the aid of Bernoulli
polynomials in the following way:

dk(p)
(-1)k (Bk+l(p) Bk+(O))k+l

k>0.

Since the Bernoulli polynomials satisfy B(p) nB,_(p), f3 Bn(p)dp O, and
B(p) p- 1/2 we can use an induction argument to prove that for all k _> 1 and all
p E (0, 1) we have

dk(O) dk(1)=0,
d4k-3 (P) > 0,

< 0,

d4k-(P) < 0,

> 0, 1/2.
This gives the last three claims and the proof of Lemma 5 is complete.

It follows from the argument principle and (34) that, if there exists a point z
such that ]zl] < 1 and P,(z,q) 0, then there exists, at least when :2" is sufficiently
small, a point z0 with ]z0] < 1 such that f(zo) O.

In the case where m is an even positive number and q 1/2, it follows from Lemma
5, that din(q) and d,(1-q) have opposite signs. This implies, in view of (37) that, for
sufficiently small T there cannot be any periodic solutions satisfying the conditions
of thermostat control, and hence no locally stable ones either. If, on the other hand,

then we use the fact that by Lemma 5 we have din(1/2) 0 and thereforeq=
P,(O, ) O. It follows that there exists a zero of f in the interior of the unit disc
when T is sufficiently small.

In order to treat the remaining cases where m > 1 is odd, we note that, because

e-(1-p)w epw

1 e-w 1 ew

it follows that

Hm(-w,p) (-1)m+Hm(w, 1 p).

When we combine this result with Lemma 5 we get, since Hm(w, O) Hm(w, 1) when
m > 0, that

(3s) Pm(z,q) Pm(,q).
Next we observe that by (31)

dk ew
Hk(w,q) d--- (e-qw l_e------) and Hk (w, 1 q) wk

Moreover,
dk ew

dwk 1-ew
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u) Thuswhere the functions gj are defined by go(u) u and gj+l(u) gj(u)(u2 +
we see from (35) that

(39)

By induction we easily prove that

g.(u) u + (2J 1)u2 +....

Therefore we conclude from (39) that when m is odd
(40)

Pro(z, q) din(q) 2 + (2din(q) qm(1 q)m) z

1-z

(2(2m l)dm(q) + 1 qm(2 q)m + qm(1 q)m+

-(1 q2)m) z z

(1-)"

/(n(n-1)2 d(q) + (n- 1)(q(1 -q) 2d(q)) + 2(2 1)d(q)

+ +

It is clear that n <_ 2m + 1 since the degree of gj is j + 1 and at least the terms
of degree 2m + 2 cancel. By (38) we know that if there is no zero of Pro(z) inside
the unit circle, then all the zeros are on the unit circle. If p(z) is a polynomial of
degree n with real coefficients such that all zeros of p are on the unit circle, then
p(z) ao -F alz .-F a2z2 --F... where lal/aol < n and la2/aol <_ n(n 1)/2. Applying
these observations to Pro(z, q) we conclude from (40) that unless it has a zero inside
the unit circle, we must have

qm(1 _q)m 2
n + dm (q)2 dm (q) <- n,

n(n-1) +(n-1)qm(1-q)m-(n-1) 2
2 dm(q)2 dm(q)
2(2m I) qm(2 q)m qm(1 q)m + (i q2)m 1

+ d(q) d(q)
< (-)

2

If m 4k- 1, then it follows from Lemma 5 that din(q) < 0 and the first inequality
above gives a contradiction. Hence we assume that m 4k + 1 so that din(q) > O.
The second inequality above implies that

(41) dm (q) <_ qm(2 q)m nqm(1 q)m + (1 q2)m 1
2(2m n)
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A straightforward calculation shows that q3(2- q)3 + (1 -q2)3 < 1 when q E (0, 1),
and since q(2- q) _< 1 and 1 -q2 _< 1 it follows that qm(2- q)m + (1 -q2)m < 1 for
m _> 3. But then it follows from (41) that din(q) < 0 and we have a contradiction.
This completes the proof of the fact that, if m > 1 is odd, then there exists a point
zl with Izll < 1 such that Pm(z,q)= O.

Now we know that if there exists a periodic solution, then there exists a complex
number zo with Izol < 1 such that f(zo) 0. To complete the proof we use the same
argument as in [7] to show that the problem can be reduced to an equation of the
type (4) with f(z)/(1- z) ’n=oZnan, and then we invoke Proposition 4. Note
that what is needed for the reduction to (4) is not necessarily that y,(0-) < 0 and
y, (T-) > 0 but that u, is strictly thermostat controlled by y, and that each switching
time depends continuously on the data. If this last condition is not satisfied, then the
periodic solution is clearly not locally stable.

4. Proof of Proposition 4. We use the following notation: if n E Z and if
{} is a sequence of elements in Rm defined at least for all indices j _< n, then the
sequence Hn N Rm is defined by (Hn)j Cn-j, i.e., Hn consists of the part
of "before" n.

Let us first assume that det[a0] 0. The resolvent kernel p associated with c is
defined to be the solution of the equation

n ?%

 oo,
=o =o

(Here 5ij I if j and zero otherwise.)
Since there exists a complex number zo such that Iz01 < 1, det[’n=o zon]- O,

and det[ao] 0, we may assume that there exists real numbers 0 < ro < r < 1 so
that

]_1 1 )(42) znan (z z)k+ (_ z)k+ A,k + F(z),
n=O 11 k=O

where L 1, p 1, ]z] to, 1,..., L, and F is (a matrix of functions) analytic

It follows from (42) that the resolvem p can be expressed in the form

(43)

where

and

Pn un + n, n >_ 0,

u, Z n + k z_(,+k+lA,
= k=O

k

(Observe that here M is the matrix with each element equal to the real part of the
corresponding element in M.)

Let P max{pll 1,...,L} and define

P-1

( 0)o n_>0.
rl
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We choose numbers Bo and B1 such that

B _> rop sup bn, BI >_ Z bn.
n>0

We shall later use the fact that B and B1 can be chosen independently of r0 when
r0 is close to zero.

We take the constant CA to be such that

We may, without loss of generality, assume that pl P. It is easy to see that
there exists a vector v E Rm with Ivl 1 and a number 7 > 0 such that

(44) [Z(k+)A’kV]Lk=O >_ rP3’BcA.

Let F (2 +/)/ and let be a positive number such that if IIII(N) _< Fe, then

(45)
c LcAB

If the conclusion of Proposition 4 does not hold, then there exists a number di such
that (5) implies (6). Pick a positive integer N such that

Define the set f by

x {0,},=o 0,

IO.l_<rr-", OgngN)
< er-n 0 < n < N.LcAB.’

Next we consider a mapping (0, 0) e (G(O, 0), g(O, 0)) defined as follows.

(47)
Ogn<N;

where
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It is obvious that the mapping (9, 60 (G(@, ), g(zg, )) is continuous (in the topology
of Rmx(2g+2)), and we must show that it maps into itself.

We clearly have for all n < N

Lk=O

<
7cAB 7

Next we observe that, if (, ) E 2, then it follows that

I1 < 2erlN- N

7
i<0.

Because rl < 1 and N-i > N + 1 > N-n when < 0 < n, we therefore see that
(46) and the definitions of and fl imply that

(49) supll < 5 and IIHIIo(N) rrN-, 0 n N.
n<0

An easy calculation shows that

(50)

N N P-I

j=n+l k=o
k

erlN_n N erlN_n
2B1 E bj-n<_

2
j=n+l

FerlN-jr n k

2FLcAB1

In the same way we get

(51)
n

_%(H)
j=0 j=o

2Fco 2

It is immediately clear from (45) and (49) that

Ig,( e)l <
2LcAB1

0<n<N.

This inequality combined with (50) and (51) shows that 2 is mapped into itself.
Since fl is convex, we can apply Schauder’s fixed point theorem and find a point

(v*, 6*) E fl such that G(v*, *) * and g(zg*, *) *. Define * by replacing (9, 60
in (48) by (zg*, 6*) and let

Since an (*, 0") and O; Cn(Hn (*)) for 0 < n < N, we get

0<n<N.



THEI:tMOSTAT SYSTEMS WITH SHOI:tT PER,IODS 1347

Let &(z) ’=o znan" For every 1, 2,..., L we have

d- (-1),-
z--.z,lim dzpz_ 1 (pz_ 1) 6(z)z-n-(zt- z)P’-k-At’}

p--i dk n

(52)
z z k dzk n-Z-J- At,k

j=- k=0

On the other hand, it follows from (42) that there exists a function G, analytic at zt
such that

pt--1

(z,-
k=0

We combine this result with (52) and note that the argument can be repeated with zt
and At, replaced by and At,, respectively. This shows that for every 1, 2,..., L
we have

j=- k=0
k z[ At,k O, n Z.

It follows that
satisfies the equation

i i, < O.

In order to get the desired contradiction we note that by (44), (47), and (51),

7cAB 2

This completes the proof in the case where ro > 0.
Finally we have to consider the case where ro 0 (and therefore L 1). We

construct a continuous function t
and so that

n=0 k=0

where z F(z,t) is analytic for (t) and (t) 0 for t > 0. Moreover,
we require tha (t), r(t), A(t), and F(,t) are continuous functions of t. As a
consequence we can in the above ake he constants co, e, 7, B, and B to be
independent of t. These consgants degermine he number e ha we choose. We
assume hat > 0 is such that () implies (6). Now we ake a number t > 0 o be so
small that
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By the argument above, there exists a sequence {i}--o with supi<_lli _< i and
a solution f of the equation

such that INI ) {" But then is also a solution of the equation

O <_n <_N,

where an ----o (an-j -an-j(t))j. Since Inl- 5 by (53) and the definition of
the set t, we have a contradiction. This completes the proof of Proposition 4.

Acknowledgment. The author thanks the referees for pointing out some errors
in an earlier version of the paper.
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EXCHANGE OF STABILITIES FOR FLOW ALONG A CONCAVE WALL*

ISOM H. HERRONt

Abstract. The equations of hydrodynamical stability derived by G6rtler for flow along a concave wall
are proved to satisfy the principle of exchange of stabilities (PES). The case where a constant suction normal
to the wall is present is also treated in the same formulation.

Key words. G6rtler flow, suction, linear operators

AMS(MOS) subject classifications. 76E05, 47E05

1. Introduction. The first study of the instability of the boundary layer due to the
curvature of the flow along a concave wall is attributed to G/Artier [4]. Interest in this
type of instability has only increased with time. The purpose here is to prove exchange
of stabilities in the following sense. Principle of exchange of stabilities (PES): The first
unstable eigenvalue has imaginary part equal to zero. By means of a technique due to
Weinberger [5], our previous work on this problem [2] proved exchange of stabilities
for flow near a free surface with small curvature, ignoring the effects of surface tension.
As a sequel, the wall bounded case is now solved. Since most of the details are
developed in the previous paper [2], this work will simply show how the wall bounded
case may be transformed to the case already treated.

The governing disturbance equations are

(1.1a) (D2-voD-a-o-)(D2-a2)v+aZla,Uu=O

(1.1b) (D2-voD-aZ-cr)u U’v=O

for the components u(r/) along the wall and v(r/) perpendicular to the wall, with
boundary conditions

(1.1 c) v(0) v’(0) u(0) 0,

and decay at infinity

(1.1d) v, v’, u-0 as

This is the notation of Drazin and Reid [1], where D=d/drl, U(’O) is the velocity
component of the basic flow along the wall, a is the wave number,/x is the small gap
Taylor number (linearly proportional to curvature), tr is the eigenvalue, and Vo 0 (no
suction) or Vo=-I (suction). The two cases Vo=0 and Vo=-I are handled in one
formulation. As in the previous work [2], it is assumed that U->0 and U’=>0 for
0=< r/<.

2. Abstract formulation and PES. In operator form the differential equations may
be written

(2.1a) (S* + o-)Mv + a:Uu O,

(2.1b) U’v+(g+tr)u =0,

* Received by the editors July 2, 1990; accepted for publication October 30, 1990. This work was
supported by the Office of Naval Research.

t Department of Mathematics, Howard University, Washington, DC 20059.
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where

g+ tr)u (-D2 + roD+ a + o-)u,

Next define the operator M* by

M*v my (-D2+ a2) v,

where

My my (-D2 + a2) v, v dmn M,

(S*+o)Mv=(-D2+voD+a+o’)Mv, vdmn (S’M),
u dmn S.

v dmn M*,

(2.2a) dmn M*= {v L2[0,  )lv, v’ abs. cont., my L2[0, )}.

Thus M* has no boundary conditions; it is the adjoint of M given above and

(2.2b) dmn M {v dmn M*]v(O) v’(0) 0}.

Consequently, M is symmetric and positive definite, but not maximal and not invertible.

Another.operator needed in~what follows is/tT/, a positive-definite self-adjoint extension
of M" My tnv, v dmn M, where

(2.3) dmn hT/= {v dmn M* v(0) 0}.

A generalized inverse [3] to M is M*. The null space of M*, nul M* is spanned
by e-"’. The projection operator Q onto nul M* is defined by

(2.4a) (Q)(/) go(l, )q() d,

where

(2.4b) go(l, )= e-an e-2as ds e-a 2a e-a(n+).

Then g*, the kernel of the generalized inverse, satisfies

(2.5a) --+ a2 g*(’r/, s) 8(n ) go(n, ),

Og* Og0 as,g*(O, )=(O, )=O, gt,
on(2.5b)

so that

(2.6)

Some properties of M* are

(2.7a)

(2.7b)

since nul M is trivial.

(Mtq)(r/) gt(r/, :)q(:) d:.

MM* I-Q,

MtM=I,

When (2.1a, b) are considered in more detail, S* has no boundary conditions,
while has boundary conditions and is maximal. The space of functions on which
the operators act is weighted (if Vo # 0) defined as

(2.8a) Hvo {q e-Von]q12 dr/<
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with inner product

(2.8b) (o, q),o (r/)O(r/) e-vn dr/,

and norm

where

e-Pln-l e-P(n+)] eVo(n_)/2(2.13b) h(r/, :; (r)
2p

and

p /a:z + v/4+ cr is the positive square root.

Application of (+ O’) -1 to (2.12a) gives

(2.14a) Z + a2/xB(r) Uu B(o’)(S* + r) QZ,

where

(2.14b) B(tr) (;+ tr)-1

Integration by parts on the right side of (2.14a) leads to

z(n)+(a-zB(o-)Uu)(n) h(v, ; o-) --(QZ)()+vo(QZ)()
(2.15)

+-- h(n, ’; r)(QZ)(’) + (QZ)().
0:

(2.8c) I1 11 = (((, ()v0) 1/2.

The projection Q onto the null space of M* is employed. Define ’= Mvv= M*,
and let

(2.9a) Z(y) (q)- T(,1) (I- T),

such that Z dmn . This is done by setting

(2.9b) T(B) (0) e-n,
which is an element of the null space of M*. Thus, I- T maps the range of M onto
the domain of M. Then

(2.10) QZ Q- QT T.
From (2.7) we have

(2.11) M*(Z-QZ)= M’Z,
where Q is given by (2.4). Then (2.1) may be written in terms of Z as

(2.12a) (+ q)Z + a:Uu (S* + q)QZ,

(2.12b) U’M*Z +(+)u O.

It is not difficult to show that is maximal positive definite; u dmn , (u, u)
(vg/4+a2)(u,U)o Thus (+q)- exists for ={CIRe()-(vg/4+a:),
Im (q) 0}. The operation of (+q)- is [2]

(2.13a) (+)- h(n, ; )() d,
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From (2.13b) we have

0
(2.16) Z(rl)+(a21zBUu)(rl) -- h(rl, 0; tr)(QZ)(O)+(QZ)(rl).

It is possible to rewrite (2.16) as

(2.17) Z + a2tzBU)u (I A(tr) QZ,

where A(r) is the projection onto nul (S*+ ). With (2.12b), (2.17) becomes

(2.18) Z- aEBUBU’M*Z (I A)QZ.

Application of Q to both sides of (2.18) gives

(2.19) aQBUBU’M*Z QAQZ.

The left side of (2.19) depends explicitly (linearly) on ; the right side does not. Let
0. Then QAQZ o, which is not unexpected.
The condition QAQZ =0, interpreted in the light of (2.13) and (2.16), means

(2.20) QZ)(O) go(n, Y) Y, 0; ) dy O.

When this calculation is carried out the result is

2a e-an
(2.21) a+p- o/2

(OZ)(0) 0.

This can only hold if (QZ)(0)=0, which from (2.10) means OZ 0, and this implies

Next, by considering the norms of both sides of (2.19), the relation OAQZ =0
must hold for # 0 as well. To see this, first set

J QBUBU’M*(2.22)

so that from (2.19)

and the ratio

QAQZ vo a2/* JZ

(2.23)
QAQZIIo a

_ QAQZIIo.
JZ J Z

Thus, as /z+0, the right side of (2.23) must approach zero as IIzll+0, and this
requires IIQAQZIIo+O faster than Ilzll+0, which for a linear operator cannot be
true, unless QAQZ =- o.

The calculations which led to (2.20) and (2.21) can be carried out again, giving
the same result: QZ =-O:=>Z =-0, so the system (2.12) is really homogeneous. Further-
more, IIMtZ =(I-Q)Z Z, so Mt=/17/-a when operating on Z.

The system (2.12) may be written as a single equation:

(2.24)

or

(2.25a)

where

(2.25b)

(+ tr)Z aEUB(tr) Ut]-Iz O,

Z-K()Z=0,

K(o’) a21B(tr) UB(tr) U’B(O).
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The formulation (2.25) is a reduction to the form considered in the previous article
[2]. It is true that K(tr) will be a compact operator if the decay of U’ to zero as r/c
is sufficiently strong. By the technique of Weinberger [5], PES thereby follows. Now
our earlier discussion (between equations (2.12) and (2.13)) has shown that the original
system (2.1) and the transformed system (2.24) have spectra that agree, except on a
set E, which is a subset of the negative real hairline. Consequently, PES will hold for
the original system as well.
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GENEALOGY AND BIFURCATION SKELETON FOR CYCLES OF THE
ITERATED TWO-EXTREMUM MAP OF THE INTERVAL*

J. RINGLAND? AND M. SCHELLf

Abstract. It is shown how the skeleton of the bifurcation structure of iterated maps of the interval with
two extrema may be constructed without reference to kneading sequences. This construction of the skeleton
is based on local rules and is accomplished by considering not just the bones, i.e., the curves in the parameter
plane that correspond to the existence of superstable cycles, but also the curves that correspond to the
existence of itineraries from one turning point to the other: curves called ligaments here. A graphical
genealogy of the cycles ensues.

Key words, genealogy, periodic orbits, skeleton, superstability, bimodal map

AMS(MOS) subject classifications. 58C25, 58F14, 58F22, 34C35

1. Introduction. Analysis of the dynamics of iterated maps of the interval with
two extrema has focused on the parameter-plane curves that correspond to the existence
of superstable cycles. The curves have been termed the bones [1] of the regions in
the parameter-plane where cycles are stable. The way in which the bifurcation structure
hangs on these bones has been described 1], [2]. A more difficult problem is determin-
ing the arrangement of the skeletonmthe collection of all the bones. Mackay and
Tresser [2] have shown how it may be solved by applying the kneading theory [2]-[6].
Here we present an alternative solution that is much simpler and, due to its radically
different character, quite complementary to the previous work. In our approach, no
reference is made to the lexicology of kneading sequences. Impossible cycles that in
the kneading theory approach must be excluded case by case, using a rather laborious
admissibility test, simply do not arise. More importantly, the result of our construction
is a graphical genealogy ofthe cycles that embodies their intricately knitted relationships
and provides a locally causal explanation ofthe existence and arrangement ofthe bones.

Our construction of the skeleton is accomplished by considering not only the
bones, but also the parameter-plane curves that correspond to the existence ofitineraries
from one turning point to the other: curves we call ligaments. As we intend the name
to suggest, the ligaments serve to connect the bones. We stress that while each ligament
is in fact the locus of occurrence of specific (finite) kneading sequence, at no point
do we make use of the kneading sequences themselves. And parenthetically we note
that while bones correspond to attractors of the map, ligaments do not.

The construction is founded on the local analysis of three classes of singular point
of the parameter plane from which bones and ligaments can be considered to emanate.
The three corresponding kinds of singular2 condition of the map, which for brevity
we denote (arbitrarily) by the letters a, X, and b, are exemplified in Fig. 1. These

* Received by the editors November 27, 1989; accepted for publication (in revised form) September
10, 1990. This research was supported by the Petroleum Research Fund, administered by the American
Chemical Society.

" Department of Chemistry and Center for Nonequilibrium Structures, Southern Methodist University,
Dallas, Texas 75275.

$ Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14214.
These are cycles that include a turning point of the map, and hence have eigenvalue zero.

The term does not imply that the map lacks smoothness (see Fig. 1).

1354



GENEALOGY AND BIFURCATION SKELETON 1355

(a) a-point (b) X-point

(c) if-point

FIG. 1. Maps (sketched) in the three kinds of condition that correspond to sources of bones and/or
ligaments. (a) At an a-point, a point of degeneracy of two turning points. (b) At a X-point, the location of a
doubly superstable cycle, i.e., a cycle that contains both of the turning points of the map. (c) At a b-point, where
an itinerary from one turning point to the other coexists with a cycle that contains the terminal turning point of
that itinerary. The symbols appearing below the sketches are used in laterfigures to mark points in the parameter
plane where the respective conditions arise.

singular points will be discussed in detail in the next section, but first we mention
briefly their attributes in order to sketch the logic of our approach. The a-point is a
source of ligaments, the X-point is a point of intersection of two ligaments and is the
source of a pair of bones and of additional ligaments, and the 0-point is a point of
intersection of a ligament and a bone and is the source of additional ligaments. The
idea of the construction is that the ligaments emanating from the a-point participate
in intersections that constitute X-points. The bones and ligaments that emanate from
these X-points participate in intersections that constitute additional X-points and
if-points. These points in turn are the sources of bones and ligaments which give rise
to more X-points and 0-points, and so on. In this way the entire skeleton is generated,
and in what follows we develop the specific prescription. Related methods have been
applied in other dynamical systems contexts [7], [8].

In 2 we describe the singular points, and derive the existence and arrangement
of the bones and/or ligaments that emanate from them. In 3 we investigate the
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consequences of these results for map families that are full and nice: properties defined
in that section that, in the spirit of the previous work [2], ensure, respectively, the
completeness and maximal simplicity of the skeleton. Consideration of the possibility
of other kinds of interaction of ligaments and bones then permits the completion of
the set of rules for constructing the skeleton. We carry out the construction as far as
to include all bones corresponding to cycles of length 6 or less.

2. Local analysis of the three points of origin of bones and/or ligaments. We consider
analytic two-parameter families of maps x-(x, A,/x) of the interval into itself
(coordinate x, parameters A,/x), with O/Ox > 0 except at two turning points (where
Ocb/Ox 0) and between them where /Ox < O.

2.1. The a-point. In order to consider the starting point ofthe skeleton, we broaden
slightly the class of maps considered and allow the turning points to merge.

DEFINITION. A point (Ao,/Xo) of the parameter plane of the map (x, A,/x) is
an a-point if there exists Xo such that (Xo, Ao,/o)=Xo, O(Xo, Ao, tZo)/Ox=
02(I)(x0, A0, ]Ulo)/Ox2=O, and 03(I)(x0, A0, [.Ibo)/OX3> O.

The graph of a map at an a-point is pictured in Fig. l(a).
TrEOREM 1. Generically, a sufficiently small parameter-plane circle centered at an

a-point is intersected (transversally) by ligaments {,} corresponding to itineraries

of lengths n =0, 1,2,... between turning points, and by a bone corresponding to

fixture of a turning point (equivalently, superstability of a fixed point), in the following
(cyclic) order: o(L- R), N(R),..., 3(L--’ R), 2(L- R), I(L- R), I(R- L),
(R L), 3(R L), ., N(L), o(R L), where the arguments indicate the associ-
ation with the left (L) and right (R) turning points. In other words, the generic unfolding
of an a-point is qualitatively as depicted in Fig. 2(a).

The proof follows a description of Fig. 2(a). The ligament corresponding to an
inter-turning-point itinerary of length zero, i.e., the locus of emergence of the turning
points, is labeled zero. The hatching indicates the side of this curve where the map is
monotonic. On the other side is the bone (unbroken curve), on which exists a superstable
fixed point of the map, and the bundle of ligaments, each labeled by the length of the
corresponding itinerary. Ligaments corresponding to longer itineraries are closer to
the bone. The asterisk in Fig. 2(a) corresponds to a situation like that depicted in
Fig. 3(a).

In Fig. 2 (and Figs. 4 and 5) we use dashed and dotted curves to distinguish
between the two types of ligament: those that correspond to itineraries from the left
turning point to the right one, and those that correspond to itineraries from the right
turning point to the left one.

The ligaments emanating from an a-point change type at the a-point: this fact is
associated with the coincidence there of the two turning points. So on one "side" of
the a-point the ligaments correspond to itineraries from the left turning point to the
right one, and on the other side they correspond to itineraries from the right turning
point to the left one. As discussed in detail in 2.2, two ligaments of opposite type
can intersect, giving rise to a X-point" the location of a cycle that includes both turning
points, and a source of bones and additional ligaments.

Proof of Theorem 1. Let us write the map as

(2.1.1) (x, A,/.) Ea,kXAtxk.
Here, as elsewhere below, the sum is on all indices over the nonnegative integers. An
a-point at x , =/. 0 is obtained if we set aooo aaoo aoo 0. Generically, a3oo # 0,
and therefore a3oo > 0 by the previously stated requirements on O/Ox. Also generically
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FG. 2. Sketches of che parameter-plane neighborhoods of each of the three kinds of condition depicted in

Fig. 1. Unbroken curves represent bones (existence loci ofsuperscable cycles). Broken curves represent ligaments
(existence loci of itineraries from one turning point to the other); dashed and dotted are used to distinguish
between the two types. (a) e -point. Ligamems are labeled with the length of the corresponding itinerary.
e ligament 0 is the locus of degeneracy of the two turning points; on the hatched side of this curve he map
is monotonic. On the other side exist the (period-1) bone and bundle of ligaments which emanate from the
-point. e ligaments are ordered by length of corresponding itinerary, with the longer ones closer o the bone,
as proved in 2.1. (b) the -point. Two bones and two bundles of ligaments emanate from each -point. e
ligaments are labeled with che value of n in the respective formulas for the length of the corresponding itinerary.
at che local qualitative arrangement of che bones and ligaments is generically as pictured is proved in 2.2.

(c) e -point, from which a bundle of ligaments emanates. e ligaments are labeled with the value of n in
theformula v + rip for the length of che corresponding iinerary. a this is the generic picture is proved in 2.3.

alol # 0, so the implicit function theorem locally guarantees the existence of a unique
analytic function

(2.1.2)

(boo O) that satisfies

(2.1.3)

I *(r, A ZbijriAj

--(r, a))=o,
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(a) (b)

(c)

FIG. 3. Sketches of maps near each of the three conditions depicted in Fig. 1, showing itineraries between

turning points which exist on ligaments emanating from the singular points. (a) Near an a-point, an itinerary

of length 2 from the left to the right turning point. (b) Near the X-point of Fig. l(b), an itinerary from the left
to the right turning point oflength 5, which at the X-point is degenerate with itineraries oflength 1, 5, 9, 13, ,
the increment being the period (4) of the doubly superstable cycle that exists at the X-point. (c) Near the b-point

of Fig. l(c), an itinerary (length 4) that at the O-point consists of the direct itinerary (length 2) plus one loop
around the superstable cycle (period 2).

i.e., that makes r a turning point of . Substitution of (2.1.1) and (2.1.2) into (2.1.3),
and equating like terms yields blo =-2a2oo/alOl 0.

There also exists another turning point given by an analytic function

(2.1.4) s(r, A ,corA
(Coo =0) satisfying

(2.1.5)
Ox

(s(r, , ), ,x, *(r, ;)) o.

Since a2oo 0 and a3oo 0, s(r, A) as defined is double-valued. One value is simply the
turning point r itself: s(r, A)= r. We are interested in the other value, which by
substitution of (2.1.1) and (2.1.4) into (2.1.5) has clo -1.

The implicit function theorem also guarantees the existence of a set of analytic
functions r,(A), n =0, 1,2,. ., with rn(0) =0, for all n, that satisfy

(2.1.6) In(r,(A),h)=O,
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where

(2.1.7) I,(r, A =- dP"(r, A, tx *(r, A )) s(r, A ),

since 0Io(0, O)/Or 1- clo 2 (0) and OI>o(0, O)/Or=-clo 1 (0). (By " we mean
the n-fold composition of with itself.) Then the set of analytic functions {n(A)--
/x*(r(A), A), n-0, 1,2,...} represents a bundle of ligaments emanating from the
a-point. We conclude that the itineraries of all lengths that degenerately exist at the
a-point persist each on a unique curve in the unfolding.

Similarly, a bone is represented by the analytic function
where

(2..8) r() Xd
(do O) is defined by

(2.1.9) Iss(rs(), ) O,

where

(2.1.10) I,,(r, A)=--- dP(s(r, A), A, I*(r, A)) s(r, A).

(Existence and uniqueness of r,,(A) are guaranteed by 9Is,(0, 0)/9r=-clo= 1 0.)
Note that r,,(A) is the selection of the turning point such that the other turning point
s is a fixed point of .

To determine the arrangement of the ligaments and the bone we compute the
deviations of the ligaments {(A)} from the bone ,,(A). That is, we compute the
differences

(2.1.11) A/x, (A) --/x*(r, (A), A) -/x*(r(A), A).

If we define Ar (A) r, (A) r(A), then

(2.1.12) Aft, (A) ft*(rs (A) + Arn(A ), A *(rs(A), A ).

Substituting r(A) + Ar,(A) for r in (2.1.2), using (2.1.8), and recalling that blo do 0,
we obtain

(2.1.13) A/z(A) sAAr(A)+ TAr(A) + h.o.t.,

where

(2.1.14) S 2dlb2o+ b11, T b2o,

and by h.o.t, we mean terms of higher order in A than the leading term ofthe expressions
to the left. Straightforward substitution of the series expansions of, s, and r into
the definitions of these quantities ((2.1.2), (2.1.4), and (2.1.8), respectively), and
equating like terms yields the following identities required for the evaluation of S
and T:

dl Col bol aool aolo,

col (blalOl 2bol a2ol 2a21o)/6a3oo,

(2.1.15) bol -allO/alOl,

bll -2(bola2o + a21o)/alo,

b2o -3aaoo/alOl.
Now, from (2.1.6),

(2.1.16)
o t.(r() + ar.(), )

"(rs(A)+ Ar.(A ), A,/x (rs (A)+ Ar.(A ), A ))- s(r(A)+ Ar.(A ), A ).
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Substituting (2.1.8) into (2.1.4), and applying P, we get

n=O,
(2.1.17) 0=

i,(r,(A),A)+(_Clo)ar,(A)+O(aro(A)2) n>0.

Since Clo -1, (2.1.17) implies that

{-1/21, (rs(A I, A) + h.o.t., n=0,
(2.1.18) Ar,(A)=

-/,(r,(A) A)+h.o.t., n>0.

By using (2.1.1), a recursion formula may be obtained for the {I,(r(h), A)} as follows:

I,+,(rs(A ), A P(cP" (rs (A), A,/z (rs (A), A )), A, tz(r(A ), A )) s(rss (A), A ),
(2.1.19) (I,(r(A), A + s(r(A ), 3, ), A,/x(rs,(A ), 3, )) s(rs (A), A ).
Expanding, we then obtain

I,+l(r,,(A), A)=P(S(rss(A), A), A,/x(r,,(A), A))-s(rss(A), 3,)
(2.1.20) + QAI2(r,,(A ), A )+ RI3,(r,(A ), A )+ h.o.t.

QAI2,,(rs(A ), A )+ RI3,,(rs(A ), A )+ h.o.t.,
where

(2.1.21) Q=3a3oo(Col-dl)+bola2ol+a21o, R a3oo.

(Recall that s is the location of a quadratic extremum of except at A =/x 0 where
has a cubic inflection at s.)
The starting point for our recursive determination of the {A/z,(A)} is, from (2.1.7)

with n =0, (2.1.4) and (2.1.8),
(2.1.22) Io(r(A ), A UA,
where

(2.1.23) U 2dl Co.

Combining the results (2.1.13), (2.1.18), (2.1.20), and (2.1.22), we have

m/.z0(, -SU+TU)A 2 + h.o.t.,
(2.1.24) AIx(A)=-S(Q+RU)U2A4+h.o.t.,

Atx,(A)=-SQQ2"--(Q+RU)2"-Iu2"A2"+’+h.o.t., n> 1.

Thus the ligaments/x,(A) deviate from the bone g(A) at orders A , A 4, A s, A16,
for n =0, 1, 2, 3,.... The arrangement of the curves is ascertained by considering
that for n > 1, the sign of the leading order term of A/x,(A) is always the same" the
sign of-SQ. Moreover, the sign of A/x(A) is also the same, since the product of
coefficients

S2 V2

(2.1.25) [-S(Q + RU)][-SQ]-
3aol’

where V= 3a3oo(alolaolo-alloaool)+ a21oalol-a2olallO, is not less than zero. In con-
trast, /Xo(A), the locus of turning point coalescence, deviates from the bone on the
opposite side since the product

[ 1 I TU2][_SQ]=21 [1_116 V4(2.1.26) - SU+- - a3o-
is not greater than zero if azoo > 0 as originally posited. Thus the qualitative arrangement
of the ligaments and the bone is universal, and is as specified in Theorem 1.
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2.2. The X-point. An intersection of two ligaments of opposite type, that is to say,
of a ligament corresponding to an itinerary from the left turning point of the map to
the right one and a ligament corresponding to an itinerary from the right turning point
of the map to the left one, is a point of existence of a doubly superstable cycle (a
cycle that includes both turning points). We show below that such a point is the source
of a pair of bones, and of two bundles of additional ligaments. For the purposes of
our construction of the skeleton we regard the intersection mentioned above as "causa-
tive" of the doubly superstable point and of the bones and other ligaments which
emanate from it. But for purposes of analysis it is more convenient to define the point
as follows.

DEFINITION. A point (ho,/Zo) of the parameter plane of the map (x, A,/x) is a

X-point if there exist v, wen such that V(ro, ho,/Xo) So, and dW(so, ho,/Zo) to,

where ro, So are (distinct) quadratic turning points of (x, ho,/Xo).
The existence of the two "causative" ligaments, as well as of the other ligaments

and the bones, follows from the definition as we now demonstrate.
THEOREM 2. Let (ho,/Xo) be a X-point of d(x, Ao,/Xo) for which the turning

points are ro and So, and let v=mi.n(v’aN[dPV’(ro, ho, /Zo)=So) and w=
min (w’ N W’(so, ho,/Xo) to). Generically, a sufficiently small parameter-plane circle
centered at (ho,/Xo) is intersected transversally) by ligaments {,-.s} and {,-r}, n 0,
1, 2,..., corresponding to itineraries between the turning points (r and s) of lengths
v + n (v + w) and w + n(v + w), respectively, and by bones and corresponding to
(superstable) cycles containing r and s respectively, in thefollowing (cyclic) order: -,
074s c4 c4 c.p c..o C4p c4) O-let 074s c4 c4 c4p

", 3 2 0 "--’1 2 ,"" ", ", 2 0-, f-, f-, , , wg-’r. In other words, the generic unfolding of a X-point is
qualitatively as depicted in the sketch of Fig. 2(b).

The proof follows a brief description of Fig. 2(b). The pair of unbroken curves
tangent at the X-point to the causative ligaments (itinerary lengths v and w) are the
bones, one associated with each turning point. The two bundles of emanating ligaments,
one tangent to each bone at the X-point, are represented by the first four members
of each. In both bundles, ligaments corresponding to longer itineraries are closer
to the respective bone: the ligaments are marked with the value of the index n of
Theorem 1. The asterisk corresponds to a situation like that depicted in Fig. 3(b).

Proof of Theorem 2. Let there be a doubly superstable cycle of , period v + w,
at h =/x 0 with

(2.2.1) V(ro, O, O)= So, W(so, O, O)= ro

(with no smaller v or w satisfying these equations), where

0(I) 0(I) 02(I)
(2.2.2) x(ro, 0,0)=--x (So,0,0)=0, (ro0x2 0,0) 50,

02(1)

ox---7 (So, 0, O) # O.

We write the v- and w-fold compositions of as

(2.2.3)
f(x, A, tx Xaokx’Mlz k d) (ro + x, A, tx ),

g(x, A, tx) ,bokX’Mtx k =- W(so+ x, A,

with aooo=booo=aloo=bloo=O from (2.2.1) and (2.2.2). Since by stipulation (and
generically) a2oo # 0 and b2oo # 0, there exist unique analytic functions r(,L/z) and
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s(A,/z) for the turning points, defined, respectively, by

(2.2.4) Of (r(A, tx), A, ix)=O,
Og

ox (s(, ), , ) =o.

We write them as

(2.2.5) r(A,/z XcM/z, s(A,/x XdM/x
(with Coo doo=0). We define the functions /x(Z), /x(Z), representing the bones
(associated with s and r, respectively) as follows"

(2.2.6)
fg(s(A, (A )), A, ,(A ))- s(A, (A )) =0,

gf(r(A, (A )), A, r(A ))- r(A, (A))= 0,

and expand them as

(2.2.7) ,,(A EeA, (A XXm.
Unique analytic functions (A) and r(A) are guaranteed since do =-bo/2boo
aool generically, and col -alOl/2aoo boo generically. The fact that the two equations
in (2.2.6) are related by interchanging the coecients {aqk}{bk}, i.e., by switching
the identification of the turning points, means that the {era} and {} are related by
the same interchange (once they have been evaluated in terms ofthose problem-defining
coecients). In what follows an overbar will denote the interchange operation.

We now define for the n 0, 1, 2,. .,
Irs(A,) (fg)7(r, A, )-s,

(2.2.8)
Ir(A,) (gf)g(s, A, )-- r.

Since 0I(0, 0)/0 aoo- dol (for all n) is generically nonzero, as is 0I(0, 0)/0
bool- col, ligaments represented by analytic functions (h), (h), n 0, 1, 2, ,
that are the unique solutions of

(2.2.9) Irs(A,n s(A )) 0, Ir(A, sr(A )) O,

respectively, are guaranteed. We write the deviations of the ligaments from the
respective bones as

(2.2.10) s( s()__ ss( ), r( sr()__ rr( ).

It is the leading terms of these deviations in which we are interested. The first step is
to derive a relation between A*(h) and the ligament-defining function I(h, ),
evaluated on the bone (h), as follows using (2.2.8) and (2.2.9)"

i(x
(2.2.11)

where

(2.2.12) P= -(aoo do).

Substituting (2.2.5) into (2.2.4) yields do =-bo/2b2oo. Thus

1
(2.2.13) A(h) I(h, (h)) +h.o.t.,
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where, as before, by h.o.t, we mean terms of higher order than that of the leading term
of the quantity to the left. Next we obtain a recursion relation for the {I,+s(A,/s)}
using (2.2.8)"

n+In+,,, p,) (fg) If(r, A,/)-s
(2.2.14) fg(fg)"f(r, A, I)- s

fg(Ir+ + s, A, l)-

Expanding, we obtain

,+l(A,l)--fg(s(A,ls)+I, (A,/*), A,/s) s(A,/s)
(2.2.15)

QA(Ir-,,(A,t.Zss))2+O(A 2)(I, (/, ].ss))2- O((I7*(A, ]ss))4)

(recall that s is a turning point of fg that is quadratic except at 0= a =/***(0) where
it is quartic) where, by substituting into (2.2.3), it is found that

(2.2.16) Q b2oo[ el(2a2oobool + alol)+ 2azoobmo + allo].

From the definition of/**s (2.2.6a),

(2.2.17) el -(aolo- dlo)/(aool- dol),

where, from the definition of s (2.2.5), do -blo/2b2oo. Combining the two results
(2.2.13) and (2.2.15), we obtain a recursion relation for the deviations {A-’*(a)}

,’. 1
.+,^) =-ff I,-{(a,/ss) + h.o.t.

___Q A[i,-’s(a,/.s)]: + h.o.t.,
P

(2.2.18)-
---Q A[PA/,,+*(a)]2 + h.o.t.,
P

PQA[A7(A)] + h.o.t.

The first element of this sequence, A/z-(h), may be evaluated directly from (2.2.3),
(2.2.9), and (2.2.13) as

R2

(2.2.19) -*(a) a2"" O(a 3),
S

where

(2.2.20)

and

R +4b2ooboola2ooaolo + 2b2ooalm aolo 4a2ooaool b2oobolo 2a2ooblolbolo
+ 2a2oobllobool + dlolbllo 2bEooalloaool blolallO,

(2.2.21) S 2 b_ooa2Oo a2ool b2oo( 12blol + 8aool b2oo) + b1201 (6aool b2oo + blol )1

Noting that in fact PQ R/2, we have finally that

(2.2.22) Ax,+s(1) =- I(-’ + h.o.t.
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So we find that the leading orders of the deviations {A/,+s(A)} are A 2, A 5, /11,
A23, for n =0, 1, 2, 3,... all odd powers for n > 0. Moreover, the sign of the
leading order coefficients for n > 0 are all the same: the sign of R. This means that if
we consider the quadrants into which the neighborhood of the X-point is divided by
the bones /s,(A), /-rr(A) (note that el generically), the r+ s ligaments for n > 0
run from one quadrant to the opposing one and, as n increases, accumulate on/(A),
just as depicted in Fig. 2(b). The n 0, or causative, ligament is quadratically tangent
to the bone (thus occupying a pair of adjacent quadrants).

By symmetry, the results derived for the r--> s ligaments and the s-bone apply
equally to the s --> r ligaments and the r-bone; the analogous quantitative relations are
obtained by interchanging the coefficients {aijk}’->{bijk}.

To complete the analysis we first observe that for n>0, the sign of
A/x,-’(A)A/x,-r(A) A/x,-’s(A)A/x,-’s(A) is the sign of RR. But R is, by inspection,
antisymmetric under the interchange operation. Therefore

(2.2.23) RR <- O.

This result implies that the bundles of ligaments given by/,-(A) and/,-r(A), n > 0,
occupy the same pair of quadrants, leaving two quadrants unoccupied by ligaments
with n > 0.

To determine the relative placement ofthe n 0 (causative) ligaments, we consider
the product of coefficients:

(2.2.24)

where

(2.2.25)

But from (2.2.17),

(2.2.26)

where

(2.2.27)

and from (2.2.21),

(2.2.28)

whence

/0 (/)a3"+s(/ T/. lO

__
O(/ 11 ),

R(RE 2 R2 2
T-- (e1--1) --\T/ S /

(el 1)
R 1 R4

2 Sg S2

R
(e’ 11)

U

U --[4a2ooaoolb2oobool + 2alolaoolb2oo+ alolblo1-1-2blolboola2oo],

S=4U3,

1 [R4/#,1-(2.2.29) T= - SU2.]

Examination of Fig. 2(b) shows that any arrangement of the curves which is in accord
with the result RR <- O, but which is qualitatively different from that shown (other than
in orientation with respect to the A,/ axes, and the sign of T is invariant under such
orientation changes) will contradict T-<0. Thus the qualitative arrangement of the
ligaments and bones is universal, and is as specified in Theorem 2. [3

2.3. The -point. The intersection of a ligament with a bone that is associated
with the terminal turning point of the ligament’s itinerary, a situation such as the one
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sketched in Fig. 1(c), constitutes the third kind of singular point of the parameter
plane that we consider. We show below that such a point is the source of a bundle of
additional ligaments. As in the case of the X-point, for purposes of construction of
the skeleton we consider the intersection of the ligament and bone to be "causative"
of the bundle of additional ligaments, but for analytical convenience we define the
point as follows.

DEFINITION. A point (ho,/Zo) of the parameter plane of the map (x, A,/) is a
O-point if there exist v, pM such that (ro, ho,/Zo) So, V(So, ho,/Zo) So, where
ro, So are (distinct) quadratic turning points of (x, ho,/Zo), and there does not exist
w(<p) NI such that (So, ho,/Zo) ro.

The existence of the causative ligament and bone, as well as of the bundle of
additional ligaments, follows from this definition as we demonstrate below. The
additional ligaments correspond to itineraries that at the 0-point are degenerate and
consist of the direct inter-turning-point itinerary plus a some number of circuits around
the superstable cycle. Figure 3(c) sketches the situation near a 0-point on one such
ligament.

THEOREM 3. Let (Ao,/Xo) be a q,-point of (x,h,/,) for which the turning
points are ro and So, and let v=min(v’tNl’(ro, Ao, lXo)=So) and p=
min (p’ lN lP’(so, Ao,/*o) So). Generically, a sufficiently small parameter-plane circle
centered at (Ao,/*o) is intersected (transversally) by ligaments {,-}, n 0, 1, 2,. ,
corresponding to itineraries of lengths v /np from turning point r to turning point s, and
by a bone corresponding to a superstable cycle containing s, in the following (cyclic)-. - <o- <or-. q- <0- . In otherorder: -, , 2 1 o 1 2 3 ,’"

words, the generic unfolding of a 4,-point is qualitatively as depicted in the sketch of
Fig. 2(c).

In Fig. 2(c) the unbroken curve represents the bone, and in the bundle of ligaments
the ones corresponding to longer itineraries are closer to the bone. The asterisk
corresponds to a situation like that depicted in Fig. 3(c).

Proof of Theorem 3. At A =/x 0 let there exist an itinerary of length v between
turning points of the map @(x, A,/x) and a superstable cycle of period p that includes
the terminal turning point of that itinerary"

(2.3.1) (ro, 0, 0)-- So, @P(so, 0, 0)- So

(with v, p the smallest numbers satisfying these equations) where

O(I) 0(I) 02(I) 02(I)
(2.3.2) --x (ro, 0,0)=--x (So,0,0)=0, 8x-(ro, O,O)#O, (SOox2 ,0,0)#0.

In a fashion similar to that of 2.2, we write the v- and p-fold composites of @ as

(2.3.3)
f(x, A,/z) ,a,kXiXjtk (ro+ X, A,

g(x, A, tz ,b,jkX’atzk aPP (so + x, A, tz ),

with aooo booo 31oo bloo =0 from (2.3.2), and the analytic functions
representing the two turning points, defined, respectively, by

(2.3.4) Of (r(A,/z), A,/z) =0,
Og

ox
o

(and guaranteed, respectively, by a2oo # 0, b2oo # 0) as

(2.3.5) r(X,/z) XCkAtz k, s(A,/z) XdkAlk
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(Coo doo 0). The existence of a bone associated with s, represented by the function
/xss (A) that satisfies

(2.3.6) g(s(A,/zss (A)), A,/z (A)) s(A,/x (A)) O,

is guaranteed by the generic inequality of boo and do. We expand/z(A) as

(2.3.7) /x(A) EeM.
We then define for n O, 1, 2,...

(2.3.8) ITs(A, tx)= g"f(r, A, tx)-s.
Since 0I,-(0, O)/Oix aooa-doa (for all n) is generically nonzero, we are guaranteed,
for each n, a ligament represented by the unique function tz,-(A) that satisfies

(2.3.9) I,-" s(A,/x ,- (A)) 0.

We write the deviations of the ligaments from the bone as

(2.3.10) A/x ,-’s(A )--=/x ,- (A)-/x(A).

As before, we compute the leading terms of these deviations. Setting n 0 in (2.3.10),
substituting the series expansions for the various quantities, and collecting coefficients
yields

R
(2.3.11) A/x-’(A) =- A + O(A2),

where

(2.3.12)

and

(2.3.13)

R 2b2oo[2b2oo(aoolbolo bool aoao) + bl lo(aool bolo) blol (aolo bolo)],

S (262ooaoo1 + blol)(2b2oobool + blol).

A recursion relation is obtained as follows:

rs(A0-=I, ,..,/x,-(A))=I, (A,/xs(A)+A/x, (A))
(2.3.14)

Irs(A, ss(A ))- P.a (h)+ O(h )aV*(h) + O((a (h))2),
where

-(aoo do1), tl O,
(2.3.15) P" -(boo do1), n > 0,

and do1---baoa/2b2oo. Thus

(2.3.16)

We have also that

(2.3.17)

Thus

(2.3.18)

1
A/,-s(A) = IT(A,/()) +h.o.t.

g,+lf(

=gg"f(r,,X,)-s

g(IO’ + s, A, t.t s.

I,-(A,/x) g(s(A,/.ts) + IVY(A,/-ts), A,/.t) s(A,
Q[I-’s(A,/z)]2+ O(A 2)[I,-’(A,/z)]2+ O([IT(A,/z..)]4),
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where

(2.3.19) Q b.oo.
(Recall that s is a turning point of g that is quadratic even at A =/x 0.) We thus obtain

(2.3.20)

And finally,

A/J, n+l k,t

en+l
rs(iI+k,, x) + h.o.t.

Q
Pn+l

h [I,-s (h,/Xss)]2 + h.o.t.

--Q A [PnA/x r-s(h)]2 q-h-O.t.nP

Ill poEh A/- (h) 2 + h-o-t-

( P1 QA[A/x, (h)]2 + h.o.t., n>0.

,+o(,) ,,, o,
(2.3.21) Atx"s(A)=I[(PIQ):’"-II[-ll]2"-’[P---]2*2n+O(A2"/I)p1Q /I>0.

The n 0 result indicates the generic transversal intersection of the ligament and bone
which we think of as causing the -point. The leading orders of the
representing the ligaments which emanate from the -point are A2, A4, A s, A16,... for
n- 1, 2, 3, 4, all even powers. The sign of the leading order coefficients for n > 0
are all the same: the signs of P1Q. (Note that for n 1, it is the sign of Q/PI, which
is of course the same.) Thus the qualitative arrangement of the ligaments and bones
is universal, and is as specified in Theorem 3.

3. Extending the bones and ligaments away from the neighborhood of their point of
origin. Having determined the manner in which bones and ligaments originate, we
now consider the rules which govern their behavior away from their points of origin,
and examine the consequences.

In the present paper we restrict our attention to "full" two-parameter families of
maps.

DEFINITION. A two-parameter family of two-extremum maps is full if there
is complete transversal self-intersection of the ligament bundle emanating from an
a-point.

The cubic family O(x, A,/x) x Ax +/x, for example, with a-point at A =/x 0,
is full. The ligaments emanating from an a-point of a full family are sketched in Fig.
4(a). The X-points caused by the intersections of these ligaments are marked by large
dots. We can proceed with the derivation of the qualitative form of the rest of the
skeleton by adding, according to the local rules derived in 2, the bones and secondary
ligaments that originate from each X-point. The addition of the ligaments generates
additional X-points, and p-points are generated by the addition of the bones. Then at
each of these points, the emanating bones and/or ligaments are again added. This
procedure has a topologically unique result (independent of the order in which we
choose to deal with the X- and q-points) if, following [2], we insist that the family is
"nice."
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(b)

.:..........:
...."

(c)

FIG. 4. (a) A "full" two-parameterfamily ofmaps: the ligament bundle (broken curves) emanatingfrom
the a-point intersects itself completely (only first four ligaments shown) and transversally. This diagram is the
starting point for the construction of the skeleton pursued in Fig. 5. The unbroken curve is the period- bone,
as in Fig. 2(a). The thin v-shaped curve is a locus of tangent bifurcation which is commonly present (see [1],
for example). (b) Inset: environment of every X-point in Fig. 4(a). Main figure: necessary paths of ligaments
and bones emanatingfrom a X-point situated as in the inset. The shaded bands represent the ligament bundles.
(c) Inset: environment of every S-point in Fig. 4(b). Main figure: necessary paths of ligaments and bones
emanating from a S-point situated as in the inset. The shaded band represents the ligament bundle.

DEFINITION. A two-parameter family is nice if each bone and ligament has only
one point of origin in the sense of 2 (cf. [2]).

This property, which is imposed to guarantee that things are as simple as possible,
implies the following:

(1) Two ligaments of the same type may not touch except at the point of origin
of at least one of them, for it can easily be shown that a point of coincidence of two
ligaments of the same type is necessarily an a-, X-, or S-point; and

(2) Away from its point of origin, a bone may not touch a ligament whose itinerary
begins at the turning point with which the bone is associated, for such a point of
coincidence would necessarily be another X-point of origin of the bone.
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TABLE
Rules of contact and intersection of curves denotes one turning point, s the other).

s ligament r- s ligament r-bone s-bone

r-bone 0-point forbidden forbidden unrestricted
s ligament forbidden X-point

By niceness, unless point of origin of at least one of the ligaments.
Other than at X-point of origin of bone.
May be X-point of origin of the bones, otherwise no interaction.

Additionally, it is a proximate consequence of the implicit function theorem that
(without assumption) the coincidence of two bones associated with the same turning
point is structurally unstable in two-parameter families. So generically no two bones
associated with the same turning point intersect or touch. On the other hand, two
bones can cross with no restriction and no interaction if they are associated with
different turning points.

The rules of contact and interaction of bones and ligaments we have established
are summarized in Table 1, and are sufficient to guide the construction of the skeleton
unambiguously, as is now explained. We start with Fig. 4(a). Consider that the
environment of each X-point in Fig. 4(a) is as depicted in the circular inset of Fig.
4(b). That is, each causative ligament is intersected "downstream" by a ligament which
has the same point oforigin as the other causative ligament. We make three observations.
First, of the two ways that the local picture of Fig. 2(b) can be oriented at the marked
X-point, only one does not lead to a conflict with the "crossability" rules described
above when the emanating curves are extended; a ligament or bone cannot emanate
into a sealed box of uncrossable walls. The unique orientation that is possible is as
sketched in the main part of Fig. 4(b), where the shaded bands represent the bundles
of emanating ligaments. Second, the way the emanating curves are extended in Fig.
4(b) away from the locality of the X-point is the only way of reconciling the local
picture with the crossability rules. Third, the environment of every additional X-point
caused by the emanating ligaments is exactly analogous to that of the marked X-point
in the inset; the same arguments thus apply to the curves emanating from these points.

Similarly, consider that the environment of each @-point generated by the introduc-
tion of the bones in Fig. 4(b) is as depicted in the circular inset of Fig. 4(c). That is,
it has a neighboring @-point, with common bone, whose causative ligament has the
same point of origin as its own. The 0-point’s ligament bundle cannot emanate
"downwards" into the sealed trilateral box, but must emanate "upwards" as sketched
in the main part of Fig. 4(c). (The shaded band represents the bundle of emanating
ligaments.) All the X-points and additional 0-points caused by the ligaments emanating
from the @-point again have environments analogous to those depicted in the insets
of Figs. 4(b) and 4(c), respectively, and so the above arguments apply recursively to
all the X- and 0-points generated. Thus if we start with Fig. 4(a), and follow the rules
described, a topologically unique network of bones and ligaments will be generated.

In Fig. 5 we show this network constructed as far as to include all bones up to

period 6. (A true sketch was drawn according to the rules: the figure as presented is
a fair copy of that sketch with the spacing of the curves adjusted for better clarity.) A
subset of this picture (bones up to period 5, no ligaments) was generated by Mackay
and Tresser [2] following an entirely different procedure based on ordering of kneading
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6

FIG. 5. The skeleton of bones and ligaments constructed, according to the rules developed, to the extent

of including every bone ofperiod 6 and less. The figure constitutes a genealogy of the cycles. The length of the
itinerary associated with each ligament, and the period ofthe cycle associated with each X-point and its emanating
bones, are marked. The reader is invited to check the arithmetic of these numbers. The same symbols as before
are usedfor the -, X-, and b-points. (Only four d/-points participate at this level; this number increases greatly

if period-7 bones are to be included.) In order to avoid a dense mass of bones at the upper right, bones are

produced only as far as is necessary to visually establish their positions relative to other bones.

sequences. Bones of the inadmissible cycles of [2] do not arise in our construction
simply because the loci (ligaments) of the would-be constituent kneading sequences
do not get an opportunity to intersect, due to the relative positions of their (a-, X-, or
-) points of origin.

Of the numerous interesting structural features of the skeleton of bones and
ligaments, we mention two. One is the substructure responsible for the U-sequence
[5] of doubly superstable (X-) points which occurs along each causative ligament of
every doubly superstable point. The lexical self-similarity of the U-sequence is reflected
in structural self-similarity of the parameter-plane skeleton. This can be seen, for
example, in Fig. 5 on either of the ligaments of itinerary length 1 that emanate from
the a-point. Consider the U-sequence based on the period-2 X-point and the one based
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on the neighboring period-4 X-point. The ligaments (itinerary lengths 3, 5, (7, 9,...))
emanating from the period-2 X-point can be seen to play the role for the latter analogous
to that played for the former by the ligaments (itinerary lengths 1, 2, 3, 4, .) emanating
from the a-point. A more extensive development of the U-sequence substructure
appears in Fig. 5 of [9], where the results of the present paper, Theorems 2 and 3, are
used. A second self-similar substructure of the bone-and-ligament skeleton is the
two-parameter Farey tree, as developed in [9] using Theorem 2 of the present paper.

The great ease of constructing the parameter-plane skeleton using our method is
a facet of the method’s value. But more significant is that the genealogy of the cycles
is realized and manifest in our skeleton of bones and ligaments, and that the emergence
of the global structure upon the application of local rules offers a new perspective on
the dynamics of two-extremum maps.

Acknowledgment. The authors thank C. Frenzen for useful discussions.
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CONSTRUCTING SYMMETRIC NONNEGATIVE MATRICES WITH
PRESCRIBED EIGENVALUES BY DIFFERENTIAL EQUATIONS*
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Abstract. The inverse eigenvalue problem is solved for symmetric nonnegative matrices by
means of a differential equation. If the given spectrum is feasible, then a symmetric nonnegative
matrix can be constructed simply by following the solution curve of the differential system. The choice
of the vector field is based on the idea of minimizing the distance between the cone of symmetric
nonnegative matrices and the isospectral surface determined by the given spectrum. The projected
gradient of the objective function is explicitly described. Using center manifold theory, it is also
shown that the w-limit set of any solution curve is a single point. Some numerical examples are
presented.

Key words, nonnegative matrix, eigenvalue, projected gradient, stable manifold
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1. Introduction. A matrix A E Rnn is said to be nonnegative if no entry of
A is negative. Nonnegative matrices arise frequently in various applied areas [3]. The
Perron-Frobenius theorem concerning the spectrum of nonnegative matrices may be
regarded as the central result in the theory of nonnegative matrices. It is, therefore,
of great interest to study the following inverse eigenvalue problem.

PROBLEM 1. Given a set a := {A,..., An} C C, find necessary and sufficient
conditions .for a to be the spectrum of some nonnegative matrix.

In practice, the prescribed eigenvalues A1,..., An often are real numbers. Thus it
is also interesting to ask the following.

PROBLEM 2. Given a set a {A1,...,An} C R, find necessary and sufficient
conditions .for a to be the spectrum of some symmetric nonnegative matrix.

For decades researchers have been trying to answer these problems. A few nec-
essary and a few sufficient conditions can be found, for example, in [2], [10]-[14],
[16], [18], or more recently in [4]. To our knowledge, however, neither Problem 1 nor
Problem 2 has been completely solved.

In this paper we want to address the problem of constructing a nonnegative matrix
with prescribed spectrum. The problem is stated as follows.

PROBLEM 3. Given a set r of n real values that is known a priori to be the
spectrum of some nonnegative matrix, numerically construct a symmetric nonnegative
matrix whose spectrum is exactly a.

We have not found much discussion of Problem 3 in the literature. The most
constructive result we have seen is the sufficient condition studied by Soules [18]. But
Soules’ condition is still limited because his construction depends on the specification
of the Perron eigenvector--in particular, the components of the Perron eigenvector
need to satisfy certain inequalities in order for his construction to work.

For our consideration, we shall need the following notation. Let O(n) denote
the set of all orthogonal matrices in Rnn. Let A denote the diagonal matrix with
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diagonal entries ,..., An; in symbols,

(i) A :-- diag{A, , An }.

The set

A(A) := {QTAQIQ e O(n)}

will be called the isospectral surface corresponding to A. Although the assumption is
not required in our discussion, it can be shown that AA (A) is indeed a smooth manifold
with dimension n(n- 1)/2 if all )i are distinct. The set of all symmetric nonnegative
matrices in Rnxn is denoted by rs(R_). We note that Problem 2 is equivalent to the
following.

PROBLEM 2. Find necessary and sufficient conditions for the intersection of the
isospectral surface JPI(A) and the cone rs(R) to be nonempty.

Thus we are motivated to explore the idea of developing a way to systematically
reduce the distance between rs(R_) and j(A). If jl(A) does intersect rs(R.),
then, of course, the distance is zero. Otherwise, our approach still finds a matrix from
A/[(A) and a matrix from rs(R_) such that their distance is a local minimum. In the
latter case, the matrix from rs(R) is expected to be on a face of the cone rs(R_),
i.e., some of the entries of the nonnegative matrix are zero. We shall see that this
property indeed shows up naturally in the development of our theory. Another fact,
obvious from the geometry, is also worth mentioning: if (A) intersects rs(R) at an
interior point, then Ad(A) intersects rs(R) in a relative neighborhood of that point.
In this case there are infinitely many symmetric nonnegative matrices corresponding
to the given spectrum.

We can precisely formulate our idea as a constrained optimization problem. We
first note that the set r(R) of all nonnegative matrices in Rnxn can be formed as

(3) (R+) {B B]B e

where X Y denotes the Hadamard product of matrices X and Y. Let ,(n) denote
the set of all symmetric matrices in Rnn. Let

(4) (A,B) := trace(ABT) Z aijbij
i,j

denote the Frobenius inner product of two matrices A, B E Rnxn. We shall consider
the following minimization problem.

PROBLEM 4. Minimize

(5) F(Q,R) "= 1/211QTAQ- R, RII,
subject to

(Q, R) e x

where ]1" I] represents the Frobenius matrix norm. We shall show that the projection
of the gradient vector of the objective function F onto the manifold O(n) 8(n) can
be calculated explicitly. Consequently, we can introduce a steepest descent vector field
on O(n) 8(n). This vector field can easily be transformed into a "flow" on the
isospectral surface j4(A) and a "flow" in the cone rs(R). Both flows are moving
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in the steepest descent direction to minimize their distance until an equilibrium is
reached. Our approach to Problem 4, therefore, is a continuous realization process.

In our earlier works, we have applied similar ideas to tackle the inverse Toeplitz
eigenvalue problems [9] and other least squares matrix approximation problems sub-
ject to spectral constraint [8]. Our approach there proves to be quite successful. In
this paper, we shall use some of our previously developed ideas. In 2 we develop
the differential system; this is our main result. In 3 we use center manifold the-
ory to study the stability properties of the resulting differential system. We argue
that generically the w-limit set of a solution flow contains only a single point. This
proves the global convergence of our method. In 4, we study in detail the stability of
equilibria for the case n 2. Although this represents the simplest case, the stability
analysis should shed some light on the behavior of our flow for higher-dimension cases.
We present some numerical examples in the last section.

2. Projected gradient. In the product space Rnxn x Rnxn, we shall use the
induced Frobenius inner product:

((A1,A2), (BI,B2)) := (A,B) + (A,B).

With this topology, the feasible set (9(n) x S(n) of Problem 4 is clearly a smooth
manifold. It is not difficult to show [8] that the space tangent to O(n) x S(n) at a
point (Q,R) e O(n) x S(n) is given by

T(Q,.)O(n) x ,S(n) TQO(n) x TR,S(n) Q,S(n) +/- x $(n),

where S(n) +/- denotes the orthogonal complement of $(n) and is composed of all skew-
symmetric matrices in Rnn.

We first extend the definition of the function F in (5) in an obvious way to the
entire space Rnxn Rnn. A straightforward calculation shows that the Frchet
derivative of F at a general point (A, B) E Rnn Rnn acting on (H, K) Rnn
Rn is

(8)
F’(A,B)(H,K) (ATAA-B,B, HTAA+ATAH-K,B-B,K)

(AA[(ATAA- B B)T + (ATAA- B B)], H)
+(-2(ATAA- B B). B, K).

The adjoint property (A, BC) (ACT, B) (BTA, C} has been used to rearrange
terms in (8). It follows that, with respect to the inner product (6), the gradient of F
at (A, B) is a pair of matrices; in fact, we have

(9) VF(A,B) (AA[(ATAA- B B)T + (ATAA- B B)],
2(ATAA- B. B) B).

We are interested only in the case when (A, B) (Q, R) O(n) $(n). In this case,
(9) is simplified to

(10) VF(Q, R) (2AQ(QTAQ R R),-2(QTAQ n R) n).

We now calculate the projection of VF(Q, R) on the manifold O(n) ,S(n). Be-
cause we are using a product topology, the projection of VE(Q, R) on O(n)
is the direct product of the projections of the two components of VF(Q, R) on O(n)
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and 8(n), respectively. Each of these projections can be calculated easily. In [8] we
presented a simple way to do the projection on O(n)" Since

(11) R QS( )+/-

any matrix A E Rnxn has a unique orthogonal splitting

(12) A Q{ 1/2(QTA ATQ)} + Q{ 1/2(QTA + ATQ)}

as the sum of elements from TQO(n) and AfQO(n). In particular, the projection of
2AQ(QTAQ- R, R)onto TQO(n) is

(13) QTQ { [2AQ(QTAQ R R)]- [2AQ(QTAQ R R)]TQ}
Q {-QTAQ(R R) + (R R)QTAQ}.

On the other hand, ,(n) is a vector space already, so the projection of-2(QTAQ-
R R) R onto S(n) is just itself. Thus we have found that the projection g(Q, R) of
VF(Q, R) onto the manifold O(n) x 8(n) is given by the pair of matrices,

(14) g(Q,R) (Q {-QTAQ(R , R) + (R R)QTAQ} ,-2(QTAQ R R) R)

The differential equation

(15) d(Q,R)
dt

-g(Q,R),

therefore, defines a "steepest" descent vector field on O(n) x 8(n) for the objective
function F(Q, R).

We now transport the flow (15) to the surface JI(A) and the cone rs(R). For
Q(t) e O(n) and R(t) e S(n), let

(16)

(17)

X(t) := Q(t)TAQ(t),
Y(t) := R(t) . R(t).

Upon differentiating X(t) and Y(t) with respect to the variable t and using (15), we
find that X(t) and Y(t) are governed by the differential system

(18)
dX
dt

dY
(19) d’-

Ix, Ix, Y]],

4Y (X Y).

In (18) we have used the Lie bracket notation [A,B] := AB- BA. Together with
an initial value (X(0), Y(0)) e A/I(A) x rs(R), we have reformulated Problem 4 as
an initial value problem for (X, Y). The initial value problem is readily solved by
available software.

The vector field on the right-hand sides of (18) and (19) is well defined for every
(X, Y) Rn" x Rnn. However, it is important to note that we intend to start
the flow from an initial value (X(0),Y(0)) in A/I(A) x r(R_). Then X(t) JI/I(A)
and Y(t) rs(R) throughout the interval of existence. By the way these flows are
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constructed, we know both X(t) and Y(t) are bounded and, hence, exist for t
In fact, if we define

(20) G(t) := F(X(t), Y(t)) 1/21Ix(*) Y(*)ll = > 0,

then it is easy to calculate that

(21)
dG
d- -(IX, Y], [X, Y]/- 4/(X Y), Y * (X Y)) < 0.

According to Lyapunov’s second method [5, Thm. 5.5], the limit points of (X(t),
A4(A) x rs(R) must satisfy the equation dG/dt O. That is, (X’, ) will be a limit
point only if

(ee) [,t, ?] 0

and

(23) l>. (. 17) 0.

It is crucial to note from (18) and (19) that the conditions (22) and (23) are also
sufficient for the condition that (,) be an equilibrium point for the system. (In
fact, if all eigenvalues in a are distinct, then it can be shown that conditions (22) and
(23) are also necessary.) Let

(24) /2 := {(X, Y) e A4(A) rs(R_)I[X Y] 0, Y (X Y) 0}.

We conclude that if we start with any (X(0),Y(0)) e A4(A) r(R), then the
solution flow (X(t), Y(t)) approaches the set as t ---, oo [5, Lemma 5.4]. That is,
for every e > 0, there exists a T > 0 such that for every t > T there exist a point
(), ly) e (possibly depending on t) such that II(X(t), Y(t))- (f, ?)ll < e.

The above convergence result is not entirely satisfactory. For example, the flow
(X(t), Y(t)) might oscillate around a nontrivial limit set. It will be interesting and
important if we can show that the w-limit set of any orbit (X(t), Y(t)) contains only
a singleton. In the next section we shall use center manifold theory to prove that
if the w-limit set of an orbit (X(t)^, Y^(t)) contains a point of the type (,), then
(X(t),Y(t)) indeed converges to (X,X).

For computation, we obviously may choose X(0) A. We note (using (19)) that
if one component of Y(t) is zero, then that component remains zero. For a feasible
set of "generic" values, therefore, we should begin the flow Y(t) with an interior point
(i.e., a positive matrix) of the cone r(R). Other than this restriction, the choice of
Y(0) is arbitrary. Different initial values of Y(0) may lead to different limit points.
We shall see some numerical examples in the last section.

Finally, we remark that a limit point of a flow Y(t) could lie in one of the faces
of r,(R) even if the flow starts from the interior of r(R_). We expect this situation
when AA(A) rq rs(R) }, i.e., when the given spectrum a is not associated with any
element of r(R). But the most interesting case occurs when no component of the
limit point is zero. Then, by (23)^, the symmetric nonnegative matrix lY must be
the same as the isospectral matrix X. In this case, we have numerically constructed
a symmetric nonnegative matrix that has a prescribed spectrum.
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3. Convergence. We have pointed out earlier that the w-limit set of any orbit
(X(t), Y(t)) is nonempty and invariant and that the orbit approaches its w-limit set.
In this section we shall take a closer look at the convergence behavior of the solution
flow (X(t), Y(t)). We first use center manifold theory [6] to study the behavior of
(X(t), Y(t)) near an equilibrium point. We then argue that the w-limit set of any
orbit (X(t), Y(t)) contains only a singleton.

Let (., ?) be an equilibrium point of the system (18) and (19). If . # or if
(, ?) does not belong to A4(A) rs(R), then we have not yet solved the inverse

eigenvalue problem. We shall consider only the opposite case, namely, E
(R).

Our first approach is similar to the work done in [7]. For convenience, we first
briefly review center manifold theory: Consider the system

(25) d_x Ax / :f(x, y)
dt

(26)
dy

By + g(x y)
dt

where x R, y Rm, and A, B are constant matrices such that all eigenvalues of A
have zero real parts while all those of B have negative real parts, the functions f and
g are C2 with f(0, 0) 0, f’(0, 0) 0, g(0, 0) 0, and g’(0, 0) 0. Then there exists
an invariant manifold, called the center manifold, for the system (25) and (26). The
center manifold is characterized by a C2 function h from R’ to Rm with the property

(27) y- h(x), h(O) O, h’(O) O.

Furthermore, the stability of (0, 0) e Rn x Rm for the system (25) and (26) is equiv-
alent to the stability of 0 e Rn for the system

dz
(28) d- Az + f(z, h(z)).

In addition, if 0 Rn is stable for (28), then with (x(0), y(0)) sufficiently small, there
exists a solution z(t) of (28) such that as t

(29)
(30)

x(t) (t) +
y(t) h(z(t)) + O(e-t)

for some constant # > 0.
We now apply these results to (18) and (19). Near an equilibrium point (.,.),

we define

(3)
(32)

u(t) .= x(t)
w(t) := x(t) Y(t).

It is easy to see that (18) and (19) are equivalent to the following equations:

dU
(33) d-

dW
(34)

dt

[2, [w, 2]] + iv, [w, ]] + [, [w, u]] + iv, [w, u]],

[2, [w, ]] 4 w
+[u, [w,)]] + [, [w, u]] + iv, [w, u]] 4w (u w).
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Readers should distinguish between the linear and the nonlinear terms in each of the
above expressions. We note that (33) is not quite in the same form as (25) since
the linear term in (33) is in the variable W. But this discrepancy can easily be
fixed through a simple linear transformation. Additionally, we are more interested in
knowing whether W(t) converges to zero than what X(t) converges to. Thus we shall
not be bothered to perform the transformation explicitly.

Since all underlying matrices,are symmetric, it suffices to consider only the up-
per triangular parts of the matrices. Let t be the n(n -b 1)/2 x n(n q- 1)/2 matrix
representing the upper triangular part of the linear operator [., [W, ]]- 4. W.
Applying center manifold theory, we first study the behavior of a solution flow near
an equilibrium point.

LEMMA 3.1. Suppose that all eigenvalues of t at an equilibrium point
havenegative real part. Then, starting with any matrix (X(0), Y(0)) sujficiently close
to (X,X), the soluton^flow (X(t),Y(t)) of (18) and (19) converges to a constant
matrix of the form (Z, Z). (Note that Z may not be the same as X.)

Proof. If all eigenvalues of gt have negative real part, then obviously (see [6,
Tam. 3, p. 5])

(35) W h(U) =_ 0

is a center manifold for the system (33) and (34). It follows that the corresponding
system (28) on the center manifold has constant solution. From (29) and (30), we
conclude that U(t) converges to a constant matrix while W(t) converges to the zero
matrix as t ----, oc. We note that center manifold theory does not provide any infor-
mation regarding which limit point U(t) (and hence X(t)) is converging to, although
it does guarantee that X(t) and Y(t) are converging to the same point.

The critical supposition that all eigenvalues of gt have negative real part is difficult
to justify in general. Even for the special case n 2 to be discussed in the next section,
the explicit expressions for eigenvalues of gt are very complicated. Nonetheless, we
have observed the following fact concerning this supposition.

LEMMA 3.2. At any equilibrium point (X,X) E A/[(A) x rs(R), no eigenvalue
of the corresponding t can have positive real part.

Proof. We recall the definition W(t) X(t) Y(t) and the fact that the differ-
ential equations (18) and (19) are designed to fulfill the specific purpose of reducing
[IX(t)- Y(t)[[. Thus the Frobenius norm of the upper triangular part of W(t) cannot
grow as a function of t. Since W(t) is related to its derivative by (34), the assertion
follows.

In order that some eigenvalues of t have zero real parts, the components of
must satisfy certain algebraic equations. (Some examples are demonstrated in the next
section.)~ The algebraic constraint, therefore, limits these special matrices, denoted
by (X,X), to a lower dimensional manifold in A/t(A) x rs(R). Forming a set of
measure zero in the relative topology of A/[(A) x rs(R), points like (., .) should be
regarded as nongeneric. Thus, for almost all equilibrium points of the kind (,
all eigenvalues of the corresponding gt have negative real part. Lemma 3.1, therefore,
serves to explain the generic behavior of thedynamics of (18) and (19).

Near an equilibrium point of the kind (X, X), the corresponding center manifold
becomes much more complicatedthan (35). However, it can be proved that any flow,
starting sufficiently close to (X, X), still converges to a single point (2, 2). The proof
is tedious but straightforward. We shall not give the full account of details here. But
examples in the next section should illustrate our point.
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It should be noted that Lemma 3.1 proves only a local convergence result. But
we also know in the earlier discussion that the semiorbit of (X(t), Y(t)) approaches
arbitrarily close to its w-limit set which is a subset of all equilibrium points. These
observations together imply that a solution flow (X(t), Y(t)) converges globally to a
single point [1, Thin. 2.3]. Indeed, we have the following result.

LEMMA 3.3. Let (X(t), Y(t)) be a solution flow of the differential system (18) and
(19). Suppose (,) is an w-limit point of the orbit (X(t), Y(t)) where all eigenvalues
of the corresponding have negative real parts. Then (X(t), Y(t)) ---, (,) as

Proof. Since (,) is an w-limit point of (X(t), Y(t)), there exists T > 0 such
that (X(T), Y(T)) is sufficiently close to (X, X). By Lemma 3.1, the solution itow that
begins at (X(T), Y(T))converges ton single point (2, 2). It follows that (X(t),
converges to (Z, Z). Since (X, X) is an w-limit point, it must be that X =Z.

In the above lemma, the assumption that all eigenvalues of gt have negative real
parts can be weakened. In fact, all we need in the proof of global convergence is the
fact of local convergence to a single point. Thus, we restate the lemma as follows.

LEMMA 3.4. Let (X(t),Y(t)) e A/[(A) rs(R) be a solution of the differ-
ential system (18) and ^(19). /f (),) is an w-limit point of this solution, then
lim__.(X(t), Y(t)) (X,X).

We conclude this section with one final remark on Lemma 3.4. It is obvious
that not every given set a of n real values can be the spectrum of some nonnegative
matrix. If a nonfeasible spectrum is given, we cannot expect the w-limit set of any
solution (Z(t), Y(t)) e AA(A) rs(R) to contain a point of the form (,). But
even if a is feasible, it is possible that an orbit (X(t), Y(t)) contains no limit point
of the form (., .). We have not analyzed this type of equilibrium points yet. In
either case, however, our numerical experiment seems to suggest that the w-limit set
of (X(t), Y(t)) still contains a single point.

4. Stability analysis for n 2. We shall now analyze the differential system
(18) and (19) for the case n 2 in detail. The answers to Problems 2 and 3 are
obviously known for this simple case. But we hope the following study will provide
some interesting insight into the understanding of the higher-dimensional case.

First we explain the geometry of j4(A) and r(R). Due to symmetry, it suffices
to study the behavior of the six variables (xll,x12, x22;yll,y12,Y22) only. We note
that the set 0(2) consists of two kinds of orthogonal matrices

cos sin
sin cos

with e [0, 2r). From (16), it follows that

(36)

cos sin 0
sin cos

xll )cos2o+A2sin20,
x2 ()-2)cos0sin0,
x22 Alsin2o+A2cos2.

These equations provide a parametric representation of the ellipse in R3 formed by
the intersection of the plane H with equation xl /x22 A/2 and the ellipsoid with
equation x2 - 2x2 -x222 2 + ). If , 2, then this ellipse is degenerate. Thus,
the isospectral surface [(A) for n 2 is represented by an ellipse. The distance from
the plane H to the origin is 1/21A + A21. The cone rs(R)is the set of points in the
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FIG. 2. Representation of points in

x12

first octant of R3. The inverse eigenvalue problem will have a solution if and only if
the ellipse intersects the first octant (see Fig. 1). It is clear from the geometry that
this condition is equivalent to A1 + A2 _> 0.

For n 2, the set defined in (24) contains points of the following eight types:

(.)

(3)

(5)
(6)
(7)
(8)

yq arbitrary but > 0;

Yij arbitrary but > 0;

Yij arbitrary but > 0, Yz = Y22;

X2,y arbitrary, but y > 0;

yj arbitrary but > 0;
Xll,y22 arbitrary, but y22 > 0;
x l, Y12 arbitrary, but y12 > 0;
x22, yl arbitrary, but y > 0.

We note that the set is the union [15] of one three-dimensional manifold (points
of type (1)) and several two-dimensional manifolds (points of types (2)-(8)). The set

is represented in Fig. 2. For convenience, we have identified a representative for
each type of point in Fig. 2. For example, the first open octant represents type (1)
points; the first open quadrant in the yz-plane represents type (2) points, and so on.
The extra lines sticking out from the coordinate axes or planes represent the freedom
of variables for the matrix X. These are types (4), (6), (7), and (8) points, respectively.
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For these types of limit points, note that the matrix Y is fixed to be the single point
at the foot of these lines.

We consider the case when

E c ]:=?=,.
The corresponding matrix 2 in (19) is given by

-4c- 2a2 2ca- 2ba 2a2 ]
(37) ca ba 2cb- c2 b2-4a -ca + ba ]2a2 -2ca + 2ba -2a2 -4b

A general formula for eigenvalues of 2 is difficult to compute even with the help of
a symbolic package. However, we already know from Lemma 3.2 that all eigenvalues
of fl have nonpositive real part. As an example, when a 2, b 3, and c 5,
we find the eigenvalues of 2 are approximately -35.53793480, -15.53700242, and
-8.925062779. It can be seen easily from the characteristic polynomial that Q will
have two purely imaginary eigenvalues only if a, b, and c come from a very special
two-dimensional hypersurface in R3.

It turns out that some eigenvalues of Q can be zero when is on the faces or
edges of the cone rs(R). In the following, we consider the local convergence for some
of the following special cases.

Case 1. Type (8) limit point where

X=Y= 0

In this case, Q diag{-4c,-c2, 0}. So Lemma 3.1 cannot be applied. We give below
a somewhat extended argument to demonstrate how the convergence of a flow near
(,) can be reached. The differential system (33) and (34) becomes

(38)

11

U22

Wll

W12

W22

We note there are two negative linear terms in wll and w2. So the convergence is
contingent upon how the flow behaves on the center manifold. By center manifold
theory, the center manifold of (38) is given by

(39) (w, w2) h(u, u2, u22, w22)
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R2{Wll Wi’

FIG. 3. Four-dimensional center manifold.

for some smooth function h. The geometry is illustrated in Fig. 3 where we use the
x-axis to represent the three variables (u11, u12, u22) E R3, the y-axis to represent the
variable w22 E R, and the z-axis to represent the two variables (wl, w12) R2. We
note that the x-axis where W 0 also represents the three-dimensional equilibrium
points of type (1). Although h is difficult to compute explicitly, the following function
can be shown to be an O(I](U W)I] 3) approximation to h [6] near the origin:

(40) wl "=

2
u12w22

2c
-cit12w22 ltlllt12w22 -- lt12t22w22

c2

Upon substitution, we find the ilow (28) on the center manifold is given by

(41)

Ull

U12

U22

W22

The most dominant term in (41) is

(42) w22 4w22(w22 -u22) + higher-order terms.

It is also obvious that

(43) (w22 u22)’ 4w22 (w22 u22 ).

We are interested only in the case where Y(t) rs(R). Therefore, w22 x22-

Y22 u22 -Y22 _< u22 since Y22 _> 0. By checking the signs of the right-hand sides
of (42) and (43), we find that the projection of the vector field (41) at any point
(u, u2, u22, w22) R4 onto the (u22, w22)-plane must be within the shaded region
as shown in Fig. 4. It is obvious from the geometry that u22(t) converges to a fixed
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u

FIG. 4. Projection of flows.

w22

point and w22(t) converges to zero as t converges to infinity. In other words, we have
shown that near a equilibrium point (,) of type (8), the solution flow (X(t), Y(t))
with Y(0) E rs(R) converges to a fixed point of the form (2,2). This should
manifest our point made in the preceding section concerning the convergence when

has zero eigenvalues. In Fig. 4 we have also drawn the projection of vector field of
(41) when Y(0) is not in rs(R). This corresponds to the region below the diagonal
U22 W22. It is interesting to note that W22(t) may diverge to infinity. This is
because the differential system (18) and (19) has the descending property only if

e
Case 2. Type (3) limit points where

and b c. We find diag{-4c,-(b c) 2, -4b}. Thus Lemma 3.1 can be applied.
Case 3. Type (7) limit points where

[0 o]
At such a limit point, the matrix 9t has eigenvalues {0,-4a,-4a2}. An argument
similar to the one given in Case 1 can be made. The center manifold should become
more complicated because the eigenvectors, [1, 0, 1]T, [0, 1, 0]T, and [1, 0,-1]T, of gt

indicate that there are couplings between components. Instead of using center mani-
fold theory, we now take a geometric viewpoint to study this limit point. Limit points
of Type (7) have a unique feature that makes them specil-that is, the ellipse A/(A)
containing (.,) intersects the first octant only at (X,X). Therefore, the ellipse
corresponding to a slightly perturbed spectrum, say a {a- e,-a} with e > 0,
will not intersect the first octant at all. This observation perhaps explains why we
experience some numerical difficulty in constructing the second example in [18] by
our method. We shall report this difficulty in the next section.

Case 4. Type (2) limit points where

[0 o]==ab"
It can be checked that the characteristic polynomial of gt is given by p(A) A3 +
(4a2 + b2 + 4a + 4b)A2 + (4b3 + 16a3 + 8a2b + 16ab)A + 32a3b. Clearly, p(A) must have
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one negative real root. The other two roots can be purely imaginary numbers only if
(4a2 -t- b2 + 4a -t- 4b)(4b3 + 16a3 / 8a2b / 16ab) 32a3b. We therefore conclude that
for almost all values of a and b, all three roots of p(A) have negative real part.

5. Numerical results. In this section we briefly report some of our numerical
experiments with the differential equations (18) and (19).

We use the subroutine ODE in [17] as the integrator. Both local control param-
eters ABSERR and RELERR are set to be 10-12. This criterion is used to control
the accuracy in following the solution path. We examine the output values at time
interval of 1. Normally, we should expect the loss of one or two digits in the global
error. Thus, when the norm of the difference between two consecutive output points
becomes less than 10-9 we assume the path has converged to an equilibrium point.
The execution is then terminated automatically. We always use X(0) A as the
starting value for X(t).

Example 1. We consider the spectrum a (5, 0,-2,-2} which satisfies the
so-called condition (K) in [10]. Let E denote the matrix whose components are all
l’s. We report below various choices of Y(0) and the corresponding approximate
equilibrium points . We also report the approximate length of t for convergence.
These lengths may depend on the initial values and the integrators, but they should
be independent of the computing machine.

(a) Y(0) E, ]Y Y(120)

.3035817600D/0 .5849737957D/0 .2062366873D/ 1 .2062366873D/ 1

.5849737957D+0 .5568227490D+0 .1257189377D/1 .1257189377D-t- 1

.2062366873D/1 .1257189377D+1 .6979774550D-1 .2069797746D/1

.2062366873D/ 1 .1257189377D/ 1 .2069797746D+ 1 .6979774550D- 1

(b) Y(0)- 2E, Y(120)

.2384681793D/0 .5682102400D/0 .2008259297D/ 1 .2008259297D/ 1

.5682102400D/0 .6025576213D/0 .1336108181D/ 1 .1336108181D/ 1

.2008259297D/1 .1336108181D/1 .7948709968D-1 .2079487100D/1

.2008259297D/ 1 .1336108181D/ 1 .2079487100D/ 1 .7948709968D- 1

(c) Y(0) 12E, , Y(120)

.2054687518D/0 .5725349916D/0 .1995497108D/1 .1995497108D/1

.5725349916D/0 .6259762947D/0 .1349043940D/ 1 .1349043940D/ 1

.1995497108D/1 .1349043940D+1 .8427747670D- 1 .2084277477D.+1

.1995497108D/1 .1349043940D/1 .2084277477D/1 .8427747670D- 1

(d) Y(0)- 200E, ]7 Y(120)

.2002571961D/0 .5800168336D/0 .2000122546D/1 .2000122546D/1

.5800168336D/0 .6302391750D/0 .1339883371D/ 1 .1339883371D+ 1 j.2000122546D/1 .1339883371D/1 .8475181443D-1 .2084751814D/1

.2000122546D/ 1 .1339883371D/ 1 .2084751814D/ 1 .8475181442D- 1

(e) Y(0) a randomly generated symmetric positive matrix, ]Y Y(240)

.5806553062D/0 .8075689805D/0 .2354051323D/ 1 .2276884031D/ 1 "|

.8075689805D/0 .5285565377D 1 .1981177836D/0 .4150231898D/0 j.2354051323D/1 .1981177836D+0 .3084574129D/0 .2165951279D/1

.2276884031D/ 1 .4150231898D/0 .2165951279D/ 1 .5803162721D- 1
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It is interesting to note that different choices of Y(0) lead to different equilibrium
points. It is also interesting to note that it takes about the same length of integration
to reach convergence, although this observation is not conclusive.

Example 2. We consider the spectrum a (3- t, 1 / t,-1,-1,-1,-1} for
0 < t < 1. It can be checked easily that the sufficient condition (K) in [10] is
not satisfied. But in [18] it is proved that the set a is indeed the spectrum of the
nonnegative matrix

N:- B A

where

1 0 1]A= 1 0 1
1 1 0

and

1 1 1]B= (l-t) 1 1 1
3 1 1 1

Considering t 1/2, we find the matrix g/E R21x21 at the point (), .) with . N has
one zero eigenvalue. Thus, this example is one of the exceptional cases we mentioned
earlier. Furthermore, the sum of elements of a is equal to zero for every value of t. A
slight perturbation of a, therefore, may make the spectrum unfeasible. We think this
is a situation similar to Case 3 discussed in the previous section. Indeed, the matrix
N has zeros on its diagonal, which indicates that N is at the intersection of n faces

(a) Suppose Y(0) g. It can be calculated that [IX(0)- Y(0)[[ 5. We find
? Y(130) 

.0000D+0 .9928D+0 .9978D+0 .2279D+0 .2279D+0 .2279D+0

.9928D+0 .0000D+0 .9985D+0 .1096D+0 .1096D+0 .1096D+0

.9978D+0 .9985D+0 .0000D+0 .1631D+0 .1631D+0 .1631D+0

.2279D+0 .1096D+0 .1631D+0 .0000D+0 .1000D+1 .1000D+I

.2279D+0 .1096D/0 .1631D/0 .1000D/I .0000D+0 .1000D+I

.2279D+0 .1096D/0 .1631D+0 .1000D+I .1000D/I .0000D+0

where [[X(130)- Y(130)[[ 7.9105 x 10-1. We note this nonnegative matrix is
different from the one constructed in [18] even though Y(0) itself is already a solution
to Problem 3.

(b) Suppose Y(0) E. Then []X(0)- Y(0)[I 6.9642. We are surprised to find
that our flow does not converge to an equilibrium point of the form (.,)), but rather
X(t) converges to .
-.3000D+0 -.2041D-3 .7000D+0 .7000D+0 .7000D+0
-.2041D-3 .1500D/ 1 .5867D-3 .5867D-3 .5867D-3
.7000D+0 .5867D-3 -.3000D/0 .7000D+0 .7000D+0
.7000D+0 .5867D-3 .7000D+0 -.3000D+0 .7000D+0
.7000D+0 .5867D-3 .7000D+0 .7000D/0 -.3000D+0
.7000D+0 .5867D-3 .7000D+0 .7000D+0 .7000D+0

.7000D+0

.5867D-3

.7000D+0

.7000D/0

.7000D/0
-.3000D+0
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while Y(t) converges to

.5909- 307 .3325D- 6 .7000D/0 .7000D+0 .7000D/0 .7000D/0

.3325D-6 .1500D/I .6963D-3 .6963D-3 .6963D-3 .6963D-3
7000D+0 .6963D- 3 .7348-307 .7000D+0 .7000D+0 .7000D/0
7000D/0 .6963D- 3 .7000D+0 .7348- 307 .7000D/0 .7000D+0
.7000D/0 .6963D-3 .7000D+0 .7000D+0 .7348-307 .7000D+0
7000D/0 .6963D- 3 .7000D/0 .7000D/0 .7000D+0 .7348- 307

with [[X(9120)- Y(9120)[[ .6708. It is interesting to note that the eigenvalues of
1 are {2.8, 1.5,-.7,-.7- .7,-.7}. The true equilibrium point (X, Y) is where all
the small components in the second row and the second column except the (2, 2)-
position of the above two matrices are zero. We have observed that all the significant
components of (., z) are reached as early as t 500. The overall slow convergence
is due to the slow rate of change of components in the second row and the second
column. To see this, we rerun the code by choosing

Y(0)

1 0 1 1 1 1
0 1 0 0 0 0
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1

so that the small components become zero. Then the corresponding orbit converges to
the limit point within t 80. This example also illustrates that an orbit (X(t), Y(t))
may not necessarily have a limit point of the form (., .).

(c) Suppose Y(0) 12E. Then I[X(0)- Y(0)l 72.0868. Again, we find that
X(t) converges to

-.3000D+0 -.2487D-3 .7000D+0 .7000D+0 .7000D+0
-.2487D-3 .1500D+ 1 .7158D-3 .7158D-3 .7158D-3
.7000D+0 .7158D-3 -.3000D+0 .7000D+0 .7000D+0
.7000D+0 .7158D-3 .7000D+0 -.3000D+0 .7000D+0
.7000D+0 .7158D-3 .7000D+0 .7000D+0 -.3000D+0
.7000D+0 .7158D-3 .7000D+0 .7000D+0 .7000D+0

.7000D+0

.7158D-3

.7000D+0

.7000D+0

.7000D+0
-.3000D+0

while Y(t) converges to

7206- 307 .7133D- 6 .7000D+0 .7000D/0 .7000D/0 .7000D/0
.7133D-6 .1500D/ 1 .8494D-3 .8494D-3 .8494D-3 .8494D-3
.7000D/0 .8494D- 3 .7205- 307 .7000D+0 .7000D+0 .7000D/0
7000D+0 .8494D- 3 .7000D+0 .7205- 307 .7000D+0 .7000D+0
7000D+0 .8494D- 3 .7000D+0 .7000D/0 .7205-307 .7000D/0
7000D+0 .8494D- 3 .7000D+0 .7000D+0 .7000D+0 .7205- 307

with [IX(7140)- Y(7140)[I . .6708. We believe the true limit point is the same as
the one in (b).

Example 3. We consider the spectrum a {11,-3,-2,-2,-1,-1} which satis-
fies a sufficient condition in [10, Thin. 2.4]. Then,

(a) With Y(0) 2E, then [[X(0)- Y(0)[[ 16.6132 and ]? Y(70)

.5514D+0

.1920D+1

.2194D+1

.1620D+1

.1551D+1

.1920D+1

.1920D+1 .2194D+1 .1620D+1 .1551D+1 .1920D+1

.2243D+0 2550D/1 .2265D+1 .1920D+1 2224D/1

.2550D+1 1158D+0 .3058D+1 .2194D+1 2550D+1

.2265D+1 3058D+1 .3328D+0 .1620D/1 2265D/1

.1920D/1 2194D+1 .1620D+1 .5514D+0 1920D+1

.2224D+1 2550D+1 .2265D+1 .1920D+1 2243D/0
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with I[X(70)- Y(70)[[ 4.3653 10-1.
(b) With Y(0) 12E, then [IX(0)- Y(0)II 72.6360 and Y(70)

.5741D/0

.1946D+1

.2206D+1

.1604D+ 1

.1574D+1

.1946D+1

.1946D/1 .2206D+1 .1604D+1 .1574D+1 .1946D+1

.2292D+0 2550D+1 .2230D+1 .1946D+1 2229D+1

.2550D/1 ll00D+0 .3025D+1 .2206D+1 2550D/1

.2230D+1 3025D+1 .2833D+0 .1604D+1 2230D+1

.1946D+1 2206D+1 .1604D+1 .5741D+0 1946D+1

.2229D+1 .2550D+1 .2230D+1 .1946D+1 2292D+0

with IIX(70)- Y(70)II 6.0561 x 10-1.
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TWO-SCALE DIFFERENCE EQUATIONS
I. EXISTENCE AND GLOBAL REGULARITY OF SOLUTIONS*

INGRID DAUBECHIESf: AND JEFFREY C. LAGARIAS"

N
Abstract. A two-scale difference equation is a functional equation of the form f(x) Y,=o

where a > and /3o</31 <"" </3, are real constants, and c, are complex constants. Solutions of such
equations arise in spline theory, in interpolation schemes for constructing curves, in constructing wavelets
of compact support, in constructing fractals, and in probability theory. This paper studies the existence and
uniqueness of Ll-solutions to such equations. In particular, it characterizes Ll-solutions having compact
support. A time-domain method is introduced for studying the special case of such equations where
{a,/30, ,/3,} are integers, which are called lattice two-scale difference equations. It is shown that if a lattice
two-scale difference equation has a compactly supported solution in cm(a), then m < (/3, -/30)/(a 1)- 1.

Key words, wavelets, subdivision algorithms, fractals

AMS(MOS) subject classifications. 26A15, 26A18, 39A10, 42A05

1. Introduction. A two-scale difference equation is a functional equation ofthe form

N

(1.1) f(x)= cnf(x-,)
n----O

where a > 1 and/30 </31 <" </3n are real constants, and x takes real values, while
the c, are complex constants. The right side of (1.1) is typical for difference equations,
and the name two-scale difference equation reflects the fact that (1.1) relates translates
of scaled versions ofthe same function, involving two different scales. A lattice two-scale
difference equation is the special case where a and all/3, are integers, i.e.,

N

(1.2) f(x)= E c,f(kx-n)
n----0

where k >= 2 is an integer. The apparently more general equation

(1.3) f(x)= E c.f(kx- n)
--N

can be reduced to the form (1.2) by the change of variable y x- N1/(k- 1).
This paper and its sequel (Daubechies and Lagarias (1988), hereafter called part

II) study Ll-solutions of two-scale difference equations, and of lattice two-scale
difference equations in particular. The basic questions concern the existence, unique-
ness, and degree of regularity of solutions for a given equation. We treat in detail
Ll-solutions having compact support. In fact, two-scale difference equations always
have solutions in the sense of distributions and may also possess functions not in

N
as solutions, e.g., if ,=o c, 1, then the constant functions are solutions. However,
only for special sets of {a, ft,, c,} will (1.1) have any nonzero Ll-solutions.

Functions that satisfy lattice two-scale difference equations arise in several
different contexts. G. de Rham is credited with an example of a continuous,

* Received by the editors November 30, 1988; accepted for publication (in revised form) September 5,
1990.

" AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
$ "Bevoegdverklaard Navorser" at the Belgian National Foundation for Scientific Research (on leave);

on leave also from the Department of Theoretical Physics, Vrije Universiteit Brussel, Belgium.
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nowhere-differentiable function which satisfies (1.2) with k 3 and Co 1, cl c-1--5,

c2 c-2 =, and all other c,-= 0. (This was communicated to us by Meyer (1987). We
have not found a direct reference to this function in de Rham’s papers but similar
functions appear in de Rham (1947), (1956), (1957), (1959).) Such functions also arise
as limits of "uniform subdivision schemes" for constructing curves and surfaces. As
observed and generalized in the work of Dahmen and Micchelli (1984), (1988) and
Micchelli and Prautzsch (1987a), (1987b), (1989), normalized B-splines and d-
dimensional box splines each satisfy a lattice two-scale difference equation with k 2.
They point out that this two-scale property is really the basic ingredient in a subdivision
algorithm for numerically evaluating B-spline curves and surfaces, given by Lane and
Riesenfeld (1980). This can be exploited to define and study other subdivision schemes
for the design of curves and surfaces, also characterized by a lattice two-scale equation
(Cavaretta and Micchelli (1989)). Dyn and Levin (1989) similarly link subdivision
algorithms with the study of a lattice two-scale equation. Dubuc (1986) proposed a
dyadic interpolation scheme where the "fundamental function" satisfies an equation
of type (1.3) with k 2. For special values of the parameters, he proved smoothness
results of this fundamental function. Dyn, Gregory, and Levin (1987) independently
and by different techniques proved similar results for the same dyadic interpolation
schemes. In Deslauriers and Dubuc (1987) this interpolation scheme was applied to
the construction of fractal objects and functions with fractal properties. Deslauriers
and Dubuc (1989) extend the dyadic interpolation scheme to other integer values of
k; they use the properties of solutions of (1.3) corresponding to specific values of the
c, to study Lagrange iterative interpolation processes. In another field, Daubechies
(1988) constructed orthonormal bases of compactly supported wavelets, i.e., ortho-
normal bases {h,,(x)} of L2() generated by translating and dilating a single compactly
supported function h via

hmn(X) 2-m/:Zh(2-mx- n).

The construction of such h requires an auxiliary function which is a solution of a
lattice two-scale difference equation, and our interest in these equations arose from
these functions. All of these examples actually involve Ll-solutions having compact
support.

Solutions of general two-scale difference equations (1.1) arise in other areas of
mathematics as well. Kershner and Wintner (1935) considered symmetric Bernoulli
convolutions dA(x, ) whose Fourier transform A(u, fl)

_
eiux dA(x, ) has

(1.4) A(u,/3) H cos (fl"u).
n=O

For certain values of /3 in (0, 1) the measure dA(x,)=h’(x,)dx is absolutely
continuous, and h’(x,/3) then satisfies the two-scale difference equation

h’(x)= h’ x-1 + x+l

Smoothness properties of this and related Bernoulli convolutions were studied by
Jessen and Wintner (1935), Erd/Ss (1939), (1940), Garsia (1962), and Brown and Moran
(1973). It remains a difficult open problem to characterize the set of/3 for which
dA(x, ) is absolutely continuous. More recently, Barnsley and Demko (1985, Ex. 21)
in studying iterated function systems construct a functionf (z) defined on C-A where
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A is the Cantor set, satisfying the two-scale difference equation

3o
f0(z) =- (f0 (3 z 2)+fo (3z)).

Here fo(z)- A dl(x)/(z-x), where d/z is uniform measure on the Cantor set.
We use two methods for studying these equations. They are a Fourier transform

approach that applies to the general equation (1.1), and a time-domain approach
described further below that applies only to lattice two-scale difference equations. Part
I describes Fourier transform results on existence and uniqueness, introduces the
time-domain approach, and uses it to establish bounds on the smoothness of L1-

solutions of compact support. Part II studies the time-domain construction in detail
and gives sufficient conditions for the existence of nonzero continuous solutions of
compact support, and determines their local and global regularity properties.

The Fourier transform provides a method for the study of Ll-solutions f of general
two-scale difference equations (1.1). The convolution character of the right side of
(1.1) leads to an infinite product expansion for the Fourier transform f(u) permitting
detailed study. Section 2 uses this approach to obtain existence and uniqueness results
for Ll-solutions to (1.1). These depend in a crucial way on the quantity

N

(1.5) A=c-1 E c.
m=0

There are no nonzero L-solutions if IAI < 1 or if I1 1 and A 1. The case of most
interest is A 1; it has at most one nonzero La-solution, up to a multiplicative scale
factor. This solution, if it exists, is of compact support with support(f)
[0, (a 1)-iN], and has _f(x) dx O. For IAI > 1 it is possible to have zero, one, or
infinitely many L-solutions, which need not have compact support, depending on the
values {a,/3, c}.

Section 3 studies L-functions of compact support solving (1.1), and shows that
they are all derived from solutions of the case A 1, in the following sense. If a
two-scale difference equation (1.1) has a nonzero Ll-solution f of compact support,
then it is unique (up to normalization), and necessarily,

(1) A o for some nonnegative integer m;
(2) The two-scale difference equation with A= 1 obtained by replacing the

coefficients {c} with {a-"c} has a nonzero L-solution g of compact support, and
for a suitable choice of normalization,

d

dx
g(x)=f(x) a.e;

The remainder of part I and part II use time-domain methods that apply only to
the special case of lattice two-scale difference equations (1.2). This approach exploits
the special feature that lattice two-scale difference equations make sense when restricted
to the discrete domain 7/. Suppose we are given data {f(n); n 7} which satisfy

N

(1.6) f(x) E c,,f(kx- n)
n=0

for all x 7/. The functional equation then determines f(x) for x Z/k, and by iteration
for x t_J ,__ 7//k. In particular, such data {f(n); n Z} can be interpolated by at most
one continuous solution of (1.6). This approach thus applies most naturally to the
problem of finding continuous solutions of (1.6). Here we have the two subproblems
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of finding solutions to (1.6) on 7/, and then determining conditions under which such
solutions interpolate to solutions on R.

The time-domain approach applies particularly well in the study of compactly
supported continuous solutions, since we then know that {f(n); n 7} has f(n) =0 off
the finite set 0 <- n <-N/(k-1), and the set of solutions on Z to (1.6) is a finite-
dimensional vector space. The iterative process of recursively solving (1.6) on
{7//k"; n 1, 2,...} can be encoded using products of a finite set of matrices, as is
explained in part II, and this provides a vehicle for studying convergence and smooth-
ness of solutions. Such an approach was initiated by Micchelli and Prautzsch (1987a),
as we discovered after completing this work.

In the rest of part I we apply the time-domain approach to obtain information
about compactly supported solutions in the case where A 1, which by the results of
3 is essentially the most general case.

Section 4 obtains results on two different iterative methods to find solutions of
the lattice two-scale equation (1.6). A solution is a fixed point f= Vf of the linear
operator

N

(1.7) Vf(x) Y’. c,,f(kx- n),
n=0

and a natural approach is to consider iterative schemes f Vf-i that converge to a
fixed point f starting from suitable fo. Given data {f(n); n 7/} for an Ll-solution of
such an equation with A 1, we can construct a piecewise linear spline fo that has
fo(n) =f(n) for all n 7/. We show that if f is continuous, then the iterates f+l Vf
are piecewise linear splines with successively finer knot sets (Theorem 4.1) and that

ff pointwise, with a rate of convergence depending on the smoothness off Iff is
L times continuously differentiable, then fo can be chosen to be a CL piecewise
polynomial spline of degree 2L+l, with f(ol)(n)=f(1)(n) for all n7/, I=0,... ,L.
Then the iterates f+l Vf are again C/ piecewise polynomial splines of degree 2L+ 1
with successively finer knot sets, and we prove f)l f(l) pointwise, for all 0, , L.
These results show in particular that convergence to a C-solution f(x) occurs when
one exists, if we start with correct initial conditions on 7/. However, they give no
information concerning existence of such solutions.

The second iterative method for finding solutions to (1.6) discussed in 4 is the
"cascade algorithm." The successive approximationsf in this scheme are again defined
by f Vf_, but the starting point is now fo(x) 1 -Ixl for -1/2_-< x _-< 1/2 and fo(x) 0
otherwise. These initial conditions are not usually a solution to (1.6) on 7/. The advantage
of the cascade algorithm is that f can be computed via a "local" method" at every
step j, the value of (x) can be determined using only the values obtained in the
previous step in the region {y; lY-Xl <= C2-j} (C independent of j), a neighborhood
of x becoming exponentially small as j increases. This lends a "zoom-in" quality to
the successive steps of the cascade algorithm (when it converges). It is known that the
cascade algorithm does not always converge pointwise to a nonzero C-solution when
one exists. This scheme has been studied by several authors (cf. Deslauriers and Dubuc
(1989), Dyn, Gregory, and Levin (1989), (1990)), and various sufficient conditions for
its convergence are known.

Section 5 obtains bounds on the global regularity of any nonzero L-solution to
(1.6) when 4= 1. Theorem 5.1 shows that if such a solution is in C’(R), then
rn < N/(k-1)- 1. This result is best possible in the sense that there exist equations
having C"-solutions, for which rn >= N(k-1)- 2, for arbitrarily large rn.

Finally, 6 applies these results to three examples.
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A number of authors have studied more general solutions to two-scale difference
equations and related functional equations. In constructing fractals Barnsley and
Demko (1985) study measures/z which are solutions of

N

tz(S)= cnlz(ceS-fl,), S a Borel set.
n=0

The adjoint operator (in the L2-sense) to (1.1) is

N

VAg(x) E Cng(o-l(X +fin))"
n=O

The stationary measures/ studied by Diaconis and Shashahani (1986) are fixed points
of generalizations of such adjoint operators. It is also interesting to note that the mth
Bernoulli polynomial B,,(x) satisfies the equation VAB(x)= B(x) with

VAg(x) E n
n=O

2. Existence an uniqueness of L-solutions. We are interested in L-solutions f
to the two-scale difference equation

N

(2.1) f(x)= cf(x-).

Since f is in LI(), its Fourier transform

is a bounded continuous function. By viewing (.2.1) as a convolution equation, we see
that f satisfies

N

(2.3) P(u) __1__ , Cn e itnu.
n=0

The existence and uniqueness of Ll-solutions to (2.1) are governed by the value

NA=P(0)=--I c.,
n=0

as shown in the following result.
THEOREM 2.1. Let A be defined as above. Then the following are true.

(a) If IAI <--_ 1 and A 1, then the only L’-solution of (2.1) is the trivial solutionf=- O.
(b) If A 1 then there exists, up to normalization, at most one nontrivial L’-solution

to (2.1). If it exists, then its Fourier transform is given by

(2.4) f(u) A H P(a-ju)
j=l

where A =f(0)= jr(x) dx and the infinite product converges for all u. Conversely, if the
right-hand side of (2.4) is the inverse Fourier transform of an L-function f, then f is a
nontrivial La-solution to (2.1).

(2.2)

where
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(2.5)

(C) IflA > 1, then the Fourier transform ofany Ll-solutionfis necessarily oftheform

[ ] (lnAf(u) I] P(a-ju) exp \l-a In lul gsgn(u) Inj=l

where

p(u)-A-1p(u),

g+/- are continuous periodic functions with period 1, and

In A In ]A] + iO where A ]A] ei and -r o r.

Furthermore, the infinite product converges for all complex u. Converse&, if g+, g_ are
continuous periodic functions ofperiod 1 such that the inverse Fourier transform f of the
right side of (2.5) is in LI(), then fsatisfies (2.1).

Proof (1) We have

N

(2.6)
IP(u) A] a--1

.=o
[c,[ [e- 11

K min (1, lul) exp [B]Im (u)]]
Nwhere B max I,1 and K 2a- E,=o Ic1(1 + I1).

(2) We first treat the case where ]A] < 1. Since f LI(), f(u) is continuous for
u . From (2.6) we have (for real u)

It follows that, for all j ,
J

(2.7) If(u)l Ilflll ([al+ g-’lul).
/=1

For any real u we can make the product on the right side of (2.7) arbitrarily small by
choosing j large enough, since I1 < 1. Hencef 0. This proves (a), except for ]A[ 1,
which we treat below.

(3) For lal 1 define p(u)= a-’e(u). By (2.6) we have

(2.8) Ip(u)- 11 K eSa-llu := g’lul,

for complex ]u] < 1. Now we define

(2.9) fo(U):= H p(a-u),
j=l

and (2.8) shows that the infinite product converges absolutely and uniformly on compact
subsets of C to an entire function. The bound (2.8) shows that for ]u](2K’)-,
Ip(u)[ 1 K’lul (1 + 2K’iu])-’ and

I(-u)l=l(u)l H IP(-’u)l-’
/=1

J

1=1

IAl-llfll, exp [2K’(a

This implies that

If(u)l <= exp [(a 1)-l]]]flll IAI -j when lul (2K’)-’ a -.



1394 I. DAUBECHIES AND J. C. LAGARIAS

For any [u[ _-< (2K’)-1 we can find j so that (2K’)-la -(j+l) [u[-< (2K’)-la -j. It follows
that

If( u)l <-- exp [( a 1 )-1] ]If [A[ -j

(2.10) -<-exp [(a- 1)-’][[fl]l a-J’nlAI/’n

<= clul,/,n=
for all [ul (2K’)-1. Since ](u)] is bounded for real u (f L), (2.10) also extends
(with possibly a different constant) to all u e . Note that for A[ > 1, (2.10) implies that

ff(x) dx o,

which can also be obtained directly from (2.1) by integration. Define F(u) by

F(u) := exp (-lnA[ln[u[)f(u)’lna

Since f is continuous, F is continuous as well, except possibly at u 0, and by (2.10),
F is bounded near u 0. The function F satisfies the recursion

(2.11) F(u) e’p(-lu)F(-lu),

where A [A[ e and -< 0 . This yields

j=l

The first factor has the limit fo(u) as J . When this limit is not zero, the second
factor must also converge as J , and we denote this limit by (u), so that

The function is continuous, except possibly at u 0, where F may be discontinuous,
and at the zeros of fo(u). From (2.8) we find for complex lul 1 that

which implies that fo(u) is bounded away from zero in a neighborhood of u 0. It
follows that is continuous in a neighborhood of zero, except possibly at u 0. On
the other hand, the recursion (2.11) for F gives

Define the two functions

g+/-(t) := b(+a t) exp (iOt), .
Then

(2.12) g+/-(t+l)=g+/-(t).

If the periodic functions g+/- had any singularity (including discontinuities), then b
would have infinitely many singularities in a neighborhood of u =0. Since this is
impossible, it follows that the g+/- are continuous. To prove the converse statement, it
suffices to observe that, under the stated conditions, for [A] 1, the right-hand side of
(2.5) satisfies the functional equation f(u)= P(a-u)f(a-u). This establishes (c).

(4) If [A[ 1, then the above construction simplifies. We have

(2.13) f(u) fo(U)4(u),



TWO-SCALE DIFFERENCE EQUATIONS: GLOBAL PROPERTIES 1395

where 4 satisfies

b(U)-- A6(-lu)-’- ei)(ot-lu).

Since fo(u) is bounded away from zero for small lul, it follows from (2.13) that b is
continuous at zero. In particular,

6(0)

implying either A ei= 1 or b(0)=0. However, we also know that

t(U)-- gsgn(u) exp iO
a In a

where g+ are continuous periodic functions with period 1. If A 1 then b(0) 0; hence
Ig+(t)l [dp(+a’)l- 0 as t--. Since the functions g+ are periodic, this forces g+ 0;
hence b 0 and f= 0 for A 1, which proves the rest of (a). If A- 1 then g+/-(t)--
b(+a’) b(0) as - . By the peri,odicity of g+/- this implies that g b(0) are both
the same constant function; hence f(u)= th(0)f0(u). This proves (b). [-]

Remarks. (1)Theorem 2.1 also holds for "infinite" two-scale difference
equations, i.e.,

f(x)= E c.f(ax-fl.)

provided that ,_-.-o Ic.I I.1 < o for some 6 > o. The estimate (2.6) then becomes

IP(u)-al <a-1 E Ic,,I min (2, Ifl,,ul min(’’a)) eInll’mul,

and the other estimates can be adjusted similarly.
(2) Note that there may exist distributional solutions even if IAI < 1. One example

is the equation

f(x) f(2x) +[f(2x + 1) +f(2x 1)] ][f(2x + 2) +f(2x 2)],

which admits f(x)--x2 as a solution. The Fourier transform of this solution is a
distribution supported at the origin, so that the continuity argument used in the proof
of Theorem 2.1 does not apply.

(3) There are no distributional solutions with Fourier transform continuous at
zero if IA] < 1. For IAI >_-1, (2.4) and (2.5) always give distributional solutions to the
two-scale equation (2.1), but there may exist other distributional solutions with discon-
tinuous Fourier transforms.

Theorem 2.1 has the following corollary, proved in the lattice case by Deslauriers
and Dubuc (1987).

COROLLARY 2.2. If the two-scale dfference equation (2.1) with A 1 possesses a
nontrivial L1-solution f, then -oo f(x) dx 0 andf has compact support, with

(2.14) supp (f)c [flo(a 1) -1, flN(a 1)-1].

Proof By Theorem 2.1

f(u)=f(0) 1-I P(a-Ju)= f(O)fo(u)
j=l
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Hence oo f(x) dx =f(O) # O. We can without loss of generality reduce to the case that
flo--/3v by considering

fl(X) f(x-(a -1)-I fiN--riO)2

which is easily checked to satisfy

f(x= cf x-+
=0

Now suppose flo =-fin and (2.6) becomes

IP(u)-II<-K min (1, lul) exp (BlIm (u)l)
with B--/3v. On the annulus a k<- lul <- a k+l this gives

k+l

Io(u)l --< II [l/gA-exp(B-llm(u)l)] II [l/g’- exp(B)]
j=l j=k+2

(2.15)
_-< C(1 +lul) exp [B(a 1)-111m (u)l],

where M [lln ((KA-1 + 1)/a)l + 1] and C is a constant. Bythe Paley-Wiener theorem
for distributions (see, e.g., Reed and Simon (1975, Thm. IX.12)) fo(U) is the Fourier
transform of a distribution fo in ’() having compact suppo in the interval Ixl-<_
B(a-1)-1. By hypothesis this distribution is the Ll-function [f(0)]-lf; hence f has
compact support in ]x]<-(fln-flo)/(2(a-1)) and (2.14) follows.

This proof shows that all two-scale difference equations with A 1 possess a
distributional solutionf in 6e’(R) having compact support in [flo(a 1)-1, flv(a 1)-1]
which has Fourier transform (2.4). The arguments of 3 will show that up to a scale
factor this is the unique distribution in 9’(R) which satisfies (3.1) and has compact
support. The following examples illustrate a few cases, for different values of A.

Examples. (1) Consider the lattice two-scale difference equation

f(x) 1/2A[f(2x) + 2f(2x 1) +f(2x 2)].

Depending on the value of A, there will be one, infinitely many, or no nontrivial
Ll-solutions. If A- 1, then any candidate Ll-solution satisfies

f(u) =f(0) [1 +exp (i2-u)1
j=

(sin (u/2)
2

=f(O) e’u u-- /

It follows that f is a multiple of the function g,

g(x)= -x, l<=x<--_2,
otherwise.

Up to normalization, we therefore have a unique Ll-solution in this case. For A 2,
we find

\ u/2 gsgn(,)\ ln2

where g: are periodic, continuous functions of period 1. Clearly, f L2(N). If g+/- are
C 1, then we easily check that also (f)’e L2, which implies fe L1. There is therefore
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clearly an infinity of different possible Ll-solutions in this case. Only one of these
Ll-solutions is compactly supported (see 3). For A 4, however, we have

(ln lul)ln2
f(u) 4 eiU[sin (U/2)]Zgsgn(,\

This tends to zero for lul--> only if both functions g+/- =0. The only Ll-solution is
therefore the trivial solution f= 0.

(2) The following example shows that A 1 does not imply the existence of a
nontrivial Ll-solution. Take the lattice two-scale difference equation

f(x)=2f(2x-1).

Every candidate Ll-solution satisfies

f(u) =f(0) ]-I [exp (i2-Ju)] =f(0) e i".
j=l

Since e" is the Fourier transform ofthe Dirac &measure at x 1, there are no nontrivial
Ll-solutions.

(3) Consider the family of two-scale difference equations

f(x)={f(ax- 1) +f (ax + 1)},

which all have A 1. This equation always has a distributional solution with Fourier
transform

L(u) I-I cos (-"u),
n=l

which has compact support in [-(a- 1)-1, (a- 1)-1] by the same argument as in the
proof of Corollary 2.2. The smoothness of this distribution as a function of/3 a -1

for 0 </3 < 1 was studied by Kershner and Wintner (1935), Erd6s (1939), (1940), and
Garsia (1962). It is known that for a 2l/k, with k sufficiently large, the function f
is continuous (hence in LI()) and arbitrarily smooth. Erd6s (1940) showed that for
any k there is a constant c(k) such that for almost all/3 a -1 in the interval [c(k), 1]
the distribution f, is a function in C(k)().

3. L-solutions having compact support. We consider the general two-scale
difference equation

N

(3.1) f(x)= Z c,f(ax-fl,),
n=0

and derive necessary conditions for the existence of nonzero Ll-function of compact
support.

THEOREM 3.1. Suppose that the two-scale difference equation (3.1) possesses a
nonzero L1-solution f having compact support. Then"

(a) A a for a nonnegative integer m.
(b) f is unique up to a scale factor and has Fourier transform

(3.2) f(u) Aum I-I p(O-ktl)
k=l

where p(u)
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(c) The two-scale equation with A= 1 obtained by replacing {cn} by {og--mCn} has a
nonzero Ll-solution g unique up to scale, and with aproper choice ofscale d / dx g(x
f(x).

The main ingredient in the proof is the following result.
LMM 3.2. Suppose that the function Mo, defined on -{0} by

(3.3) Mo(u) := exp (Yo In lUl)gsgn(u)(]l In lul),

is such that
(1) g+/-(t) are periodic functions .of period 1.
(2) Yl is real.
(3) Mo(u) possesses an analytic continuation to C which is an entire function of

exponential type.
Then Mo(u)= Au" where rn is a nonnegative integer.

Proof (1) The function h(u)= exp (3,o In u) can be continued analytically to the
simply-connected two-sheeted region R {z r e i’, r > 0 and -7r < 0 < Tr} where r ei

and r ei(+2) are viewed as distinct points and

(3.4) h(r ei(+2)) exp (2yozri)h(r e),

whenever both sides are in R.
(2) Since Mo(u) is entire and h(z) is nonzero on R, it follows from (3.3) that

g+(Yl In u) has an analytic continuation to R. Therefore, in terms of the variable
t=yllnu, g+(t) has an analytic continuation to the horizontal strip T=
{ t; --327ryl < Im (t) < Tryl}. The periodicity

(3.5) g+(t+l)=g+(t)

on the real axis extends to this strip by analytic continuation. Now the single-valuedness
of Mo(u) on C means that

Mo(r ei(O+2r)) Mo(r el), i= 1,2,

on the region R, and combined with (3.3) and (3.4) this implies that

(3.6) g+(t + 2y17ri) =exp (-2yoTri)g+(t)

is valid when both t, t+2ylTriT, i.e., for {t; --’/7"1 <Im (t)<1/27ryl}. This relation
allows us to continue g+ analytically to the entire plane, and (3.5), (3.6) then hold for
all complex t.

(3) We claim next that g+(t) is an entire function of exponential type. To see
this, note that it is bounded by a constant, say C, on the rectangle 0<_-Re (t)<= 1,
O--< Im (t)-<- 27ryl, and the periodicity relations (3.5) and (3.6) then give

Ig+(t){ _<- C exp (27rl yol lIm (t)l),

proving the claim.
Next we show that g+(t) has no zeros. For if it had a zero at to, the periodicity

relations (3.5) and (3.6) would give it zeros at to+m+(2y17ri)n for m, nZ, which
contradicts the property that an entire function of exponential type has O(R) zeros
in the disc {t: [tl_-<R} as Ro.

Since g/(t) is an entire function of exponential type having no zeros, g/(t)=
A/ exp (c/z) for some constant c/. The periodicity (3.5) forces c/ 2kTri for some k Z.
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(4) A similar argument applied to g-(T11n (-u)) shows that g_(t) A_ exp (c_z)
where c_ 2hri for some ;7.

(5) Now we have for real u that

[A+exp[(To+2k’rri) In u], u>0,
Mo(u) A_ exp [(To+2hri) In (-u)], u<0.

The first expression has a singularity at u =0 unless 7o+2kcri m+ is an integer.
Similarly, we conclude that To + 2hri- m_ is an integer. Analyticity of Mo(u) at u 0
yields A+=A_ and m+ m_ m ->_ 0, and Mo(u)-Au for a nonnegative
integer m. [3

We now proceed to prove Theorem 3.1.
Proof of Theorem 3.1. (1) By the Paley-Wiener theorem the Fourier-Laplace

transform f off is necessarily an entire function of exponential type, satisfying

(3.7) If(u)l =< C exp (Bllm ul)
for some constants B, C. Now set

:o(,,) := H
j=l

which by the argument in the proof of Corollary 2.2 is also entirely of exponential
type. We claim that

(3.8) M(u) :- fo(U)
is also an entire function of exponential type, i.e., any zero of f(u) has at least the
multiplicity of fo(u). To see this, note that for any zero uo of fo(u) of multiplicity m
there is a finite product H]_- p(a-u) having a zero of the same multiplicity. Iterating
the basic recursion (2.2) yields

f(u) A p(a-gu) f(a-u).
j=

Since all terms on the right side of this expression are analytic at Uo and the product
has a zero of multiplicity m, f(u) has a zero there of at least that multiplicity, and the
claim follows.

(2) Since f L1, it satisfies the formula of Theorem 2.1(c). Thus the hypotheses
of Lemma 3.2 are satisfied for M(u) given by (3.8). Consequently, M Aum and

(3.9) f(u) Au H P(a-ku)
k=l

This proves claim (b). On the other hand, the two-scale equation (3.1) implies

:(t/)
Substituting (3.9) gives A= a ", which provers (a).

(3) For (c), observe that if rn 1 then f(0) =0; hence

(3.10) j’_ f(x) dx O.

Define f(x)

_
f(w) dw and observe that since f has compact support (3.10) shows

that J(x) is in L(R) with compact support. Furthermore, f satisfies the two-scale
equation (3.1) with {c,} replaced by {a-c,}, by integrating (3.1). Of course
(d/dx)(f(x))=f(x). By integrating rn times, (c) follows. F!
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Remarks. (1) Under the weaker hypothesis that (3.1) possesses a solution which
is a tempered distribution of compact support, the conclusions (a) and (b) of the
theorem still hold.

(2) Ll-solutions satisfying (a) can exist for arbitrarily large values of m, for
suitable values of a and of the Cl,/3i. By (c), this is equivalent to saying that there
exist Ll-solutions with arbitrary high regularity for two-scale difference equations with
A 1. Examples are given in 6.

4. Lattice two-scale difference equations: iterative approximations. In the remainder
of this paper we study compactly supported continuous solutions of lattice two-scale
difference equations,

N

(4.1) f(x) , c,,f(kx- n),
nO

Nwhere k is an integer _->2. We will suppose that A=(1/k),=o c,= 1, which involves
essentially no loss of generality by Theorem 3.1.

A continuous solution of such an equation is a fixed point Vf=f of the linear
operator

N

(4.2) Vf(x) c,f(kx- n)
n=0

acting on a function space, e.g., C(R). A natural method to construct a solution of
(4.1) is as a limit of the iterative approximation scheme f+l Vf, where fo is a suitable
initial function. In this section we discuss the convergence of two such approximation
schemes.

We first suppose that a compactly supported continuous solution f(x) exists, and
that the data {f(n): n7/} are known. We consider initial functions fo which are
piecewise linear splines interpolating these data with knots at the integers 7. That is,
fo is defined by

fo(x)=f(n)(n+l-x)+f(n+l)(x-n) forn<-x<-n+l.

Since f(n) =0 for n[0, (k-1)-IN],fo has compact support in [0, [(k- 1)-aN]], so
we may regard it as being defined on the finite knot set Z fq [0, [(k-1)-aN]]. (As
usual [a] stands for "smallest integer larger than or equal to a.") It immediately
follows that f= Wfo is a piecewise linear spline with knots at the k-in, 0<-_ n<=
[ki(k 1)-iN], which agrees withf at these knots. Consequently we have Theorem 4.1.

THEOREM 4.1. Suppose that the lattice two-scale equation (4.1) with A 1 has a
nonzero continuous solution f of compact support. Let fo be the spline of degree 1 with
knot set {n; n 7 (’1[0, [(k-1)-N]], and with fo(n)=f(n). Definef= Wfo, with Vas
in (4.2). Then

(1) f is an interpolating spline ofdegree 1 with knot set k-i(Z f’) [0, [ki(k 1)-IN]I).
(2) f agrees with fat its knots, f(k-in)=f(k-in).
(3) IIf-f 0 as j -(4) Iffe Lip for 0< a _-< 1, i.e., If(x)-f(y)l <-- CIx-yl, then IIf-fll-< Ck-.
Proof. (1) and (2) were derived above; (3) and (4) are standard spline convergence

results; see, e.g., Schumaker (1981, Thm. 6.15) or Theorem 4.2 below.
If the compactly supported solutionf has more regularity, e.g., iff LipL’ (which

means f C and dLf/dxlLip), then the same piecewise linear f converge even
faster to f (Schumaker (1981, Thm. 6.15)). In order to obtain convergence of the
derivatives as well, we need to use an initial function fo that is more regular. This can
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be achieved by choosing for fo a CL piecewise polynomial spline of degree 2L+ 1 that
agrees with f and its first L derivatives on the knot set 77. (Similar fast convergence
of the f and their derivatives can be achieved by other CL choices for fo, for which
the derivatives on 77 do not necessarily agree with those of f. In our present case,
however, we can determine the f((n) easily, and we can therefore afford to pick this
particular fo. The aSsociated f will play a role in part II as well.)

THEOREM 4.2. Suppose that the lattice two-scale equation (4.1) with A 1 has a
nonzero solution f of compact support which is L times continuously differentiable. Let fo
be the C interpolating spline ofdegree 2L+ 1 with knot set {n; n 77 fq [0, [(k- 1)-IN]]}
and such that fol(n)=f((n), /=0,..., L. Define f= Wfo, with V as in (4.2). Then

(1) f is a CI interpolating spline ofdegree 2L+ 1 with knot set k-J(77 f’) [0, [k(k

(2) f)(k-n)=f((k-n) for n 77 and, /=0,.-., L.
(3) For all 1, 0<-_ <- L, IIft)-f)’llo<-_ Ck-(L-.

< Ck-j(’-l+’ for O, L.(4) Iff Lip’, then Ilf(1)-f)l)llLo=
Proof. Note first that fo exists and is uniquely determined by the constraints

imposed" on every interval n, n + 1 ], the 2L+ 2 coefficients of fo are linear functions
of the 2L+ 2 boundary values fol)(n), fo(n + 1), 0,. ., L. It is obvious that fo C.
It then immediately follows that f is also CL, that f is piecewise polynomial of degree
2L+ 1, with knots at k-77, and that fl)(k-n)=f(l)(k-n), for/=0,..., L. Points 3
and 4 are again standard results in spline approximation theory (they can, e.g., easily
be proved by methods similar to those used in the proof of Theorem 6.15 in Schumaker
(1981)); for the sake of convenience we also give an explicit and simple proof in the
Appendix. [3

Theorems 4.1 and 4.2 guarantee convergence of spline interpolants, provided we
start from the right data {f(n); n77} or {f(n); n77,/=0,-...,L}. In the latter
case, we obtain very fast convergence offand its derivatives. However, the theorems
do not show how to determine these data or how to estimate smoothness of f given
the data {k, c,..., c,} specifying (4.1).

In the next section we shall see that the f(n), n =0 to [(k- 1)-iN] can be related
to the eigenvector of eigenvalue I of a particular matrix constructed from the coefficients
c. If this eigenvalue is nondegenerate, then this provides a way to determine the f(n).
Similarly, nondegenerate eigenvectors of this matrix, corresponding to the eigenvalue
k-l, are linked to the f(l)(n). We shall also see how this matrix provides an upper
bound for the regularity of f; more subtle matrix techniques in part II will lead to
more precise regularity estimates.

There exists another iterative scheme that is often used for the construction of f.
The jth approximation function f; in this scheme is also a spline function with knot
set 2-7/, andf+l Vf, but the initial functionfo is different. It is a continuous, piecewise
linear spline, with fo(0) 1, fo(n) --0 for n # 0. The advantage of this choice for fo is
that it results in a "local" algorithm called the cascade algorithm. We check (see, e.g.,
Daubechies (1988)) that, for 0<_- < k,

f(k-J(km+ 1)) Y C,+knf_l(k-;+l(m-n)).

This means that the f(k-gn) can be computed by using only the values of fj--1 in a
small neighborhood of k-n; more precisely, f(k-n) is determined by the f_(k-J+l)
with k-g(n-N)<-k-g->l<-k-gn. This is quite unlike the previous scheme, where
f(k-gn) was computed from the f_l(k-J-Xn m), 0 -< m -< N. We remark that in general
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fo(n) tno does not satisfy the two-scale difference equation (4.1) restricted to 7/. It
does so only if all but one of the coefficients Ckn (with index of a multiple of k) vanish,
Ck, t,o. (We suppose here that c, 0 for n < N1, or n > N2, where N1 need not be
equal to zero. We can shift this to the standard situation c, 0 for n < 0 or n > N; in
this case we would have Ckn/no tn0 for some no, and we would choose fo(n)=
correspondingly.) In this case the cascade algorithm corresponds to an interpolating
subdivision scheme (Chaiken (1974), Dyn, Gregory, and Levin (1987), (1989), (1990),
Micchelli (1986), Micchelli and Prautzsch (1987a), (1987b), (1989)): at every level j,
the function fj coincides with fj_l at the knots of fj-1, i.e.,

fj(k-;+ln) =fj_l(k-;+ln);

the intermediate values f(k-J(kn+l)), 0</<k, are computed by an appropriate
interpolation procedure (determined by the c,). The "local" aspect of the cascade
algorithm makes subdivision schemes of interest for the construction of curves and
surfaces. In Daubechies (1988) the same scheme was called the "graphical" construction
algorithm.

A drawback of the cascade algorithm is that it does not always converge, even
when a continuous solution to the two-scale difference equation exists. An example is

f(x) 1/2f(2x 3) +f(2x) +f(2x + 3).

This equation corresponds to a subdivision scheme. It has a continuous solution with
support [-3, 3], namely,

l ,x,/ 3, Ixl--<3,
f(x)=

otherwise.

The cascade algorithm converges to this solution in the sense of distributions, but not
in C(R): indeed f,(1) =0 for all n. In the special case of interpolating subdivision
schemes (Ckm tm0), Dyn and Levin (1989) give necessary and sufficient conditions to
ensure convergence of the cascade algorithm. Daubechies (1988) lists a different set
of sufficient conditions for convergence of the cascade algorithm.

5. Lattice two-scale difference equations: global regularity of compactly supported
solutions. Assume that the lattice two-scale difference equation

N

(5.1) f(x) _, c,f(kx- n),
n=0

N
with h (1/k) ,--o c, 1, has a nontrivial L-solution, necessarily of compact support.
The regularity of this function can be bounded above purely in terms of its support
width.

THEOREM 5.1. Given a lattice two-scale difference equation,f(x) rq,=o c,f(kx- n)
with A 1. Let No be the largest integer strictly smaller than N/ k- 1), and define M
to be the No x No matrix

(5.2) M,j Ck,-.j i, j 1,’’’, No.

If there exists a nontrivial Ll-solution f which is in C"(R), then {1, k-l, k-"}c
spectrum M ). In particular,

N
(5.3) m<-l.

k-1
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Proof. (1) Sincef is continuous, and support (f)= [0, N/(k- 1)], it follows that
f(l) 0 for _-< 0 and > No. Define v No by

o
vj =f(j), j= 1,’’’, No.

Substituting x =j, with j 1,. ., No, into equation (5.1) leads to

V
0 MvO,

where M is defined by (5.2).
(2) On the other hand, it is clear that v 0. Indeed, if v= 0, i.e. f(j) 0 for all

j 7/, thenf(k-lm) 0 would follow, for all N, m 7/, by applying (5.1). By continuity
this would imply f= 0. Since f 0, we have v 0. Consequently, 1 is an eigenvalue
of M.

(3) Similarly we define, for l_-< m, v No by

vjl=fl)(j), j 1, No,

where fl) denotes the/th derivative off Differentiating (5.1) times, and substituting
x-- 1,..., No leads to

V kMv.
Again v =0 would imply f(l)0, hence f(/-1)_= constant. Since f(/-1) has compact
support, f(l-1) 0 would follow. By induction this would imply that f-= 0. Since f 0,
v 0, and k-I is an eigenvalue of M for 0-< l_-< m.

(4) f C’() implies that the No No matrix M has m+ 1 eigenvalues. Hence
m <- No- l < N/(k-1)- l. [-1

Remarks. (1) The bound (5.3) of Theorem 5.1 cannot be improved. For N=
(k- 1)L there exist {c, n 0, 1,. ., N} such that the (L- 1) x (L- 1) matrix M has
exactly the eigenvalues 1, k-1, , k-t+2, and such that the correspondingf is in c-2.
One such example is given by

(k--1)L

P()= E c,,ei"=[(l+ei+’’’+ei(k-1))/k]L,
n----0

leading to f(s)= [(l+e)/s]. The function f is a B-spline of degree L-l; it is in
C-2. The fact that any c’-l-spline with knot set ;Y must have support width greater
than or equal to n+2 has long been known (cf. Schoenberg (1973, p. 13)).

(2) The condition {1, k-1, k-"}= spectrum (M) is not sufficient to ensure
__1thatf C". For k 2, N 3, e.g., all the choices Co

all other c, 0, where h is arbitrary, lead to 2 x 2 matrices M with the same spectrum,
namely, {1, 1/2}. Nevertheless, the regularity off depends on h. Using the techniques of
part II, we can check that f is continuous if and only if IAl <, and thatf C if and
only if [hi <1/4. For h=], e.g., we find p()= (1 + e’)2/4; hence f(x)= x for 0-<x-< 1,
2-x for 1 x_-< 2, zero otherwise, which is clearly not in C 1.

(3) It follows from the proof that, provided that they are nondegenerate, the
eigenvectors of M with eigenvalue k-1 determine the f(l)(n), up to normalization. It
is not a priori obvious how to choose these rn + 1 different normalizations (one for
each l) in a coherent way. In part II we shall see how this can be done, modulo some
restrictions on the

6. Examples.
6.1. The de Rham function. The de Rham function is a classical example of a

continuous nowhere-differentiable function. Like many such examples, it is defined as
the limit of successive approximations.
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Define

-1--<x--<O,
fo(x)= l-x, O<=x<= l,

O, Ix[ >- 1.

Clearly fo is piecewise linear; its restriction to the intervals m, m + 1 ], m Z, is linear.
The next function fl in the approximation scheme is constructed as follows: fl is again
piecewise linear, with its restriction to the intervals [m/3, (m+ 1)/3] linear, for all
mZ. The nodes off1 are given by fl(m)=fo(m), fl(m+1/2)=fo(m+) fl(m+)
fo(m+), for all m Z. Graphically, this corresponds to splitting every interval on
which fo is linear into three equal parts, exchanging the values at fo at the two interior
points, and linearly interpolating between the nodes obtained in this way (see Fig. 1).
Exactly the same procedure is then repeated to obtain fj+l from fj, for all j.
The resulting f are piecewise linear, with linear restrictions to the intervals [m3-,
(m + 1)3-], for all m 7/. Geometrically it is clear that this process converges pointwise
to a continuous limit function f.

It can be checked fairly easily that f,+l Vf,, where

Vf(x) f(3x) +[f(3x + 1) +f(3x 1 )] +[f(3x + 2) +f(3x 2)].

(a)

-1 0

I1.

-1 0

(b)

-1 0

FIG. 1. (a) The first three approximations fo, fl, f2 to the de Rham function. (b) The de Rham function.
(Note. We have plotted f8 rather than f. At the scale of the figure, they are indistinguishable.)
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As the pointwise limit of the f, the de Rham function f satisfies the two-scale
difference equation

(6.1) f(x) f(3x) + 1/2[f(3x + 1) +f(3x 1)] +[f(3x + 2) +f(3x 2)].

The corresponding trigonometric polynomial is given by

p(sC) e-2i[(1 + e’ + e2)/3][(2 e + 2e2’)/3];

it is not clear how to deduce the continuity off from this expression for p! In part II
we shall use a time-domain method to prove thatf is H/Slder continuous, with exponent
y 1- In 2/ln 3 .36907... but is nowhere differentiable. The method of part II also
allows us to analyze local properties of f, to show that there exist fractal sets with
nonzero Hausdorff dimension, but zero Lebesgue measure, on which f is "almost"
differentiable, in the sense that the local H61der exponent can be chosen arbitrarily
close to 1. (The choice of the fractal set depends on the desired H61der exponent.)

A variant on the de Rham function is obtained by choosing k 3, Co 1, cl C_l

1/2-a, c2 c_2--1/2+ a, all other cn--0. The correspondingf andf are plotted in Fig.
2; for a = we obviously revert to the de Rham case. The analysis of part II will show

(a)

-1 0

1

-1 0 1

(b) I1

-1 0 1

FIG. 2. (a) Thefirst three approximationsf ,j 0, 1, 2for the generalized de Rhamfunction corresponding
to a 2. (b) The generalized de Rham functionf itself.
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that for sufficiently small a, a(1 + 2a)2<7, or a <.0492..., the resulting function

f is Lipschitz almost everywhere.
Note that for any a we have N 4, hence No 1, so that the matrix M reduces

to the scalar 1. It therefore follows immediately from Theorem 5.1 thatf andf cannot
possibly be C a, since then M would have at least the two eigenvalues 1 and 1/2.

6.2. The Lagrange interpolation functions of Deslauriers and Dubuc. These func-
tions are obtained by choosing an integer, k > 1, called the "base" of the interpolation
scheme, and an even integer M, M => 2, called the "number of nodes," in the language
of Deslauriers and Dubuc (1989). The interpolation function is then defined by the
recursive process

f[k-J(km + n)]

where

M/2

m’= -M/2+l

M/2

(6.2) Z /3m’,- =1
m’=--M/2+l

m,,,f[k-(J-1)(m+m’)],

for all n 1, , k-1.

This corresponds to a two-scale equation of the type

f(x) =f(kx)+
M/2-1 k-1

Y a,,,,f(kx- km- n)
--M/2

where Olmn --m,n" The tim, or a,,,, are determined by (6.2), by the requirement that
p(:) be divisible by as many factors [l+ei+ .+ei(k-1)] as possible, and by the
symmetry condition fl_l,,,=fl/a,k_,,, O<=l<=M/2, n= 1,..., k-1. For base 2, with
four nodes (k 2, M 4), this leads to the two-scale difference equation

(6.3) f(x) f(2x) +6[f(2x + 1) +f(2x 1)] 6[f(2x + 3) +f(2x 3)],

corresponding to

p() e-3i[(1 + ei)/214[---+ 2e’--1/2e2i]
(COS /2)4(2 COS ).

Using supe [2-cossl=3, we obtain If()l<-C]:1-4+1g23 (see, e.g., Lemma 3.2 in
Daubechies (1988)), from which it follows that f6 C a. We can bound the regularity
of f(x) by Theorem 5.1. We have N =6, k 2, so that No 5. The spectrum of the
5 5 matrix M is in this case {1 1/2 g, } where the eigenvalue has multiplicity 2. By
Theorem 5.1 we know therefore that f can be at most C3. In fact, however, f is not
even C2, as is shown in Deslauriers and Dubuc (1989), using the infinite product
formula for f together with the special property that p(s)_->_ 0. They show that f is
"almost" C2, in the sense thatf’ is HSlder continuous with exponent 1 e (e arbitrarily
small), but not C a. In Dubuc (1986) the sharper estimate ]f(x)-f(x+t)]<=
Cltl log (1/Itl) is proved, for small enough t. This same example was also studied by
Dyn, Gregory, and Levin (1987), with more general weights in (6.3) (1/2+ w, w instead
of , 6). For the parameters fixed as in (6.3), their results are slightly weaker than
Dubuc’s. For a thorough and detailed analysis of this example we refer to Dubuc
(1986), Dyn, Gregory, and Levin (1987), or to part II.

6.3. Orthonormal bases of compactly supported wavelets. A family of wavelets is
generated by translating and dilating one single function,

q%(x) 2-/2q(2-Jx k), j,kZ.
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For some choices of O, the family (ftjk constitutes an orthonormal basis of L2(). One
such choice is

1, 0--<x <1/2,
O(x)= -1, 1/2=<x<l,

0 otherwise.

The corresponding orthonormal basis is well known; it is called the Haar basis, and
provides an unconditional basis for all LP-spaces, 1 <p <. Recently some other,
more interesting choices for 0 have been found. The first one was constructed by
Stromberg (1982); later Meyer (1985/86) constructed independently another wavelet
basis, which was extended to higher dimensions by Lemari6 and Meyer (1986). In the
Meyer construction q is C and compactly supported; the basis {jk} is not only an
orthonormal basis for L2(), but also an unconditional basis for all the LP-spaces
(1 < p < ), the Sobolev spaces, the Besov spaces, etc. Later Battle (1987) and Lemari6
(1987) constructed other orthonormal bases of wavelets, based on 0 which have faster
(exponential) decay; their examples are K times continuously differentiable (K
arbitrarily large, but finite). Mallat (1989) and Meyer (1986), (1990) devised a scheme
into which all these constructions fit naturally, which they call multiresolution analysis.
Finally, Daubechies (1988) constructed orthonormal bases of wavelets generated by
compactly supported 0 which are K times differentiable.

1.5 2

0.5

-0.5
0 2 5

t.5

0.5

11

0.5
0 5 10

0.5

0

-0.5
0 5

FIG. 3. Some examples of orthonormal wavelet bases with compact support constructed in Daubechies

(1988). In every case both d and 0 are plotted. The number of nonvanishing c, is, respectively, 4, 12, and 20,
corresponding to support widths of respectively, 3, 11, and 19.
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A typical construction of an orthonormal basis of wavelets uses an auxiliary
function 4 such that

(6.4) (x) Y’. c,,6 (2x- n).

Provided the b(x-n) are an orthonormal set, the function q is then given by

(X)= Z (--1)nCn+16(2x+n).

(If the functions b(x-n) are not orthonormal, we first construct b by b(:)= (s) x
(Y-,,z [(:+2rm)]2)-1/2; the (x-n) are orthonormal, and satisfy an equation of
type (6.4), with different , for more details see Daubechies (1988) or Mallat (1989)).

A construction of b using only finitely many c, results in a compactly supported
b (see 2), and therefore a compactly supported q. As a finite linear combination of
translated and dilated versions of b, q has the same regularity as b. It follows that a
good understanding ofthe regularity ofsolutions of finite two-scale difference equations
is important in the construction of orthonormal bases of compactly supported wavelets.
The examples constructed in Daubechies (1988) have the property that their support
width increases linearly with their regularity. This is illustrated by Fig. 3, which shows
the pairs b, q for support widths 3, 11, and 19, respectively. It is clear that b, q become
more regular as their width increases; Daubechies (1988) showed that there exists

/z > 0 such that

bN, C where [supp 4’N[ [supp qN[ N.

The question then arose whether this linear increase ofthe support width was necessary.
This question is now answered affirmatively by Theorem 5.1" if b C/, then Isupp b] >_-

K + 2. This also provides a simple proof for the (known) fact that it is impossible to
construct wavelet bases generated by a compactly supported C-function b.

Appendix.
PROPOSITION. Suppose f is a compactly supported function in LipL’% Define

functions f by:
(1) On every interval n2-J, n + 1)2-], f is a polynomial of degree 2L+ 1.
(2) f is in Ct and

f)l)(n2-) =f(/)(n2-J) for 0,. ., L, n 7/.

Then [If()-f)’)[l<-c2--+) for /=0,... ,L, and for some C independent of
j and I.

Proof (1) Choose x support (f), j arbitrary. Find n so that 2-Jn _-< x -<

2-J(n + 1). Then

(A.1)
If(l)(x) f)l)(x)]

t 1f(O(x) Z
k= (k-/)t

f(k)(2-2n)(x 2-2n) (k-)

L 1fO(X)
k=t (k- l)’.

f(k)(2-;n)(x- 2-n)(-0

Since fLip’ and support(f) is finite, the first term is bounded by
CIx-2-Jn]’+-<- C2-+-l) with C independent of x or j. It therefore suffices to
bound the second term.

(2) On [2-n, 2-(n+ 1)] we have
L 1 L 1

f(Y) =o f(t)(2-Jn)(y-2-;n)t+ =o (t+ 1 + l)V.
aJn’l(Y--2-Jrt)L+l+!
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with the aj determined by the L+ 1 equations, 0 <m < L,n,!

t 1 1--j(L+l+l--m)

=o
y
(L+l+l-m) ’an’’. =f(m (2-J(n + 1))_ =,,Y (l m)’.

f(O(2-Jn)2-J(’-m)

or

t 1
(A.2) Z a,2-(+1) b

/=o (L+ 1 + 1- m)! n,,,

where

t 1 f 2_j(l_m) 1bJn, 2-j(L-m) f(")(2-(n + 1))-- Y )(2-Jn)
=., (1-- m)!

is bounded, uniformly in n, by C2- because jr e Lipt, and jr is compactly supported.
It follows, by inverting the system (A.2), that

]aJn, 2-j(l+1)] < c2-J,’,.

(3) Consequently,

1
fS’)(x) k=l k -1). f(’)(2-])(x 2-n )(’-’)

t 1 aJn,k(X 2-Jn L+l+k-Io (+ + k- )!

1
C2(k+ )2-J’2-(+ +k-)

=<=0y (L+l+k-l).

<__ C2-(t-+).

Hence (A.1)_-<C2-(t-+) for all x, with C independent of j, l, or x, and the
proposition is proved.
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tion by splines given in 4. A helpful conversation with A. M. Odlyzko led to the
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SPECIAL FUNCTIONS AND SINGULAR QUASILINEAR PARTIAL
DIFFERENTIAL EQUATIONS*

VICTOR L. SHAPIRO?

Abstract. For Qu a second-order singular quasilinear elliptic operator, the notion of a first eigenvalue
is introduced. The terminology singular arises from the fact that the coefficients of Q may be zero on part
or all of the boundary or the region of definition may be unbounded. A one-sided nonlinear result for Q
is established below the first eigenvalue, and a theorem and corollary (called results at resonance) are
established at the first eigenvalue. The corollary presents a condition which is both necessary and sufficient.
Examples are given involving Hermite polynomials, Bessel functions, and other special functions.

Key words, quasilinear partial differential equations, special functions, resonance, first eigenvalue
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1. Introduction. Let fl c R, N => 1, be an open (possibly unbounded) connected
set and let p and p be two positive functions in fl with p C1() and p C(I)). We
set

(1.0) Qu(x) -Di[p(x)Ai(x, u, Du)]+ p(x)Bo(x, u, Du)u

where D --O/OX and D (D1,... DN). We shall study the singular quasi-linear
equation

(1.1) Ou(x) p(x)f(x, u)+ G.

The term singular arises from the fact that f may be unbounded or that p may equal
zero on part or all of the boundary of fl. A similar situation occurs for the singular
Sturm-Liouville system studied in elementary differential equations (see [1, p. 57],
[2, p. 554], or [3, p. 560]).

In (1.0) and for the rest of the paper the summation convention is used for
i= 1,. ., N. Throughout we shall suppose

(1.2) p C(i), p > 0 in [I, fap < c, and p 0 on F1C 0D

where F1 may be the empty set, i.e., [’1--{x G 0[-: p(x)--0}.

(1.3) Oe C(f), p>O in f, and

In order to explain the type of problem we intend to study for (1.1), we have to
introduce some Hilbert spaces. In particular, we let C(fl) and C,p(fl) be the following
two pre-Hilbert spaces:

(1.4) c,,(a)= {u C(a). I. ut, < }
* Received by the editors December 27, 1989" accepted for publication (in revised form) September

27, 1990.
? Department of Mathematics, University of California, Riverside, California 92521.
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with (u, v)p [.c uvp;

(1.5) C,p([l)= {u C(l)f’l CI([I): u=0 on 0[\11 and f ]DulZp+u:p<}
with u, V)p,o Du Dvp + uvp ].

L(fl) will designate the Hilbe space that we obtain by completing C(fl) using
the method of Cauchy sequences with respect to the norm Ilullo: <u, u>L/2, and
will designate the Hilbe space that we obtain by completing C,o(fl with respect to
the norm u ]p,, (u, u),.

We define L(fl) in a similar manner for 1 q < and we also obsee that Lp
is a well-defined space.

Continuing, we make the following assumptions for the functions A(x, t, ),
i= 1,..., N, and Bo(x, t, ) where xfl, t, andu
(Q1) A(x, t, )’flxxs and B0(x, t, )’flxxu , and both satisfy the

Caratheodory conditions (i.e., A(x, t, ) is measurable for x in fl for every
fixed (q ) xu and is continuous in (t, ) for almost every fixed x
and similarly, for Bo(x, t, )).

(Q2) There exist h0 and Cl0 with h L(fl) and Cl a constant such that,
respectively,

[A(x, t, )] = h(x)+ c][ for a.e. x fl or

Iai(x, t, )l = h(x) + Cl(t + ]12) 1/2 for a.e. x fl

accordingly as L(fl) is not or is continuously imbedded in L(fl) (i.e., the
2 = K u for all u Lo).latter means L(fl) = Lp and u lip

(Q3) There exists a positive constant c2 such that ]Bo(x, t,) c2 for almost every
x fl and for all (t, ) x

(Q4) There exists a positive constant c3 and a nonnegative function Z
subject to A(x, t, ) c32- Z(x) for almost every x fl and for all (t,
x

(QS) [A(x, t, )- A(x, t, ’)](-)> 0 for almost every x fl, for all ta and
for all , ’ with # ’.

Next, we introduce the semilinear form

(1.6) (u, v) fa pA(x, u, Du)Dv + pBo(x, u, Du)uv

and we see from (Q1)-(Q3) that (u, v) is well defined for u, v H,o. Also, we define

(1.7) A lim inf (u, u)/llull u
II[l

It is clear that if were a linear elliptic operator and p and p were equal to one,
would be the first eigenvalue associated with the Dirichlet problem (see [7, p. 213]).
An easy computation using (Q2)-(Q4) shows that A is a finite-valued real number.
The first theorem that we shall present here will involve the interplay between the

left-hand side and the right-hand side of (1.1), i.e., between Q and f at values strictly
below A. In paicular, we shall assume the following:

(fl) f(x, t) meets the usual Caratheodory condition.
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(f2) There exist 1 0 and eo> 0 with Jl E L(f) subject to

if(x, t)<--_(A*-eo)t2+l(X)lt] ItE, and a.e. xf/.

(f3) There exist K > 0 and h’2 >= 0 with h’2 L(f) subject to

If(x, t)l<-g(x)+Kltl vt and a.e.

We shall also assume that G6 [H,o(f/)]*, i.e., G’Hlp,o(fl)R, G is linear, and there
exist K1 subject to

(1.8) IO(u)l <= K, Ilull,
Next, we state the first theorem we shall prove in this paper. This statement will

involve an assumption labeled Op,o(f/) which will be explained and illustrated using
special functions in the paragraphs following the theorem.

THEOREM 1. Let c N >-1, be an open connected set and let p and p satisfy
(1.2) and (1.3). Assume (Q1)-(Q5), (fl)-(f3), Op,(I), and that GE [n,(12)]*. Then
there exist u Hlp,() such that

(1.9) (u, v)=(f(., u#), v)+G(v) VvHlp,(fl)
where 2(u, v) is defined by (1.6).

It is easy to give examples to show that the above theorem is a best possible result,
i.e., (1.9) is false if we allow eo to be zero in (f2). We shall do this in the concluding
paragraphs of this section.

By assumption Op,(f) we shall mean that the following three conditions (O1)-
(O3) hold

(Ol)

(02)

There exists a complete orthonormal sequence of functions {,}_ in L(f).
Also n Hpl,v(f) for all n.
There exist {An}=l with 1 -< A1 < A2 =< A3 =<" -< An ----<" - o subject to

<’,,, V>p,o An<4’n, V>o VV Hp,o(lI).
(03) almost everywhere in 12.

Now there are many unbounded (as well as bounded) open connected sets f that
satisfy assumption Op,,(O). We illustrate this fact using the theory of special functions.

First and first foremost, we take f/=2 (with a similar situation prevailing in
N _-> 1), set p(x) p(x) e-(,+), and take

(1.10) (mn (X1, X2) Hm(x1)nn (x2)/ (2-m2-nm n ,rt.) /2

where Hn(t)=(-1)ne’2dne-’2/dt is the familiar Hermite polynomial for n=
0, 1, 2,.... As is well known, {Hn(t)/(2"n! 7r/2)/2}=o forms a complete orthonormal
system over with respect to the weight e Hence it follows from (1.10) that

2 e-(+){.}o,.=o forms a CONS for Lo(N) where p and therefore (01) holds.
Also, [e- H.(t)] =-2he- H.(t). An easy computation, using this last fact, shows
that if v C,v(O) as defined by (1.5), then with D =O/Ox,

e-(xl+X)Hn(x2)DIHm(Xl)DlV(Xl, x2) 2m fa2 e-(X+x)nn(x2)Hm(Xl)V(Xl’ x2).

From this fact, it follows that

(Ch,,,n, V)p,o =[2(m+ n)+ 1](bmn, v)o Vve Hp,p

Consequently, we see that (02) holds with A 1, 12 3, A3 3, A4--5, etc. Also, we
see from (1.10) that q, r-/2; hence (03) holds and O,(1)) is established for this case.
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For the second example, we work in 3, take 1 c 2 to be a bounded open
connected set, and f/= x1. So is an infinite cylinder whose axis is parallel to
the x3-axis. We take p(x)= p(x)= e-x and

(1.11) .,,,(x)=.,(Xl,X2)H,,(x3)/(2"n!.rra/:z) 1/2, m=l,2,...,n=0,1,...,

where {b.,(xa, x2)}_-a and {r/,.}=l are the familiar eigenfunctions and eigenvalues
of the Laplace operator in W’(). Since {b,.(xa, x2)}=a is a CONS for L2() and
{H,,(x3)/(2"n!,rrl/2)l/2}=o is a CONS over a with respect to the weight e-x], it follows
that {.,. }’m=a,.=o is a CONS for L2o(f). Therefore (O1) holds.

Using the properties alluded to in the first example, an easy computation shows that

e-Xd.,(xa, x2)D3H,,(x3)D3v(x)

(1.12)
2n e 3m(Xl, x2)Hn(X3)O(X [I) clp,o().

Hence, it follows from (1.11) that

(.,., V)p,o (ft., + 2n + 1)(m., v)o
for all vHp,o. Consequently, we see (02) holds with Aa r/a+ 1 and Az r/2+ 1 or
r/a+3, depending on which is smaller. As is well known [7, p. 214], ba(xa,x2)>0
almost everywhere in 1"/. Hence qq(Xl, x2, x3)= ba(xa, x2)r-a/2 and we see that (03)
holds. Consequently, Op,o(fl) is established.

For our third example, we work in 2 and take 1 (0, 1)x with p(xa, x)=
x e- p(Xl x2). Also we set

(1.13) b,,, (Xl, x2) Jo(nmXl)H, (Xz)/[z-lJa "rlm)Z"n! "/r 1/2] 1/2

for rn 1, 2, , n 0, 1, 2, , where Jo(t) and Jl(t) are the familier Bessel functions
of the first kind and Tm is the rnth positive zero of Jo(t). As is well known [8, p. 264],
{Jo(rl.,t)/[2-1Jl(rt.)]l/2}=l is CONS with respect to weight on [0, 1]. Hence, it
follows that {bm.}’m=,.=0 is a CONS for L2(f) Observing that

In e-XH"(x2)XlDIJ(rlmXl)DlV(X)= r12 fn e-X2 xaH"(x2)J(rl"Xl)V(X)

for all v C,o(f/) and using the analogue of (1.12) for the current situation, we see
from (1.13) that

(dp,,,., V)p,o (r/ + 2n + 1)(b,..,

for all v Hp,o. Consequently, we see that (02) holds with AI= r/+ 1, A2= ,7]+3,
A3 ,/21+5, etc. Since Jo(r/lt) > 0 in [0, 1), we see that qq(Xl,X2)=Jo(rtxl)r-/2>O in
f/and (03) holds. Therefore, Op,o(II) is established.

For our fourth example, we continue to work in 2 and take f/= (0, 1)x (0, 1)
with p(x) p(x) xax2. We set

(1.14) 6,.. (x, x2) Jo( rlmXl)Jo( rl.Xz)/[2-2Jl(rlm)Ja( ’ln )] 1/2,

m, n 1, 2, , where we use the notation of the previous example. Observing that

fn XlX2Jo( Tqnx2) D1Jo(’Omx1)Dl l)(x) Tq2m fn XlX2Jo( Tqmxl)Jo(’qnX2)1)(X)
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for all v C,o(1)), we see, as in the previous example, that (01)-(03) hold here also
with

Al=2r/+l, ,A2 ,y]2 -1- ’/2
2 "]- 1, A3 r/ + r/2 + 1,

etc., and

01(Xl, X2)"-" Jo(nx)Jo(nx)/2-’J(n).
Hence, Op,o(l’) is established for this case.

In 1 we see that Op,/9(f) holds for the following situations:

(1.15) a (O, ee), p(x) xa+l--x xOt--xe p(x) e a >-1,

(1.16) a=(-1,1), p(x)=(1-x)+l(l+x)+l, p=(1-x)(l+x)t, a, fl>-l.
For (1.15) we use the Laguerre polynomials and for (1.16) we use the Jacobi poly-
nomials. For the details to be used to show that (O1)-(O3) hold in these cases, we
refer the reader to [14].

The terminology special functions usually refers to the Jacobi polynomials,
Laguerre polynomials, Hermite polynomials, and Bessel functions. The above examples
illustrate why we have used this terminology in the title of the paper.

In closing this section, we shall use the first example above to show that eo cannot
be taken equal to zero in (f2); i.e., the theorem as stated is in general false if eo 0
in (f2).

To see this fact, we take 12 =2 and use the first example from above with
p(x)=p(x)=e-(x+@. Then as we pointed out, h 1 and Il--q’g-1/2. We take
Al(x, t, )= 1, A2(x, t, :)= so2, and Bo(X, t, s) 1. Therefore,

Qu -[DlpDlu + DzpD:,u]+pu

and we see that (Q1)-(Q5) holds. Also we see that

(1.17) (u, v) .Rf2P(x)[DlUDlV+ D2uD,_v+ uv]

2> 1 for uS0.for all u, vHp,/9. Since p=p we obtain from (1.17) that (u,
Hence it follows from (1.7) that h*> 1 But 4’1 H,o and (q’l qq)/[lqq[[2 1. There-
fore, h*= 1 =hi.

Next, we take f(x, t)= and observe that f(x, t) meets (fl), (f3), and (f2) with
Co=0. Also, we take G(v)= (ql, v)o for all v H,/9. Suppose the theorem held under

2such circumstances. Then from (1.9) we see that there exist u Hv,o( such that

(1.18) (u, v)=(u #, v)/9 +(qq, v)o Vve H,/9.
We take v il in (1.18) and observe from (1.17) and the fact p =p that

(U # I//1)p--(U # I]/1)p"(I]/1
Therefore, (01, qq)/9 0. But (qq, I1)p 1. We have arrived at a contradiction. No such
u * as in (1.18) exists. Hence our theorem is in a certain sense best possible, as asserted.

The monotonicity assumption (Q5) above enables us to deal with the nonlinear
aspect of Du in Ai(x, u, Du) and this part of the paper was motivated by the classical
1970 article of Browder [5] and the 1965 result of Leray and Lions [11].

Theorem 2 of this paper is stated and proved in 4.

2. Fundamental lemmas. The first lemma we prove is the following.
LEMMA 1. Assume (O1)-(O3) and that g L2o(fl). Set

(2.1)



1416 VICTOR L. SHAPIRO

Then g Hlp, if and only if nC=l ,nl(n)l2 < 00. Furthermore, if g Hp,, Ilgll 2p,o

To prove Lemma 1, we obsee from (O1) and (02) that (., -)p,o A.>0. Also,
we see that if v H,, is such that (., v)., 0 for all n, then (., v)o 0 for all n.

2Since {.}.=a is CONS in Lo, it follows that v =0 almost everywhere in . Hence we
conclude that

(2.2) {./hl/2 is CONS in H

It follows from (2.2) that if g Hp,o, then

(2.3) igll2 2 -.,. (g,. .
n=l

But from (02) and (2.1), we have (g, -)p,o A,(n). Consequently, we conclude from
(2.3) that

(2.4) [Igll 2
n=l

and the only ifpa ofthe above lemma is established. Also the last line in the conclusion
of the lemma is established.

To establish the if pa, we assume

(2.5) 2 A.l (n)l2 <
n=l

and set h.=2=lff(k)6=2=l(k)6/ Then for re>n, Ilhm-h. 2
p,p

E.Z xl()l. Hence it follows from (2.5) that {h.}=, is a Cauchy sequence in the
Hilbea space H.o. Therefore there exist h H,o such that lib.- h ll,.o 0. But this
implies that lib.- h o 0. Since it follows from the definition of h. and the fact that

2gLo that Ilh.-gllo 0. We conclude that g=h and the lemma is established.
2LMMA 2. Assume (O1)-(O3). e H.o(O) is compactly imbedded in Lo(O).

To establish this lemma, assume that there exists a sequence {v.}=l in H,o and
a constant K such that Ilv.ll 2 < K for all n. Then it follows from Lemma 1 and (2.4)p,p

that

(2.6) 2 Al.(k)l- K.
k=l

To complete the proof of the lemma, we have to show that there exist v H,o and a
subsequence {v,}= such that

(2.7) IIv. -vii
To establish (2.7), using (2.6), we choose a subsequence .,1(1) such that .,1(1) al
as n. Next we choose a subsequence (n, 2) of (n, 1) such that
Continuing in this manner, we obtain subsequences (n, ) and finite number a such
that

(2.8) lim (n,k)(k)= ak Vk,

where (n, k + 1) is a subsequ.ence of (n, k). Now let j be a fixed positive integer. Then
it follows from (2.6) that [2k=l hk](,,j)(k) --<_K. Consequently, it follows from (2.8)
that Y/k=I K. But then letting j-, we see that

(2.9) A,,la,l= g.
k=l
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It therefore follows from Lemma 1 that

(2.10) :iv H,o subject to 3(k) ak.

Next we define v, V(m,m), and we observe from (2.4) and (2.10) that

(2.11) ]Iv,, -112. E [v(.,.)(k)- (k)[2.
k=l

Once again we let j be a fixed positive integer. Then we see from (2.10) and (2.11) that

O
k=l k=l

Consequently, it follows from (2.6), (2.8), and (2.9) that

lim sup I1, -11 ==< 4K/j.
But by (O2), Aj. Hence lim SUpz IIv, -vii==0. Therefore (2.7) is established,
and the proof of the lemma is complete.

Next, we establish the following lemma.
LEMMA 3. Assume that the conditions in the hypothesis of the theorem hold. Let n

be a fixed positive integer, and let S, be the subspace of H,o spanned by ,. ., 6,.
en there exist u, e S, such that

(2.12) (u,, v) (f( u,), v)o + G(v)

To prove this lemma, we let a (a,. , a,)e N" and set

(2.13) F(a) (%6j, 6)-(f(-, %6j), 6)- G(6)

for k 1, , n where we have used the summation convention for j 1,. , n. Then
with F(a)= (F,(a),..., F,(a)), we obtain that

F()" (JE, )-<f( , JJ),>-().
Consequently, we obtain from (f2) and (O1) that

Since G e [H,o] there exist K: such that

Also, it follows from Lemma 1 that there exist K3,, such that IIvl,o K,.llvllo for all
v e S,. Consequently, we conclude from (2.14) and (2.15) that

(2.16) F(a). a(ajj,)-(-o)ll=-[llllo+K=K,,31l
From (1.7) we see that there exist Ro> 0 such that (%6j,

for I1 o. nen w obtain from (2.16) that I1 o,
(2.17) F(a). ae2-’eolal2-[[lgll.+K=K3,.]ll.
From this last inequality, it follows that there exists R > 0 such that

From (Q1)-(Q3) in conjunction with (1.6) and from (fl) and (f3), it is an easy
matter to see from (2.13) that Fk(a) C(R) for k 1,. ., n. Hence it follows from
[12, p. 18] that there exist a * eR" with I1 < R, such that Fk(a*)=O for k= 1,..., n.
Setting u, a +. + a,* ,, we consequently see from (2.13) that

(2.18) (u,, )=(f(., u,), 60-o() for k= 1,..., n.
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But if v Sn, v= 3(1)J1+’" "+3(n)CJn and the conclusion of the lemma follows
immediately from (2.18).

3. Proof of Theorem 1. To prove Theorem 1 we invoke Lemma 3 and obtain a
sequence { u.}_ where

(3.1) u. Crlbl+" "+a@n
with the property that (2.12) holds.We claim there exists a constant K4 such that

(3.2) Ilull, K4
Suppose to the contrary that (3.2) does not hold. For ease of notation and without
loss in generality we assume

(3.3) lim Un P,P 00.

We will show this assumption gives a contradiction.
Now one of the following two cases present themselves:

(3.4) :lK5 subject to Ilu.Jlp_<-

(3.5) :l{u,}=l subject to lim Ilull,
joo

Suppose (3.4) holds. Then taking v u, in (2.12) and using (f2) and (1.8), we obtain

(3.6) (u. u) < (AI*- o)llull = / I1711 Ilull / gllullp P P P,P

From (Q3), (Q4), and (3.4), we infer from this last inequality that

/n.

Since Z L(O), this last inequality is incompatible with (3.3). Hence (3.2) holds for
the first case (3.4).

We now suppose that (3.3) and the second case (3.5) hold. Then it follows from
(3.6), (1.7), and (1.8) that there exist jo such that for j>-jo,

Hence we have, for j>-jo,

2- ollu -il 711 u I1 -<- g u I1,.
We conclude from this inequality and (3.5) that there exist K6 and j such that

(3.7) Ilull<--g611ull, forj>=j.

From this last inequality, we obtain from (3.6) that there exist K7 and j2>=ja
such that

(3.8) (Un, Un) <= K7 u. , for j =>j2.
From (Q3), (Q4), (3.7), and (3.8), we in turn obtain that

c u =,o < (g7+ c.,g6)llu,,[lp,,_ + Zp

for j>=j2. Since z e L(f) and c2 and c3 are positive constants, this last inequality is
incompatible with (3.3), and we have arrived at a contradiction for the second case
(3.5) also. Hence (3.2) is fully established.
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Since H.p(O) is a separable Hilbert space, we see from Lemma 2 that there exists
a subsequence (which for ease of notation we take to be the full sequence) and a
function u * H.p with the following properties"

(3.9) lim un u 0,

(3.10) lim u,(x)= u(x) for a.e. x in f,

(3.11) lim (D,u,,, v)v =(D,u, V)p, Vv L2p and i= 1,. ., N,

(3.12) lim G(u,)= G(u).

Next, we propose to show there exists a subsequence {u,j}j__l subject to

(3.13) lim Du,,j(x)= Du(x) for a.e. x in f.

Once (3.13) is established it will be an easy matter to complete the proof of the theorem.
To establish (3.13) it is sufficient to establish the following two facts. (1) There

exists a subsequence {u,j}jl subject to

(3.14) lim [A,(x, u,,,Du,,)-A,(x, u,,,Du)][D,u,,(x)-D,u(x)]=O
for a.e. x in f.

(2) With {u,,j}jl designating the same subsequence as in (3.14),

(3.15) {IDu,,(x)l)l is pointwise bounded for almost every x in f.

To see that (3.14) and (3.15) together imply (3.13), let fl be the subset of f for which
(Q5), (3.10), (3.14), and (3.15) hold simultaneously. Consequently,

(3.16) meas (-O1)=0.

Suppose there exist Xo fl for which (3.13) does not hold. Hence by (3.15) there
exist a further sequence {Du%(xo)}= and a :*RN with

(3.17) Du(xo) *
such that limk_. Du%(xo)= :*. Therefore from (3.10)

lim[Ai(xo u Du%)-A,(xo u% Du)][Diu%(xo)-Diu(xo)](3.18) k- %’

[Ai(xo, u(xo), *)-Ai(xo, u(xo), Du(xo)][*i Diu(xo)].
From (Q5) and (3.17) we see that the right-hand side of (3.18) is strictly positive.
Hence the limit on the left-hand side of (3.18) is strictly positive. But Xo fl and by
the definition of fl and (3.14), this limit equals zero. We have arrived at a contradiction.
Hence the equality in (3.13) holds for every point in 1 and therefore by (3.16), for
almost every x in f, and statement (3.13) is fully established.

It remains to show that (3.14) and (3.15) hold. To establish (3.14) we observe
from (Q2), (3.9), (3.10), and Egoroff’s theorem [13, p. 75] that

(3.19) !iom f [a,(x, u,,, Du)-ai(x, u, Du)l=p(x)=O

for i= 1,-.-, N. Also, we have from (3.11) that

(3.20) lim f A,(x, u, Du)[D,u,,-D,u]p(x)=O.
d



1420 VICTOR L. SHAPIRO

From (3.19) and (3.20) in conjunction with (3.2) and Schwarz’s inequality, it is not
difficult to see that

(3.21) !im I, [ai(x, u,,, Du,,)-a,(x, u,,, Du)][Diu,,-D,u]p(x)=O,

provided we show

(3.22) lim f A,(x, u,,, Du,,)(D,u,,-Du)p(x)=O.

By (Q5), the integrand in (3.21) is nonnegative for almost every x 1. Hence the
integrand converges in Lp-norm to zero and (3.14) follows from [13, p. 70]. Therefore,
to complete the proof of (3.14), it remains to establish (3.22). From (Q3) and (3.9) we
see that (3.22) will follow once we show

(3.23) lim (u,, u,-u) =0.

Now u H,p and

(3.24) P.u=- a(j)d/j is in S,
j=l

where S is defined in Lemma 3. Hence it follows from Lemma 1 that

(3.25) lim P,,u u ,o 0,

From (Q2), (Q3), (1.6), (3.2), and (3.25), it also follows that lim,_ (u,,, P,,u u)
0. Consequently, we see that (3.23) will follow once we show that

(3.26) lim u,, u,, P,,u O.

To establish (3.26), we observe from (3.24) that (2.12) holds for un with v replaced
by u,, P,,u. It is easy to see from (1.8), (3.12), and (3.25) that lim,_ G(u,, P,,u) =0.
Consequently, we obtain from (2.12) that (3.26) will follow once we show

(3.27) ina f.f(x, uo)tu,, PnU]p =0.

But from (3.9) and (f3), we see that {llf(’, un)ll2}=, is a uniformly bounded sequence.
Also, we see from (3.9) and (3.25) that lim,_ Ilu,.,-P,,ull,,=O. We conclude from
these last two facts and Schwarz’s inequality that (3.25) does indeed hold. Hence (3.21)
holds and the proof of (3.14) is complete.

To establish (3.15), we let 1": be the set where simultaneously u(x), IDu(x)l,
Z(x), h(x), u,,(x), Ai(x, u,,(x), Du,,(x)), and a(x, u,,(x), u(x)) are finite-valued for
i= 1,..., N and j 1, 2,. ., where (Q2) and (Q4) hold and also where the limits in
(3.10) and (3.14) exist. Then

(3.28) meas (f- 1"2) 0.

Suppose there exist Xo 2 such that

(3.29) lim Du "Jk(x)l .
Now,

(3.30) c3lDu%(xo)l Ai(xo, u,,jk Du%)Diu%(Xo) + Z(xo),



SINGULAR QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS 1421

and also

Ai(xo, u,,j,,, Du%)Diu%(xo)
Ai(xo, u%, Du%)Diu(xo)

(3.31) +A,(xo, u%, Du)[D,u%(xo)- D,u(xo)]

+[Ai(xo, u%, Du%)-Ai(xo, u%, Du)][Diu%(xo)-Diu(xo)].
We divide both sides of (3.30) by ]Du%(xo)]3/ and conclude from (Q2), (3.31), (3.14),
and the definition of f2 that limk_ IDu%(xo)]/2- 0. This is a contradiction to (3.29).
Hence ([Du,,(x)]}% is a pointwise bounded sequence for every x in 122. But then
(3.15) follows immediately from this fact and (3.28). As we have already shown, (3.14)
and (3.15) imply (3.13). Hence (3.13) is completely established.

Next, we let vj Sj where J is a fixed, but arbitrary positive integer. Then it
follows from (Q3), (3.9), (3.10), and (3.13) that

(3.32) lim (Bo(’, u,,j, Du,,)u,,, v)p (Bo( ", u, Du)u, v.),.
joc

We see next from (f3) and (3.9) that {llf(’, u.)-f(., u)ll.}% is a uniformly bounded
sequence and from (3.10), Egorott’s theorem, and the fact va L2 that

(3.33) lim (f(., u,), va), (f(., u*), vj).
joc

Likewise, we see from (Q2) and (3.2) that {IIA,(’, u,, Du,)-A,(., u, Du)l}v}% is
a uniformly bounded sequence for i= 1,. ., N. Hence, it follows from (3.10), (3.13),
Egoroff’s theorem, and the fact that IDyll L2p that

(3.34) lim (Ai( ", U,, Du,,j), Dvj)v (Ai( ", u, Du), D,va)v.
j

Since (2.12) holds for u, and va Sa when n->J, we conclude from (1.6), (3.32),
(3.33), and (3.34) that

(3.35) (u#, va)= (f(., u#), v.), + G(v.).

Next given v 6 H.o, we define Pay Sa as in (3.24) and observe that lima_ IIP:,v-
vl]v,, =0 as in (3.25). Hence it follows from (Q2) and (Q3) that (u, P.v)o ..(u -, v),
(f u#), Pjv), (f u#), v),, and G(P.v) G(v) as J o. We conclude from (3.35)
that

(u#, v)= (f(’, u#), v), + G(v),

and the proof of Theorem 1 is complete.

4. Resonance and singular quasilinearity. Let

(L1) a(x) and bo(x) be in L(f), i, j= 1,... ,N with a(x)=a(x) almost
everywhere in f; and

(L2) ai.(x)i >= c4l:l2 for almost every x f where c4 > 0

and where the summation convention is used. Set

(4.0)

and

(4.1)

Lu -Di[p(x)aij(x)Diu] + bo(x)p(x)u

(u, v) I paijDiuD.v + bouv,o
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for all u, v H,p where once again we have used the summation convention for
i,j-1,. ,N.

From Lemma 2 we know that Hlp,p is compactly imbedded in L2,. Hence, using
the reasoning on [7, p. 213], it follows that there exists

(4.2) oh =< try. -<. =< tr. -<. ->

and a sequence {b.}.__l with thn H,o enjoying the following two properties:

(4.3) (th,, v)= cr,(b,, v) Vn,

(4.4) {4}--1 is a CONS in L2o.
Furthermore, applying the reasoning of [7, p. 214] to compact subsets of [1, we see
that trl < r2 and we can take b > 0 almost everywhere in 1-1. We record this observation
as

(4.5) cr < tr2 and bl(X) > 0 for a.e. x

Next with Q as in 1, we shall say Q is ,-related to L if the following two facts hold:

(4.6) AI* tr,,

(4.7) lim inf [(u, u)- (u, u)]/llullp,o >= O.

In particular, we see that L is .-related to itself. Also, it is easy to see that Qu
-Dp{l+[l+lDu]2]-/}Du+pu meets (Q1)-(Q5) and is .-related to Lu
-DpDu + pu. (See [9, p. 96]. In the next section the details will be supplied and other
examples with be given.) We intend to establish a result similar to Theorem 1, except
that in (f2) we shall take eo 0. As we have shown at the end of 1, a result of this
nature is in general false and therefore to obtain such a result, another condition,
usually referred to as a Landesman-Lazer condition, is required. (See [4, p. 284] and
[10].) To this end, we define the following:

2 subject to tf(x, t)<-_A*t2/(x)ltl for all(f4) There exist hi -> 0 with h 6 L,
and almost every x

The theorem we intend to prove is the following.
THEOREM 2. Let the hypotheses of Theorem 1 hold with (f4) replacing (f2). Suppose

also that Q is ,-related to L where L satisfies (L1) and (L2). Set g+(x)=
lim supt_ If(x, t) h* t] and g_(x) lim inft__ If(x, t) hi* t] and suppose further-

(4.8) fa g+dplp < -G(Chl) < I g_chp.

Then there exist u Hlp.p such that

(4.9) (u, u) (f(., u), u)o + G(u) u Hlp,o.
From the start, by adding a constant positive multiple of p(x)u to Qu in (1.0)

and Lu in (4.0), and this same constant multiple to u to f(x, u), we see from (1.7),
(4.6), and (4.9) that, with no loss in generality, to prove the theorem we can assume that

(4.10) h* trl> 0 and bo(x) > 0 a.e. in

Also, we set

(4.11) g(x, t)=f(x, t)-Z* for (x,

more that
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and observe from (f4) and Theorem 1 that there exist {Un}7= with un H,o such that

(4.12) (un u) [A*- n-1](u,, u)o +(g(. u,,) u)o + G(u) Vu Hp,p

Next we set

2(4.13) if(n) (, w) for w L
and also obsee from (4.2)-(4.4) and (4.10) that

(4.14) uH,, and (u,)=0 nu=O.

Fuhermore, from (L2), (4.1), and (4.10), we see that if uH, and u0, then
(u, u)> 0. Consequently, (.,. can be viewed as an inner product on H. and it
follows from (4.3), (4.4), (4.13), and (4.14) that

(a) (w, w),= E I (n)l for w eL,
(4.15)

(b) (u, u)= for u

Continuing with the proof, the first fact we claim is that with {u,}, the sequence
given in (4.12),

(4.16) There exist Ks such that llu.ll, Ks for all n.

Suppose that (4.16) does not hold. Then there exists a subsequence (which for ease
of notation we take to be the full sequence) such that

(4.) im/’],

We shall arrive at a contradiction by showing that this fact implies that one of the
inequalities in (4.8) does not hold.

To accomplish this we replace u by u, in (4.12) and obtain from (f4) and (1.8) that

Consequently, we obtain from (L1), (L2), (4.7), (4.10), (4.17), and this last inequality
that there is a positive constant K9 such that

p,p p P

for n sufficiently large. Since c4 is a positive constant, it follows from (4.17) that there
is a positive constant Klo and a positive integer n such that

(4.19) Ilu.ll. < K,ollu.llo for n n,.

In paicular, from (4.17) and (4.19) we see that lim.. Ilullo :. Next we set

(4.20) v. u./

and

(4.21) v, 6,(1) and

From (4.7), (4.10), (4.15), (4.18), and (4.19), we see that there exist n such that

E (-l)lO.(k)l=-n-lllv.l[ +[llglllo +(K + 1)Klo]llv.llollull;
k=2
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for n >=max (nl, n2). From (4.20), we see that IIv.llo 1, and from (4.5) and (4.15)(a)
that the left-hand side of this last inequality majorizes (=-)llv=ll 2 We, con-p.

sequently, conclude from (4.17) and (4.19) that

(4.22) lim IIv. _ll= =o.p

But then it follows from (4.5) and (4.21) that lim,_oo IIv  llo 1, and hence

(4.23) lim t3, 1 )12 1.

From (4.19) and (4.20) we see that IIv.ll ,, gl0 for n _-> n Therefore we have from
Lemma 2 that there exist v E Hp,p and a subsequence (which for ease of notation we
take to be the full sequence) such that

(a) lim IIv,-vllp=0,

(4.24)
(b) lim v,,(x)= v(x) for a.e. x in ,

(d) lim G(v.)= G(v).

From (4.13), (4.21), (4.22), and (4.24)(a), we see that t3(k)=0 for k >=2. Consequently,
v t3(1)(bl and since limn-oo t3,(1)= t3(1), we conclude from (4.23) that tS(1)= 1 or -1.
We shall assume

(4.25) t(1)=l and v=bl

and arrive at a contradiction. Similar reasoning will lead to a contradiction for the
assumption t3(1) 1.

To arrive at this contradiction, we replace u by u, in (4.12) and use (4.6), (4.7),
and (4.15) to obtain the following. Given e > 0, there exist n such that for n >= n3

(rk--Crl)l.(k)12(g( ., u.), u.)a + G(u.)+ ellu, l}p,,.
k=2

Consequently, from (4.19) and (4.20) we see that

(4.26) fa [ll(X)ll)nl--g(X’ u")v"lP- fn gl(X)lv"lp<= G(v")+eKl

for n -> n (f4) in conjunction with (4.11) tells us that the integrand in the first integral
2on the left in this last inequality is nonnegative. Since/1 Lo, we see from (4.24)(a)

that the limit of the second integral on the left is (/1, Ivl)o. We consequently conclude
from (4.24)(d), (4.26), and Fatou’s lemma [13, p. 24] that

fn lim,_.ooSUp [g(x, u,)v,]p <-- G(v) + eKlo.

But e > 0 is arbitrary. Consequently, we conclude from this last inequality that

(4.27) In lim,__.ooSUp [g(x, u,)v,]p <- G(v).
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From (4.24)(b) and (4.25), we see that limn_oo v,,(x)= bl(x) almost everywhere in 1.
Since u,= Ilu ll,v , we conclude from (4.5), (4.17), and (4.19) that lim_ u,(x) =o
for almost every x 1. Hence we see from (4.11), (4.27), and the definition of g/(x) that

But this is a direct contradiction of the first inequality in (4.8). Hence, (4.16) does
indeed hold.

From (4.16), we immediately obtain from Lemma 2 that there exist u Hlp,o with
properties (3.9)-(3.12). We would like to show that (3.13) holds. Equation (3.13)
follows from (3.14) and (3.15) exactly in the same manner as before. Hence, it remains
to establish (3.14) and (3.15). To establish (3.14), we see that (3.19)-(3.21) follow once
we show that (3.22) holds. Since (3.21) implies (3.14) via [13, p. 70], to establish (3.14)
it suffices to establish (3.22). We now do this. In particular, we have to show

(4.28) 1,,irn fn Ai(x, u,,, Du,,)(Diu,,-Du*=)p(x)=O

under the assumptions that (4.12) and (4.16) hold and also that (3.9)-(3.12) hold.
From (3.9) and (Q3), we see that (4.28) will follow once we show

(4.29) lim (u,, u, u*) 0.

Replacing u by u,- u* in (4.12), we see from (3.9) and (3.12) that (4.29) will follow
once we show

(4.30) lim (g(’, ttn), tin--U)p--0.

Now it follows from (4.11) and (f3) that

(4.31) ]g(x, u,)] -< :z(x)+(K + Al*)lUnl.
Hence it follows from (3.9) that there exist Kll such that n ]g(x, Un)l:zp <--Kll for all
n. Using (3.9) once again, in conjunction with this last fact and Schwarz’s inequality,
gives (4.30). Hence (3.14) is established. Equation (3.15) follows exactly as before
using (3.30). Since (3.14) and (3.15) hold, as we have already shown, (3.13) holds.

To complete the proof of the theorem, it remains to show that (3.9)-(3.13) along
with (4.12) and (4.16) imply (4.9). Let u be given in Hvl,p. Then it follows (Q3), (3.9),
(3.10), and (3.13) that

(4.32) lim (Bo(’, u,,, Du,,)Un, u), (Bo(" u, Du)u u),.

Next, we see from (4.31) and (3.9) that

is a uniformly bounded sequence. Hence, it follows from (3.10) and Egorott’s theorem
that

(4.33) lim (g(.,
j-co

Likewise, we see from [Q2] and (4.16) that

{IIA,(’, u, Du,,j)-A,(., u, Du)llv}jl
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is a uniformly bounded sequence for 1, , N. Hence, it follows from (3.10), (3.13),
Egoroff’s theorem, and the fact Diu Lp that

(4.34) lim (Ai(’, u,,,, Dunj), D,u)p (A,(., u* Du*), Du)p

From (4.12) and (3.9) in conjunction with (4.32)-(4.34), we conclude that

((u, u))= AI*(U, U)v +(g( , u), u), + G(u).

From (4.11) we see this is the same as (4.9). The proof of Theorem 2 is therefore
complete.

5. A corollary with some examples. Using the techniques presented in this paper,
we can also obtain the singular quasilinear analogue of Theorem 3 of [6]. The details
are left to the interested reader.

We close with the following corollary and some examples illustrating said corollary.
We shall need the following asumption in the sequel, g(t) is a bounded continuous
function with

(5.1) g+ lim sup g( t), g_=liminfg(t), andg+<g(t)<g_ for-o<t<t.
t-o t-

COROLLARY. Let c s, N >--1, be an open connected set and let p and p satisfy
(1.2) and (1.3). Assume that Q given by (1.0) satisfies (Q1)-(Q5), that Op,p(f) holds,
and that G[H,p()]*. Assume also that L given by (4.0) satisfies (El) and (L2),
that Q is .-related to L, and that

,(U, 1)= AI(u, l)p VU H,()
where tl is given in (4.5). Assume furthermore that g is a bounded continuous function
satisfying (5.1). Then a necessary and sufficient condition that there exist u* Hp,,(l)
with the property that

(5.3) (u*, u)= AI*(U, u)p + (g(u), u), + G(u)

for all u Hlp,(f) is that

(5.4)

It is clear that f(x, t) g(t)+ h*t satisfies (fl), (f3), and (f4). Hence the sufficiency
condition of the above corollary follows immediately from Theorem 2. To prove the
necessary condition, suppose there exist u H, such that (5.3) holds. Take u bl
in (5.3). Then it follows from (5.2) that

But (5.1) implies that

g+ < g(u*(x))< g_ for a.e. x in f,

and (5.4) follows from (1.2), (4.5), and (5.5). Hence the necessary condition of the
above corollary is established.
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We now give some examples for which the corollary holds. In particular, in the
following examples we shall have to show that Q satisfies (Q1)-(Q5), that (2 is .-related
to L, and that (5.2) holds.

For our first example, we consider the case where F1 01 in (1.2) and take

Lu Di pDiu + pu,
(5.6)

Qu -O,p{1 +[I +lDul2]-l/2}D,u + pu.

We see that A(x, t, sc) {1 +[1 / 1:1=3-1/=}: and Bo 1. It is clear from [9, p. 96] that
Q meets (Q1)-(Q5) and that

(5.6’) 9(u, v)- (u, v) y, p[1 + IDul]-l/:ZD,uD,v.

Since F1 =00 constants are in Cp,p(’). It therefore follows from (4.1) and (4.3) that
bl- @1 c5 where c5 is a positive constant and A1 Crl--1. Also, we have from (5.6’)
that (u, u)-(u, u)>-O. Consequently, (4.7) follows immediately, and also we see
from (1.7), (4.15), and this last inequality that A*->_ cq. But from (5.6’), we have that
(nbl, nbl) n2((l, tl) n2t:rl. Therefore,

hence AI* <- trl. Thus AI* trl, and (4.6) is established. Since we have already established
(4.7), we have that Q is .-related to L. From (5.6’) we also see that (u, bl) (u, bl)
trl(U, bl). Consequently, (5.2) holds and our example is fully established.

We observe that F1 =0 in the cases (1.10), (1.15), and (1.16) discussed in 1.
Hence the above example covers these cases.

For a more sophisticated example, we consider the case where F(t) is a continuous
nondecreasing function on [0, oo) with

(5.7) F(0)=>0 and limt[1-F(t)]-0,

e.g., F(t)- t/x/1 + , t/(1 + t2), [(1 + t)/(2+ t2)]3/, etc. For such an F, the first
example we consider is where L has the eigenfunctions that are given in (1.11). For
this case f--x where 2 and p(x)= p(x)- e-. We then have that

_X2(5.8) Lu -e-XDlU-e-XDu-D3[e 3D3u] + e

and we take

(5.9) Qu -e-X[Ou + Ou]-2-’O3 e-X[1 + F([O3u[)]O3u + e-Xu.
Now it follows from the discussion in 1 that crl=A1 =71+1 and 4,1=q,1
l(Xl xz)Ho(x3)/=1/4.

From the fact that Ho(x3)= 1, it follows from (1.6) that

o(lg, 1)

Hence, it follows that

(5.10) 9(u, (1)- O’I<U, l>p U 6 Hlp,p
and (5.2) is established provided we can show or1 A*, i.e., that Q satisfies (4.6). We
also have to show that Q satisfies (4.7) and (Q1)-(Q5).
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To establish these facts, we observe from (5.9) that Bo 1, AI(X t, )’1,
a2(x, t, s) :2, and A3(x, t, :)= 2-111 + F([:3l)]s3. It is clear from (5.7) and the fact
that F(t) is nondecreasing on [0, oo) that Q meets (Q1)-(Q5). Also it follows from
(5.8) and (5.9) that

(5.11) (u, u)-o(u, u)---2-1 fo e-XJ[1 F(ID3ul)]]D3ul2.

Consequently, (u, u) <_- (u, u) for all u H,p and we conclude from (1.7) that

5.12 h 1" < lim inf u, u /[1 u U np,p.

But for u O, (u, u)/ilull==  (u/llull u/llull ) and from (4.15)(a) (b) we see thatP P’

inf (u, u) o’1, U H.p.

Hence, it follows from (5.12) that

(5.13) AI*_-< trl.

On the other hand, from (Q3) and (Q4) if lim._.oo (u., u.)p oo and

(5.13)’ lim (u., u.)/(u., u.)p AI*,

we see from (4.7) that h*-> or1. This fact coupled with (5.13) gives (4.6).
It remains to establish (4.7). It is clear from (5.11) that (4.7) will follow if we can

show the following. Given {u,}n=l an arbitrary sequence in C, such that

(5.14) lim u, p, oo,

then

(5.15) irn f e-[1- F({D3u, l)]lD3u,12/llu, JJp,o =0.

Now we recall once again that l’l 1 x R where lrl c R2 is a bounded open connected
set. Let e >0 be given. Using (5.7), choose T>0 such that t]l-F(t)]< e for => T.
Let 1ql, {x fl: ID3un(X)[ > T} and 1"12, l’l\fll,. Since l’l 1"11, [.J 1"12,, it follows that

e-’[1 F(IDu21)l IDu.I <= TZ(meas + e [lUn ]]p,o (meas fi) 1/27/.1/4"

Dividing both sides of this last inequality by Ilu.llp,, we see that

sup e-l 1 F(IDl)l lowell=/II I1,.-<- e(measlim fi) 1/2,/./. 1/4.

Since e is arbitrary, (5.15) is true. Hence (4.7) holds, and our example is completely
established.

For our final illustration we choose fl (0, 1) x 1 and p(xl, x) p(xl, x:)
xle-’. We take

(5.16) Lu-- -DI[x e-X2Dlu]-D2[Xl e-XzDzu]+xl e-Xu
and

e-X2-1(5.17) Qu= DI[X e 2Dlu D2{x [l+F(lD:ul)]D:u}+xle-u.
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Then it follows from (1.6) and (4.1) that

(5.18) (u,/)) -,(u, )) -f x e-X2-1[1- F(lD2ul)]D2uD2v.

Since l(Xl, X2)=constant multiple of JO(T]lXl) where 71 is the first positive zero of
Jo, it also follows that the integral on the right-hand side of (5.18) is zero when v bl.
Hence, we see from (5.18) and (4.3) that

(5.19) (u, 1) 9( u, (1)= O’l(U, l)p u E H

Therefore, (5.2) will follow once we show that (4.6) holds. We also have to show that
(4.7) holds and that Q satisfies (Q1)-(Q5).

We see from (1.0) and (5.17) that Bo=l, Al(X, t,:)=l, and A2(x, t,:)=
2-111+F(1=1)].. It is an easy matter to see from (5.7) and the fact that F(t) is
nondecreasing on [0, oo) that (Q1)-(Q5) hold. Also it follows from (5.18) that (u, u)=<
(u, u) and hence as we did in (5.12) and (5.13), we obtain that AI* =< rl. But from
(5.13’), we obtain as before using (Q3)-(Q4) and (4.7) that Al*->crl. Consequently,
(4.6) holds. To establish (4.7) we assume (5.14) holds and show with the identical
proof used before for (5.15) that

irn f X e-"[1 f(lD=u.l)]D=u./llull,,,,, -o.

Consequently, it follows from (5.18) that (4.7) is true. Therefore, Lu and Qu given,
respectively, by (5.16) and (5.17) satisfy the conditions in the hypothesis ofthe corollary
and our last example is completely established.
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Abstract. By using the summation and transformation formulas for balanced very well poised
basic hypergeometric series an extension of Askey and Wilson’s q-beta integral involving five param-
eters is evaluated, where one of the parameters has modulus greater than 1. The result is then
applied to obtain the biorthogonality relation for a system of real-valued rational functions on [-1, 1]
representable as terminating balanced very well poised 109 series.
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1. Introduction. Euler’s beta integral

(1.1) (1 x)a(1 + x)# dx 23+#+i F(a + 1)F(/ + 1)
+ # +

Re(a, ) > -1, has been extended in many different ways (see [1]-[10], [17]), but the
extension that has received particular attention in recent years is Askey and Wilson’s
[10] q-beta integral given by

w(x; a, b, c, d) dx

where

(1.3)

with

(1.4)

(abcd; q)
(q, ab, ac, ad, bc, bd, cd; q)

w(x; a, b c, d) h(x; 1,-1, ql/2, _ql/2)
k(7{a:,: d) (1 x2)-1/2,

k

h(x;al, a2,...,ak) H h(x;aj),
j-’l

(1.5) h(x; a) H (1 2axqn + a2q2n)
’--0

(aei,ae-i;q) when x cos0,

and the q-shifted factorials are defined by

(1.6) (a;q)n 1
(1 -a)(1 -aq)...(l -aq)
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(1.7) (a,q)= lim(a;q)n whenlql<l,

(1.s)
k

(al, a2,..., ak; q)n H(aj; q)n.
j--1

It will be assumed throughout the paper that Iql < 1. Formula (1.2) is valid
provided max (lal, Ibl, Icl, Idl) < 1. If one of the parameters, say a, is greater than 1 in
modulus but is such that laqm+l < 1 < laqml for some nonnegative integer rn then,
as Askey and Wilson [10] showed by a contour integration argument, and as Gasper
and Rahman [13] proved by real integration, (1.2) must be modified by the formula

1 /_
m (abcd; q),o

w(x; a, b, c, d) dx + E wk2"
k=O

(q, ab, ac, ad, bc, cd; q)o

where
(1.10)

wk (q, ab, ac, ad, a/b, a/c, a/d; q)
(1-a2q2k)(a2, ab, ac, ad; q)k i’ q " t:

(. -- -aV)(-(,,-7;aqlc, aqld; q)k (.abcl)

Nasrallah and Rahman [15] considered an extension of the integral in (1.2) by
introducing a fifth parameter and in [16] Rahman gave the following extension:

(1.11) if v(x; a, b, c, d, f) dx g(a, b, c, d, f),
2r

where

(1.12) v(x; a b, c, d, f) h(x; 1,-1, q/2, _ql/2, abcdf)
h(x; a, b, c, d, f) (1 x2)-/2,

and

(abcd, abcf abdf acdf bcdf q)(a, b, c, d, f) (q, ab, ac, ad, af, bc, bd, bf, cd, el, dr; q)

provided

(1.14) max (lal, I1, I1, Idl, Ifl) < 1.

Askey [5] gave a direct proof of (1.11) by a functional equation method. Our
first objective in this paper is to give an evaluation of the integral in (1.11) when
the modulus of one of the parameters exceeds 1 while the moduli of the other four
parameters remain less than 1. Suppose m is a nonnegative integer such that

(1.15) lfq’+x < 1 < Ifq’l.

We will prove in 3 that

(1.16) if
m

v(x; a, b, c, d, f) dx + vk(a, b, a, d, f)
271"

k=0

,(a,b,c,d,f),
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where

(abcd, abcdf2, f-2;vk(a, b, c, d, f) (q, af, bf, cf, dr, a/f, b/f, c/f, d/f; q)
(1.17)

(1- f2q2k)(f2,af, bf, cf, df, q/abcd;q) q}.
(1 f2)(q, fq/a, fq/b, fq/c, fq/d, abcdf2; q)k

It is clear that (1.16) reduces to (1.9) when any one of the parameters a, b, c, d ap-
proaches zero.

The main objective of this paper, however, is to prove the following theorems.
THEOREM X, Lt max(ial, Ibl, Icl, Idl) < 1, Ill < rain (lal, Ibl, Icl, Idl) and t N b

a nonnegative integer such that

(1.18) Ifq-NI < 1 < Ifq-N-l.

Let

(1.19)

(1.20)

Rm(x) Rm(x; a, b, c, d, f)
(a2bcdf bcdf dei, de-i; q)m

(ad, d/a, abcdfeiO, abcdfe-i; q)m
Mm(x; a, b, c, d, f),

Sn (x) Sn (x; a, b, c, d, f)
(aq/f q/af, deiO, de-i; q)n
(ad, d/a, qe/f qe-/f q)n

M,(z; a, b, c, d, fq-),

where x cos O, 0 < 0 < 7r, and

Mk(z; a, b, c, d, f(.)
oWa(aq-k/d; q-/bd, q-/cd, 1/df, abcf, aeo, ae-0, q-; q, q),

where the symbol loW9 represents a very well poised lo9 series defined in 2. Let

(1.) L,, .= (; , b, , e, I)()S.() e.

If re 0,1,..., and n 0,1, N, then

(.23)

(.2a)

Lm,n a(a, b, c, d, f)6m,n/hn,

(1 abcdq2n-1)(abcdq-1, ab, ac, ad, 1/af bcdf/q; q)nqn"h 1 abcdq- )(q, cd, bd, bc, a2bcdf, aq/f; q)n
THEOREM 2. Let a, b, c, d, f satisfy the same conditions as in Theorem 1.

n >_ N + l, then

n-N-1

Lm,n + vk(a,b,c, dqn, fq-n)Rm(xn-k;a,b,c,d,f)
k=O

(afq-n, fq-n/a;q)n(1.25) M"(x"-k;a’b’c’d’fq-) (’id/a;q)n
t(a, b, c, d, g)6m,n/hn,
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where

+
In 4 we will give the proofs of Theorems 1 and 2. In 2 we will give the definition

and some properties of the very well poised basic hypergeometric series that will be
needed to complete the proofs in 3 and 4.

In [16] Rahman found a biorthogonality relation for essentially the same rational
functions, but with respect to a complex measure on the unit circle. This paper deals
with the problems that arise when we try to convert that integral to a real one on the
interval [- 1, 1].

2. Very well poised basic hypergeometric series. A basic hypergeomet-
ric series r+lCr in base q and with r -+- 1 numerator parameters and r denominator
parameters is defined by

(2.1) r+lCr al’a2’’’’’ar+l ]
n--0

which terminates and hence becomes a polynomial of degree k in z when one of the
numerator parameters is of the form q-k, k 0, 1,.... If the series does not terminate,
then we will naturally assume that the series converges, which is guaranteed by the
inequality ]z < 1. Whether or not the series terminates it will always be assumed
that the denominator parameters are such that no zero factors appear in any term
of the series in (2.1). When z q and qala2...ar+l bl...br, we call the series
balanced. If qal a2bl a3b2 ar+lbr, the series is said to be well poised. If,

1/2in addition, a2 qa/2, a3 -qa the series is said to be very well poised. Because
of the frequent use of very well poised series in this paper we shall use the following
abbreviated notation:

r+Wr(a; a4, a5,..., at+l; q, z)
(2.2) a1,1 ,-qa a4,..., ar+l

"=+ ;q,zal-aI qla ,,al alq/ar+l

One of the most useful summation formulas in the theory of basic hypergeometric
series is Jackson’s [14] formula:

(aq, al, aq/bd, aq/cd; q)(2.3) sWT(a; b, c, d, e, q-n; q, q) (aql’bTq, <qld, <lbcd, ;q)’
where n O, 1,..., and

(2.4) a2qn+l bcde,

which expresses that the terminating sW7 series in (2.3) is balanced. Almost as
important as (2.3) is Bailey’s [11] nonterminating extension of it:

sWr(a; b, c, d, e, f; q, q)

(aq, b/a, c, d, e, f, bq/c, bq/d, bqle, bqlf q)o+ (qb2/a, a/b, bc/a, bd/a, be/a, bf/a, aq/c, aq/e, aq/f; q)o

(2.5) sW,r(bla; b, bcla, bdla, be bfla; q, q)
(aq, b/a, aq/cd, aq/ce, aq/cf aq/de, aq/ef q)o

(aq/c, aq/d, aq/e, aq/f bc/a, bdla, be/a, bfla; q)
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where the balance condition (2.4) is replaced by

(2.6) qa2 bcdef

We shall also need Bailey’s [12] lo9 transformation formula see [13, eqn. (2.12.9)],
which can be written in a somewhat compact form as follows:

()q, b/A, aq/f aq/g, aq/h, bf/a, bg/a, bh/a; q)o
V(,; b, c/a, ,dla, ,ela, J’g, h; q, q),

where

(2.8) q2a3 bcdefgh, qa2/cde,

and

(2.9)
V(a; b, c,d, e, f, g, h; q, q)
-loWg(a; b, c, d, e, f, g, h; q, q)

/
(aq, b/a, c, d, e, f, g, h, bq/c, bq/d, bq/f, bq/g, bq/h; q)

(qb2/a, a/b, bc/a, bd/a, be/a, bf/a, bg/a, bh/a, aq/c, aq/d, aq/e, aq/f aq/g, aq/h; q)

loW9(b2/a; b, bc/a, bd/a, be/a, bf/a, bg/a, bh/a; q, q).

If h q-n, n 0, 1,..., then the coefficients of the second 10W9 series in both V-
functions in (2.7) vanish and we get the terminating form of (2.7), namely,
(2.10)

loW9(a; b, c, d, e, f, g, q-n, q, q)

(aq, aq/bf aq/bg, aq/fg; q)n
(aq/b, aq/f aq/b, aq/bfg; q)n

loW9 (,; b, 1, d$/a, ela, f, g, q-n; q, q).

In [16] the author found a representation of a V-function in terms of an integral of
the type (1.2) and (1.11). By an iteration of the transformation formula (2.7) that
representation can be expressed in the following form:

1 /_ h(x; 1,-1.ql/2, _ql/2, c, d)(1 x2) -1/2(2.11) 2- t-i-: a: a3--,"a-: ;: a--6i dx

(q, c2, d/c; q)o YIl<j<k<6(ajak;
V(c2/q; cdlq, c/a1, c/a, cla3, c/a4, cla, c/a6; q, q),

where the balance condition of the V-function as well as the integrand in (2.11) is
expressed by the relation

(2.12) cd ala2a3a4a5a6.
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The modulus of each of the denominator parameters aj, j 1,..., 6, is, of course, less
than 1. Situations where this restriction may not hold are no interest to us in this
paper. The form of the expression on the right side of (2.11) may not be the most
useful one but it is the easiest one to remember because of its symmetry.

3. Proof of (1.16). If f +1 in (1.12) then the functions h(x; :t=1) and h(x; f)
cancel, and hence it follows by continuity that

v(x; a, b, c, d,-4-1) dx (a, b, c, d, :i=l),

provided, of course, that

(3.2) max(lal, Ibl, I1, Idl) < X.

If f # :t:l but Ill 1, then h(x; f) 0 for some x in the interval (-1, 1), and so
the integral in (1.11) does not converge. Similary, this integral does not converge if
]fq"l 1 and fqn # +1, for some positive integer n. If there is a nonnegative integer
m such that

(3.3) Ifqm+X < < Ifql

and if fa+1, fb+, fc+, fd+ are not of the form q-n for any nonnegative integer n,
then the integral in (1.11) converges and it can be evaluated in the following way.
Since

h(x; f) (feiO, fe-i; q)m+h(x; fqm+)

f.+q.+. h(z; fq’+, f-/f)
h(x;q/f)

we get by denoting the integral on the left side of (1.11) by J(a, b,c, d, f),

J(a,b,c,d,f)

? h(x; 1,-1, ql/2 _q/2, abcdf, q/f)(1 x2)-/2f-2m-2q-m-m
m+l m

where it is assumed that the inequality (3.2) is also satisfied. Since the parameters
in the integrand of (3.5) satisfy (2.12), we may apply (2.11) to obtain the following
relation:
(3.6)
J(a, b, c, d, f) -’Kin (a, b, c, d, f)

V((abcdf)2/q; abcd, abcy, abdf, acdy, bcdy, abcdq-m-, abcdf2qm; q, q),

where

Km(a,b,c,d,f) (a2bcdf ab2cdf abc2df abcd2f abcdf2; q)
(q, ab, ac, ad, bc, bd, cd, af, bf, cf, dr; q)

(abcd, f-2;q)
(a/f, b/f, c/f, d/f, (abcdf) 2, 1/abcdf2; q)
(qf2, q/abcd, afq, bfq, cfq, dfq; q)m

(q, qabcdf2, fq/a, fq/b, fq/c, fq/d; q)m
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We now apply (2.7) on the V-function on the right side of (3.6) to get

V((abcdf 2/q; abcd, abcf abdf acdf bcdf abcdq-m-i abcdf2qm; q, q)

(abcdf 2, q/abcdf2, abcfq, abc/f dfq, d/f; q)
(a2b2c2df q/abcf abcd2f q/df qabcdf2, f-2; q)
(qabcdf2, q, fq/d, fq/abc; q)m/(abcfq, dfq, qf2, q/abcd; q)m

V(a2b2c2df/q; abcd, ab, ac, bc, abcf, abcdq-m-i, abcdf2qm; q, q).

Using the definition (2.9) of the V-functions, we have

(3.9)

V(a2b2c2df/q; qbcd, 2b, 2c, bc, abcf abcdq-m-i, abcdf2qm; q, q)

ioW9(a2b2c2df/q; abcd, ab, ac, bc, abcf, abcdq-m-i, abcdf2qm; q, q)

(a2b2c2df q/abcf ab, ac, bc, abcf abcdq-m-i, abcdf2qm; q)+ (dq2 If, abcf/q, q/cf, q/bf, q/af, q, dq-m/fdfqm+l;q)o

(q/cd, q/bd, q/ad, dq/f q+2, q-’/f2; q)
(abc2dr, ab2cdf a2bcdf abcd, abcfqm+l, abcq-m/f q)o

loWg(dq/f; abcd, q/af, q/bf, q/cf, q, dq-m/f, dfqm+l; q, q).

Because of the cancellation of a numerator and a denominator parameter in the first
loW9 series on the right side of (3.9), it reduces to

sWT(a2b2c2df/q; ab, ac, bc, abcdq-m-i, abcdf2qm; q, q),

which is very well poised and balanced and so Bailey’s summation formula (2.5) is
applicable. Thus

loW9(a2b2c2df/q; abcd, ab, ac, bc, abcf abcdq-m-i, abcdf2qm; q, q)

a2b2c2df abdf acdf bcdf aq-m/f bq-m/f cq-m/f q-m/abcf q
a2bcdf ab2cdf abc2df dr, q-m/af q-m/bf q-m/cf abcq-m/f

(a2b2c2df ab, ac, bc, abcdf2qm adq-m bdq-m, cdq-m; q)
a2bcdf ab2cdf abc2df dr, abcfqm, q-m/af, q-m/bf q-m/cf

(q-m/abcf, q-2m/f2;q)o
(abcq-m/f dq-2m/f;

sWT(dq-2m-1 If; abcdq-m-i, q-m/af, q-m/bf, q-m/cf, dr; q, q).

By using cancellation this last sW7 series can be written as a very well poised nonter-
minating balanced 10W9 series in many ways, but the one of particular interest to us
is the following form:

(3.11)
8WT(dq-2m- /f; abcdq-m-i, q-m/af, q-m/bf, q-m/cf, df; q, q)

ioWg(dq-2m-i/f; dq-m/f, q-m/af, q-m/bf,

q-m/cf abcdq-m-i, dr, q-re;q, q

The appearance of q-m in the numerator may indicate that it is a terminating series,
but in fact it is not because of the cancellation with the q-m term that occurs in the
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denominator below dq-m/f when we write out the 10W9 series in (3.11) as a very well
poised loW9 series. The whole purpose of this particular choice is that the 0W9 in
(3.11) can now be matched with the second 0W9 series on the right side of (3.9) and
their coefficients are such that they combine into a single V-function.

Using (3.7)-(3.10) in (3.6) and simplifying the coefficients we obtain

(3.2)
J(a,b,c,d,f)

abcd, abcfqm+ abcdf2qm, f-2; q)o (1 abcf,(a, b, c, d, f) (q, dr, abcfqm, afq, bfq, cfq, a/f, b/f, c/f, d/f; q)

(/ad, g/d, /d,;).(’;)(df)’
(.f/a, /, j’/; )., (1’/d;

Y(d-’-/1’; d-’/.f, -"/,, -"/.f, -"/f, dr, ad-’-, -"; , ).

We now apply (2.7) on the V-function on the right side of (3.12) and find that because
(q-’; q)o 0 for m 0, 1,..., it transforms to a multiple of a single terminating
balanced 0W9 series. Thus we find that

J(a,b,c,d,f)

(abcd, abcdf2, f-2; q)o(a, b, c, d, f) (q, af, bf, el, dr, a/f, b/f, c/f, d/f; q)
(.)

(q/ad, /,d, /d, g/a,d,, d.f;
(, .f/,, .f/,, .f/, .f/d, /,d.f ),
loWg(abcd2fq-m-; dq-m/f, abdf, acdf, bcdf, dr, abcdq-m-, a-m; q, q).

Using an iteration of (2.10) (see also [13, Ex. (2.19)]), we may now transform this
0W9 series as follows:

oW9(abcd2fq-m-; dq-mIf, abdf acdf bcdf dr, abcdq-m-, q-m; q, q)
(/ad.f .f/a, .f/,, .f/, .f/d, ; ),
(/ad, /d, /d, g/,d, g.f, d.f; ),
oW9(f2; af, bf, cf, dr, q/abcd, f2qm+, q-m; q, q)

(q/abcd2f fq/a, fq/b, fq/c, fq/d, q; q)m
(/ad, /d, /d, /ad,,df; ),
m (1 f2q2k)(f2, af, bf, cf, dr, q/abcd; q)k

qk
(1 Si-7-77q, Sq/d, abcdS; q)k

k--O

Substitution of (3.14) into (3.13) then yields (1.16).
It may be remarked that the same method can be applied to evaluate the integral

in (1.11) when two or more parameters satisfy inequalities of the form (1.15) and other
restrictions so that no zero factors appear in the denominators.

4. Proofs of Theorems 1 and 2. By successive application of (2.10) it can be
shown that
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(4.1)

Also, (1.20) can be written in the form

(4.2)

(fq-n/a, afq-n; q)n (1 aq2k-n/d)(aq-n/d, q-n/bd, q-n/cd; q)k
(ad, d/a; q)n (1 aq-n/d)(q ab, ac; q)k

k=O

(q/df, abcf/q, q-n; q)k d2kq2nk_k h(x; a, d, f)
(afq-n, q2-n/bcdf aq/d; q)k h(x; aqk, dqn-k, fq-n)

In (4.1) and (4.2) x cos0, and the h functions are as defined in (1.4) and (1.5).
Substituting (4.1) and (4.2) into (1.22) we find that

(bc, bd, 1/bf abcdf q)(fq-/a, afq-; q)n,
(, d,/f ad]; q)(ad, d/a; q)
m ( dq-)(ad]q-,I,d,d]; q)

(4.a) =0

(aq-,q-; q) q ( aq-/)(aq-/,q-/; q)

k=O

(-/d, q/dl, a]/q, q-;)dq:_,,,

where

(4.4) v(x; aqk bqJ, c, dqn-k fq-n)dx.I.,.,, -For j _> 0, n _> k _> 0, where n 0, 1,..., N with Ifq-NI ( 1, the parameters in the
integrand of (4.4) are all less than 1 in the modulus and so, by (1.11),

(4.5)

Im,n,j,k a(aqk, bqJ, c, dqn-k, fq-n)
(ad, bd, cd, abcfq-n; q)n

a(a, b, c, d, f) (afq_n bfq_n, cfq_n, abcd; q) n
(ab, bc, bfq-n, bdqn; q)j

(abcdqn abcfq-n, abdf bcdf q)
(afq-n, abqJ, ac, ql-j/bcdf; q)k d_2kqk+k2_2nk.

(q/df ql-n-J /bd, q-n/cd, abcfqj-n; q)k
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When we substitute this into (4.3) the series over k reduces to

sWT(aq-n/d; ql-n/bd, abqJ, ql-J/bcdf abcf/q, q-n; q, q),

which is balanced and terminating and hence can be summed by (2.3). The sum is

(aql-n/d, cfq-n, ab2cdfqj-, q-J; q)n
b dI/;

which vanishes unless j _> n. Thus, Lm,n 0 if m < n. Hence, for m _> n we find
after some simplifications that
(.6)

Lm,n (a,b,c,d, f)
(bc, bd, 1/bf, a2bcdf; q)m(aq/f, cd; q)n(ab2cdf; q)2n

(bf)n(ac, ad, f ab cd.f; bcdf/q; q), (abcd;
abcdqm-1, q-m;

(,7-7:____-----__-;:;T:-_...::-_n6Ws(ab2cdfq2n-1, calq,,o;q)
bf, abcdqre+n-l, qn-m; q, q).

The 6W5 series in (4.6) is a special case of the 8W7 series in (2.3) and it has the sum

(ab2cdfq2n, ql+n-m; q),’-n
(abcdq2n, bfql-m+n; q)m-n

which vanishes unless m- n. Hence

Lm,n a(a, b, c, d, f)
bc, bd, cd, 1/bf aq/f a2bcdf q n abcdqn-l, q-n; q n

(ad, ac, ab, bcdf/q, liar; q)n(bfql-n; q)n(abcd; q)2n

a(a,b,c,d,f)
(1 abcdq-1) (q, bc, bd, cd, aq/f, abcdf; q),

1 abcdq2n- 1 )(abcdq- 1, ad, ac, ab, bcdf/q, 1/af; q)n
q-n5m,n.

This completes the proof of Theorem 1.
Thus, the system of rational functions Sn(x), n O, 1,... ,N, is biorthogonal

to Rm(x), m 0, 1,..., when Ifq-NI < 1 < Ifq-N-11 with respect to the positive
measure v(x; a, b, c, d, f)dx on (-1, 1). Orthogonality of finitely many polynomials
with respect to positive measures has been a topic of current interest; see Askey [7],
[8].

To prove Theorem 2 we observe that when n N + 1, N + 2,..., Lm,n is again
given by (4.3) and (4.4), but because of the fact that ]fq-n > I with ]fq-N] < i <
Ifq-N-11, Im,n,j,k has an additional contribution which, via (1.16), is

(abcdqn+j, abcdf2qj-n, f-2q2n;

(4.8)

(q, afqk-n, bfqj-n, cfq-n, dfq-k, aqk+nIf, bqn If, cqn If, dq2n-kIf;---- 2 2l 2n 2 2n k n 3 n nn (1-f q )(f q- ,afq ,bfq’- ,cfq- ;q)
2 2n k n 13 n n

(dfq-k, ql-n-j /abcd; q)lq
(fql-2n+k /d, abcdf2qj-n; q)l
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As a consequence Lm,n has an additional term given by

n-N-1

Z vl(a’b’c’dqn’fq-n)
/=0

(bc, bd, 1/bf, a2bcdf q)m (fq-n/a, afq-n; q)n
(ac, ad, liar, ab2cdf q)m(ad, d/a; q)n

loW9(ab2cdfq-1;abcf, abdf, bcdf, bfql-n, bah-ill, abcdqm-, q-m; q, q)

q/dL a  I/q, q, q).

By (1.21),

(4.10) oW9(aq-n/d; ql-n/bd, q-n/cd, q/df abcf/q, afql-n, aqn-l If, q-n; q, q)
M,(xn_l;a,b,c,d, fq-),

where Xn-l is defined in (1.26).
Also, by (4.1),

(4.11)
oW9(ab2cdfq- abcf abdf bcdf bfql-n, bqn-l /f abcdqm-, q-m; q, q)

(ac, ad, liar, ab2cdf; q)m Rm(xn-l; a, b, c, d, f).

Substitution of (4.10) and (4.11) in (4.9) completes the proof of Theorem 2.
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Abstract. The asymptotic behavior of Jacobi polynomials P:+an’13+bn(x) and Laguerre polynomials
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1. Introduction. The Jacobi polynomials {P’’(x)} are orthogonal on [-1, 1] with
respect to (1-x)(1 + x)’ when a >-1, /3 >-1. We shall refer to a and /3 as the
parameters of the Jacobi polynomial. The asymptotics of the Jacobi polynomials, as
n--> o for fixed x, a, /3 follow from Darboux’s asymptotic method and generating
functions (Fields [7], Olver [12], Rainville [14], Szeg/5 [17]). The polynomials oscillate
when x (-1, 1) and grow exponentially in the complex plane cut along [-1, 1].

In this work we study the asymptotics of P’j+a"’3+bn(x) and L’j+a’(b+ nx) as
n->, and a, b, a,/3, x remain fixed. The asymptotics of Jacobi polynomials lay the
groundwork for a proposed study of the asymptotics of the Racah coefficients 1 ], [2],
[4], [5], [13]. The connection between the two problems is that the Racah coefficients
are integrals of products of Jacobi polynomials.

Askey and Wilson [3] introduced a q-analogue of the 6-j symbols and the Racah
coefficients. Ismail and Wilson [9] derived the main term in the asymptotic expansion
of these q analogues. Later Ismail [8] derived the complete asymptotic expansions of
the q analogue of the 6-j symbols and the Racah coefficients.

The approach we used in this work is to apply the method of Darboux to the
generating function

(1.1) Z P’J+an"+b"(x)tn=(l+)"+l(l+q)’+l[1-a-bq-(l+a+b)rl]-1,
n:0

where : and 7 depend on x and in the following fashion:

(1.2) =1/2(x+l)t(l+)l+a(l+q) l+b and r/=1/2(x-1)t(l+:)l+a(l+7) l/b.
The generating function (1.1)-(1.2) is due to Srivastava and Singhal [16].

The singularities of the right-hand side of (1.1) are at : =-1, r/=-1, or when

1 a:- bn -(1 + a + b):n =0.

It is easy to see that, if a > -1 and b > -1, then the t-singularities of smallest absolute
value make

1 a:- b/-(1 + a + b):,/=0.
This occurs if and only if

(1.3) (x + 1) [a(x + 1)+ b(x- 1)]:+ (1 + a + b)(1 x):2 0,

* Received by the editors May 17, 1988; accepted for publication September 4, 1990. This research was
partially supported by a grant from the National Science Foundation. The support of the Graduate College
at Arizona State University in the form of a research assistantship is acknowledged. Pa1"t of this work was
done at Arizona State University.

" Department of Mathematics, University of South Florida, Tampa, Florida 33620.
$ Present address, Department of Business Mathematics, Soochow University, 56, Kuei-Yang St., Sec

Taipei, 10001, Taiwan, Republic of China.
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since

(1.4)

The roots of (1.3) are

(1.5)

where

(1.6)

q (x-1)U(x + l).

b(x -1) + a( l + x) + x/
-2(l+a+b)(x-1)

A: [a(x + 1)+ b(x- 1)]2-4(1 + a + b)(1-x2).
The corresponding 7’s will be denoted by r/+.

Section 2 contains some preliminary calculations that will be used to determine
the strong asymptotics of the Jacobi polynomials under consideration. Our main results
on the strong asymptotics of Jacobi polynomials are stated and proved in 3. In 4
we derive the corresponding asymptotic results involving Laguerre polynomials. This
work concludes with 5 where we describe the connection between our results and
the results of Mhaskar and Satt 10], Moak, Saff, and Varga 11 ], and Saff and Varga
[15] on nth root asymptotics of Jacobi and Laguerre polynomials. The work on nth
root asymptotics was motivated by a theorem of Lorentz on approximation by incom-
plete polynomials.

2. Preliminaries. Throughout this section we will assume that a, b, and x are real.
It follows from (1.2) and (1.5) that the t-roots of (1.3) are

b(x 1) + a(1 + x) + --a--l[ -b-1(2.1) t+/-= (a+b+l)(l_x2) [1+ :=] l+n+/-]

We need to know how to expand as a function of near the singularities t.
Differentiating the first relation in (1.2) and using (1.4), we find

dt
(2.2) (l+)(l+)-d-=t[1-a-brl-(a+b+l)7],
which shows that dt/d vanishes at : so+/-. We then proceed to compute d2t/d. A
calculation gives

d2t
+/- t+/-x/ {:+/-(1 + x)(1 + :+/-)(1 + r/+/-)}-’.

ds2 e

We set

(2.3) A+/-=+1/2t+/-x/-Z{+/-(l+x)(l++/-)(l+7+/-)}-1.
Therefore as t+/- and s- :+/- we must have

(2.4) t+/--t--A:(+/--)2.

This shows that sc+/-- {(t+/--t)/(-A+/-)}1/2 as t- t+/-, respectively. We then choose the
comparison function

(2.5) g(t) B+(t+ t) -1/2 + B_( t_ t) -1/2

with constants B+ and B_ to be determined later. Here (t+-t) 1/2 is the branch of the
square root which is continuous in the plane cut along the outward ray through
t+-lt+[ exp (it+) and which satisfies (t+-t)-l/2->lt+[ -1/2 exp (-it+ as t0. The
branch of (t_-t) -/2 is similarly defined.
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At this stage we have to consider three separate cases:

(2.6) Case 1" A<O, Case 2: A>0, Case 3:

Case I is the oscillatory case, while in Cases 2 and 3 the polynomials under consideration
grow exponentially.

We first treat Case 1. It follows from (1.6) and A < 0 that

(2.7) (1 +a+ b)(1-x2)>0.

In this case both t+ and t_ have the same absolute value. Iff(t) denotes the right-hand
side of (1.1) then the limit of (t+-t)l/Zf(t) as t t+ from the left is B+. In order to
compute the comparison function in (2.5) explicitly and derive the desired asymptotic
formula we will need the following identities. In this case simple calculations give

(2.8) ]3a + b+ 2-(a + b + 2)x + x/]2= 8(1 -x)(a + 1)(a + b + 1),

and

(2.9) ]-(a+b+2)x-(a+3b+2)+x/-lE=8(l+x)(b+ 1)(a+b+ 1).

Therefore in Case 1

(2.10) (1-x)(a+l)(a+b+l)>O and (l+x)(b+l)(a+b+l)>O

hold. We set

(2.11)
a(x + l)+ b(x-1)+x/

(l+a+b)(1-x2) =2((1 + a+ b)(1-x2)} -1/2 e ’’,

(2.12)
(a + b + 2)x -(3a + b + 2)-,/ [ 2(a + 1) ] 1/2

2(x-1)(a+b+l) (1-x)(a+b+l)

(2.13)
(a+b+2)x+a+3b+2-,f- [ 2(b+l)

2(x+l)(a+b+l) (x+i-d b + 1) eW’

We then use (1.1), (1.2), (2.1), and (2.3)-(2.5) to establish

-,rr < p <=,rr,

B+= lim (1 + sr)"+l(1 + /)/3+1[1 -a-bq -(a+ b+ 1)scr/]-l(t+ t) 1/2
t- t+

(2.14) _i(A)_,/4 E (a + b + 2)x- (3a + b+2)-v/]
L 2(a+b+l)(x-1) J

[(a + b+ 2)x + a + ab+2-/]-b/2(a+b+l)(x+l)

Similarly,

(2.15)

[(a+ b +2)x+ a+3b+2+xl]o-b2(a+b+l)(x+l)

The coefficient of t" in the comparison function g(t) of (2.5) is

(-1)"(-1/2)[B+(t+)-"-l/2+B-(t-)-"-l/2]’n

i(_/)_l/2r(a + b+ 2)x- (3a + b+ 2) +,/]B_=
k J2(a+b+l)(x-1)
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which can be simplified using (2.11)-(2.13), and

(_1), (-1/2) r(n +1/2) n -1/2

n r( )r(n + 1) x/

to establish

p+an,13+bn(x)(4v/(_sA))l/2[(1-x)(a-Fb-F1)]n(-a-1)/2-a/2-1/4\ 7rn / 2(a+l)

(2.16) .[(1-Fx)(a-Fb-Fa)]n(-b-1)/2-13/2-1/4[(1-x2)(a-bb+l)] n/2+1/4

2(b+ 1) 4

cos (l+a)n+a+- 2
-(b+l)n+fl+ - -We now treat Case 2. It is obvious that so+# sc_ when A>0. From (2.2) we

see that dt/d does not vanish between so+ and so_, hence takes different values at
so+, :_. Set

(2.17)
to t+ if It-I> It+l, to t_ if It/l> It-I,

tl t+ if It-I < It+l, to- t_ if It/l < It-I,
We also denote the B’s that correspond to to and tl by Bo and B1, respectively. The
function g(t) of (2.5) remains a comparison function, but the term that contributes to
the dominant term in the asymptotic development of the polynomials under consider-
ation is Bo( to- t) -1/.

In Case 3, A 0, hence + :_ :o and t+ t_. Set to t+ t_ and :o :+ :-.
In this case both dt/d and d2t/d2 vanish but d3 t/d does not vanish. Indeed upon
differentiating (2.2) twice with respect to : we get

d3t 2to(a + b+ 1) 1-x
(2.18) :c.

d:3 o o(1+,/o)(1+o) x+l

Therefore o : xc (to t) 1/3 as - to. If, as before, we denote the right-hand side
of (1.1) by f(t), then we replace the comparison function (2.5) by

g(t) D( to- t) -2/3,(2.19)

where

(1 + :)l+a (1 -F n)l*(to t)2/3
(2.20) D=lim

,-,o 1-a-bn-(a+b+l)q

We will evaluate D, using (2.19) and (2.20), and find the asymptotic behavior of the
corresponding P,’s in 3.

3. Asymptotics of Jacobi polynomials. Recall that x is assumed to be real and a
and b belong to (-1, ). We first state and prove a lemma that characterizes the case
A<0.

LEMMA 3.1. In order for A < 0 to hold it is necessary and sufficient that
(i) Formulas (2.7) and (2.10) hold, and so a + b + 1 > O.
(ii) (a+b+2)2x(b2-a2-4[(a+l)(l+b)(a+b+l)]1/2,

b2-a2+4[(a+ 1)(1 +b)(a+b+ 1)]1/2), whena+b-2.
Proof. Observe that

(3.1) A= (a + b + 2)2x2- 2(b2- a)x +[(b- a)2- 4(a + b + 1)]
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follows from (1.6). In 2 we already demonstrated the necessity of (2.7) and (2.10).
It is easy to see that (2.7) and (2.10) imply

(3.2) a + b+ 1 > 0.

Then A < 0 implies the restrictions on x stated in (ii). This proves the necessity of the
conditions in this lemma. We can prove the sufficiency of the assumptions by first
establishing (3.2), and then analyze A as a quadratic function of x. We will omit the
details.

Observe that if a / b--1 the x-interval in (ii) becomes empty.
LEMMA 3.2. The roots : of (1.3) are distinct and have equal absolute values ifand

only if a + b -1 and A < O.
Proof. This follows from the well-known fact that in the complex z plane the

quantities z + (z2 1) 1/2 have equal absolute values if and only if z is real and 1 _-< z _<- 1.
THEOREM 3.3. Assume a > -1, b > -1, and x satisfies condition (ii) ofLemma 3.1;

then the asymptotic relationship (2.16) holds, as n c, where p, y and 0 are as in
(2.11)-(2.13).

THEOREM 3.4. Assume that a>-l, b>-l, and A>0. Then

Bo(3.3) P+a"’+b"(x) tn-l

Proof The coefficient of t" in the power series expansion of (to-t) -1/2 is

r(n+1/2) t"-l/2+ 1

which is asymptotic to (nr)-/2t"-/2. This proves (3.3).
Finally, we discuss the case A 0. This case can be thought of as a transition

between Case 1 and Case 2. In Case 3 both dt/d and d2t/d2 vanish but d3t/d
does not vanish. This case occurs if and only if

(3.4) x2(a + b + 2)2 + 2x(a2- b2) / (a b)2- 4(a + b + 1) 0

holds (see (3.1)). There is no choice for a and b that will make the left-hand side of
(3.4) identically zero. Thus A- 0 has at most two solutions. They are

bE- a2 + 4x/(1 + a)(1 + b)(1 + a+ b)
(3.5) x

(2 + a + b)2 if a + b > -1,

and at x 2a + 1 if a + b -1. A calculation shows that the constant D of (2.19) and
(2.20) is given by

(3.6) D 9-1/3(1 / :)a+1/3(1 / n)t+l/3,
where

(3.7)

(3.8)

l+a+b

l+q=-b-l[-b-l+/-/(l+a)(l+b)]l+a+b

The calculation above is particularly simplified by the observation

b2X-1
x+l

-2(a+ b+ 1)- ab +/- 2x/(1 + a)(1 + b)(1 + a + b).
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Note that the difference between 1 + : and 1 + r/ is that a and b are interchanged
and the sign of the square root is reversed. The coefficient of in g(t) is
(to)-n-2/aD(2/3)/n!. Therefore the P.’s behave asymptotically like the afore-
mentioned coefficient of . Thus we established the following asymptotic result:

p+a",t+b"(x
(3.9)

[(1 + x)/(2)] "+2/3

(1 + )n(-a-1)++l+2a/3(1 + "1) n(-b-1)++l+2b/3.

4. Laguerre polynomials. In this section we briefly analyze the strong asymptotics
of the Laguerre polynomials L/a’(b+nx) as no for real b, a,/, x, and positive
a. We will consider only the oscillatory range.

The generating function

(4.1)

where

E L+" (b + nx)t"

(1 s)-[(1 )2- as(1 ) +x]-1 exp [-b/(1 )],

(4.2) t= s(1- ) exp [x/(1 so)]
was proved by Carlitz [6] using Lagrange inversion. It is a limiting case of the
Srivastava-Singhal generating function (1.1)-(1.2), which was also proved by Lagrange
inversion.

The :-singularities of (4.1) are at sc 1, sc so+, where :+ are the roots of

(4.3)
Therefore

(1 )2_ a(1 ) +x O.

2 + a x +x/(a x)2-4x
(4.4) so+ 2(l+a)
In the oscillatory case we must have

(4.5) x 2x/< a < x + 2v/.

It follows that ]+]= 1/(1 +a)< 1, since a>0. Thus :=sc+ are the singularities of the
generating function that are closest to the origin. Let

(4.6) t+= :+(1 so+) exp [x+/(1 +)].
A calculation shows that

dt

d#
(4.7) d2

d-(1-)(1--)-3[-a(1-)+x(l+)]exp{x[1-(1--)-l]} at so= so+.
We can prove

-2 -xA 1/4/x/r an/a+l/2

L+"(b + nx) (1 + a) n/2+1/4

(4.8) exp {/2b-x
+ex 
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where

A=(a-x)2-4x, 1- (1- :+)-1 (x) -1/2 e+i6,
(4.9) -a(1-+)+x(l++)=(-xA/(l+a))1/4 e+, to arg (+).

5. Remarks. In their interesting work on the sharpness of the Lorentz theorem
on incomplete polynomials, Saff and Varga [15] were led to two problems involving
asymptotics and distribution of zeros of the Jacobi polynomials {P,%’.(x)} as n c.
Let a, >-1 and/3, >-1. The second problem was solved in 11 ], where Moak, Saff,
and Varga proved the following result.

THEOREM 5.1. Let s, and I, be, respectively, the smallest and largest zeros of the
Jacobi polynomial P.’t3.(x) and assume that the limits

Ogn nlim =A and lim =B

exist. Then as n c, s S, and l, L, where

S= B-AZ-[(A+ B- 1)-4AB-]/

and

L= B-A2+[(A+ B2-1)-4AB]/2.

Furthermore, the zeros of the sequence {P-’t-(x)} are dense in IS, L].
The special case a, a + an, , + bn, a > -1, b > -1, of Theorem 5.1 follows

from (2.16). Indeed for a > -1 and/3 > -1 the zeros of P’t(x) belong to (-1, 1). The
zeros increase with/3 and decrease with a. Thus {s,} and {/,} are monotone sequences.
The oscillatory nature of the asymptotic formula (2.16) shows that the zeros of the
Jacobi polynomials {P+an’O+6n(x)} are dense in the interval characterized by A <0.
The interval A < 0 is precisely the interval (S, L).

The first problem of Saff and Varga [15] involving Jacobi polynomials was to
determine the asymptotic behavior of P’+2"/-)(x), as n, for real x, x -1.
Satt and Varga used the method ofsteepest descent to prove their results. The asymptotic
estimates (2.16) and (3.3) generalize the Saff-Varga estimates. Saff and Varga used
their results to prove that a theorem of Lorentz on incomplete polynomials is sharp.

Mhaskar and Saff [10] developed nth root asymptotics for {L+a"(b+ nx)} as a
concrete example to illustrate their general results and demonstrate their sharpness.
Formula (4.8) gives the main term in the strong (pointwise) asymptotics of the
aforementioned Laguerre polynomials and implies the nth root asymptotics. Further-
more, (4.8) shows that the zeros of the Laguerre polynomials under consideration are
dense in the interval (2+ a-2x/1 +a, 2+a+2x/1 +a).

If a sequence of polynomials {p,(x)} is orthogonal with respect to a positive
measure d/x and/x’ is supported on a set E, then the zeros of the p,’s are dense in
E. The zeros of the polynomial sequences {P+a"’t+b"(x)} and {L+""(b+nx)} are
dense in certain intervals but neither set is orthogonal unless a b 0, and a x 0,
respectively.

Acknowledgment. We thank Ed Saff for the information about [10] and for
suggesting that we do the strong asymptotics of 4.
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HYPERGEOMETRIC EXPANSIONS OF HEUN POLYNOMIALS*
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Abstract. The product of two Heun polynomials is expanded in terms of products of two
Jacobi polynomials. This is done by making crucial use of group theory and the knowledge of
separable coordinate systems on the n-sphere. The expansion presented includes as a special case
hypergeometric function expansions of single Heun polynomials that have been derived previously by
other methods.

Key words, multivariable orthogonal polynomials, the n-sphere, Heun functions
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1. Introduction. Any Fuchsian equation of second order with four singularities
can be reduced to the form

[ ]dw ax-q
(1.1)

d2w "7 -t b +dx--’ + X " el x e.2 x 3 -X (X el)(X e2)(X V3)
W 0,

where a + -"7- 5- e + 1 0.
The singularities are located at x el, e2, e3, and oc and have indices depending

upon a,... e. The constant q is known as the accessory parameter. This is Heun’s
equation [1] and solutions may be characterised by the P symbol [2].

(1.2) P 0 0 0 a x
1-’ 1- 1-e

Power series expansions for he solutions of Heun’s equation have been studied by
Heun for various arguments [1], [a]. There turn oug go be 96 distinct ypes of power
series. Alternatively, solutions of Heun’s equations can be expanded in series of hy-
pergeometric functions. Such expansions were sudied by Svartholm [4] and Erdlyi
[]. Typically such expansions have the form
(1.a)

{el e2 e3cx} {0 1 c }P 0 0 0 a x AmP 0 0 A +m x
1-"7 1- 1-e m=O 1-"7 1- #-m

where A + # "7 + i 1 a +/ e. Two types of expansion were given:

(i) Series of type I for which A a,# - e. These series converge
outside an ellipse with foci at e, e2 and which passes through e3. There
are three distinct expansions of this type.

(ii) Series of type II for which # 0, "7 1, i 1, or "7 + i 2.

In all these expansions the coefficients A, satisfy three-term recurrence relations

(1.4) boAo + cA 0,

arAr- + brAt + cr+lAr+ 0, r 1,2,...
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was supported in part by the National Science Foundation under grant DMS 88-23054.
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55455.
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where at, br, cr are known expressions in r and cr 0. If q is chosen from a number
of characteristic values then expansions of this type converge. In this article we de-
rive some of these expansions for the case of Heun polynomials from considerations
based on group theory and its connection with separation of variables solutions of the
Laplace-Beltrami eigenvalue equation on the n-sphere. The method used makes a
judicious choice of coordinates on the n-sphere. The expansions that are first derived
are for products of Heun polynomials as sums of products of Jacobi polynomials. The
coefficients in the expansions obey three-term recurrence relations. The corresponding
single variable expansions are then obtained by allowing one of the variables to take a
fixed value. This paper is an extension of [8], in which its motivation and background
can be found.

2. Derivation of the expansion formula. The graphical calculus of separable
coordinates for the Laplace-Beltrami eigenvalue equation on the n-sphere has been
completely worked out by Kalnins and Miller [6], [7]. To derive an expansion for Heun
polynomials we consider coordinate systems corresponding to graphs of the type

on the n sphere, n nl + n2 + n3 + 2. A suitable choice of coordinates is

8i UlWi

8j+nl+l U2tj

8k+n+n2+2 tt3Zk

1,... nl + 1,
j 1,...,n2 + 1,
k i,’." n3 + I,

where

and

n+l n2+l n3+l

2=12--i E Zk2=1 EtjW

i=1 j=l k=l

. (x )( )
( )(, )’

The metric on the n sphere is

1, 2, 3, i, j, k pairwise distinct.

(2.3)
ds2=_(x-y) [ dx2

4 [(x-)(-)(-)
(x e)(y e) ndw +-]-
(e2 el)(e3 el)

i=1

(x e3l(Y e3) ndz.+ ( )( 31 =1

dy2 ](,-)(u-)(u-)

The coordinate systems chosen for wi, tj, zk can be taken to be, say, spherical coordi-
nates in each case, corresponding to the graph [6].
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ni boxes.

We hen seek eigenfuncgions of the Laplacian sagisfying

(2.4) A -J(J / nl + n2 + n3 / 1),
where J is a nonnegative integer. In the coordinates we have chosen, this equation
has the form

(2.5)

4[
[02 1 [nl+l._+n2+l n3+lJx]+- x-e x-e

[02 1 [n+l n2+l n3+l] 0] ]-( )( )( ) +

+ [( )( )a + ( )( ) +
[ ( )( ) ( )( .)

-J(J + n + n2 + n3 + 1),
where Ak is the Laplacian on the sphere

If we seek eigenfunctions such that

(2.6) Ai -li(li + ni 1), 1, 2, 3,

where the li are nonnegative integers, then writing
3

(.)

(- )(-)

II[( ,)( ,)1,/,

we find (2.5) has the form

(,.s)
4

(x-)
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where
A=1/4(L+N+I)L, L=ll+12+la, N=nl+n.+

The corresponding separable solutions have the form

(2.9) ulu22u33jl:3q(x)O2jl23q(y)Otl(w,t,z),
where a complete set of functions Otlt:t3 (w, t, z) can be taken as

(.10) o(w, t, z) o (w)O(t)o(z)
and typically,

n --2

C1/2(’I-j-1)+K+(cos(o, )) (sinO,-)K+le+K’-O(.) (w) 1-I -/
j=O

for !1 Ko >_ K1 >_’" >_ Kn-i >_ O, and

(2.12) A(k)O (w) --gk(gk / nl k 1) (w),
where C(z) is a Gegenbauer polynomial. The coordinates on Sn are

(2.13) wl sin Onl sin 2 sin 01
w2 sin On sin 2 cos 1

wn sin On cos On-
Wn+l COS nl

and the operator A(k is given by

0 0
(.14) ) #’ 7’ 0,...,n .
(The A() are the second-order symmetry operators for A1 whose eigenvalue equations
(2.12) characterize the separable coordinates (2.13); see [6], [7].) The corresponding
separation equations are

( )( )( 3)

(2.15)

where A x, y according as e 1, 2, respectively. This is Heun’s equation of the form
(1.1) with /= 1 + 1/2(nl + 1), 5 12 + 1/2(n2 + 1),e 13 + 1/2(n3 + 1), a 1/2(L- g),

1/2(L+J+N+I) The solutions for the functions (A) are Heun polynomialsJ,23q
which for fixed J will form a complete set of basis functions once the eigenvalues q
have been calculated. To calculate the eigenvalues it is convenient to observe that in
the coordinate system (2.1) the operator ’ whose eigenvalue X is

(2.16) + 21112e3 T 21113e2 -+- 212t3el llel 12e2 13e3
+ lln2e3 + lln3e2 -}- 12rile3 + 12n3el +/3hie2 + 13n2el 4q
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is given by [6], [7]

That is, is the second-order symmetry operator for the Laplacian ([’, A] 0),
which corresponds to the separable coordinates x, y. (The separable solutions (2.9)
are eigenfunctions of’ with eigenvalues X.) Expression (2.16) gives the relationship
between the eigenvalues X and q. (The terms involving the lj result from consideration
of the factor u u2 u3 .)

The basis functions on the sphere Sn corresponding to coordinates of the graph
can also be expanded in terms of the basis functions of the coordinate system corre-
sponding to the graph [6],

i.e., the coordinates (2.1) with

(2.18) u=sin0cos, u2=sin0sin, u3=cos0

and the infinitesimal distance

(2.19)
nl+l

ds2 dO2 + sin2 Ode2 + sin2 0 cos2 E dw
i=1

n2+l n3-{-1

+ sin20 sin2 E dt + cos20 E dz.
j=l k=l

Eigenfunction solutions of (2.4) in these coordinates are

(sin O)M (CO80)3 (sin )2 (cos )1
X (J-M-3)/2PM+1/2(nl+n.),3+ 21- (n3-1) (COS 20)

X (M-1--2)/21+1/2(n-l)’ l+1/2(nl-1)(COS 2) O23 (W’ t, Z)

where Pg’(z) are Jacobi polynomials. Here J L + 2j and M L + 2m, where
j 0, 1,... m 0, 1,... j 1, j. The eigenfunctions satisfy

(2.21) A’ -M(M + nl + n2),



HYPERGEOMETRIC EXPANSIONS OF HEUN POLYNOMIALS 1455

where

i>j

and i,j range from 1 to nl + n2 + 2.
Note that in terms of the Cartesian coordinates ul, u2, u3 on the 2-sphere (u2 /

u + u 1) these eigenfunctions take the form

(2.23) CJM ulu22u33(u2 + u)(M--)/2

x (M--)/2 U + U 1

i.e., the form uu22u33q(u2, u), where is a polynomial.
This remark leads to another way of viewing the Heun and Jacobi bases. In the

equation A. -J(J + N + 1) with A given by (2.5) and Ak replaced by the
values --/k(lk + nk 1), k 1,2,3, we set uu2u3q(xl,x2 and introduce the
new coordinates xl u2, x2 u22. The eigenvalue equation for reads

(2.24)

where

Hq -j(j + G- 1),

2 02 2

(2.25) H E (xij xxj) + E(’i Gxi) Ox"
i,j-’l

OXiOXj
i--1

Here G /1 + 2 + 73 and in this particular case

(2.26) 7i gi + }(ni + 1), i= 1, 2, 3,

j }(J- L) 0, 1,2,....

This coincides with equation (1.4) in [8]. In particular H maps polynomials of max-
imum degree mi in xi to polynomials of the same type. rthermore, it is easy
to see that the polynomial eigenfunctions of H form a basis for the space of all
polynomials f(x,x2) and that the spectrum of H acting on this space is exactly
{-j(j + G 1) j 0, 1,... }. It is also shown in [8] that H A2 + A2 where A2 is
the Laplace-Beltrami operator on $2 and

(2.27) A2= 7i- + -G xi .
i=l

Moreover, H is self-adjoint with respect to the inner product

(2.2s) yl(x)y (x) d,
x,x>0,1--x--x>0

where

(2.29) dw x171-1x272-1(1 Xl x2)-ldxldx2
(Hfl, f2) (fl, Hf2).
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Here fl, f2 are polynomials in x (xl,x2). For fixed j the polynomials

(2.30)
#.(x x.) (xx + x)’P++’-’-(2z + 2x 1)j-m 1

X P-I’ -1 (x12Xl+X2 -1), m 0, 1, ,j

form an orthogonal basis for the eigenspace corresponding to eigenvalue -j(j + G-
1). (This is the orthogonal basis of Proriol [9] and of Karlin and McGregor [10].)
Similarly the Heun polynomials (x)ttt (y) where q runs over the possibleJ23q q
eigenvalues, form an alternate orthogonal basis for this same space. Moreover as
pointed out in [11] these bases correspond to spherical and ellipsoidal coordinates on
the 2-sphere and are the only coordinates in which A2 separates.

With this point of view we are operating on the sphere $2 rather than Sn and our
two distinguished orthogonal bases are the only ones possible rather than two out of
a multiplicity of separable systems on Sn for large n. The principal advamage of this
new point of view is that the eigenfunctions are obviously polynomials in x,x2 and
that the only requirement on the constants 7, 72, 73 to ensure orthogonality is that
they be strictly positive. Thus the 1 and ni need not be integers; it is only required
that 21 + n + 1 > 0.

In the following our expansion formulas are valid for all real i > 0. In the
special case 7 2 3 we have H A2, the Laplace-Beltrami operator on
$2. In this case the eigenvalue equation A2 -j(j + ) admits the Lie algebra
so(3) as a symmetry algebra. A basis for so(3) is {uOu -u2Ou, uaOu, uaOu= } where
u3 (1 -u -u)/2. This extra symmetry is associated with the fact that there
are additional polynomial solutions of the eigenvalue equation (see 3 of reference
[8]). In particular the equation admits polynomial solutions of the form f(u, u2) and
the spectrum of A2 acting on the space of all such polynomials is -j(j + ) where
now 2j 0, 1, 2.... rthermore, there exist solutions of the form u3g(u, u2) with
g a polynomial and with the same eigenvalues. The dimension of each eigenspace is
2j + 1 rather than j + 1 for the general case. In this special case the eigenfunctions
corresponding to spherical coordinates are just the spherical harmonics whereas those
corresponding to ellipsoidal coordinates are products of Lam6 polynomials. For the
solution of the problem of expanding the Lam6 basis in terms of a spherical harmonic
basis, see [11]-[13].

Returning to the case of general li, ni we consider the problem of expanding the
Heun basis (2.9) in terms of the Jacobi polynomial basis (2.20), (2.23), (2.30):

).

Three-term recurrence relations for the expansion coefficients m (where M l +
12 + 2m) can be deduced by requiring that

(2.32) X.
To obtain the recurrence relations we need the action of the various pieces of on
the Jacobi bases CJ23M(O,). Since commutes with H there must exist an
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expansion of the form ’Y’jm r XrCj,m+r. Indeed, we have

+1

(2.33) Y//YOJele.e3M(0, ) E XrOlee2e3,M+2r(O, ),

where

(2.34)
x(., j)

4(el e2)(’1 + "Y2 + "Y3 + m + j 1)(’y3 m + j 1)(m + 1)(’y1 + "Y2 + m 1)
(’Y1 + 9’2 + 2m- 1)(’y1 + 72 + 2m)

X-l(m,j)
4(el e2)(’y1 + ")’2 + m + j 1)(-m + j + 1)(’y2 1)(’y1 1)

Xo(m,j) X

(Y1 + "Y2 + 2m- 1)(’y1 + /2 + 2m- 2)

2(ei e2)[m2 + m(9’i + 9’2 i) j2 j(71 + 9’2 + ")’3 --1)](’y1 -]- 2 2)("y1 ’)’2)
(’Y1 + 72 + 2m- 2)(’y1 + 9’2 + 2m)

+ 4
( )’( )(’ +)

(’)’1 "}" ’2 + 2m- 2)( + 2 +.2m)
+ 2(el + e2)[-m2 m(l + 2 1) + j2 + j(l + if2 + 3 1)]
+ 4e3[m2 + m( + 2 1)] + 4q.

Keys to deriving this result are the following recurrence formulas for Jacobi polyno-
mials r)c’,Z

xpC,,f 5/pc,,f pc’,f
", ".-l+P’Z+’.+l,

2( + )( + ) ( )( + )
(2n + + + 1)(2n + + )’ (2n + + + 2)(2n + + )’

2(n + 1)(n + a + + 1)
(2n + a + + 2)(2n + a + + 1)’- + BP’ + n+,1

2(. + .)(n + Z)(. +. + Z + 1) B 2.(. Z)(. + + 1)
(2n+a++l)(2n+a+) (2n+a++2)(2n+a+)’

2.(. + 1)(. + + Z + 1)C -(2n + a + + 2)(2n + a +D+ 1)"

(To prove (2.33) it is enough to use relations (2.35) to evaluate both sides of (2.33)
for a fixed choice of the variable . Thus a one-variable expansion in leads to a
two-variable expansion in and .) Now substituting the expansion (2.31) into the
eigenvalue equation ’ )C and using (2.33) we find the three-term recurrence
relation

Xl(m- 1,j)m-1 + (Xo(m,j) X)m + X-l(m + 1, j)m+l 0,
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where m 0, 1,... j. Consequently, the j4-1 independent eigenvalues q are calculated
from the determinant
(.)

Xo(j, j) X Xl (j 1, j)
X_I (j, j) Xo(j 1, j) X X(j-2,j)

X_(1,j) Xo(O,j) X

To obtain the expansions in terms of one variable from (2.31) we proceed as follows.
For the two choices of u, 1, 2, 3 given by (2.2) and (2.18), take y e3, r/2.
Then the expression has the form

(2.38) O}q(x) (x) E YmPm2-’l-l(cs 2)J123q
m--0

where
(X (1)

1.cos 2 2
(e2 e)

This is an expansion of type 2 with # 0. A different type of expansion can be
obtained by taking r/2 and y e. The resulting expression has the form

(2.39) Cjq(x) ym(sinO2"Pm++2-’ 3-(cos20)
m--0

where
(x-

1.cos 20 -2
(e2 e3)

In both these examples the dependence of the /m and m coefficients on the indices
/1, t2,13, q has been suppressed.

This second type of expansion of a Heun polynomial appears to be new. Nothing
that was done in the derivation of expansions (except the limits of summation on r)
could not be extended to the representation of Heun functions when J,l,12,13 are
complex. Consequently, representations of such functions in terms of expansions whose
coefficients obey three-term recurrence relations can be derived. The convergence of
series of this type will be discussed elsewhere.
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UNIFORM, EXPONENTIALLY IMPROVED, ASYMPTOTIC EXPANSIONS
FOR THE GENERALIZED EXPONENTIAL INTEGRAL*

F. W. J. OLVERt

Abstract. By allowing the number of terms in an asymptotic expansion to depend on the asymptotic
variable, it is possible to obtain an error term that is exponentially small as the asymptotic variable tends
to its limit. This procedure is called "exponential improvement." It is shown how to improve exponentially
the well-known Poincar6 expansions for the generalized exponential integral (or incomplete Gamma function)
of large argument. New uniform expansions are derived in terms of elementary functions, and also in terms
of the error function.

Inter alia, the results supply a rigorous foundation for some of the recent work of M. V. Berry on a
smooth interpretation of the Stokes phenomenon.

Key words, coalescing critical points, converging factors, Dingle’s terminants, error function, incomplete
Gamma function, Stokes’ phenomenon

AMS(MOS) subject classifications, primary 41A60; secondary 33A70

1. Introduction. Suppose that a function f(z) has an asymptotic expansion of the
form

f(z).-,fo+fi +f-+.
Z Z

as z- c in a certain region R, say, of the complex plane. By definition, if the series
is truncated at the term fn-1/z-1, where n is an arbitrary fixed integer, then the error
in representing f(z) by the truncated series is O(z-n) as z- in R. For some time,
however, it has been known that if we permit the number of terms in the truncated
series to depend on Izl, then it is possible to make the truncation error exponentially
small as z in R.

Consider, for example, the exponential integral defined by
--zt

E(z)=e_
e

dt
l+t

when Iph zl < 7r/2, and by analytic continuation elsewhere. This has the well-known
expansion.

s! 3
(1.1) eZEl(Z) (-)s

zs+l’
Z O in Iph z[ =< r ,

s:0

where 8 is an arbitrary positive constant. Let Rn(z) denote the nth remainder term in
this expansion, given by

n-1 S!
(1.2) eZEl(Z) E (-)s--7+ Rn(z).

s=0 Z

In [9, Chap. 14, 3.1] it was shown that if " is a real or complex variable and 0 is
real, then

(1.3) R{(n + ) e’}= O(n -1/2 e-n-z),

* Received by the editors February 9, 1990; accepted for publication September 19, 1990.

" Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742.
This research was supported by the National Science Foundation under grant DMS 87-23039.
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as n 0o, uniformly with respect to 0 [-Tr + 6, 7r- 6] and bounded values of I 1. Let
us now restrict " to be real, set z (n + ) ei, and regard z as the asymptotic variable
instead of n. Then we have

(1.4) R,(z) O(Z-1/2 e-lZl), Izl 0o,

uniformly with respect to ph z e [-Tr+ 6, 7r-6] and bounded values of Ilzl-hi. For
example, (1.4) would apply if n int [Izl], the integer part of Izl. When the approxima-
tion given by (1.2) is modified in this way, that is, by taking

(1.5) n=lzl-ff
with ffl bounded, we shall say that the resulting partial sum is uniformly exponentially
accurate in the sector ]ph z] _-< r- .

The results in [9, Chap. 14, 3] actually go much further. The object in this
reference was to provide a rigorous basis for the theory of "converging factors." In
the case of the asymptotic expansion (1.1) of El(Z) it was shown that

n!
(1.6) R,(z) (-)"---gTi C,(z),

Z

where the converging factor C, (z) possesses an asymptotic expansion of the form

(1.7) C,,{(n + ) e’} E
P,(a, ’)

s=0 n

in which the P(a, ) are polynomials in (1 + e)- and ft. Again, (1.7) is uniformly
valid for 0 [-+ , -] and bounded Iffl. As before, we restrict ff to be real and
set z (n + if) e. Then (1.5) applies and the combination of (1.6) and (1.7) yields

r(Izl- +l) P(a, )
R(z)(-)

(Izl- ff) ’

On replacing the Gamma function by Stirling’s series and setting Izl z e-’, we see
that this expansion can be rearranged as an asymptotic expansion in descending powers
of z; thus

(1.8) R,(z)(-)" e-lzlz-1/2 e(-Izl-1/2)i Z
Qs(O, )

z

where the coefficients Q (0, ) are rational functions of e and polynomials in . Again,
this expansion is uniformly valid for ph z [-+ 6, -6] and bounded 11. We call
the combination of (1.2) and (1.8) a uniform, exponentially improved ("UEI"), or more
precisely, a uniform, e-Il-improved, asymptotic expansion.

Recently, Ursell [11] has considered functions f(z) representable as Laplace
transforms

in which (t) is analytic in a neighborhood of the origin. He has shown that the
asymptotic expansion of f(z) obtained by straightforward application of Watson’s
lemma can always be rendered exponentially accurate, in the sense described above.
Ursell’s analysis applies only to positive real values of , but it could be extended
easily to the complex plane.
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The purpose of the present investigation is to show how to construct UEI
expansions for a wide class of functions. The new theory goes beyond that presented
in [9, Chap. 14] in three ways: (i) the number offunctions that can be treated successfully
is greatly increased; (ii) nonelementary functions may be used in constructing the
expansions; (iii) as a consequence of (ii), regions of validity are extended considerably.

One ofthe theoretical and practical consequences of this investigation is to provide
a rigorous basis for a recent powerful interpretation of the Stokes phenomenon that
has been developed by Berry [1]. Indeed, it was this aspect that motivated this work.
This is explained fully in [10], and inter alia we shall supply proofs, and significant
extensions, of all results that were stated in [10].

In the present paper we confine our attention to the construction ofUEI expansions
for the generalized exponential integral Ep(Z), when p is fixed and Izl is large, both p
and z being real or complex. This is because the generalized exponential integral plays
a fundamental role in other casesman observation first made by Dingle [4].

Another investigation of the generalized exponential integral (or incomplete
Gamma function) has been provided by Jones. Jones’ paper [6] was presented indepen-
dently of and at the same time as [10]. There is substantial overlap of [6] with the
present investigation, but there are significant differences in the method of proof and
results achieved.

2. UEI expansions in terms of elementary functions.
2.1. General properties of the generalized exponential integral. For real or complex

values ofp and z, other than z =0, the generalized exponential integral Ep(z) is defined
by

e-t

(2.1) Ep(Z) zp-IF(1-p, z)= zp- - dt.

The only restriction on the integration path is that it must not intersect the origin.
Accordingly, unless p is a nonpositive integer, Ep(z) is a multiple-valued function of
z. On the other hand, Ep(z) is a single-valued function of p; indeed from (2.1) it is
clear that for fixed nonzero values of each branch of Ep(z) is an entire function of p.1

On replacing by z(1 + t) we find that Ep(z) is also given by

(2.2) Ep(z)-- e Io e-Zt 1

(1 + t) p
dt, Iph zl ,

where the integration path now runs along the real axis, and (1 + t) p has its principal
value.

An integral representation that we shall find particularly useful is given by

Z
p-1 e e-Zttp-1 1

(2.3) E.() JoF(p) --t dt, Rep>0, Iphzl<-cr’2
Again the integration path is along the real axis, and p- and z p-- assume their
principal values. This result may be derived from (2.2) with the aid of the convolution
formula for the Laplace transform. The integral on the right-hand side can be regarded
as either a Laplace transform or a Stieltjes transform.

Other branches of Ep(z) can be related to the principal branch (for which -Tr <
ph z=< 7r) by rotation of the integration path in (2.3), and analytic continuation with

For the case in which p is a positive integer, various properties and some numerical tables of Ep(z)
will be found in [7] and [8].
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respect to z. Each time the path crosses the simple pole at =-1 a contribution is
made by the residue. Thus we find that

(2.4) E(z)
27ri e-kpri sin kpTr) e_2=),

F(p) sin (pTr)
zP--I-JI- Ep(g

where k is any integer. Analytic continuation removes all restrictions on p and z, other
than z 0, from this result.

2.2. Poincar expansions for large Izl, Let p be fixed and z - . Then by applying
the extended form of Watson’s lemma, as given by Theorem 3.3 of [9, Chap. 4], to
the integral representation (2.2), we find that

e-Z (P)s 3
(2.5) Ep(z)- Y (-) z Iph zl-< r- 6,

Z s=0

where (p)s is Pochhammer’s symbol for the ascending factorial p(p + 1) (p + s 1),
and 6 continues to denote an arbitrary positive constant. Corresponding expansions
in other phase ranges are obtainable by combination of (2.4) and (2.5). For example,
by taking k 1 in (2.4) we derive

(2.6) Ep(z)
27ri e-pri e

F(p)
zP-I-- E (--)

(p) 1 7
z 7r+6=<phz=< r 6.

z =o 2 2

In the common sector 7r/2+6<=phz<=r-6, both (2.5) and (2.6) apply. Their
apparent discrepancy is a term that is exponentially small compared with the main
contribution; hence there is no anomaly. This is, of course, simply a manifestation of
Stokes’ phenomenon. On the ray ph z 7r, the dominance of one contribution in (2.6)
over the other is maximal, and for this reason we call ph z 7r a Stokes line.2 The other
Stokes lines for Ep(z) for large Izl occur at ph z kTr, where k is any integer.

2.3. UEI expansions for the sector Iph zl<r . If n is an arbitrary nonnegative
integer, then we have identically

1
t#-l.(2.7) l+t-m-t+t

2 "’+(-)-t-l+(-) m+t’

On substituting this expansion in (2.3) and integrating term by term, we obtain the
following explicit representation of the remainder term in (2.5):

(2.8)

where

e
Ep(z) 1 (p)s+ _),

27r
(__)s zP-lFn+p(Z),

z ,=o z F(p)

e-Z ,o e-Ztt,+p-, r(n +p) E,,+e(z(2.9) F.+(z) Jo dt=
1 + 27r Z

n+p-1

In deriving this result we have assumed that Re p > 0 and Iph zl < 7r/2. However, by
analytic continuation with respect to p the first condition is replaceable by Re p >-n.
To ease the second restriction, we rotate the path of integration through an angle -%

Sometimes the name anti-Stokes line is used instead; see the discussion on p. 518 of [9].
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where -r < y < r, and set r e-iL Then by analytic continuation with respect to z
we have

e-i(n+p)3’ e ’ exp (-ZT" e-iV)7"n+p-1
(2.10) Fn+p(Z) dz,

27r Jo 1 + z e-w
valid when Re p > -n and [ph (z e-i3’)l < zr/2.

For future reference we also record here the continuation formula for Fn+p(Z)
corresponding to (2.4). This is given by

(2.11) F,+p(Z) (-)i e-kpi
sin (kpr) + e_2kp,F,+p(z e_2ki
sin (pzr)

k=0, +1, +2,. -.
The ratio ofthe (s + 1)st term to the sth term in (2.5) is (1 -p- s)/z. In consequence,

when [z[ is large compared with Ipl, the optimum number of terms (that is, the number
of terms preceding the numerically smallest term) is int ] + 1, where is the positive
number satisfying Ip + 1 Izl, Accordingly, we set

(2.12) z p e i, n p-p + a,

where p is a large positive parameter, 0 is real and [a] is bounded. With 3/= 0 in
(2.10), we have

(2.13) F,+p(Z)
2r 1 +’e

valid when -Tr < 0 < 7r and Re (p + a) > 0.
For large p the integrand has a saddlepoint at z 1. By application of Theorem

7.1 of [9, Chap. 4] (Laplace’s method) and use of the second of (2.12) we find that

(2.14) F,,+p(zle-i(+’) e--z a2s(0f a)
1 + e-i (27rp) 1/2 ’ P- cx3,

s=o P

where the coefficients a2s(O, a) are continuous functions of 0 and a. Moreover, by
means of a straightforward extension of the proof of the cited theorem, we can prove
that the expansion (2.14) holds uniformly with respect to 0 and a, when 06
[-Tr+ 8, r-6] and I1 is bounded.

The combination of (2.8), (2.12), and (2.14) is the required expansion. It is a UEI
expansion throughout its sector of validity ]ph z <- 7r- 8, because if the series in (2.14)
is truncated at its ruth term, where m is arbitrary, but fixed, then the relative error in
the resulting approximation to Ep(z) is uniformly O(Zp-m-l e-lzl).

The coefficients a2s(O, a) are calculable in the usual manner (see, for example,
[9, Chap. 3, 8.1]). One way to express them is found to be

2s

(2.15) azs(O, a)= 1.3.5... (2s-1) Y i2s_l,j_lAj(O Ol),
j=0

where

(2.16) As(O, a)= (-)J 1

j=o s-j (l+ei)’
This a is unrelated to the a of 1.
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and hs,j is the coefficient of x in the expansion of j, being related to x via

1/2x2= t-ln (1+ t)=1/2tE-ta+1/4t4
with x- as t- 0. Reversion of the last expansion yields

(2.17) x +1/2x2 +6x3 2-oX4 + 42oX +...

and with the aid of this result we arrive at the following explicit expressions for the
first three coefficients:

(2.18)
ao(O, a)= 1, a2(O, a)=+A2(0, a),

a4(O, a)=8+A2(0, t)-t-2A3(0, t)-1-3A4(0,

2.4. Remarks. (i) From (2.15), (2.16), and (2.18) we observe that the coefficients
a:zs(O,a) become unbounded as 0+Tr; in consequence, the interval of validity
10[ -< r- of (2.14) is maximal.

(ii) The expansion (2.14) can be rearranged as an expansion for the converging
factor in descending powers of n, as indicated in 1. The writer has verified that in
the case where p 1 the first three coefficients in the resulting expansion agree with
those found in [9, Chap. 14, 3.2] by quite different methods. (They are also simpler
in form than their counterparts in (2.14).)

(iii) In [10] the function

T,,+p(Z) e(’+p)’
F(n +p) E,,+p(Z)

2 ,rri z +p-1

played the role of F,,+p(Z). An advantage of using F,,+p(Z) in the present paper is that
it leads to a symmetric form for the main result; compare (5.10) and (5.11) below.

3. Nonelementary UEI expansions: formal derivation.
3.1. Approach. The region of validity of the UEI expansion of 2 falls short of

the Stokes lines at ph z +Tr. We now seek UEI expansions that hold uniformly in
sectors containing these lines. To begin with, we concentrate on the sector 0 < ph z < 2

The essential difficulty is that the integrand in (2.13) has a saddlepoint at z= 1
and a simple pole at z=-ei, and these points coincide as 04 r. To overcome this
difficulty we use a modification of Laplace’s method introduced by van der Waerden
12] and developed subsequently by Jones [5] and Bleistein [2]. This yields an expansion

involving a nonelementary function, namely, the complementary error function.

3.2. Transformation of integration variable. We employ a quadratic change of
integration variable, given by

(3.1) 1/2w2 - In - 1.

The saddlepoint at r 1 then corresponds to w 0. We resolve the ambiguity in the
choice of branch of (2z-2 In "r-2) 1/2 by requiring

(3.2) w--z-1 asrl.

Let A denote the sector [ph r[ < 7r and W be its map in the w-plane. The mapping is
easily determined by passage through the intermediate variable v, given by

v=z-lnz-1, w x/.

Corresponding points in the z and w planes are indicated in Figs. 1 and 2. W is the
unshaded region shown in Fig. 2; its boundaries are the curves CID1 and C2D2 defined
parametrically by

W2
--O" In tr ier 1, 0=< o-<oo.
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cut Cl
D2 C2

E

B
(o)cI)

E2

A

FIG. 1. ’-plane: domain

B

c (o)

oE

A

FIG. 2. w-plane" domain W.

From these diagrams and the corresponding map in the v-plane (not illustrated), it is
clear that the mapping between the domains z and W is one-to-one, and that " and
w are analytic functions of each other when - z and w W.

In the w-plane, the pole at = ei(- corresponds to w =-ic(O), say, where

(3.3) 1/2{c(O)}:= -e’(-) + i(O-.,rr)+ 1.

In consequence of (3.2) we have

(3.4) c(0)

in fact, the Taylor series expansion of c(0) at 0 7r begins

1
(3.5) c(O) -(0 ,n-) - (0 ,n’) :z +-- (0 7r) +....

Graphs of {C(0)}2 and c(O) are indicated in Figs. 3 and 4.4

Now consider formula (2.13). This was obtained by rotation of the path of
integration in (2.9) and analytic continuation with respect to z, and is valid when

4 Although in this section we consider only values of 0 in the interval (0, 2r), the graphs of 1/2{C(0)}
and c(O) are shown for the more extensive range [-Tr, 37r] for subsequent reference. The reader should also
note that the scales of Figs. 2, 3, and 4 are not the same.
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(O--

2ri 2+ri(0:2".’)

(O:O)
2--.’i

-2-,’i
(O=--,r)

FIG. 3. 1/2{c(O)}2-plne.

(O=-,r)

(e=2r e=o)

(e-3-.-)_(l+i) .,/2-#(i-i)o(e=-)

FIG. 4. c( O)-plane.

-Tr < 0 < or. However, an extension of this process shows that (2.13) continues to be
valid when 7r-< 0<27r, as long as the integration path in (2.13) is deformed to pass
above the pole at r=ei(-=). In the w-plane this pole is mapped onto the point
w -ic(O). In consequence, on transforming variables from r to w in (2.13), we obtain

(3.6) F,,+p(Z)
e-i(+’) e-O-z I (1)f_(wO, a, w)

2"n"
exp pw2

+ ic(O)
dw, 0 < 0 < 2",’r,

where

w-t- ic( O) o,-1 d’r
(3.7) f(O, c, w)

1 + " e- ’r
dw’

and the path is indented to pass above the point w--ic(O) when 0 _->

3.3. Formal expansion of the transformed integral. The function f(O, a, w) is
analytic at w =-ic(O), and we may therefore set

(3.8) f(O, o, w)=f{O, a,-ic(O)}[1-{w+ ic(O)}g(O, a, w)],

where g(0, c, w) is analytic throughout W, including w--ic(O). On substituting this

The reader is cautioned that several notational changes have been made from the earlier paper 10].
For example, c has become -c(0), and to obtain the new f(0, a, w) from that of [10] it is necessary to
replace 0 and w by 0-Tr and w + ic(O), respectively, and then multiply the result by ei’(-).
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expression for f(O, a, w) into (3.6), we obtain

e-i(o+o)O e-ta-z
F,+p(Z)=

2r
f{O, a,-ic(O)}

(3.9)
exp (-1/2pw2)

dw exp
1

--pw2 g(O, a, w) dw

The first integral in the right-hand side of the last equation is evaluable in terms
of the complementary error function:

(3.10, w+ ic(O)
dw -ri exp p{c(O)}2 erfc c(0) p

In the second integral the path may be taken to be a straight line, since the
integrand is analytic in W. We may expand g(0, a, w) in a Taylor series centered on
the transformed saddlepoint at the origin, in the form

(3.11) g(O, a, w)= Y, g(O, a)w,
s----0

and on multiplying by exp (-1/2pw2) and integrating formally term by term, we arrive at

(3.12) exp - pw2 g(O, a, w) dw--- , F s+ g2s(O, a)
s:O

Lastly, the value off{0, a,-ic(O)} is found by letting -- ei<-=) in (3.7); thus

(3.13) f{O, a,-ic(O)}=-e’-).

Combination of (3.9), (3.10), (3.12), and (3.13), followed by use of (3.3) and (2.12)
yields the desired expansion in the form

Fn+p(z) (-)"i e-P= [ erfc { c( O) p

(3.14)
-iexp(-1/2p{c(O)}2) () (0,)(p2--) ](2-p)i’7"2- gzs a

S--=0

To evaluate the coefficients g2(0, a), we find by reversion of (3.1)

1 w2 1 w3 1 w4 1 w=l+w+- + + +
3 36 270 4320

compare (2.17). We now substitute this Maclaurin expansion into the formula

(3.15) g(0, a, w) e=-) " d" 1

1 + " e. -i dw
d-
w+ ic(O)

obtained from (3.7), (3.8), and (3.13), and identify the coefficient of w2 on the
right-hand side of (3.11). For example, the first one is found to be

ei(r-)
(3.16) go(O,a)=

l+e- c(0)’

the right-hand side being replaced by its limiting value

(3.17) go(Tr, a) =-a,
when 0 "rr.
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In the next two sections we shall establish the asymptotic nature of the formal
series (3.14), and determine its maximum region of validity in the z-plane. At the same
time, we shall supply another way of calculating the coefficients g2s(O, a).

4. Proof of the validity of the expansion (3.14) when <=ph z<_-2,r .
4.1. Objective. In this section we shall show that if the infinite series in the

expansion (3.14) is truncated at the term s- m- 1, say, where m is any fixed integer,
then the difference between the resulting approximation and F,+p(Z) is
exp [-1/2p{c(0)}2]O(p-m-1/2) as p--> oo, uniformly with respect to 0 and a. The method
of proof is similar to that used in [9, Chap. 9, 9-13].

4.2. Bounds for the coefficients gs(O, re). A preliminary step is to prove that as s
increases, the rate of growth of the coefficients g(0, a) is uniformly algebraic.

Referring to (3.11) and applying Cauchy’s integral formula for the derivatives of
an analytic function, we have

l [dSg(O, a, w)] 1 I g(O, a, w)
g(O, a)=! /- w=o 2ri wS+l dw,

where /4/" is any simple closed contour that encloses the origin and lies within W
(Fig. 2). Let us also require W to enclose the point -ic(O). Then we may substitute
in the last integral by means of (3.15) to obtain

(4.1) gs(O,a)=e"(-I 1 r-’ __1 1 w+{dw27ri ws+l 1 +re- d’+27ri w+ ic(O)}’

where - is the map of W in the z-plane.
By hypothesis, 0 [8, 27r-8]. In consequence, we can construct a simple closed

contour that (i) lies in the domain (Fig. 1); (ii) is independent of 0; (iii) has the
arc -= e(-), < 0 < 2r-, in its interior. We take - to be this contour and W its
w-map. Let (i) 27r/1 and 27r1 denote the lengths of ff and W, respectively; (ii) M be
the maximum value of Ira-a/(1 + ,e-’)l when ’ if, 0 [, 27r- ] and a ranges over
its (bounded) set of values; (iii) d be the minimum value of Iw + ic(O)l when w
and 0 [, 2r-]. Clearly, 11, 12, M are finite, and d > 0. Since c(Tr)=0, it is also
clear that wl >--d when w W. Majorizing the two integrals on the right-hand side of
(4.1) by use of these bounds, we find that

llMe(*r-)llm 1 12 A
(4.2) Ig(O, a)[ dS+l + dS+2-- d

where A is assignable independently of 0 and a.

4.3. Bounding the error term. Let m be an arbitrary nonnegative integer, and define
bm(0, a, w) by the equation

2m--1

(4.3) g(O, 0l, w)-- Z gs( O, 0) Ws + w2mf2m( O, ol, w)’
s=O

compare (3.11). Correspondingly, in (3.14) we have

F,+p(Z) (-)"i e-P[ erfc { c( O) p} exp (-1/2p{c( O)})
(2,trp) a/

(4.4)
g2(O, a) +(0, a, p)

S=0
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where

(4.5) ,,(0, a, p)= exp - pw2 w2mt2m(O Ol, W) dw.

Suppose first that -d/2 <- w<= d/2, where d is defined in 4.2. Then using (4.2)
we see that

Hence

162m(0, a, W)I- 2 g,(o, )w-"
2A
d2

exp "qb2,,, (0, a, w) dw
-d/2 - pw2 W2

(4.6)
23

<- exp - Ow
2 dw O ,+/..

Second, suppose that d/2<-w<oo. From (3.1) we see that as w+oo we have---- w2/2 and dr/dw-- w. Hence

’r dT"
22- ew2-3 uniformly as

1 + ’r e- dw

We now refer to (3.15) and bear in mind that 1 + r e- and Iw+ ic(o)l each have
positive lower bounds when w e [d/2, ) and 0 e [, 2- ]; compare Figs. 1, 2, and
4. In this way we may verify that

Ig(0, , w)l Aw, d w <,
where

(4.7) a =max (2 Re a-3,-1),

and we are now using the symbol A generically to denote a finite constant that is
independent of 0 and a. Substituting into (4.3) by means of this result and (4.2), we
conclude that when m >-a/2 we have

142,,(0, c, w)l <- A, d <- w < o.

Hence

exp w242(0, a,

(4.8)
/2 - pw2 w) dw

N A exp - pw2
W
2m dw O re+l/2p

Lastly, suppose that -<w-d/2. From (3.1) we see that if w-, then
rexp (-w2/2-1) and dr/dw-wr. Hence

1 + e- dw
-w -w exp + 1

uniformly, and therefore from (3.15) we have

Ig( 0, , )1 Al! e, -< -d,
where

(4.9) b max (- Re , 0);
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compare (4.7). Substituting in (4.3) by means of this result and (4.2), we conclude that
when m _-> 1 we have

Ib2=(0, , w)l<=A eb’2, -oo< w<-1/2= d.

Hence if, also, p > 2b we have

exp - Ow wm4,(O, , W) dw

(4.10)
NA exp p b w w dw O +/

On combining (4.5), (4.6), (4.8), and (4.10), we conclude that the error term in
the expansion (4.4) satisfies

(4.) (0, , )= O(-m), ,
uniformly with respect to O e , 2 ] and bounded values of I1, This is the desired
result.

4.4. Remark. The significance of the results established in this section apropos
the Stokes phenomenon is as follows. From Fig. 4 it is seen that := c(O)/p/2 lies in
the sector -r/4=< ph : =< 0 when -r_< 0=< rr, and in the sector 0_-< ph (-so) -< 7r/4 when
rr_-< O-<37r. It is well known that erfc (sc) O(e-e2) uniformly throughout the first
sector, and erfc (:)= 2+ O(e-e=) uniformly throughout the second sector (see, for
example, [9, Chaps. 2-4]). In consequence, if p is large and fixed and 0 increases
continuously from values just below rr to values just above 7r, then 1/2 erfc {c(O)/p/2}
changes rapidly, but smoothly, from being exponentially small to being exponentially
close to 1. From (4.2) and (4.11) it is easily seen that the same conclusion also applies
to the whole content of the square brackets in (4.4). On substituting into (2.8) by means
of this result we perceive that if Izl is large and the asymptotic expansion (2.5) is
truncated at its optimum number of terms, then there is a rapid, but smooth, transition
to the form (2.6) in the neighborhood of ph z= rr. Berry described the Stokes
phenomenon in this illuminating manner in [1], but his analysis was purely formal.
The present investigation serves to place Berry’s conclusions on a rigorous basis--in
the case of the generalized exponential integral. For further details concerning this
aspect see [10].

5. Main results and conclusions.
5.1. Comparison of the expansions of 2 and 4; formulae for the coefficients

g2,(0, x). Let us summarize the results obtained so far. Setting z =p ei, n p-p+ a

and defining F,+,(z) by (2.8), we proved in 2 that

e-i(o+o)o e-,-z a2.( O, a)
(5.1) F,,+p(Z)’--

1 + e-’ (27rp) 1/2
y" p->oo,

uniformly with respect to bounded la[ and 0[-r+ 8, 7r-6], 6 being an arbitrary
positive constant. In 3 and 4, we proved that

Fn+p(Z) (-)"ie-P=’[erfc { c(0) 21- }p
(.2)

exp (-1/2p(c(O)}2) ()
as p -* c, uniformly with respect to bounded I1 and 0 [6, 27r- 6]; here c(O) is defined
as in 3.2.
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Now consider the common sector of validity, given by, 3 _-< 0-< r- & From Fig. 4
we see that c(0) lies in the fourth quadrant of C and is bounded away from the origin.
We may therefore replace 1/2 erfc {c(0)x/p/2} by an asymptotic expansion in descending
powers of c(O)v/p/2 that is appropriate for this region. This is given by6

-1 {/} exp(-1/2p{c(O)}2)c(O)(2 7rp
-) {c((1/2)so)}2s (2__.)(5.3) erfc c(0) p

this result being uniformly valid with respect to 0 in an interval that includes 3, 7r- 3 ].
Substitution into (5.2) yields

F,,+p(Z) (-)"i e-’’ exp (-1/2p{c( 0)}2)
(2p)1/2

(5.4)

"{sO(--)S ()S () --i

We also obsee from (2.12) and (3.3) that (5.1) may be recast in the form

e
(5.5 e

1 + e-i (2p) 1/2
s=O p

We now have two uniform asymptotic expansions of the same function in descend-
ing powers of p. They must therefore be identical. Equating coecients, we conclude
that

e
(5.6) s=0,1,2,....

Analytic continuation extends this formula to all values of 0, other than odd multiples
of ; fuhermore, at 0 we may replace the right-hand side by its limiting value.

With the aid of the formula ao(0, a) 1 given at the end of 2.3, we immediately
perceive that (5.6) agrees with (3.16) in the case s 0. For other values of s, formula
(5.6) provides a convenient way of evaluating g2(O, a).

5.2. Extending the sector of validi. In expanding the error function that appears
in (5.2) in the form (5.3), we considered only values of 0 in the inteal [8, -8].
However, from Figs. 3 and 4 it is clear that (5.3) continues to be uniformly valid in
an inteal that includes [-+ 8, 8 ]. Since this again leads to an expansion, namely
(5.5), that is known to be valid in this larger interval, it follows that (5.2) itself must
be uniformly valid in this interval.

By symmetry, we also expect (5.2) to be valid in the interval [+ 8, 3-8]. And
this can be verified by expanding the complementary error function in (5.2) in a form
appropriate for this sector, and comparing the result with the expansion

e-+ e-v-z a2(,a)(5.7) F,+p(Z)(-)"ie-P’+ _, 1/ E , +803-8,
l+e (2p) =o p

obtained from (2.11), with k 1, and (5.1).7
5.3. Main theorem. Another expansion for F,+p(Z) can be obtained from (5.2) by

replacing p and z by their complex conjugates, and then taking the conjugate
of the whole result. On combining all the expansions obtained so far we arrive at
the following theorem.

See, for example, [9, pp. 67, 112].
In deriving (5.7), we also need to use (2.12) and the fact that a2s(O o) is periodic in 0, with period 2r.
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THEOREM 1. Let

(5.8) z p e i, n p-p + a,

and define c(O) by (3.3), (3.4), and g2s(0, ) by (5.6), (2.15), (2.16). Then

(5.9) Ep(z) =e-Z (_)s (P)+ (_)n
27r zP-lFn+p(Z),

z --o z F(p)

where for fixed p and large

Fn+p(Z) (-)"i e-pi [ erfc { c( O) p}
(5.10) exp (-1/2p{c(O)}

(2p)l/2 S----0

valid when -r+ 8 <- 0 <= 3r 8, and

Fn+p(z).-- (-)-l eP’ [ erfc { c(-O) p}
(5.11)

+ exp (-1/2p(c(-O)}2)(27rp)/ s=o () g2(-O, 6z) ()]
valid when -37r+ 8-<_ 0-<_ 7r-8. These expansions are uniform with respect to 0 and
bounded values of lcl; furthermore, the O-intervals of validity are maximal.

The only part of this theorem we have not established already is the maximality
of the 0-intervals of validity. However, this is an immediate consequence of the fact
that the coefficients g(O, a) become infinite as 0-r or 0- 37r; compare (5.6) and
(2.15).

5.4. Remarks. (i) If we truncate the infinite series in (5.10) at the term s m- 1,
where m is an arbitrary fixed nonnegative integer, then the error in the resulting
approximation to F,+p(Z) is exp [-1/2p{c(O)}9]z-m-1/20(1), that is, e-Z-lZlz-"-/20(1);
compare (3.3) (again). On referring to the expansions (2.5) and (2.6) we see that the
combination of (5.9) and (5.10) is a uniform, e-lZl-improved, expansion (in the sense
of 1) throughout the region of validity of (5.10). Similarly, the combination of (5.9)
and (5.11) is a uniform, e-Il-improved, expansion throughout the region of validity
of (5.11).

(ii) In applications, the use of (5.10) and (5.11) can be confined to the sectors
0 _<- ph z <- 7r and -Tr _<- ph z <- 0, respectively, and the continuation formula (2.11) (or
equivalently (2.4)) used elsewhere. Indeed, this procedure is consistent with maximum
accuracy; compare the observations made in [9, Chap. 14, 1]. However, there are
two reasons we sought the maximal regions of validity of these expansions. First, these
extensions show that, for example, the combination of (5.9) and (5.10) includes both
(2.5) and (2.6) within most of their regions of validity. Second, the extensions complete
the proof of results stated in 10, 3] in connection with Berry’s interpretation of the
Stokes phenomenon.

(iii) The expansions (5.10) and (5.11) have the common interval of validity
Iph zl <= r-8. The two expansions are not the same here, but their discrepancy is
absorbable in the implied error terms. Thus there is also a Stokes phenomenon
associated with these expansions in the neighborhood of ph z 0, and it would appear
to be possible to extend the whole process to construct UEI expansions of the UEI
expansions,s

For further comments on this possibility see [3, 4].
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(iv) The most serious deficiency in the present results is a set of realistic error
bounds for the expansions (5.10) and (5.11). Unfortunately, at this time this remains
a general drawback to asymptotic expansions obtained from integral representations
with coalescing critical points.
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UNIFORM, EXPONENTIALLY IMPROVED, ASYMPTOTIC EXPANSIONS
FOR THE CONFLUENT HYPERGEOMETRIC FUNCTION AND OTHER

INTEGRAL TRANSFORMS*

F. W. J. OLVERf

Abstract. A new generalized asymptotic expansion is constructed for the confluent hypergeometric
function U(a, a-b+ 1, z) in which the parameters a and b are real or complex constants, and z is a large
complex variable. The expansion is expressed in terms of generalized exponential integrals (or, equivalently,
incomplete Gamma functions). It has a larger region of validity and greater accuracy than the conventional
expansions of Poincar6 type; moreover, it provides insight into the manner in which the Poincar6 expansions
change smoothly, albeit rapidly, from one to the other in the vicinity of the so-called Stokes lines. The
expansion is accompanied by strict error bounds in the most important part of its region of validity.

The method used is quite general and can be applied to other functions that are representable as
transforms of Laplace or Stieltjes type.

Key words, coalescing critical points, error bounds, generalized exponential integral, incomplete Gamma
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1. Introduction and summary. In the preceding paper [10] we investigated the
generalized exponential integral Ep(z), in which p and z are unrestricted real or
complex variables. We began with the identity

(1.1) e-Z (P)s+ 2r
Ep(z)= (_)s (_)n zp-,Fn+p(z),

Z =0 Z

in which n is an arbitrary nonnegative integer, (p)s denotes the ascending factorial
p(p+l). (p+s-1), and

(1.2) Fp(Z)
F(p) Ep(z)
r zp---

Writing z in polar form z p ei, we were able to prove that if p --> c, with p fixed, then

Fn+p(Z) (-)"i e-pi [ erfc { c( O) p }
(1.3)

exp (-1/2p{c(O)}’)
g2,(O, a)(2q.rp)l/2 s=O

uniformly with respect to O[-r+6,37r-6] and bounded values of [al, where
a n-p+p. Here (and elsewhere) 6 denotes an arbitrarily small positive constant;
furthermore,

c(O)=x/}{e’ + i(O-r)+ 1},

with an appropriate choice of branch of the square root, and the coefficients g2s(O,
are continuous functions of 0 and a. We also supplied a similar expansion for F,,+p(Z)
when 0 [-3 7r + 6, 7r 6 ].

The importance of the expansion (1.3) is threefold.
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First, the combination of (1.1) and (1.3) unifies the Poincar6-type expansion

(1.4) Ep(z)-- E (_)s
(P)s 3 3

z -2 "rr + 8,
2
"n’-8

Z o

and the compound expansion

2ri e-p’ e p [1 7 ](1.5) E() gP--l’lt’-- Z (__)s
g

0t L2 +a,-aj,F(p) z =o

since these expansions can be derived from (1.1) and (1.3) by appropriate re-expansion
in the common regions of validity.

Second, as a consequence of this unification, the combination of (1.1) and (1.3)
accurately quantifies the Stokes phenomenon, that is, the rapid but smooth change in
form from (1.4) to (1.5) as 0 passes through the common interval of validity [r/2+ 6,
,-].

Third, in much of its region of validity the combination of (1.1) and (1.3) is more
accurate than either (1.4) or (1.5), owing to the fact that it contains an extra factor
e -Izl in its uniform error estimates. For this reason, we called the combination of (1.1)
and (1.3) a uniform, exponentially improved (UEI), asymptotic expansion.

The purpose of the present paper is to furnish a general method for constructing
generalized asymptotic expansions that enjoy similar properties, especially uniform
exponential improvement. The functions we shall consider are representable as Laplace
or Stieltjes transforms. We illustrate the method by detailed treatment of the confluent
hypergeometric function defined by

1 Io _ztta_(1.6) U(a,a-b+l,z)=F(a) e (l+t)-bdt,

when Re a > 0 and ]ph z[ < r/2, and by analytic continuation elsewhere. Special cases
of this function include Bessel and modified Bessel functions, parabolic cylinder
functions, and Airy functions. However, our method applies to a broader class of
functions than those of confluent hypergeometric type.

Instead of expressing the generalized asymptotic expansions in terms of the
complementary error function, as was done for the function Ep(z), we find it more
convenient, and elegant, to express these expansions in terms of the Fp functions. Our
main result is as follows:

THEOREM 1. Define Rn(a, b, z) by

"-’ _)s(a)s(b)(1.7) U(a,a-b+l,z)=z +R,,(a,b,z),
s=O S g

where

(1.8) n=lzl-a-b+l+a
[z[ being large, a and b beingfixed real or complexparameters, and lal being bounded. Then

2
b-1 e I m-1 (1-a)(1-b)s Vn_s+a+b_l(2R"(a’ b’ z) (-)"2r

r(a)r(b) [ (-)
Z

(1.9)
+(1-a)m(1-b),gm.n(a, b, z)},

where m is an arbitrary fixed integer, and

(1.10) R,(a,b,z)=O(e--Ilz-), Iphzlm
(1.11) R,(a, b, z)= O(z-), lph zl-.
Furthermore, these sectors of validity are maximal
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Theorem 1 is proved in the next four sections. In 6 we derive a strict and realistic
bound for R,,,,,(a, b, z) in the sector Iph zl<- r. Some general conclusions are drawn
in7.

To conclude this Introduction we make the following observations:
(i) From (1.10) and (1.11) it is seen that the combination of (1.7) and (1.9)

furnishes a uniform exponentially improved expansion in a sector that includes [ph z _-<

or. For other phase ranges improved expansions can be constructed immediately by
combining (1.7) and (1.9) with the connection formulae [4, p. 27]

ek(a-b)’n’i U(a, a b + 1, z e2k’r’i)

e:’+bi sin k(a b)Tr- sin (k 1)(a b)Tr
(1.12) -+ U(a,a-b+l,z)

sin (a b)"

27ri sin k(a-b)Tr e:bi
+ eZU(1 b, a b+ 1, z e+zri),

sin (a b)r F(a)F(b)

in which k is an arbitrary integer and either upper signs, or lower signs, are taken
throughout.

(ii) The well-known Poincar6-type expansion

(1.13) U(a, a-b+ 1, z). z Y (_)s
(a)s(b)

=o s zS
[phzl_-<zr-3,

and the two compound expansions

U(a,a_b+l,z)...z_ (_)
(a)(b)s

s=O S!Z

e:(’+b)=i (1 a)(1 b)
(1.14) :2ri zb-1 e

r(a)r(b) s=o s!z

Iph {z exp (q:-’i)}l r- 6,

obtained by substitution of (1.13) into (1.12), with k +1, can be recovered from (1.7)
and (1.9) by appropriate re-expansion.

(iii) Owing to the presence of the factors (1- a)m and (1- b), in (1.9), Rn(a, b, z)
can be expressed exactly as a finite combination of Fp functions when a or b is a
positive integer, by taking m to be sufficiently large. Furthermore, the estimates (1.10)
and (1.11) enjoy certain uniformity properties with respect to the parameters a and b.
In the case of the sector [ph z[ _-< r the last statement is verifiable by inspection of the
error bound for Rm,n(a, b, z) that is supplied in 6 below.

(iv) The original purpose of the present paper was to supply proofs of results
that were stated in [9, 4]. In turn, the main purpose of [9] was to provide a rigorous
basis for the formal researches of Berry on Stokes’ phenomenon [2]. These objectives
are achieved, but we go well beyond them, especially with respect to regions of validity
and exponential improvement.

(v) A formal expansion of R,(a, b, z) in terms of the function z"+b e Fn+b(Z
and its derivatives was found by Dingle [5]. This expansion is not equivalent to (1.9)
and Dingle was concerned only with the sector [ph z[ < r. Whether his expansion is
valid in a larger sector has not been investigated, but perhaps this question is moot
since our new expansion is of a simpler and more revealing form.

(vi) For work on the modified Bessel function K(z) that is closely related to [9,
4] and the present paper, see [3] and [6].
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2. Representation of the remainder term as a Stieltjes transform. If, in (1.6), we
rotate the path of integration through an angle -% 3/being an arbitrary number in
the interval (-Tr, 7r), then we obtain the analytic continuation of U(a, a-b/1, z) in
the sector [ph (z e-i) < 7r/2, given by

(2.1) U(a,a-b+l,z)=F(a e-Ztta-l(l+t)-bdt.

We now expand the factor (1 + t) -b by Taylor’s theorem, in the form

1 (b)sts(2.2) (1+ t)-b= (-) +x,(b, t),

where n is an arbitrary nonnegative integer,

tw (l+w)-b

dw,(.3) x.(b, t)=i w"(w t)

and is a simple closed contour that encloses w 0 and w t, but not w =-1 (see,
for example, 1, Chap. 4, 3.1]). On substituting into (2.1) by means of (2.2) we obtain
(1.7) with the following representation of the remainder term:

1 0(.4) (a, b, )
r(a)

-x(b, ) t.

Now suppose that Re b+ n>0. Then the integral of (1 + W)-bW-(W_ t)- around
any large circle in the w-plane vanishes as the radius of the circle tends to infinity.
Accordingly, the contour in (2.3) may be deformed into the loop contour depicted
in Fig. 1, giving

x(b, )=i (-)

If, also, Re b < 1, then the loop may be collapsed on to the interval (-m,-1] in the
usual way. Subsequent replacement of w by -w yields

(2.5) (b, t) (-)
sin (b t (g- 1) -b

(+t)
d,

where (w- 1)-b has its principal value.
We now substitute in (2.4) by means of (2.5), to obtain

sin(b) foe-’ f (w--l)-b
(.) (a, b, ) (-)

r(a)

FIG. 1. w-plane.
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where the fractional powers continue to assume their principal values. The assumptions
made so far are given by 0<Rea,-n<Reb<l, Iph(ze-i’)l<Tr/2. However, by
analytic continuation with respect to a, we see that (2.4) and (2.6) remain valid when
the first condition is relaxed to -n < Re a. By absolute convergence of the repeated
integrals we may interchange the order of integration (see, for example, [7, Thm. 1]).
Then by replacing by wr, we arrive at

R,,(a, b, z)
(-)" sin (,n-b)

(w- 1)-bwa-1 dw
ooe- e-

dr.(-ai l +z

Provided that Re a < Re b the order of integration may again be reversed, and on
replacing w by 1 + v, we obtain the desired integral representation for the remainder
term, given by

e
dr e v-b(1 -t- V) a-1 dv,(2.7) R,,(a, b, z) (-)"

sin (.n-b) e-iV --z’"l’n+a--1
rF(a) l+r

valid with the conditions

(2.8) -n < Re a < Re b < 1, Iph (z e-’)l < 1/2r.
Remark. A key step in the foregoing analysis is the use of Cauchy’s integral

formula for the remainder term in a Taylor-series expansion. Since the objective is to
represent the remainder term R,(a, b, z) in the expansion (1.7) as a Stieltjes transform,
applicable methods based on properties of Laplace or Stieltjes transforms, given, for
example, in [11] and [12], can be used instead. This approach was used by Boyd [3]
and Jones [6].

3. Proof of Theorem 1 when Iph zl<=zr 3. Throughout this section we continue
to assume that all fractional powers take their principal values and that 3/is an arbitrary
constant in the interval (-Tr, 7r).

Let m be an arbitrary nonnegative integer and v [0, oo). By Taylor’s theorem we
have

m--1

_)s
(l_a)

(3.1) (1 + v)a-1
s=o

vs’-l-(1- a)mvmdpm(a, v),

where bo(a, v) (1 + v)a-1 and

(-) Io’(3.2) dp,,(a, v)=(m_l). (1-t)’-’(l+vt) a-"-’ dt, m>=l.

Next, if we refer to the definition of Fp(z), given by [10, (2.9)] and then apply
analytic continuation with respect to z, we see that

e fo
e-’ e-Ztt p-1
dt, Rep>O, Iph(ze-)l<1/2r.(3.3) Fp(z)

1 +
Provided that m < n + Re a + Re b we may substitute for (1 + v)a-1 by means of (3.1)
in the inner integral in (2.7) and integrate term by term. On referring to (3.3) and
using the reflection and recurrence formulae for the Gamma function, we arrive at
(1.9) with

zI-b e-Z e 7"
dr e-z’vvm-bdpm(a, V) dr.(3.4) R,,,,,(a, b, z)

2zrF(m + 1 b) 1 + z

The last result has been established with the conditions Re a + Re b > m n and
(2.8). From its definition we see that b,, (a, v) is a continuous function of a and v and
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an entire function of a. Also, if m> Re a-1, then I(1 + vt)a-m-ll 1, and in con-
sequence

(3.5) [4,(a,v)l<--l/m!, v [0, oo), m>Re a-1.

Hence by analytic continuation with respect to a and b we see that if Iph (z e-iV)l < 7r/2
and n > m, then (1.9) and (3.4) hold in the region defined by

(3.6) Rea<m+l, Reb<m+l, Rea+Reb>m+l-n.

We now seek to majorize IRm,n(a, b, z)l for fixed values of a, b, and m, bounded
values of I1, and large values of p Izl. Here a is defined (1.8) and m exceeds both
Re a 1 and Re b- 1. (The other two conditions, n > m and Re a + Re b > m + 1 n,
are satisfied automatically when p oo with bounded.) Also, since we are assuming
throughout this section that ph z [-Tr+ 8, 7r-], we may set y =ph z 0 without
violating the condition Iph (z e-i) < r/2.

With y 0 we have z e-i, where 0_-< < oo. Hence (3.4) may be recast as

e-(n+a)iOzl-be-ZIoXe-Pttn+a-a Iol+te-i
(3.7) Rm,,(a,b,z)=-A--T:--: dt e-"Ov-%(a,v) dv.

By use of (3.5) we see that the inner integral satisfies

(3.8) re-p’)m-btDm (a, v) dv

For the outer integral we have

r(m + 1 Re b)
m!(pt) m+l-Reb

(3.9)

Hence

I1 / e-[ -1 _--< cosec

e’n’(lImal+lImbl)F(m -k- 1 Re b) F(n m + Re a + Re b- 1)[e-Zl
(3.10) IRm,,(a,b,z)l <

2rsin 8m!lF(m+l-b)[ fln+Rea+Reb--1
Substituting for n by means of (the real part of) (1.8) and using Stirling’s formula, we
conclude that as p - oo the right member ofthis inequality is O{e-z-lzl/zm+1/2} uniformly
for bounded I 1; compare (1.10).

Lastly, the conditions m > Re a 1 and m > Re b- 1 may be removed in the usual
way by replacing m in (1.9) by a sufficiently large integer and referring to [10, (2.14)].
This completes the proof of Theorem 1 in the case where [ph z[ =< 7r-8; indeed, we
have a slightly stronger asymptotic estimate for Rm,n(a, b, z)-by a factor Izl-1/=for
this sector.

4. Proof of Theorem 1 when ;-<_ph z<-2r-. We return to the representation of
R,(a,b,z) furnished by (1.9) and (3.4), and valid with the conditions
Iph (z e-V)l < 7r/2, n > m, and (3.6). The natural way to try to extend the proof of 3
to larger values of ph z would be to rotate further the path of the outer integral in
(3.4), that is, to take values of 3’ equaling or exceeding 7r. The difficulty is that as

3"--> 7r, the integration path approaches the singularity of the integrand at z =-1. To
overcome this difficulty we adopt, temporarily, the extra conditions 0 < 3’ < r, r/2 <
ph z < 7r, and decompose Rm,n(a, b, z) as follows:

(4.1) R,.,,(a,, b, z)= R(1)m,n (a, b, z)+ R(2,,,),,(a, b, z),

Compare also (4.5) below.
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where

(4.2)

(4.3)

The right member of (4.2) may be regarded as the product of two single integrals,
instead of as a double integral. The first of these is identifiable as an Fp function; the
second may be continued analytically by rotating the path of integration through an
arbitrary angle -, say, where (-Tr, 7r). With the aid of (3.3) we obtain

zl-b f ooe-i’

(4.4) R() eZ’v",,,,(a, b, z)
F(m-F I b)

Fn+a(Z)
go

-b)m(a v) do,

valid with the conditions 7r/2<lph(ze-iC’)l<-Tr and (3.6). (The conditions
[ph (z e-iV)[ < r/2 and 7r/2 < ph z <Tr disappear.) From Theorem 1 of [10], we obtain-
(4.5) Fn+a(Z) O(e-Z-tzt), Iph
(4.6) F,+a(z) O(1), r <- Iph zl_-< 3r- .

Next, in this section we consider only the sector -< ph z =< 27r 6; hence we may
set 0- r. On replacing v by v e(=-) we derive

IO i’ IO(4.7) eZv"-bm(a, v) dv=e(’’-)(’’-b+l) e-lZl’vm-bdm(a, vei(-) dr.

One of our assumptions is that Re a < m + 1; accordingly, from (3.2) we perceive that

(4.8) [bm(a V e’(=-)) <= Am,
where A,, is assignable independently of 0 3, 27r- 6 and v [0, oo). In consequence,
also, of the second condition of (3.6) it follows that

eZ’v"-bch,,( a, v) dv O(zb-"-).
o

Then combining this result with (4.4)-(4.6), we arrive at

(4.9) R)n(a,b,z)={ O(e-z-lzlz-m)’ 6-<-Ph z <- or’
O(Z-m), zr_<-- ph z-< 27r- 6.

,,2) (a, b, z), we first rotate the path for the inner integralFor the contribution of x,,,,
in (4.3) through an angle (7r-y)/2. This yields

zl-b e-Z Ioe-i’rR(2) (a, b, z)= e-Z7"n+a-1 drm,.. 2rF(m + 1- b)
(4.10) x)ei(-’r)/2 e_Z.,_ eZV

X Jo vm-t’bm(a, v) dr,
1+"

In deriving (4.5) and (4.6) from the cited theorem, we have used the following facts" erfc () O(e-2)
throughout the sector Iph 1_-<7r/4; erfc(sC)= O(1) throughout the sector Iph (-:)1=<7r/4 (compare [10,
4.4]).
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valid when O< y< r, Iph (z e-’V)l < 7r/2, [ph (ze’(=-3’)/2)l< 7r/2, and
Iph (z e-i(+’v)/2)l < 7r/2, that is, when

(4.11) 0<y<r and 1/2y<phz<-y.
Furthermore, because the integrand is now free from singularity at r =-1 we may
extend the rotation of each integration path by increasing y. Thus (4.10) is also valid
with the conditions

(4.12) r=<y<27r and -y-zr<phz<Tr+1/2y.
In accordance with (4.11) we may set y= 0 (=ph z) in (4.10) when 6_-<ph z<
Alternatively, if 7r-<_ ph z _-< 27r-6, then we may set 3’ 0 in (4.10) in accordance with
(4.12). In either event we find that

R(2) zl-b e-Z [ xe-i,,,,(a, b, z)
2rF(m+l-b) ao

e z"+- dr

(4.13)

ffoXe
i(r-O)/2

e -e
m-bm(a do,X V V

l+r

valid when 6 _-< ph z _-< 2r 6.
Once again, subject to (3.6) we seek to estimate R(2) (a, b, z) for fixed values ofm,

a, b, and m, bounded values of a I, and large values of p-=
We first observe that the integration variable of the inner integral in (4.13) lies

within the sector [ph vl < r/2. Hence

(4.14) IdPm(a, v)[ < ewllmal/2/m!;
compare (3.5) and (4.8).

Next, we have identically

e e 1 ezv(l+r) e-zv(l+) 1
Zl) e-ZrV Z’O e

l+r zv(1 + ) zv(l+ r)

Furthermore, by application of the maximum-modulus theorem it is easily verified that

(4.15)
1 e- _-< 1, Re sr => 0.

Combination of the last two results yields

e-"-e {Izve-’l, Re{zv(l+’r)}<-O,<-
,[,1 + z Izv e Re {zv(1 + z)} > 0.

With ph z =-0 and ph v 7r/2-0/2, we have

Re {zv(1 + z)} p[v[([r[- 1) sin 1/20.
Accordingly,

Re {zv(1 + z)} 0 according as [r 1.

Therefore when 0 < [z[ _-< 1 we have
ei(r--O)/2

e e
Vm-b/) (a, v) dv

ao l+r

e’n’lXmal/2 e(--O)mb/2p Io(4.16) <-- e-pl’vlsin 0/211.)[ m-Reb+l girl
m!

<
e(lImal+lImbl)/2p F(m +2- Re b)

m! (pill sin 1/26) "+2-Rb"
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Similarly, when zl 1 we find that
i(’n’-O)/2 e-Z"-e

1)m-bm(a v) dv
l+r

(4.17)
e’rr(lImal+lImbl)/mp F(m + 2- Re b)

rn (p sin 1/2 t) m+2-Reb

We now prepare to substitute in (4.13) by means of the inequalities just obtained.
At this stage it is convenient to use the symbol A, generically to denote a quantity
that may depend on m, a, and b, but is independent of n, z and (bounded values of)
a; compare, also, (4.8). In (4.13) we have

[7.n+a-ll aml,rlp+Rea-geb.

compare (1.8). Hence

a,,,,,(a, b, z)l <-_ A e-’lllrl"+"-m-
tO

Replacing both integration ranges by (0, ) and subsequently using Stirling’s formula,
we derive

(4.18)
IR( le-l {r(p + Re a m 1)

m,n(a, b, z)l _--< Am
tO --O"’-:----m----i

F(p+Re a +l-Re b)]
pp+Re oz+l-Re b

This result is valid when t=<ph z=<27r-t, and on combining it with (4.1) and (4.9)
we arrive at

R,.,,(a,b,z)={O(e--IZlz-m), <-Phz<--m
O(z-,), r__< ph z_< 2r &

After removing the restrictions (3.6) on m in the same manner as that used at the end
of 3 (compare (4.5) and (4.6)), we see that the proof of Theorem 1 is complete for
the sector

5. Completion of the proof of Theorem 1. The next extension is to the sector
r+ 8 _-< ph z _-<-r i. Rather than attempting to extend the method ofproofintroduced
in 4, we appeal to the connection formulae (1.12). An advantage of this approach is
that it also determines the maximum regions of validity.

From (1.12) with k- 1, z replaced by z e-:" and upper signs taken, we have

U(a, a b + 1, z) e-2a’r’i U( a, a b + 1, z e-2=i)
(5.1)

e
eZ+27ri U(1 b, a b + l, z e-i).

r(a)r(b)

Substituting in each side of this equation by means of (1.7) and (1.9), then using the
identity

(5.2) F,,-s+,+b-l(Z e-2’’i) (--)"+si e("+b)"i + e2(+b)iF,,-s+a+b-l(Z)
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obtained from 10], (2.11), and carrying out some reduction, we eventually arrive at

Rm,,(a, b, z) e-2(a+b)"iR e-E.r,-i) r(3) (4)m.,,.a,b,z + am,.,, a,b,z)+R,.,,,,a,b,z),(5.3)
where

(5.4)

and

(,1 (m+ 1-a)s_m(m + 1-b)s_m
,,(a, b, z) (-)"-1i e-(a+b)=i

S!Z

zl-a-b e-ZR,(a. b. z)= 2.rri
F(m+l-a)F(m+l-b)

(5.5) Im (a)s(b) Fn-s-a-b+l(Z e-=i)
[/’s=0 S! Z

+(a),.(b)Rm,.(1-b, 1-a, ze-’)}.
Since Tr+6=<ph z<-Tr-6, we have [ph (ze-2ri)[ <-’rr/2-6; hence from the

results of 3 it follows that

(5.6) Rm,,,(a, b, z e-2’’) O(e-Z-lZlz-m-1/2).
Next, although the number of terms in the sum in (5.4) increases with Izl, it is routine
to verify that

(5.7) (3) n-(a+b)i()x,, ,(a, b, z) (-) - e 1

mzm +0
Z
ml

For R(n,,?,(a, b, z) we have 1/2rr+ 6 _-< ph (z e-rri) Tr-- 6; accordingly, from the results
of 4 it follows that

and
Rm,,(1-b, l-a, z e-’i) O(Z--m),

Fn_s_a_b+l(Z e-’‘) 0(1),
for each s. Hence

(5.8) r(4),x=,,(a, b, z)= O(z - e ).
On substituting in (5.3) by means of (5.6), (5.7), and (5.8) we conclude that

(5.9) R,,,,(a,b,z)=O(z-’),
as required. Then combining this estimate with the results of 3 and 4 we establish
(1.10) in the sector -r+6-<phz-<rr, and (1.11) in the sector rr-<phz=<rr-6. A
similar proof holds for the conjugate sector, or we can appeal to symmetry.

To complete the proof of Theorem 1, we have only to demonstrate that the estimate
(1.10) breaks down after we cross the rays ph z +/-rr, and the estimate (1.11) breaks
down after we cross ph z +rr.

In the case where ph z =rr, we observe from (4.4) and (4.7) that as z--> oo in the
sector 6 <_- ph z <- 2 rr o’, we have

R(1) (a, b, z)’ (_)m-1 e-b.,riCm(a, 0) F.+,(z____) __e-b’r"iFn+a(Z).
m.n

Z m!z

compare also (3.2). And when 7r+ 6-< ph z<-_2r 6, (--)nFn+a(Z) tends to the constant
e-a=i (compare Theorem 1 of [10]), giving ,(1) (a b, z)--- (constant)z-". ObviouslyIK m,

from (4.18) this algebraic behavior cannot be cancelled in (4.1) by the contribution of
R?,,(a, b, z). A similar argument applies to the ray ph z =-r.

Lastly, after we cross ph z -r, the contribution of ,.<4 (a b, z) in (5.3) is noIXm,
longer absorbable in the estimate O(z-m) because it becomes exponentially large. On
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the other hand, the term e-2(a+b)"riRm,n(a, b, z e-2’’i) remains exponentially small and
R(3m?,,(a, b, z) remains O(z-’). Similarly for the ray ph z -r.

6. Error bounds. For computational purposes the use of (1.7) and (1.9) should
be confined to the sector ]ph z] _-< r in which the error term has undergone maximum
exponential improvement; elsewhere continuation formulae are to be applied. As
always, it is highly desirable to supply a rigorous and realistic bound for the error
term in any asymptotic approximation. The analyses supplied in 3-5 lend themselves
only in part to achieving this objective.

In 3, for example, the bound (3.10) breaks down as 6->0. However, a slight
modification of the analysis leading to this result yields a satisfactory bound when
Iph z -< r/2: in this sector the right-hand side of (3.9) is replaceable by unity, thus
eliminating the factor (sin 6) -1 from (3.10). Similarly, if we restrict ph z[.a-/2, "re],
then the bounds derived in 4 can be tightened; however, the factor (cosec 6/2) m/2-Reb

that appears in (4.16) and (4.17) can be replaced only by (x/) m+2-Reb, which is a
drawback.

In this section, we modify the analysis of 4 in a more substantial manner in
order to arrive at a sharper bound for Rm.,(a, b, z) in the sector Iph zl=< r. This
modification is based partly on the analysis of Boyd [3] for constructing error bounds
for a similar expansion for the modified Bessel function K,,(z). The bounds we shall
derive are similar to, but not the same as, those of Boyd when the parameters a and
b (and ipso facto v) are real, and they are more readily computable when a, b (and
9) are complex.

As before, we set z =p ei. Throughout the following analysis we restrict
relaxing this condition to 101--< at the close by appeal to continuity.

In (3.4) we take 3’ 0, and decompose Rm,n(a, b, z) in a manner slightly different
from that given by (4.1)-(4.3). We write

(6.1) Rm,,,(a, b, z) ’)
Om,,,,a, b, z)+ S?,,(a, b, z),

where

(6.2)

(6.3)

zl-b e-z Ioxe-i e-Z’rT"n+a-1
m,n(a, b, z)

27rF(m + 1 b) 1 + z
d e-v-b,, (a, v) dr,

S(2) (a b, z)=
Zl-b e-z fo"’"" 2rF(m + 1- b)

e-Z’Tn+a-1 d-

e-Z-O e-p

1+-
vm-bdpm(a, t) dv,

these equations being valid with the conditions 101 < 7r and (3.6).
As in 4, the first integral in (6.2) may be identified in terms of F,,/a(Z). For the

second integral, we utilize the bound (3.5) for 4)m(a, v). Thus we derive

eImbF(m + 1 Re b)
(6.4) (1)o ,,(a, b, z)l =<

m!lF(m+l-b)l o
In (6.3) we set " e-i; thus

(6.5)

-(n+a)iOeS!.(a, b, z)=
2r(m + 1 b)

Z
1-b e e-pttn+a-1 dt

f e-pry_ e-Or
Jo l+te-i

l)m-bm(a I) do.
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To bound the inner integral, the inequalities

e-tv- e- [pl) e-tv 0 < < 1,
(6.6) o< -<

1 1. pv e-or > 1

and

(6.7)
l+te-i

<--_1

are applied (6.6) is easily verified with the aid of (4.15), and (6.7) is verifiable by
considering the bilinear transformation T (1 t)/(1 + e-g); compare [3, 4]. Refer-
ring again to (3.5), we conclude that

ze pry e-p
l)
m-b

l+te_O dp.(a,v) dv <- p F(m+2 Reb)
m[ (ptl) m+2-Reb

where tl min (t, 1). If we further restrict Re a / Re b > m /2-n (compare (3.6)), then
we may substitute this bound in (6.5). Referring once again to (1.8), we find that

em+mF(m +2- Re b)Io(2Om,.(a,b,z)l <-
2"rr m F m + l b ,0

(6.8)

e-pt p-m+Rea-2 dt + e-pttp-Reb+Rea dt

Inequalities (6.4) and (6.8) furnish the desired upper bound on IRm,,(a, b, z)l via
(6.1). The condition [01 < r may now be eased by continuity considerations. Thus the
aggregate conditions on (6.4) and (6.8) are given by 101 <- 7r and

(6.9) Rea<rn+l, Reb<rn+l, Rea+Reb>rn+2-n.

It remains to bound the integrals that appear in (6.8). A simple approach is to
extend each integration range to [0, c). This immediately yields

l

e-or p-m+Rea-2 dt <
o

flx e-pt p-Reb+Rea dt <

F(p m + Re a 1)
pp-m+Re -1

F(p- Re b+Re a+ 1)
pp--Reb+Rea+l

However, each of these bounds overestimates the actual value of the corresponding
left-hand side by a factor that approaches two as p- c. More sophisticated bounds
that are free from this defect are supplied in the Appendix.

7. Conclusions. We have constructed a uniform generalized asymptotic expansion
for the confluent hypergeometric function U(a, a b / 1, z), valid when the parameters
a and b are fixed and z tends to infinity in the sector Iph z <_-25-r 8, where 6 is an
arbitrarily small positive constant. This expansion is in terms of generalized exponential
integrals (or equivalently incomplete Gamma functions) and it includes as special
cases three well-known expansions of Poincar6 type valid in the ph z intervals [--r /
8,-1/27r-6], [-r + 8, Tr-6], [1/2r+ 6,7r-6]. It also quantifies accurately the rapid,
but smooth, transitions between these expansions in the neighborhoods of the Stokes
lines ph z +Tr. These smooth transitions were first described by M. V. Berry using
formal analysis and error functions as approximants. The present results serve to place
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Berry’s conclusions on a rigorous foundation in the case ofthe confluent hypergeometric
function. However, it should be noted that Berry’s analysis applied only in the
neighborhoods of the Stokes lines, whereas our result is uniformly valid in a sector of
total angle 57r-26.

Our new expansion enjoys the important property that it is a uniform, exponentially
improved expansion throughout the sector Iph zl <= 7r, in the sense described in [10,

1]. Furthermore, we have derived strict and realistic bounds for the error term in
this sector. Uniform, exponentially improved expansions in other sectors can be easily
constructed with the aid of standard connection formulae, and normally we need not
compute the new expansion outside the sector [ph z[-<

Although we have treated only the confluent hypergeometric function in the present
paper, our method is applicable to a large class of functions that can be represented
by Laplace transforms. The basic steps are as follows: (i) The remainder term of the
Maclaurin expansion of the kernel of the transform is represented as a contour integral
by means of Cauchy’s integral formula. (ii) The integral obtained in step (i) is used
to construct a Stieltjes transform in the form of a double integral for the remainder
term associated with the desired asymptotic expansion. (iii) The double integral is
expanded in a series of generalized exponential integrals. (iv) The region of validity
is extended by suitable rotations of integration paths and use of continuation formulae.
The only step in which we made use of special properties of the confluent hyper-
geometric function was (iv), where we relied on continuation formulae. However, this
was largely a matter of convenience, and in any case this step is the least important.

In Berry’s theory the conditions adopted ensure that the function whose asymptotic
expansions are under investigation is representable as a Laplace transform of the type
admitted above. The scope of the present method therefore appears to be essentially
the same as that of Berry.

Appendix. Bounds for some incomplete Gamma functions. In this appendix we
construct bounds for the incomplete Gamma functions

(A1) il)(p) e-’t "+-1 dt, i2)(p) e-’t ’+x-a dt,

that have the same asymptotic forms as the functions themselves when p- o with
positive and fixed. These results were referred to at the end of 6.

LEMMA. When A and p are positive

(A2) i(,)(p) <= r e_, exp \pp/ 1 +erf

(A3) i(2(p)_< r e-o exp \pp] 1+err

where

(A4) /Kl= sup w(’r), ::z sup w(r),
(0,cx) ’(--1,0)

This includes, for example, the integral 0 e-zttd-lF(a, b; c; -t) dr, in which a, b, c, d are parameters.
This is a generalized hypergeometric function of 2F type.
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and4

1 ((1 +-r) }(A5) to(r) =x/2r-2 In (1 + r)
In

I1
x/2z-2 In (1 + r)

To establish this result, we first observe that

()-0, -+; ,o()-x-, -0+;

to(-)--oo, ’-1+; to(’)-A, ’0-.

Hence and to: are both finite; furthermore, Ul >_-max (-, O) and u:_->-.
In the definition (A1) of i(l)(p) let us replace by 1 +r, and then set

(A6) 1/2v= r-In (1 + r),

with v---r when r 0+. We find that

(A7) I((p) e- exp -- ,or f(v) dr,

where

f(v) (1 + 7")A-1
dT" /)

-vv (1 + r)A-"
r

Clearly, f(v) is positive when v (0, oo), and tends to unity when v 0+. Furthermore,
from (A4), (A5), and (A6) we see that

(A8) f(v) <=e 0<v<.

Substitution of this bound into (AT) leads to (A2).
The proof of (A3) is similar.
We note that by applying Laplace’s method [8, Chap. 3], to the integrals in the

definitions (A1) we derive

Ik’)(p), I2)(p) /-p e-p, p -- oo.

Obviously, the right-hand sides of (A2) and (A3) also have this asymptotic form.
We also observe that for computational purposes the bounds (A2) and (A3) are

simplifiable, with an insignificant loss of sharpness when p is large. This is achieved
via the inequality erf (t)2t/, which is valid for all nonnegative values of t. In this
way we derive

e-" exp k]
()

< e-expx0/ 1+ <0-2
provided that O > 2/. (The last step is a consequence of the inequality (1 + t) e <
(1- t)-, 0< < 1.) The corresponding simplification for I(p) is found to be

e- 2

4 In (A5) the positive square root must be taken in both instances. Thus x/2r-2 In (1 + r)" Ir] as r0
from above or below.
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provided that/(2 > 0. If K2 -< 0, then we have

(All) I2)(p) <- e-;

compare (A7) and (A8).
Remark. The method that we have used in this Appendix may also be applied to

the general problem of bounding error terms that arise with Watson’s lemma and the
method of steepest descents. It enjoys some advantages over that described in [8, Chap.
3, 9; Chap. 4, 10].
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C(I) SOLUTIONS OF A CLASS OF NONLINEAR DEGENERATE
ELLIPTIC SYSTEMS ARISING IN THE THERMISTOR PROBLEM*

HONG XIE AND W. ALLEGRETTOS"

Abstract. Under realistic assumptions on the electrical and thermal conductivities, the existence is
proven, for some 0< a < 1, of positive C(fl) solutions for a system of degenerate elliptic equations which
model a thermistor. A priori bounds are established for the solutions, and then the conductivities are

truncated, so that a uniformly elliptic system is obtained. Next, L2’(fl) estimates are used to obtain Ca(l))
estimates. Finally, the desired results follow from fixed-point argument.

Key words, degenerate, elliptic system, thermistor, estimates, truncation

AMS(MOS) subject classifications. 35J55, 35J60, 35Q20

1. Introduction. In this paper, we study the Boundary Value Problem for a class
of nonlinear elliptic systems which models a temperature dependent electrical resistor.
The electrical potential and the temperature distributions are denoted by q and u,
respectively. These are functions defined on a smooth domain (open, bounded set)
in R. The cases of practical interest are for N =< 3 but our proofs also hold for N> 3.
The relevant equations are as follows:

(1.1) V(r(u)V)=0 inf and

V(k(u)Vu)=-tr(u)lVql2 infl and U=Uo onOfl.

Equations (1.1) and (1.2) express, respectively, the conservation of current and
the energy balance including the electrical heating due to the Joule effect. The functions

Uo, qo are the distributions on the boundary, while tr, k denote the electrical and
thermal conductivity. In many cases of practical interest, tr and k have the following
forms:

(1.3) tr(u) Au exp (-C/Bu),

(1.4) k(u)=(D+ Eu+ Fu2)-1,
where u is the temperature, A, B, C, D, E, and F are physical positive constants, and
3’ is a small positive number or a nonpositive number. Further details on the physical
background of this system can be found in [1], [2], and [5].

We observe that system (1.1), (1.2) is degenerate, highly coupled, and that the
right-hand side has quadratic growth in the gradient of one of the unknowns. These
are features not often found in the nonlinear systems commonly considered in the
literature. In particular, it does not appear that arguments based on variational theory
and/or Sobolev’s Embedding Theorems can be easily applied to system (1.1), (1.2).

Throughout this paper, we make the following assumptions:

(H1)

(H2)

(1.5)

c RN is a bounded domain with oO C 1.

qo(X) and Uo(X) are in cl"t(()(fl > 0), i.e., there exist positive constants qM,

and UM such that

O<-- qo(X) <= OM and Um <-- Uo(X) <= UM on l).

* Received by the editors September 4, 1990; accepted for publication February 20, 1991. This research
was supported by the Natural Sciences and Engineering Research Council of Canada.

" Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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(H3) tr( t) and k( t) are continuous for t>-O, positive and smooth for t>0, and there
exists a smooth function f such that

k(t)
(1.6)

tr(t)
->f(t) > 0 for _-> ua4,

and" (a) Either f(t) dt o or, if f(t) dt < c, then

(1.7) f(t) dt > q14.
2

(b) There exists a sequence {t)7, tending to infinity, such that f(tn)>=f(t) for
t[tn, o).

Remark 1.1. The functions (1.3), (1.4) satisfy (H3) if F>0 and 3,_-<-1 in (1.3),
(1.4). We need only take

aMf(t) with aa4 min e
t>UM

c/Rt/(D+ Et + Ft2)tv]> O.

For another example, let F> 0 and 2,<--0, and we now choose f(t)= aM/t2 with
aM min,>_uM It2 eC/R’/(D+ Et+ Ft2)t]>O. Equation (1.7) now implies the restric-
tion UM q < 2aM.

Remark 1.2. We observe that, unlike the temperature, the potential need not be
positive. We can deal with this more general case as follows" Let the arbitrary constants
C,, and CM be such that

Cm <= ’Co(X) <- CM.

Note that (1.1), (1.2) are invariant under shifts of q by an arbitrary constant. Thus by
shifting by Cm and letting 0M C4- Cm we have

0_-< 0(x)- c _-<

Everything remains unchanged except that (1.7) now becomes

(1.7)’ f(t) dt>
(Clvt-Cm)2

This restriction is essential in our method of proof, but we conjecture that the results
may be true without it.

We will prove that there exists at least one positive C(1) (some 0<a <1)
solution of (1.1), (1.2) under (H1)-(H3). The same problem (1.1), (1.2) has been
studied in [3] by Cimatti and Prodi. They obtained existence results in Hl(f) when
k(t) is constant, but no boundedness of the solution. Both physical and numerical
results indicate that the solution should be bounded. Later in [2], Cimatti proved that
all solutions of (1.1), (1.2) are bounded under the following assumption:

(H3)’ There exist three positive constants tr,,, crt and km such that O" <--__ o’( t)<--trM
and k( t) >= km for all >- Urn.

The assumption (H3)’ is very restrictive and it excludes important practical cases
as in (1.3), (1.4).

We would like to indicate that the results in [2] and [3] furnished the motivation
for this work.
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2. Estimates. We define the weak solutions of the system (1.1), (1.2) as couples
(u(x), (x)) Hi(O), which satisfy

(2.1) q qo H(O),

(2.2) U- Uo H(fl), fa k(u)VuVv fa (u)lV12v
A solution (u, ) is a C(fl)(Oa 1) solution of (1.1), (1.2), or equivalently, of
(2.1), (2.2) if and only if u and are in C (fl) and satisfy (2.1), (2.2).

In what follows, C denotes a generic constant which may differ from proof to
proof or even within the same proof.

THEOREM 2.1 (Boundedness estimate). Let (u, ) be a positive C(fl) solution of
(2.1), (2.2), then

(2.3) O (x)

(2.4) u
where M is a positive constant independent of u.

Proo Since u C"()(0< a < 1) and is positive, 0mina u u(x) maxa u <. So 0<mina (u)maxa (u)< and 0<minn k(u)maxn k(u)< by (H3).
This implies that the system

(2.5) -o H(D),

(2.6) U-UoH(fl), f k(u)VuVv= (u)lV12v
J J

is uniformly elliptic. Fuhermore, CI() by (2.5) and (H2), (H3) and standard
elliptic estimates [4]. We apply the weak maximum principle [4] to both equations.
We have that 0minoo(x)maxoo and u(x)mino (Uo)
In order to get the upper bound on u, we employ the same transformation that was
used in [2].

Let X v H(O) for v H(), and substitute it into (2.1). We have

(2.7) (U)IV@I2V (u)VVv Vve H(a).

Replace the right-hand side of the equation in (2.2) by (2.7). We see that u satisfies

(2.8) U-UoH(), f.k(u)VuVv=-f. (u) V vv VvH().

Fuhermore, we let (x) 2 u(x)= (x)+, (k(t)/g(t))dt and o(X)=(x)+
"(x) (k(t)/(t)) dr. It is easy to see that (x) and Co(X) are in H(O). From (2.8), wem
have that (x) satisfies

-oe H(O), (u)VVv=0 Vv H(fl).

By the weak maximum principle, minmo(x)maxa o on fl, i.e., we have

( "(k(t) l f’"k(t)"( k( t) 1 dt < + dt.
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It follows that

fuu(X) k( t) 1 2

t(t)
dt z-2

Now if u(x) - UM for x fl, we take M UM. Otherwise, if u(x) >-- u for some
then by (H3),

k( t)
>_ f( t) > O for t_> ur(t)--

implies

u(’) 1
f(t) dt < p2M

UII -Assume first that of(t)dt +. The inequality above implies that there exists a
bound r>O (which is independent of u(x)) such that u(x) . Now select t such
that tmax {r, u} and note that u(x) t, for xO. We define M t,. Next, if

f(t) dt < and J f(t) dt > , then there exists a small positive constant e > 0
such that

Thus

and so

f(t) dt >---rpM+ e.

1 fu(x)f(t) dt e >= q92M >= f(t) dt,

f(t) dt>=e>O.
(x)

This implies that there exists a r > 0 such that u(x) <= r. As before, we let t, _-> max {ut, r}
and let M t,. Estimate (2.4) is proved.

Now truncate r(t) and k(t) as follows:

O<=t<=u,
(2.9) o’*( t) o’( t), Um <= <= M,

tr(M), M<=t<

and

(2.10)
O t< Um,

k*(t) k(t), Um<=t<=M,
k(M), M<=t<.

(2.11)

(2.12)

Consider the following truncated system:

q-qo H(I), fn r*(u)VqVX=0 VX H(D);

H().
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We see that the truncated problem (2.11), (2.12) is a uniformly elliptic system. In
fact, there exist two positive constants A,,-> AM, such that

(2.13) Am o’*(t), k*(t) AM for all >- O.

Moreover, r*(t), k*(t) are still Lipschitz for t_-> 0 and satisfy (1.6). Let us check in
detail that r*(t), k*(t) satisfy (1.6). By definition of o-*(t) and k*(t), we have

k*(t) f k(um)/O’(um)’ 0<= t<= Urn’

or*(t) ! k(t)/or(t), Um <---- <- M,
k(M)/ or(M), M <- < oo.

Thus

k*(t) k(t)
o..( t) o.( t)

>-f( t) > O for U <= UM <= <= M

k*(t) k(M)
r*(t) o’(M)

-->=f(M)=f(t,)>=f(t) for It,,, oo),

by (b) of H(3), i.e., (1.6) holds for tr*(t) and k*(t) with the same f.
LEMMA 2.1. Any solution (u, o) of (2.11), (2.12) satisfies the bound (2.3), (2.4).
Proof. Since (2.11), (2.12) is uniformly elliptic, by the weak maximum principle

[4], it follows that 0_-<o(x)_-<oM and u(x)>-u,, on I1. Let sC*(x)=
1/2o2(x) + ""(x) k* *(t)/tr (t)) dt and o(X)=1/2o(x)+(x) (k*(t)/tr*(t)) dt=1/2o(x)+
o") (k(t)/tr(t)) dt since Uo(X) <- M. The result then follows by the same argument as
in the proof of Theorem 2.1, if we can verify that sc* and :o* are in HI(f). In fact, Oo
and o are bounded and in HI() and so are 1/2q2 and 2

Po. Also, since u and Uo are
in H1(’) and A,/AM <---- k*( t)/ tr*( t) <_- AM/Am by (2.13), then (") (k*( t)/tr*(t)) dt and
[o0,) (k*(t)/tr*(t)) dt=<) (k(t)/tr(t)) dt are in H (). Thfflemma is proved.
*lUre

COROLLARY 2.1. Any positive C(f) solution of (2.1), (2.2) is a C(12) solution
of (2.11 ), (2.12) and any C" (f) solution of (2.11 ), (2.12) is a positive C (f) solution

of (2.1), (2.2).
Hence, the existence of a positive C(f) solution of (2.1), (2.2) is equivalent to

the existence of a C(f) solution of the uniformly elliptic system (2.11), (2.12). The
rest of this paper is devoted to the proof of existence of a C(f) solution of (2.11),
(2.12).

THEOREM 2.2 (HI(-) estimate). Let (u, o) be a C(,) solution of (2.11), (2.12).
We have the following estimates"

(2.14)

(2.15) u [I-’(. <= c(ll oll ,-,’(. + uoll HI(.)),
where C only depends on Um, M, Am, and AM.

Proof Estimate (2.14) is obtained by letting X o-Oo in (2.11), i.e.,

Thus

P o H(f), ,r*(u)V. v(- o) dx=0.

. *(u)lV(- o)1- dx-- I. *(u)Vo. v(- Oo) dx.

Using (2.13) and the Schwarz inequality, we obtain

IIv( o)II L2(-) C IIv ol1 :(.) -< c oll .’(.)
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Note that cIIv( - o)ll 2< )since o-Oo H(f), and hence

by (2.7). We rewrite (2.12) as

U-uoH("), Iak*(u)VuVvdx=-Ia*(u)VVvdx.
Since L(fl) and V can be estimated by (2.14), the same argument as above can
be used to obtain (2.15).

Next, we want to establish C" (fl)(0 < < 1) estimates for the solutions of (2.11),
(2.12). This is done by employing La’(fl) estimates for equations in divergence form.
For convenience to the readers, we first state the definition and some related results
about na’(fl) spaces.

DzvyIWOy 2.1. We say that an LZ()-function u L2’() if u satisfies

(2.16) [u]2,,a (, XoSUp P-ffOB(xo,p) ’U-Ux’pl2dx) 1/2<’
where Uo,, (1/mes (B(xo, p)))

We recall that 0 C by (H 1).
LZMMA 2.2. For 0N+2, L2’() is a Banach space under the norm

Ilull2, Ilull2
LZMMA 2.3. (i) IfO N, L()c L2’"() and L() is a space of multipliers

for 2,.().
(ii) If N < N+ 2, L2’"() is isomorphic to C(fi) with a (- N)/2.
LZMMA 2.4. Let u H() and Vu L’"() with O < N; then u L2’+2()

with

where C is independent of u.
The proofs of the above three lemmas can be found in [7, pp. 28-63]. Our L2’()

estimate is based on the next lemma, which is a special case of Theorem 2.19 in [7,
p. 124]. We note here that Theorem 2.19 in [7] is established explicitly only for N 3,
but our L’(fl) estimates (Lemma 2.5) are true not only for N 3 but also for N 2
(see [6, 5]). For the case where N= 1, we can get C() estimates directly by
Sobolev’s Embedding Theorem.

LZMMA 2.5. Let u H() satisfy

(2.17) IaUx,Vx=IfVx, Vv H(),

with 11112 a%AIlll, AZ>0, R[0, andf’ L’"(). en 7u L2’"(O)
an< moreover, we have

where 0<
TnzozM 2.3 (L2’"(O) estimates). Let (u, )6H(O) be a C(fi) solution of

(2.11), (2.12). en we have that
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where C only depends on Am, M AM, Urn, qM, and 12, and 0< </Xo N-2+2o,
0< 6o < 1 depends on A,, and AM only.

Proof Rewrite (2.11), (2.12) in the following forms"

WeH(a), f k*(u)VWVv
(2.21)

=f r*(u)lVqlZv-f, k*(u)VuoVv VvH(f);

and

(2.22) q(x) q,(x) + qo(X) and u(x) W(x) + Uo(X) on f.

Since (u, q) solves (2.11), (2.12), (W, q,) solves (2.20), (2.21). By assumption (H2) and
Lemmas 2.3 and 2.5, we have that

(2.23)

where 0</x</xo=N-2+28o, 0<8o<1 only depend on m and A. Since. *(u)lVl=vdx=-. *(u)vVvdx for all v6 H(O), we replace. *(u)lV12v dx by -n *(u)VVv dx on the right-hand side of the equation in
(2.21). We apply Lemma 2.5 again to obtain

(2.24) IIv WIIL2,<.) C(II*(U)VIIL=,<.> + IIk*(u)VuolIL=,<.> +
Now, by Lemma 2.3, since < o N-2+ 260 < N, it follows that

(2.26) II*(u)VIIL=,<.>

By Theorem 2.2 and (2.22), we conclude

(2.28)

By combining (2.23), (2.25), and (2.28), we get

(2.30) IIvll=,.)llvll..)+llVoll=,.)c(lloll=,.)+
And, by (2.24), (2.26), (2.27), (2.29), and (2.30), it follows that

(.3)

Since (2.30), (2.31) hold for all with 0 < < o N-2+ 23o, 0 < 6o < 1, the theorem
follows.

Corollary 2.2. ere exist positive constants K, o such that for any
solution (u, ) of (2.11), (2.12), we have

(2.32) IlU[[c,,K and II[Ic,)K

for all Y with 0 T < o.
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Proof. We need only employ Lemmas 2.3 and 2.4 and Theorem 2.3.
In conclusion we remark that the HI(), L2’"(1), and C bounds are a con-

sequence of the uniform coefficient bounds and not of the specific nonlinear structure
of the equations.

3. Main theorem. We fix ao in (0, 60) and consider the existence of a Co()
solution of (2.11), (2.12)).

THEOREM 3.1 (Existence Theorem). There exists at least one Co() solution of
(2.11), (2.12).

Proof Let S= {u 6 Co(1))I Ilull co)-< K and u(x)>= u,, on 1}, where K is deter-
mined in Corollary 2.2. Obviously, S is a closed convex set in Co(1). We prove the
result by constructing a completely continuous map T from S into S and then applying
Schauder’s Fixed-Point Theorem. For u S, we define W-- Tu by the following:

(3.1) q qo H(I), r*(u)VqVx 0

(3.2) W- Uo k*(u)VWVv= tr*(u)lVqlv Vve H(fl).

We first note that T is well defined from S into S. In fact, since (3.1) is a linear
uniformly elliptic Dirichlet problem, we conclude by standard linear theory [4] that
there exists a unique solution q in C 1(1). By Lemma 2.5, Vq L2’"(O) with 0 </ </o
N-2+26o. If we substitute the solution q of (3.1) into (3.2), we get another linear
uniformly elliptic Dirichlet problem. Since a tr*(u)[7ql2v dx -a tr*(u)oVqVv dx,
the right-hand side of the equation in (3.2) defines a bounded linear functional on
H(). By the Lax-Milgram theorem [4], there exists a unique solution We Hi(I))
and also by Lemma 2.5, VW L2’"(1). Now (q, W) solves (3.1), (3.2). By the same
arguments as in the proof of Theorem 2.3 and the corollary, we have WIIc(a <- K,
with a in (0, 60). In particular, let a ao. and note that we get W[]co() --< K and
W >_- u by the maximum principle, i.e., there exists a unique W Tu in S. It follows
that T is well defined.

Next we prove that (i) T is continuous and (ii) T is compact. Let {u,}=l and u
in S be such that u, - u in Co(I) as n - c. Let (q,, W,) and (q, W) be the solutions
of (3.1), (3.2) corresponding to u, and u, n 1, 2, we show that W, -* W in Co(f).
Since o,, o solve (3.1) with respect to u, and u, we have

(3.3) ,;.-,eno(a). fa r*(u.)V(,.-,)Vx= I. (*(u)-*(u.))V,Vx
for any X e Ho(l), i.e., q q,-o solves the following problem:

(3.4) d/H(f), ftr*(u,,)Vd/VX=f(tr*(u)-tr*(u,,))VqVX VxH(f).
Ja Ja

By the estimate of Lemma 2.5 we have

(3.5) [IV(. )[1 "(m C([[ (o’*(u)- o’*(.))V q:, z.,(m + [l. q> Hi(m)

From Lemma 2.3, (r*(u)- r*(u.))Vo ,>(m =< maxa
IIVII=..m-<_CK max II*(u)-*(u)ll and by letting X=q.-o in (3.3), we get
I1- ll,m=< C maxa II*(u)-*(u=)ll I1 ’m -< KC max II*(u)-*(u)ll. Note
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that un u in C"o() implies un- u uniformly on . By the continuity of o-*(t). It
follows that

(3.6)

i.e.

max as noo,

as n-, for0</x</Xo.

By Lemmas 2.3 and 2.4, ,- in Co(f). Moreover, for 0</x </Xo, we have

Next note that W, and W satisfy the following:

fa k*(Un)VWnVv I12 o’* (an) IVqnl2V VV e H(12),

n
k*(u)VWVv= fn *(u)lVl=v Vv H(12).

Applying (2.7) to both the equations and subtracting yields

fa k* u, V W,, W V v fa cr* u o"* u, q Vq + cr* u qVq q Vq

+(k*(u)-k*(u,,))VW]Vv Vve H(f).

Now, since the same argument applies to the above equation, we have W,- W in
Co(12), i.e., T is continuous. Finally, that T is compact follows by noting that actually
W Tu is in C"(12) for ao < a < to and C(12) C"o(12) is a compact embedding for
a > ao. By the Schauder Fixed-Point Theorem T has at least one fixed point in S,
which we denote by u*. Let q* be the solution by (3.1) for u u*. We see that (u*, q*)
is a Co(2) solution of (2.11), (2.12), and the proof is complete.
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EXISTENCE AND MULTIPLICITY OF POSITIVE RADIAL SOLUTIONS
FOR SEMILINEAR ELLIPTIC EQUATIONS IN ANNULAR DOMAINS*

SONG-SUN LIN’$ AND FENG-MING PAIr

Abstract. The existence and multiplicity of positive radial solutions of equation Au +f(u) 0 is studied
in annular domains in Rn, n >_- 2. It is proven that iff(0) >_- 0,f is somewhere negative in (0, ) and superlinear
at , then there is a large positive radial solutions on all annuli. Iff(0)< 0 and satisfies certain conditions,
then the equation has no solution if the annuli are too wide. Multiplicity results are also obtained when f
has many humps with positive areas.

Key words, elliptic, semilinear, positive radial solution, annular domain

AMS(MOS) subject classifications. 35B32, 35JB65, 35P30

1. Introduction. In this paper we consider the existence and multiplicity of positive
radial solutions of the semilinear elliptic equation

(1.1) Au(x)+f(u(x))=O ina<]xl<b,

(1.2) u(x):O onlxl=a and Ix[:b,

x ", n _->2 and f C((0, c))fq C([0, )) satisfying the following hypotheses"
(HI) fis negative somewhere in (0, );
(H2) fis superlinear at u =, i.e., limu_f(u)/u =.

One of the problems for semilinear elliptic equations in annular domains which
have been studied quite extensively in recent years is"
(P) Does (1.1), (1.2) possess a positive radial solution in every annulus?

The answer to (P) was proved affirmative by Nehari [20], assuming that f is
positive in (0, c) and satisfies the condition" ::i6>0 such that f(u)/u+ is monotone
increasing in (0, ).

Later, (P) was studied by Kazdan and Warner [15], Ni and Nussbaum [21],
Bandle, Coffman, and Marcus [2], Garaizar [13], and Lin [17].

In [2], Bandle, Cotiman, and Marcus showed that the answer to (P) is affirmative,
provided that fis positive in (0, c) and satisfies the following conditions"
(A1) fis nondecreasing in (0, );
(A2) lim,__,of(u)/u =0;
(A3) lim,_.f(u)/u =.

In [2], it is remarked that (A1) is not a necessary condition for existence. This
have been confirmed by Coffman and Marcus [8] and Lin [17] independently.

With a suitable change of independent variable, (1.1), (1.2) become equations of
the form

(1.3) u"(t)+G(t,u)=O, to<t<tl,

(1.4) u(to) 0 u(tl).

* Received by the editors January 22, 1990; accepted for publication January 7, 1991.
? Department of Applied Mathematics, National Chiao Tung University, Hsin-chu, Taiwan, Republic

of China.
The work of this author was partially supported by the National Science Council of the Republic of
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In [3], Bandle and Kwong showed that the answer to (P) is affirmative if G satisfies
the following conditions:
(G1) G is CO in its first variable and C in its second;
(G2) limu_o G(t, U)/U oO uniformly on every to, tl];
(G3) limu_o G(t, u)/u =0 uniformly on every [to, tl].

G(t, u) is now allowed to be negative for small positive value and G(t, 0)=0 is
assumed implicitly with the limit involved exists and finite in (G3).

In this paper, we first generalize the results of Bandle and Kwong [3], showing
that (P) is affirmative if (H1), (H2), and (H3) are satisfied.

(U3) f(0)_-> 0.

Moreover, solutions obtained are "large" in the following sense: By (H1), there exists
(u., u*)c (0, oo) such that

(1.5) f(u)>-O in (u*, oo), f(u)<0 in (u., u*), f(u.)=f(u*)=O.
Let 3’ > u* be the smallest number such that

(1.6) f(u) du =0.
u,

The solution u of (1.1), (1.2) is called large if

(1.7) Ilull-- max {u(x): a<-Ixl<-b} > .
On the contrary, Garaizar [13] showed that (P) is negative, i.e., (1.1), (1.2) has no
positive radial solution if b-a is too large, if f satisfies the following conditions:

(i) f(0) < 0;
(ii) There exists t>0 such that F(u)<=O in (0, t) and f(u)>0 in (tT, );
(iii) There exists k>l and d2->dl>0 such that dluk<=f(u)<-d2u k for u large,

where

F(u)= f(t) at.

We can also obtain a similar nonexistence result without assuming condition (iii),
i.e., if (H2) and the following hold true:

(H3)’(i) f(0) < 0;
(ii) There exists t > 0 such that F(u) < 0 in (0, tT] and f(u) > 0 in (tT, c).

On the other hand, when f changes signs, the existence of multiple positive
solutions of the equation

(1.8) Au+Af(u)=O inf,,

(1.9) u 0 on

h_--> 0 and fl is a bounded smooth domain in n, n_-> 2, has been studied by many
authors (see, e.g., Brown and Budin [5], Hess [14], de Figueiredo [12], Clement and
Sweers [6], and Wang and Kazarinott [24]).

In [14], Hess showed that if f satisfies the following conditions:
(fl) f(0) > 0;
(f2) There exist m numbers a,,>t,,_l>...>t71>0 such that f(ak)=O for k=
1," , m,
(f3) O<max{F(s):O<=s<=ak-}<F(ak),k=2,’’’, m,
then there exists a number > 0 such that for all A > , (1.7), (1.8) have at least 2m 1
positive solutions if1, u2, a2, Urn, am such that Ilalll </1 and/k-1 < Ilull, Ilall < a
for k=2,..., tn, and k-l(k and Uk( k for k=2,..., m.
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Later, de Figueiredo [12] obtained the existence of 2m-1 ordered positive sol-
utions under slightly different assumptions.

In this paper, we show that iff satisfies (f2) and (f3), then there exists b,, > a such
that for any b > b,,, (1.1), (1.2) has at least rn ordered positive radial solutions Uk with

Ilu ll ) for k=2,... ,m. Moreover, if f(0)>=0, then (1.1), (1.2) has at least
2m- 1 positive radial solutions for b >

For the other related problems, note the following:
(i) Uniqueness of positive radial solution, when f(u) > 0 for u (0, c), has been

studied by Ni and Nussbaum [21], Bandle, Cottman, and Marcus [2], Bandle and
Kwong [3], and Cottman and Marcus [8].

(ii) Symmetry breaking for positive radial solutions has been studied by Brezis
and Nirenberg [4], Coffman [7], Suzuki and Nagasaki [22], [23], and Lin [16], [18],
[19].

The methods used in this paper are shooting techniques, the phase-plane method,
and variational methods. All results obtained in this paper can also be generalized to
f(r, u) which satisfies certain uniformity assumptions in r as in (G2) and (G3).

The paper is organized as follows. In 2, we obtain some preliminary results
which are useful. In 3, we prove that (P) is affirmative when (H1) (H3) are satisfied.
In 4, we prove (P) is negative when (H1)--- (H3)’ are satisfied. In 5, we obtain the
multiplicity results for wide annuli.

2. Preliminaries. Since we are interested in positive radial solutions of (1.1), we
write (1.1), (1.2) in the form

n-1
(2.1) u"(r)+ u’(r)+f(u(r))=0 in (a, b),

(2.2) u(a)=O=u(b).

For fixed a > 0, we consider the family of solutions u(. ) u(., a) of the initial
value problem

n-1
(2.3) u"(r)+ u’(r)+f(u(r)) =0 for r> a,

(2.4) u(a)=O and u’(a)=

where a =>0 is the shooting parameter. Furthermore, (2.3), (2.4) can also be written
as a dynamical system

(2.5) u’=v,
n-1

(2.6) v’= v -f(u),

with initial data

(2.7) u(a)=O and v(a)- a.

We define an energy function H(. )= H(u(., a)) by

(2.8) H(r) 1/2v2(r) + F(u(r)).

Then, along each trajectory of solution of (2.5), (2.6), H is decreasing; in fact,

n-1
(2.9) H’(r) u’2(r) _-< 0.

Furthermore, H(r) is strictly decreasing in r if a > 0.
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We first classify the solutions u(., a).
DEFINITION 2.1. For any a _--> 0, a belongs to one of the following three disjoint

sets:
(i) a P (or u(., a) is a P-solution) if u(r, a)> 0 for all r > a,
(ii) a N (or u(., a) is an N-solution) if there exists b(a) > 0 such that u(r, a) >

0 in (a, b(a)), u(b(a), a)=0 and u’(b(a), a)<0,
(iii) a T (or u(., a) is a T-solution) if there exists b(a) > 0 such that u(r, a) > 0

in (a, b(a)), u(b(a), a)=0 and u’(b(a), a)=0.
We then state some simple but basic properties of solutions u(., a).
LEMMA 2.2. (i) If O N, then u(., a) has only one local maximum.
(ii) If aSCJ T, then H(u(r, a))>O forr(a,b(a)).
(iii) If (H2) is satisfied and u r, a > 0 for all r > ro >-- a, then u r, a is bounded.
(iv) N is an open set.

Proof. (i) The proof of (i), in the general case, was given by Garaizar [13]. The
main idea is using energy H(r), which decreases along the trajectory, and then obtain
the following two facts:

(a) the trajectory cannot cross (intersect) itself;
(b) the trajectory cannot be tangent to the u-axis.

Therefore, (i) can be proved. For the details, see [13, Lemma 1].
(ii) Since H(u(b(a), a))->0, (ii) follows.
(iii) Since

H(u(r, a))-1/2u’Z(r)/ F(u(r, a))- H(u(a, a))= az/2,
we have F(u(r, a))-az/2 for all r-ro. Therefore, (H2) implies u(r, ) is bounded.

(iv) By the Implicit Function Theorem, b(a) is continuously ditterentiable in N
and N is an open set.

The following lemma indicates there is a great difference between cases f(0)_-> 0
and f(0) < 0.

LEMMA 2.3. Iff(O) >-- O, then T qb. Furthermore, if a T then u(r, a) > 0 for all
r>b(a).

Proof. If f(0)=0, then (u, v) =(0,0) is an equilibrium. Hence, T=b. If f(0)>0
and there were a T, then u"(b(a), a) -f(0) < 0. Therefore, u(r, a) < 0 for r < b(a)
and sufficiently close to it, a contradiction. This proves T-b.

If a T, then it is necessary that f(0) <0. Since H(u(b(a), a))=0 implies that
H(u(r, a))<0 for all r> b(a), then u"(b(a), a)= -f(0) > 0 implies that u(r, a)>0
for all r> b(a). [2

The following lemma plays a crucial role in the study of problem (P).
LEMMA 2.4. If there is a sequence {ak} C N (3 T such that

ak>O and b(ak)-o

as k->, then 6 P and u(., 6) satisfies the following monotonicity property:
(M) (i) u(r, 6) is either strictly increasing in (a, c) or there exists al > a such that

u(r, 6) is strictly increasing in (a, al) and strictly decreasing in (al, oo).
(ii) u( r, 6 - as r--> oo where f( 6) O.

Proof. First, we observe that u(., 6) cannot have a local maximum followed by
a local minimum. Otherwise, by continuous dependence of ordinary differential
equations (o.d.e.), for k sufficiently large, u(r, ak) will have at least two local maxima
in (a, b(cck)), a contradiction to Lemma 2.2(i). It is also clear that u(r, 6) cannot be
constant on any finite interval of (a, oo). Hence, u(., 6) satisfies (M)(i). Condition
(M)(ii) follows by Lemma 2.6 which will be proved later.
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As in [2], [3], and 17], it is sometimes convenient to study the existence problem
in the form of (1.3), (1.4).

For n _-> 3, in terms of variables

(2.10) s r2-n and w(s) u(r),

equations (2.1), (2.2) can be rewritten as

(2.11) w"(s)+p(s)f(w(s))=O in (So, S1),

(2.12) W(So) =0= w(s,),

where p(s)=(n-2)-2s-, k=(2n-2)/(n-2), So b-", and s= a-". For n=2, in
terms of variables

s=1/2-1oga+logr and w(s)=u(r),

equation (2.1) can also be written as (2.11) with p(s)=a e2s-, So=1/2 and s=
log a +log b. In the remaining part of the section, we only treat the case n > 3;2

the case n 2 can also be treated analogously.
The associated initial value problem, now backward shooting in an s-variable, is

(2.13) w"(s)+p(s)f(w(s))=O for s < s,,

(2.14) w(sl)=0 and w’(sl)=-/3,

a2-" is a fixed number.where/3 > 0 is the shooting parameter and s
It is easy to check that (2.13), (2.14) is equivalent to

(2.15) w(s)=fl(Sl-S)- (t-s)p(t)f(w(t))dt for s < Sl,

and the solution w(.,/3) also satisfies the following equation"

(2.16) w(s)=w(g)+w’(g)(s-g)+ (t-s)p(t)f(w(t)) at forO<s,g<Sl.

The associated energy function V is defined by

V(s)=- V(w(s, ))=1/2w’(s)+p(s)F(w(s)).(2.17)

It is clear that

and so

V’(s)=p’(s)F(w(s)),

(2.18) V(s) V(g) + p’(t)F(w(t)) dt

for 0 < s, g < s.
If w has a zero in (0, s), denote

So(fl)=inf{so: w(s,/3) > 0 in (So, sl)},

and ,(/3) (So(/3), sl) satisfies

w( v(/3 ), /3 max {w(s,/3): s (So(/3), s)}.

With a modification of the argument used in Lin [17], we can prove that So(fl)
and ,(/3) are well defined for sufficiently large /3 and tend to s as /3 c. For
completeness, we also give a full proof here.
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LEMMA 2.5. If condition (H2) is satisfied, then So( and v( are well defined for
sufficiently large ft. Moreover,

(2.19) lim p(/3)

(2.20) lim So(fl s

and

(2.21) lim w(v(), fl)=oo.

Proof. We first prove (2.19). If (2.19) were false, then there would be a point
Vo (0, Sl) and a sequence fig c with

(2.22) Wk(S) > 0 and W’k(S) <---- 0 in (Vo, sl),

where Wk(S)= W(S, k).
Letting g= (Uo+ s)/2, we claim that

(2.23) lim sup Wk(g) o0.
k--->

Suppose this is not the case; then there exists a constant M>0 such that

(2.24) Wk(g) <- m for all k.

Now, by (2.16) and (2.24), we have

Wk(g)=-flk(Sl--VO) (t--g)o(t)f(wk(t)) dt>--flk(Sl-Vo)-C,
for some constant C _-> 0. But, by (2.24), this is impossible. Therefore, (2.23) holds.

By choosing a subsequence of/k if necessary, we may assume that

(2.25) lim Wk

Denote

in (Vo, g) and

By (2.25) and (H2),

hk(S) :f( Wk (S))/Wk(S)

mk inf {hk (s)" s Vo, g]}.

(2.26) lim mk
koo

Now W"k(S) + p(s)hk(s)w(s) 0 in (Vo, g) with p(S)hk(S) >-- p(g)mk in (Vo, g). By (2.26)
and the Sturm Comparison Theorem, Wk has zeros in (Vo, ) for sufficiently large k.
But by (2.22) this is impossible. This proves (2.19).

Next, we prove (2.21). By (2.18), we have

1_ [32k p(Vk)F(U(Vk))+ p’(t)F(Wk(t)) dt,
2 k

where Vk V(flk), which implies that F(Wk(Pk))aZ as kc. By (H2), (2.21) follows.
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Finally, we prove (2.20). If (2.20) were false, then there would be a point So 6 (0, sl)
and a sequence /3k with

(2.27) Wk(S) > 0 in (So, ’k)-

Denote g=1/2(So+ sl). By (2.19), we may assume that g< Vk for all k. We first claim that

(2.28) lim sup Wk (g) < o.

Let

Lk=min {wk(s)" s [g,

Then, there exists L> 0 such that

(2.29) Lk =< L for all k.

Otherwise, by the Sturm Comparison Theorem again, wk has a zero in (g, uk), a
contradiction to (2.27).

If wk (g) Lk, then (2.28) holds.
If Wk(g > Lk, let Sk (g, lk) such that Wk(Sk) Lk. Denote rk S/(2-n) = gl/(2-n)

and Uk Wk. Then u(rk)=O, and we have

n(uk(rk)) F(Lk) H(Uk(f)) F(Uk(f)).

By (U2) and (2.29),

Uk() M

for some constant M > 0. This proves (2.28).
By (H2), there exists u* > 0 such that f(u) > 0 for all u > u*. Denote

Ak {s (0, rk)" Wk(S) U*}.

Then by (2.16), we have

Wk(Uk) Wk(g)+ W(g)(Uk--g)+ (t-- k)p(t)f(wk(t)) dt

Wk(g)+ W(g)(Pk--g)+ (t-- k)p(t)f(wk(t)) dt
dA

w() + w(s)( ) + c
for some constant C 0. Hence, by (2.20), we have

(2.30) lim w(g) .
On the other hand, by (2.16) again, we have

(so (+((so-+ ( soo(f((t

(-((s so ( soo(f(( a

1
(- (s,-so(+ Cl
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for some constant C1_->0. By (2.28) and (2.30), Wk(So)’-’)--(X3 as k-*o, a contradiction
to (2.27). This proves (2.20). F1

LEMMA 2.6. If u(r, )> 0 for r > ro >- a, then

(2.31 lim inf lu(r, a Z 0,

where Z {a >-0:f() 0} and lu-Zl inf{lu- al: a z}. In particular, if
limr u(r, a) _-> 0, then f() O.

Proof If (2.31) were false, then there would be an e > 0 such that

[f(u(r,a))l>-e.
Denote w(s, fl)= u(r, a). Then by (2.15)

Iw( , as s0+.
This is impossible in viewing w(s,/3) > 0 and Lemma 2.2(iii). l-1

3. Existence of large solutions when f(0)>_-0. In this section we shall prove that if
(H 1) (H3) are satisfied, the answer to (P) is affirmative. We first prove the following
lemma.

LEMMA 3.1. If a S and u II--> then

(3.1) Ilull > ),,

where T is in (1.6). A similar result holds for a T with

(3.2) max{u(r,a):re[a,b(a)]}>= y.

Proofi If a e N, by Lemma 2.2(i), there exists a unique r(a)e (a, b(a)), such that

(3.3) u(r(a), Ilull.
Let rl(a)e (r(a), b(a)) such that

u(rl(a),a)=u.,

which implies

’u(())f(u) du > O.
u,

Hence u(r(a))> 3’. This proves (3.1). By the same argument, we can obtain (3.1) if
a T and (3.2) holds.

LEMMA 3.2. Assume conditions (H1)---(H3)are satisfied. Then

(3.4) N1 {a e N: Ilu(.,

is a nonempty open set.

Proof. By Lemmas 2.3 and 2.5, N is nonempty. By Lemma 3.1 and continuous
dependence of o.d.e., N1 is an open set.

We can now prove the main result of this section.
THEOREM 3.3. Assume conditions (HI)--- (H3) are satisfied. Thenfor any b > a > O,

there exists a positive radial solution u (r) of (2.1), (2.2) with

Proof. By Lemma 3.2, there exists a*_> 0 such that N1D (a*, oo) with a*e N1.

where u. is in (1.5). Then

H(u(r(a))) F(u(’(c))) > H(U(rl(a))) > F(u.),
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By Lemma 2.5, it suffices to show that

(3.5) lim b(a)
(*)+

We shall prove the theorem according to f(0)> 0 and f(0)= 0.
If f(0)> 0, we claim that a*> 0. In fact,, u"(a, 0)=-f(0) < 0. Hence, there is an

e>0 such that u(r, 0) <0 for r(a,a+e). This implies a*>0. We claim that a*P.
Ifa* P, then (0, c)=N U P implies a* N. Since a* N, we have u(z(a*), a*) > y.
By Lemma 3.1, a* N1, a contradiction. Therefore, a* P and (3.5) follows.

If f(0)=0, then either a*>0 or a* =0. If a*>0, then the previous argument
also works and then (3.5) holds. If a*=0 and (3.5) are false, then there are bo> a
and 6 > 0 such that b(a) _-< bo for all a (0, 6). Since z(a) (0, bo) for all a (0, ),
there exists a sequence akO such that Z(ak)- Zo [0, bo]. Since U(’(ak), ak)> y, we
have U(Zo, 0)=> y, a contradiction to u(r, 0)-= 0. Hence, (3.5) holds.

COrOLLArY 3.4. Assume conditions (HI) (H3) are satisfied and f(O) > O. Then
for any a > O, the equation

n-1
(3.6) u"(r)+u’(r)+f(u(r))=O in (a, c),

(3.7) u(a)=0 and u(r)>0 forr>a,

has a solution u which satisfies (M).
Proof In the proof of the previous theorem, we have N1 = (a*, c) with a*> 0

and a* P. By (3.5) and Lemma 2.4, u(., a*) satisfies (M).

4. Nonexistence on wide annuli when f(0)< 0. In this section we shall prove that
if (H2) and (H3)’ are satisfied, then (2.1), (2.2) has no positive solution when b-a is
too large.

We first show that P 4 when f(0) < 0.
LEMMA 4.1. Iff(O) < O, then there exists a. > 0 such that [0, a.) P.
Proof We first prove 0eP. In fact, u"(a,O)=-f(O)>O and H(u(a,O))=O>

H(u(r,O)) for r>a implies u(r, 0)>0 for r>a. Hence 0eP.
Next, let Uo > 0 such that f(u) < 0 in [-Uo, Uo]. Then there exist e > 0 and ao > 0

such that for all a[O, ao], we have lu(r,a)l<-_Uo in [a,a+e]. Therefore, for all
[0, no],

n-1
u"(r)+u’(r)>O in[a,a+e],

which implies u(r, a) > 0 in (a, a + e ].
On the other hand, if H(u(a + e, 0)) < 0, by continuous dependence of o.d.e., there

exists a. (0, no) such that H(u(a + e, a)) < 0 for all a (0, a.). Therefore, for any
a(O,a.), H(u(r,a))<O for r>a+e, which implies u(r,a)>O for r>a+e. This
proves (0, a,)c P. [3

We now prove the main result of this section.
THEOREM 4.2. Assume conditions (H2) and (H3)’ are satisfied. Then there exists

b* > a such that for any b > b*, (2.1), (2.2) has no positive solution.
Proof. By Lemma 2.5, there exist a*>0 and bo> a such that (a*, )cNU T and

b(a)<-bo for all a (a*,c). On the other hand, by Lemma 4.1, there exists a,>0
such that [0, a,)c P. Therefore, it suffices to show that there exists bo> a such that

(4.1) b(a)<-b’o forany a[a.,a*]O(NT).
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If (4.1) were false, then there would be a sequence Ck [a., c*] f’) (NU T) and
c Ice,, ce*] such that Cek--> and b(ak)-> c as k->cx3. By Lemma 2.4, c6P and u(.,
satisfies (M). Now, (H3)’(ii) and u(r, )- as r- o withf(t)= 0 implies H(u(r, ))
F(t)<0 as ro. Therefore, there exists ro> a such that H(u(ro, c))<0. By con-
tinuous dependence of o.d.e., we have H(u(ro, ak))<O for k sufficiently large, a
contradiction to Lemma 2.2(ii). This proves (4.1).

5. Multiplicity results on wide annuli. In the previous sections we studied the
existence of large (and nonexistence of) positive solutions for (2.1), (2.2) under the
various assumptions off In this section we shall study the existence of "intermediate
size" solutions of (2.1), (2.2) when f may change signs several times and satisfies
condition (f3) in 1, i.e., f satisfies the following hypothesis:
(H4) there exist m successive numbers /m > /m--1 >" > /1 > 0, which satisfy

(i) f(tTk)=0 for k= 1,..., m; and
(ii) O<max {F(s)’O<--s<=ak_}<F(fk) for k=2, m.

Let yk be the least number in (_, t) such that

(5.1) f(u) du =0,

for k 1,..., m, where ao-= 0. We first prove the following lemma.
LEMMA 5.1. Assume there exists an > 0 such that

(5.2) f(u) =0 foru = .
Then we have the following conditions:

(i) if u(rl, a) a and u’(rl, a) >- 0 for some r > a, then for r > r,

1 1
(5.3) u(r,

n-2 n-2

(ii) let U {a (0, c): u(rl, or) a for some rl > a}; then there exists a* > 0 such
that U a *, ).

Proof (i) By (5.2), we have

n-1
(5.4) u"(r)+u’(r)=O

as long as u(r, a) >- . Therefore, by solving (5.4) with initial condition u(rl, a)= t7

and u’(rl, or)_->0, (5.3) follows.
(ii) We shall prove (ii) by using the method of backward shooting. If (ii) were

false, there would be a sequence fig-* such that

Wk(S) < as long as Wk remain positive,

where Wk(S)= W(S, ilk). Let

Vk inf {g (0, S1): Wk(S > 0 and W’k(S) <---- 0 in (g, S1) }.

We claim that

(5.6) lim /.tk s

If (5.6) were false, there would be Uo<S and a subsequence of Uk (for simplicity,
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rename it Uk), such that /"k /’0 for all k. Therefore, by (2.15) and (5.5), we have

Wk(VO) flk(Sl-- VO)-- (t-- Vo)p(t)f(wk(t))
’0

>- (s,- o)- C,

for some constant C->0, a contradiction to (5.5). Hence (5.6) holds.
On the other hand, by (5.5) again, we have

W’(rk) --ilk + o(t)f(wk(t)) dt

=<-] + C
for some C->0. Therefore, W’(Zk)<0 if k is large enough, a contradiction to the
definition of Vk. This proves (ii). VI

The (energy) functional we want to minimize is

J(u) r"- u’(r)- F(u(r)) dr

in H((a, b)), where H((a, b))= {u’u is absolutely continuous in [a, b] with u(a)=
0= u(b) and u, u’ L2(a, b)}.

Since f may change signs, the minimizer Ub of J is not necessarily positive.
However, for fixed a, if b is sufficiently large and (H4) is satisfied, then we can prove
Ub is positive. To make the proof more transparent, we begin with the study of two
simple cases.

LEMMA 5.2. Iff satisfies the following:
(H5)(i) f(0) _-> 0;

(ii) There exists > 0 such that f(a) 0 and f(u) > 0 in (0, ), then, we have
the following results:

(i) There exists b* > a such that for any b > b*, (2.1), (2.2) has a positive solution
Ub that is also a local minimizer ofJ(u) over H((a, b)). Moreover,

(5.7) 0<Ub< in(a,b),

and

(5.8) bnF(a)<-J(Ub)<- F(a)+C(bn-l+l)

for some positive constant C which is independent of b.
(ii) Iff(O) > O, then there exists a positive solution of (3.6), (3.7) and is strictly

increasing in (a, o) and (r) as r- .
Proof. We first modify the function outside [0, ] as C16ment and Sweers did in

[6]. Denote
0 u>=,

(5.9) fl(u) f(u) u[0, fi],
2f(0)-f(-u) if u < 0,

fo f’ { ’2(r) F,(u(r))} dr.FI(u)= f(t) dt and Jl(U)-- rn-1 U

It is easy to verify that

(5.10) 2f(o)lul for u <0.
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Hence, for any u H((a, b)),

(5.11)

Since f(u) is bounded, the minimizer of J1 (U) over H((a, b)) is achieved, say
Ub, which is a solution of (2.1), (2.2). By (5.11), Ub can be chosen to be nonnegative.
If Ub 0 in (a, b), then by Lemma 2.3, Ub > 0 in (a, b).

If f(0) > 0, then Ub>O in (a, b). If f(0) 0, we want to prove that Ub>O in (a, b)
if b is large enough. This can be done by choosing appropriate test functions Ub*
H((a, b)) as follows"

I-a)fi forr[a,a+l],
(5.12) U*b(r) for re [a + 1, b- 1],

[(b-r)a forr[b-l,b].

Then

(5.13) Jl(Ubg) <-- F(fi)+ C(b-I + 1)
n

for some constant C which is independent of b. Therefore, if b is large enough, then
Ub>O in (a, b), and by Lemma 5.1(i), Ub <fi in (a, b). By (5.13), (5.8) follows. This
proves (i).

To prove (ii), we first note that f(0)> 0 implies there exists a.>0 such that
(0, a,) N and

(5.14) lim b(a)= a
cO

(see Lin [18]). On the other hand, by Lemma 5.1(ii), there exists a*> a. such that
U re(a*, c). Therefore, for any b>b*, there exists a(b) (0, a*] such that u(., a(b))
is a minimizer of Jl(u). Therefore, by (5.14) there exists c > 0 and a sequence bk
such that a(bk) as k. By Lemma 2.4, tP and u(., c) satisfies (M). By Lemma
5.1(i) and (H5)(ii), u(-, c) is strictly increasing in (a, ). This proves (ii).

Next, we treat the case f(0)< 0.
LEMMA 5.3. Iff satisfies the following conditions"

(US)’(i) f(0) _-< 0;
(ii) There exist > u > 0 such that f u_) f 0 and f u < 0 in (0, u) and

f(u) > 0 in (u__,
(iii) f(u) du > O,

then there exists b*> a such that for any b > b* there exists a positive solution Ub of
(2.1), (2.2) with Ub (% ), where

io’(5.15) f(u) du O.

Proof. Iff(0)= 0, then the arguments in Lemma 5.2 also work and give the result
as in Lemma 5.2(i). Note that (H5)’(iii) implies Jl(Ub*)<0 in (5.13) when b is large
enough.

If f(0)< 0, then (5.10) implies the extension fl in (5.9) is no longer suitable to
the minimization problem. Therefore, we want to modify f in a different way and use
super- and subsolution methods to obtain solutions for (2.1), (2.2).

Since f(0)< 0, we can extend f into (Uo, 0) such that

(5.16) f(uo)=O,f(u)<O in (Uo, 0)
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and

(5.17) ’c’f(u) du > O.
uo

Let v u Uo and denote /31 ___- U0 and v2 t Uo. Let

g(v) =f(u)

Then g(0) g(/31) g(/32) 0,

g(v)<0 in(0,/31) and

We then extend g outside [0, v2] by making

and

Denote

Then, as in (5.10),

in [0, v2].

g(v)>0

g(v)=0 forv>v2

g(v) -g(-v) forv<0.

G( v) g( t) dt.

G(]vI)=G(v) for allv<O

and (5.17) can be rewritten as

(5.18)

Define

(5.19)

in (/31,

G(v2) g(t) dt= f(u) du>O.

.(/3)-- rn-1 v’2(r)- G(v(r)) dr

n-1
(5.21) v"(r)+ v’( r) + g( v( r) =0 in (a, b),

(5.22) v(a)=O=v(b)

have a positive solution /3b which is also a minimizer of J with

b
J( /3b) <=---- G(/32) + C(bn-l + 1)

and

(5.23) Uo, v2).

for some positive constant C which is independent of b. Therefore, there exists b*> a
such that for any b > b*, the equations

b"
(5.20) J(v*) <=--- G(v2) + C(b"-I + 1)

n

in H((a, b)).
Let v* be defined as u* in (5.12), but replace ff by v2. Then
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Let /b--U0 -- Vb; then

and

Aab+f(ab)=Avb+g(vb)=O in a<[x[<b,

ffb=Uo<0 on[xI=a and Ix[=b.
Hence, t is a subsolution of (2.1), (2.2). Since is a supersolution and fi> , by
monotone iteration scheme (see, e.g., [11], [18]), there is a positive solution u of
(2.1), (2.2) and ub satisfies ff < u < , which also implies Ilu ll (, ).

Now, we can prove the following multiplicity result for general case.
THEOREM 5.4. Assume condition (H4) is satisfied. Then, we have the following

results"
(i) Iff(O) >- O, then there exists b* < a such that for any b > b*, (2.1), (2.2) has at

least 2m 1 positive solutions 1, u.2, t2, , .Urn, , with k- < and .u < in (a, b),
and .u II, 7 (, ) for k 2,..., m.

(ii) Iff(O)< O, then there exists b*> a such that for any b > b*, (2.1), (2.2) has at
least m positive solutions a <... < a, with Ila ll for k- , m.

Proof. We shall prove the theorem by induction on m.
For m 1, the results were proved in Lemmas 5.2 and 5.3 under the conditions

(H5) and (H5)’, respectively. The arguments used in the last two lemmas are also valid
for general cases; thus the details are omitted.

We first study the case f(0)=> 0. For j 2,. ., m, denote

If0(u) for u [0, aj],
f(u)= for u [aj, c),

(2f(O)-f(-u) for u<0,

and

F(u) f(t) dt,

J(u) rn-’ u’2(r)-F(u(r)) dr.

It is clear that f/ is an extension of f and

(5.24) if Ilull < ., then J+(u)= J(u)
for j= 1,.-., m-1.

Assume m =j(>-l) is true. Then there exists a b> a such that for any b > b,
J(u) has a minimizer .b which is a positive solution of (2.1), (2.2) and satisfies

(5.25)

and

b
(5.26)

b"
F() -< J (uj,) _-< F (tTj) + C(b"-’ + 1)

for some positive constant C that is independent of b.
Let U+.b be as in (5.12) with fi replaced by +1. Then

(5.27) Jj+l(/,/+l,b) ---- Fj+I(/j+I) -- Cj+,(b"-’+ 1)
n
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for some positive constant Cj+ independent of b. Therefore, by (5.24)--(5.27), there
exists /7+1-> b, such that for any b >/7/1, minimizer tj+l.b of J/l satisfies

Jj+ tlj+ b < Jj lj, b

Hence, tj+,,b # t,b and IItT+,,ll (j+,,/j+l)"
Let

Nj+ (o tE N: ’j+l < Ilull </j+l.
Then .+ is an open set and nonempty according to the last paragraph. Therefore,
by Lemma 5.1, there exist two positive numbers c+ > a+l, such that (a__+, aj+)
N+I, a+l Z N+I and c+1 N+I. By Lemma 2.4, a+ and c+1 belong to P. Hence,

lim b(a)=o= lim b(a),
(_j+)+ (j+)-

and then both u(., aj+) and u(., c+) satisfy (M). Therefore, there exists b+ _>- g+l,
such that for any b > b7+1, (2.1), (2.2) has at least two positive solutions having
maximum value in (y+l, a+l). Since a+l is a supersolution, there exists the maximum
positive solution tj+l of (2.1), (2.2) having maximum value in (y+l, +1). This proves
(i).

Condition (ii) can be proved by using the arguments used in (i) and Lemma 5.3;
thus details are omitted. I3

In the proof of last theorem, we obtain the following results for (3.6), (3.7).
COROLLARY 5.5. Assume condition (H4) is satisfied. Then, we have the following

results"
(i) Iff(O) > O, then there exist at least 2m 1 positive solutions ll, 2, 12, lm

of (3.6), (3.7) and a(r) - as r--> o forj= 1,’’., m.
(ii) Iff(O)<= O, then there exist at least 2m- 2 positive solutions u.2, ," ", , of

(3.6), (3.7) and 6(r)--> as r-->o forj=2,..., m.
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PARTIAL REGULARITY IN PROBLEMS MOTIVATED BY
NONLINEAR ELASTICITY*
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Abstract. Regularity is proven almost everywhere for minimisers of problems motivated by nonlinear
elasticity. Model problems treated include

lDul / [det Dul2,

where u (c2)--) R2, and

f, lDul + IDu[ + [AdDu[ + Idet Dul,
where U :’(CR3)-" with s> 2.

In particular, continuity of minimisers is not assumed a priori. "Degenerate" convexity of the integrand
in the higher minors M of Du is also allowed, in the sense that second derivatives in M may approach
zero as M 0.

Key words, nonlinear elasticity, partial regularity, elliptic systems
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1. Introduction. Partial regularity for minimisers of functionals of the form

(1.1) l[uJ f. F(u) (orf F(x, u, Du))
where 12 c R and u’12"RN, and F is convex in Du, has been extensively studied.
See [G] and the references therein.

Many natural problems, however, only require that F be quasi-convex (see [B],
[E], and [(3]). Existence theory in such cases is now well understood; see [(3] for
references and [AF] for a nearly optimal result. Partial regularity results were recently
obtained by Evans [E] and extended in [FH] and [(3M].

All known natural examples of quasi-convex functionals (such as in nonlinear
elasticity theory; see [B]) are, in fact, polyconvex. Recall that a polyconvex functional
in Du is a convex function of the various minors of the matrix [Du]. Polyconvexity
implies quasiconvexity M]. While the converse is not true, the known counter examples
are quite pathological. It is natural, then, to investigate the regularity theory for
polyconvex functionals.

In this paper we prove new partial regularity results for various polyconvex
functionals, rather than for general quasi-convex functionals. Some model problems
that are treated include

(1.2) I[u]= f IDul+ IdeT Dul2
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in the case where n N 2, and

(1.3) I[u]= f IDul2+lDul +lAd Dul +[det DuJ
for s > 2, in the ease where n N 3.

Since lad Dul is the Euclidean norm of the map IDu ^ Du which sends two-forms
to two-forms, and Idet Dul is the corresponding norm in (1.3) for maps on three-forms
and in (1.2) for maps on two-forms, the preceding functionals are natural geometric
generalisations of the Dirichlet energy. More generally, the linear map AkDu(x) sends
k-vectors in " to k-vectors in N, and the partial regularity result we prove includes
the case of the functional

(1.4) I[u]= IDul2+lDul+ E IAiDul,
i=2

wheres->2ifn=2, and s>n-1 if n=>3.
In order to simplify the exposition, which is already quite long, we restrict ourselves

to problems of the form

(1.5) I[u]= Fl(Du)+ _, Fi(AiDu),

where each F(q) has the same growth rate for large q. It is clear, however, that the
methods apply to other problems with differing growth rates.

The main result (Theorem 4.1) is that minimisers of I[u] are C1’ except on a
closed set of measure zero, for each 0< re < 1. Higher regularity follows from the
Euler-Lagrange equations by standard bootstrapping arguments.

We now comment on some aspects of the functionals that we consider, as well
as on the proof of the theorem.

The set of those competing functions for which the integrand is finite is not a
linear space, even for (1.2). This corresponds to the fact that, for 2 x 2 matrices A and
B, we have

det (A + B) det A+ det B + AB22+A22B A2B2 A2B2
and so we cannot improve on the powers in the estimate

f (det (Du + Dv))2<=c ((det Du)2+(det Dv)Z+[Dul4+lDv[4).

It follows that if b is a function obtained by smoothly interpolating between u and
v, then we cannot normally estimate I[b] in terms of l[u] and I[v]. In (5.42) we use
a new comparison function construction that does enable us to obtain estimates of
this form.

In order to include the model problem (1.2) in the theory developed by Evans
[E], it would be necessary to include a term of the form elDu]4, for some e > 0, in the
integrand in order to control the determinant term. Similar remarks apply to the more
general class of integrands covered in Theorem 4.1.

Note that minimisers are not a priori continuous. Also, the structure conditions
allow (in fact require, but that is not necessary, as noted in 7.2) degenerate ellipticity
in the higher-order minors.

The proof of the main theorem involves a blowup argument. As usual, we obtain
a sequence of "bad" balls B(x,,, r) and a corresponding sequence of normalised
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functions v, defined on the unit ball. We then show that each v, minimises a certain
normalised functional obtained not, as would normally be the case, by linearising
about (Du)x..... but (in the case of (1.3), for example) by linearising the three terms
in the integrand about (Du)x...... (Ad Du)..... and (det Du)m.rm, respectively. The
proof of this makes essential use of the fact that each minor can be written in divergence
form.

The blowup argument is used to prove a decay estimate on the quantity

(1.6)
(x,r)

+ Z [A,(Du,x,, ,(Du-(Du),) + 2 IA,(Du-(Du)x,)l
i=2 i=2

where s is the common growth rate of the Fi(q) in (1.5). The first two terms in (1.6)
are as in [E], the fourth term is accounted for by the growth rate of the Fi, and the
third term is necessary to handle the degenerate ellipticity corresponding to the F
term. This particular choice of third term was motivated by the quantity U(x, r) shown
to decay in [FH2], where an analogous degeneracy problem occurred.

To prove the decay lemma, we first establish that the normalised functions v,
converge to a limit function v in various weak ways (cf. (5.11)), and that v satisfies
the linear equation (5.29). In order to obtain the required decay estimate on U(x, r)
we establish various strong convergences of the v, in 5C and 5D. The key point is
the construction of suitable comparison functions in (5.42), using the method mentioned
previously. Detailed estimates using the minimising properties of the v, then establish
the required forms of strong convergence in (5.64)-(5.67).

We remark that the proof avoids any use of Caccioppoli inequalities, and strongly
uses the fact that u is a minimiser of I[. rather than merely a stationary point. The
guiding principle behind the proof is that weak convergence of minimisers should
imply strong convergence.

For completeness, we also prove some results of Ball. Although he only considers
the cases where n N 2, 3, the extensions are straightforward. In 2.4 we show how
the elementary symmetric functions of the singular values of Du give rise to polyconvex
functions (cf. [B, Thm. 5.1]). The question of regularity of minimisers of such func-
tionals has been raised recently by De Giorgi. In 3 we establish the existence of
minimisers for the class of problems considered in this paper (cf. [B, Thm. 7.7]).
Finally, in 7 we indicate various extensions that can be made to our results.

Under the assumptions with which we work, the weak and pointwise determinants
agree (see Lemma 2.2.1), and so our spaces include the ones introduced in [GMS].
On the other hand, we do not know if the two spaces coincide (see also Remarks
2.3.2). However, if we restrict to the closure in AkWl’S of C functions, by modifying
the proofs somewhat, we are still able to establish the main result, Theorem 4.1. The
essential point is to show that the comparison functions stay in the same class. The
arguments are somewhat involved.

1.1. Notation. We use the following standard notation"

Bt {y e gn: lyl < t},

B(x, r) {y R" :Ix- yl < r},
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(2.8)

where

(2.9)

We often write

(2.10)

for AkL(Ol ^’’’ ^ ok).

AkL" Akn - AkN,

AkL(Vl A’’" A Vk)= LOl A’’’ A LVk.

(AkL, O ^’’" ^ Ok)

PARTIAL REGULARITY IN NONLINEAR ELASTICITY

(f), / f

(f)x, f f
(x.r)

"f,,--’f in Lk" denotes weak convergence,

"f,, -f in Lk denotes strong convergence.

2. Preliminary notions.
2.1. Algebraic preliminaries. Suppose that

(2.1) L’. n -- [sis a linear map. The standard bases for " and u will be denoted by el," ", e, and
El"’" eN, respectively. Inner products are denoted by (.,.) and the associated inner
product norm is denoted by I- The coordinates of L are given by

(2.2) L, Le,, e ).

The inner product norm of L is given by

(2.3) ILl2-- y t,.

For each k > 1 the space of k-vectors from n is denoted by Ak". The standard
basis elements for Ak" are denoted by

(2.4) ex ex, ^ ^ exk, 1 -<_ A1 <" < Ak =< n.

We define Ao" =, AI" =". If p > n, then Ap is trivial.
The standard inner product on " induces an inner product on Ak" where the

ex defined above form an orthonormal basis.
Similarly, the elements

(2.5) e, e,, A A ek, 1 /-1 <" </-,/,k N

form an orthonormal basis for Aks.
Recall the identity

(2.6) (ul ^...^ Uk, Vl ^’’’^ Vk)=det [(ui, vj)],

where u and v are elements of " (or ). In particular,

(2.7) ]U A’’’A Ukl2 det [(ui, uj)].

For each k > 1 there is an induced map AkL on k-vectors,
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Analogously to (2.2), AkL has coordinates

(AL)a (AL(ea), e)
(2.11) (Le,, ^. ^ Lea,,, e,, ^. ^ era,

det [Lmx.] i,j=l,

where we have used (2.6) and (2.2).
For example,

(2.12)
(A2L) (/Zl ,2)(1 ,2)

Thus the coordinates of AkL are precisely the k k minors of the matrix [Li].
The inner product norm of AkL is given by

(2.13) IAkLI2 Y (AkL) 2

If A [ai] and B [b,i] are k x k matrices, then
k-1

(2.14) det (A + B) det A + Ak-B + det B.
i=1

Here Ak- ranges over all (k-i)x (k-i) minors from A, and Bi is always the
complementary x minor from B.

Suppose that both L, M’ N are linear maps. Following (2.14) we write

k-1

(2.15) Ak(L+M)=AkL+ Ak_L@AM+AkM.
i=1

In other words, each component of Ak(L+ M) is a sum of terms of which the
first is the corresponding component ofAkL and the last is the corresponding component
of AkM. The expression Ak_L@AM denotes a sum of terms of the form lm, where
and m are coordinates of Ak_L and AM, respectively.

For example, as we see from (2.12)

L,,x, + M,,x, L,x2 +(a2(t+ M)),.),,2)=
G2, + M.:, G2.2 +M:

(2.16)
L,,x,L:x:-
+(G,,M2:+

G2,M.,)
+(M,,M2- M,:M2,).

We sometimes write
k

(2.17) Ak(L+M)= E Ak_L@AM,
i=0

with the understanding that AoL 1, AoM 1.

2.2. Properties of A,Du. First suppose

(2.18) u" 1(=) k,
where 1 is a smooth bounded domain and u is a smooth map. We will denote by

(2.19) [Du/Diu



PARTIAL REGULARITY IN NONLINEAR ELASTICITY 1521

the matrix obtained from the matrix [Du] by deleting the ath row and ith column
(i.e., the row and column containing Diu).

Then
k

(2.20) L (-1)iDi det [Du/D,u] =0, a 1,..., k.
i=1

This follows from the rule for differentiating a determinant together with the alternating
character of a determinant (see [M, Lemma 4.4.6, p. 122]).

It follows that
k

(2.21) det Du Y (-1)+Di(u det [Du/D,u]), 1,..., k
i=1

k

(2.22) 0= L (-1)iDi(u det [Du/Diu]), a .
i=l

We next consider more general u.
First assume that k 2 and u wl’2(-). It is trivial that det Du L1(12). Moreover,

(2.20)-(2.22) hold in the distributional sense. This is easily seen by first writing each
of (2.20)-(2.22) in weak, i.e., integral form, and noting that the corresponding integrals
are continuous in W1’2. Since C(12) is dense in W1’2(1), this establishes the claim.

Now assume k > 2 and u wl’k-l(-). Then the determinant of any j xj minor of
Du belongs to Lk-1)/J(12) for l<=j<=k-1, and in particular det[Du/Du]Ll(12)
for each and a. Moreover, (2.20) holds for such u by a similar approximation
argument as before.

Now assume moreover that det[Du/Diu]Lk-1)/k-2)(l)) for each and a. It
follows immediately by the rule for expanding a determinant that det Du L1(12). We
also claim that (2.21) and (2.22) are now true in the distributional sense.

To see this, let {u,,}c C(l)) and u,, u in wl’k-l(’). Also (as in [B, Lemma
6.1]), let (det [Du/Diu])m be obtained by mollifying det [Du/Diu with p, where
pem(X)--’enkp(enlx), pC C(l)), p_->0, p= 1, and e,,- 0. Then (det[Du/Diu])m-

i(k-1)/(k-2)det [Du/Du in -oo Moreover, for d(x, Ol))> era, it follows from (2.20) that

2 (-1)iDi(det[Du/Diu])m(x)= (-1) Dpm(x-y det[Du/Du](y) dy
i=1 i=1

It follows for any q C(fl) and all sufficiently large m, that

Z (-1)i+D,uT,(det [Du/Diu])mq (-1)i+aDi(uTn det [Du/Diua])m
i=1 i=1

i=1

(-1)i+u(det [Du/Diu])Di"

Letting m - c we obtain (2.21).
(We remark that the key point in the preceding argument was to mollify

det [Du/Diu], rather than to consider det [Dum/DiuT,].)
Similarly, if a /3,

(-1)iDiuTn(det [Du/Diu])mq9 (-1)i+"uTn(det [Du/Diu])mDicp.
i=1 i=1

Letting m and using the fact that 0 Y.ki=1 (-1) A det [A/Ai] for any k x k deter-
minant [A] and for a /3, we see (2.22) is also true in the distributional sense.
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Equation (2.21) is often used to give a definition of det Du in the weak, or
distributional, sense. Thus we have, in particular, established the following lemma.

LEMMA 2.2.1. Suppose u :’(ck)-"k. Assume that either k-2 and u W’2()
or that k> 2, u wI’k-I(-), and det [Du/Diu] L(k-1)/(k-2)(-,) for each and a. Then
the determinant ofany j xj minor ofDu exists both pointwise and in the weak sense, and
both notions agree.

Next assume

(2.23) u" f(c N") --, NN,
where is a smooth bounded domain and u is a smooth map. Then it follows from
(2.11 and (2.21 that

(2.24)
AkDu ; det D;.u"]i,j=l

k
+ l"} Du ,,E (-1, ....,,(u’*’(Ak-1 &...,,,,)O, ..L. a,,))

i=1

for each j 1,. ., k.
In particular,

(2.26)
DA2 U/d’l (A2Du

+Da,( U/d’l (A2Du)(/d.2 ,/d.3) AI ,A2)

A similar expression is again obtained by expanding across the second or third row.
We usually abbreviate (2.24) to

(2.27) AkDU Y D(U@Ak_Du),

or even

(2.28) AkDU D(UAk_IDU).

The essential point to observe is that each component function of AkDu is a linear
combination of partial derivatives of terms of the form fg, where f is a component
function of u and g is a component of Ak_IDU. The more precise form in (2.24) will
not usually be relevant.

2.3. The class AkW’(I).
DEFINITION 2.3.1. Assume f(c") is a smooth bounded domain and

Assume 2 _-< k _-< min {n, N} and assume

s->_2 ifn =2, s>=n-1 if n>2.
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Then

Akwl,s (-)
is the class of functions u e wl’s(f) such that AiDu L for i= 1,..., k.

Remarks 2.3.2. (i) It follows from Lemma 2.2.1 that (each component of) AiDu
exists also in the weak sense and that the weak and pointwise notions agree. In other
words, (2.24) is valid in the distributional sense.

(ii) We can define AkWI’(O) in the weak sense for more general s and develop
a corresponding theory, but the weak and pointwise notions will not necessarily agree.
Although this is an appropriate setting for variational problems, the regularity theory
in 5 only applies if s_->2(forn=2) ors>n-1 (forn>2).

For this reason we will in future maintain the restrictions on s given in the definition
above.

(iii) More general classes of functions could be clearly defined by requiring
AiDu L, for different s. It is also possible to generalise the regularity results of 5
in an analogous way.

(iv) It is clear that AW’() is not generally a linear space. This is a basic reason
for some of the diculties we encounter in 5.

Since ADu is in paicular a vector-valued function, we take the usual L norm

(2.29) [IADullc Z I(ADu),

DEFINITION 2.3.3. A sequence {u;}c AW’(fl) converges in the weak AW’
sense to u Wa’ (fl if

(a) u; u in
(b) ]ADu;][ M for 1 2,. ., k and some M <, independent of j.
We write

ug u in AkWl’(l)) (or AkWl’S).
PROPOSITION 2.3.4. If Ug U in AkWl’s (f), then, moreover,
(i) u AW"(f),
(ii) A,DuA,Du in L(f), i= 2,. ., k,
(iii) A,Du c <- lim infg_. m,ou II, 2, , .
Proofi We show by induction on that u e AW1’ for i= 2,..-, k and that (ii)

and (iii) are true.
In case 2 we observe that ugDug uDu in L, since ug - u in L and Dug---" Du

in L (and s-> 2). To see that (iii) is true we observe from (2.25) that

IIA2Dullt =sup {I uDuDcp" ff lcpl/s-l<= l }
where we are using the same abuse of notation as in (2.28). Standard arguments now
imply (iii).

It follows that (i) and (ii) are also true, since weak L convergence is equivalent
to distributional convergence in the presence of uniform L bounds.

Similar arguments apply for i> 2 after writing ADu= D(uA_Du) in integral
form.

Although AkWl’(f) is not usually a linear space, we do have from (2.15) that if
tlGAkW’S(’) and X C(fl) then uq’XGAkWl’S(’) and

k-1

(2.30) AkD(U + X) AkDu + ., Ak_Du @ADx + AkDX.
i=1
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In particular,

IA,,D(u +x)l_-< c(x) 1 + 2 IA,Dul
i=1

Also, if" $" f(cRn)-> R is bi-Lipschitz and u AkVCx’s($(-)), then uo$ AkWl’s(f),
and we calculate almost everywhere that

=((AD(uo$))(e e), e,
=(D(uo)(ex,) D(uo)(ex), e.,

(2.31)
=(Du(D$(eal)) A’’’A Du(D$(ex)), e, A’’’A

O$’ O$(Du(e,) A’’’A Du(e), e, A’’’A e,)
1 ,’", OXA OXAk

o(,,. .,6)
o(x, ,x1=,<...<=, ,’’"

(ADu)’"’"")"I"’"")"

2.4. Singular values and polyeonvex functions. Recall that the singular values of a
linear map L-R" are the eigenvalues ,..., Cu of the positive semidefinite
N x N symmetric matrix (Lo L*, where L* is the transpose map.

Moreover, we have the following lemma.
LZMMA 2.4.1. Ifi , are the singular values ofL" " then ,

for 1 i <. < i N are the singular values of AL.
Proof First note that if T’ P is a linear map, then

(2.32) a(To L) AToAL.
This follows immediately by applying each side to an arbitrary basis element

e . a e and using (2.9).
Next note that

(2.33) (A)* a*,
where (AL)* is the transpose map of AL. This follows by considering basis elements
e e, ex in A" and e el a e, in A. We have

((aL*)e,, e)=(L*el. L*e, e,. a e)
det [(L*e,,, e;)] ,;=, (from (2.6))

det [(e,,, Le;)] ,;=1
(e, . e,, Le, . Lex) (from (2.6))

(,, (a)e)
((a)*, e).

This implies (2.33).
2 % respec-Let v,..., vu be eigenvectors of LoL* with eigenvalues ,..

tively. We may assume the v form an oahonormal basis of C
It follows that

(ALo (AL)*, v, ...a v)= (A(Lo L*), v, ...a v)
(Lo L*)v,, .. (Lo

2 2
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Thus the vi, ^" ^ vi form a basis of eigenvectors for AkLO(AkL)*, with eigen-
2 2 In particular, the lemma follows.values tr il O’i

LEMMA 2.4.2. Let

F(AjL) gj(trl ,’’ ", tri, tr,j, .),

where g is convex and increasing in each variable. Then F is polyconvex.
Proof This follows immediately from the case where j 1 and Lemma 2.4.1. The

case where j 1 is established in [B, Thm. 5.1(ii)]. [3

Remark. The previous lemma gives a large class of polyconvex functionals, as
shown in [B, 5] in the case where n N 2, 3. Namely, if

k

F(Du, A2Du," ", AkDu) g(o-1 ,. ., cry, o’ij, "),
j=l

where g are as in the previous lemma, then F is polyconvex.
In particular,

IA DuI - Trace (ADuo(AjDu)*)

Trace (A(Duo Du*))

2 O’i,
il

where o-1," , o-N are the singular values of Du.

3. Existence of minimisers. We prove the following existence theorem due to Ball
[B, Thm. 7.7]. In fact, the theorem is true (with essentially the same proof) provided
s >- 2n/(n + 1), but under this more general condition the weak and pointwise notions
of ADu will no longer necessarily agree. Existence results under even more general
conditions have recently been established in [GMS, 6.A] using techniques from
geometric measure theory (they also consider the problem of invertibility), and by
Miiller [Mu].

Suppose n=2ands_->2, or n>2ands_->n-1.

Let

(3.1) I[u] Ia F(x, u, Du, A2Du, AkDU),

(3.4)

(a)

(b)

(c)

(d)

(e)

F->0,

F is measurable in x for all (z, a),

F is continuous in z for all (y, a),

F is convex in a for all (x, z),

F(x, z, al ak) > 3 k la, for some 3/> 0.i=1

where

(3.2) u’O(c")- N

We assume

(3.3) F= F(x, z, al, ak)’-XNXql X Xqk’-’)

for the appropriate q. We write a (al, , ak). The structure conditions we assume
on F are as follows"
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THEOREM 3.1 (Ball). Suppose I and F are as in (3.1) and (3.4), and ve wl’s(l).
Let

c-- {U G AkWl"S(-)" u-v W’S(-)}.

Then if I[ u < for some u % there will exist u c which minimises I[ u ] amongst all
members of c.

Proof Let {us} ccg be a minimising sequence.
On passing to a subsequence we can assume by Poincar6’s inequality that us---- u

in Wl’S(l)) for some u. Moreover, from (3.4e) we have uniform bounds on [[aiDus[[Ls(a)
for i= 2,..., k. It follows from Definition 2.3.3 and Proposition 2.3.4 that us--’u in

AkWTM for some u, and moreover that u c.
Since AiDus---AiDu in LS(fl) for each i, by Proposition 2.3.4 (ii), and us - u in

LS, a standard lower semicontinuity result [G, Thm. 2.3, p. 18] implies I[u]<=
lims_ I[ u ].

It follows that u is the required minimiser. [3

4. Partial regularity theorem. Suppose

(4.1) u l(cRn)- RN

and u AkWTM. Consider functionals of the form

(4.2) I[u]= F’(Du)+ E Fi(ADu)
i=2

Assume the following hypotheses:

(H1)

(H2)

(H3)

F is C2 fori=l,...,k;

s_>2

(a)

(b)

if n=2, s>n-1 if n>2;

[D2FI(p)I<- c(1 + IplS-:),

DpTpFl(p)7 - 3’(1 + Ip]-:)[:l

for all Horn (R"; EN), some 3’ > 0; For 2, , k,

(H4) (a) [OF’(q)[ <- clq[-,
(b) DqqF(q). >-_ ,]q]-=l:l-

for all q, some 3’ > 0.
Model problems included under these hypotheses are

(4.3) I[u]= IOul2+lDul+ E IA,Oul,
i=2

where s->_2 if n =2, and s> n- 1 if n>2.
The main theorem established in this paper is the following.
MAIN THEOREM 4.1. Suppose u AkWl’S(,) is a minimiser ofI[ ], where I satisfies

the hypotheses (H1)-(H4). Then there exists an open set 12o such that

for all 0 < a < 1.
Remark. In 7 we indicate various extensions and generalisations.



PARTIAL REGULARITY IN NONLINEAR ELASTICITY 1527

5. Proof of decay estimate. In this section we continue to use the notation of 4.
In particular, u AkWI’S() is a minimiser of I[" ], where I[-] satisfies the hypotheses
(H1)-(H4).

Consider the following quantity:

(5.1)
r(

-[-
i=2

(]hi(Ulg)x’r[S-2[hi(Uu-(Uu)x’r)[2"-[hi(Uu-(Uu)x’r)[S)]
(if s- 2 we drop the second and third terms on the right side).

We will prove the following decay estimate.
THEOREM 5.1. Suppose M > O. Then for each 0 < " 1/2 there exists eo eo(Z, M)

such that for every Br(x) c 12, if
I(D"),,rI<-M,

then

U(x,r)<=eo,

U(x 7"r) C1T
2 U(x r)

for some Cl el(M).
Proof We specify Cl(M) later (see (5.86) and (5.38)). Assume the theorem is not

true for some M and -, which we fix.
In the following we will allow c to be a constant which may depend on M, but

not on z or m, and which may change from line to line.
By assumption there exist balls B(xm, rm)Cf such that I(Du)x..... I<-M,

U(xm, rm)O as moo, and

(5.2) U(xm, ’rm) > cl z2 U(xm, rm).

We will establish a contradiction to (5.2) for some sufficiently large cl cl(M).
Let

(5.3) h-- U(Xm, rm).

Then Am 0 (as otherwise Du is constant on Br(Xm) and so both sides of (5.2)
equal zero, contradicting (5.2)). Thus we take

O<hmO asm-oo.(5.4)

Define

(5.5)

(5.6)

Then by assumption,

(5.7)

am --(U)......
Am (Du)).,,rm.

Define the normalised function

(5.8) Vm(Z
u (Xm + rmZ) am rmAmz

Amrm
for z B1.
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Note that v,,, AkWl"S(B1) as in (2.30). We also have

Dye(z) Anl(Du(xm A- rmz)-Am),

(Dv,.)= A.I((Du),..... -A,.),
(5.9) Dv..(z)-(Dv,.) A.(Du(x.. + r..z)-(Du)x..... ),

(Vm) 0,

(Dv.,)a =0.

It follows from (5.3) that

B k
s-2 2i-2

__
(5.10) 1 [Dvml2+ ASm-=[DlAm[ s-l- 2 (IAieml Am IA,Ovl A.-=[AiOv,.[

i=2

On passing to a subsequence we claim that for some A e Hom (R"; RN) and some
v e Le(B1) that

(i) Am -. A pointwise,

(ii) v., v in W’2,

(iii) h 1-2/svm--0 in WTM (if s>2)
(5.11)

(iv) IAA,nl(s/:z)-’Ai-lADvm.--’O,,, in LTM 2 <= <= k,

(v) A-(z/s)ADVmO in L 2 <= <- k,

(vi) A.,Dvm 0 a.e. for any 8 > 0.

The first two claims are standard from the facts [a,. <= M and fn, = <= .
To see (iii) we note that Vm V in the distributional sense, and hence A ml-2/s v,,, 0

in the distributional sense. Since ft, ASm-Z[ol)m[ is bounded uniformly in rn and since
(v.,)l =0, it follows from Poincar6’s inequality that Al./v., is uniformly bounded in
the WI’S(B) norm, and so (iii) follows.

To see (iv) in the case where i= 2 we note that Vm V in L2, Dr.,--’. Dv in L2,
and hence Vm (5)DV,., v@ Dv in the distributional sense. But then A2Dv., AzOv in
the distributional sense, and hence A.,[A2AmI’/Z-A:,.DvmO in the distributional sense.
Since Am ]AA., s/2-1A2Dv., is uniformly bounded in L2(B) by (5.10), result (iv) follows.

The proof of (v) in the case where i= 2 is similar.
Assume (iv) and (v) are true with replaced by i-1 and 3-<iN k. Since Vm V

in L2 and Aim-l-Z/SAi_lOVm----O in L (by (v), recall s => 2), it follows that Aim-1-2/s19 Q)

A_Dv.,---’O in the distributional sense. But then Am--:Z/ADvm-’O in the distributional
sense, and hence A-2/ADv.,--’.O in the distributional sense. Since Ai.,-Z/SAiDvm is
uniformly bounded in L by (5.10), it follows that A-2/SADv,.---’.O in Ls. This establishes
(v) for i= 1,..., k, by induction.

We also have from the fact Ai-l-2/SAiDvmO,,, that [AiAmlS/2-1hi-lAiDvmOm in
the distributional sense (recall that ]AA,,[ is uniformly bounded from (5.7)). Since
[AgA,,,Is/2-1Ai,ADv,,, is uniformly bounded in L2 from (5.10), it follows that
[AAmlS/2-A-IADv,,--’O,, in the L2 sense. This establishes (iv) for i= 1, k, by
induction.

Finally (vi) follows immediately from the fact Dv,,, is uniformly bounded in L2

and so hmDr,, - 0 in L2.
The proof of the theorem is rather long, and so we break it into a number of parts.
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A. v minimises a normalised functional. Define the normalised functions

(5.12) F(P) An2[Fl(Am --b A,,P)- FI(Am)- DF’(A,,,)AmP],

F(P) A,2[F(A(A,, + A,,P))- F(AA,,)
(5.3)

DF’(AAm)(Ai(A,. + AmP) AA,.)]

for i=2,. .,k.
The corresponding normalised functional is defined to be

(5.14) Im[W]= F(Dw)+ F(Dw).
B i=2

For 0 < < 1 we similarly define

(5.15) I[w] Y F(Dw).
Bt i=1

Example 5.2. If n N 2 and 2, then

(5.16)
F2..(P) AL2[F2(det (Am + A.,P)- F2(det Am)

-DF2(det Am)(det (A,. + AmP)-det A.,)].

If, moreover, F2(det P)= (det p)2, then

F2.,(P) AT.2[(det (A., + A,.P))2- (det A.,)2

-2 det Am(det (A,, + A,,P)-det Am)]
(5.17)

;t/Z(det (Am + )t,P)-det a,,)2

=(amP+AmdetP),
where we use for the particular linear combination of terms above.

Thus

(5.18) FZ(Dw)=(A,)Dw+;t, det Dw)2.

Remark 5.3. In [EG] the authors define a normalised functional which in the
present framework would be obtained by setting for i= 1,. ., k,

(5.19) i(p) Fi(ap),

(5.20) /m(P) An2[i(Am -t- AmP)- i(Am) DZ’i(am)AmP],

(5.21) I[w] Y "’F,(Dw).
1i-----1

Thus in [EG] the function P-- F(AiP) is normalised about P A,, whereas here
we normalise the function AP-- F(AP) about AP AiA.

’iIf i= 1, then F,(P)- Fm(P). But if i> 1 this is, of course, not true.
In Example 5.2, where F(det P) (det P), we obtain from the rule for differen-

tiating a determinant,

/’(P)= A,2[(det (Am + ,mP))2- (det A,,)2- 2 det A,,(A,, A,,P)]

Z22[det (a,, + A,,P))2- (det Am)2

(5.22)
-2 det A,,(det (A,, + A,,P) -det A,,) + 2A2,, det Am det P]

F2(det P) + 2 det A det P.
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Returning. to the general case, it is easy to check, as noted in lEG], that v, is a
minimiser of I,.

We show here that v, is a minimiser of I,, amongst functions in AkW’S(B1)
which agree with v, outside some compact subset B. The essential point is that the
extra term introduced as in (5.22) gives rise to an integrand which can be written in
divergence form.

LEMMA 5.4. Suppose w AkWI’S(B1) and w-Vm outside some compact K
Then

Proof. First note that

(5.23)

where

I,[v,,]<-_I,[w].

F’(A,(A, + AmDw)) - F’(A,D(Ar,,Z + AmW))- Fi(AiDw*),
(Xm,rm)

w*(x,. + r,,z) a,,, + r,,A,,z + A,,,r,,w(z).
In particular, from (5.23) and the definition of- F’(Ai(A, + AmDv,,,)) =- Fi(AiDu).

(Xm,rm)

Since u is a minimiser of I[. ], it follows that

i=1 i=1

But we also have that

(5.25) - Ai(A,,, + A,,,Dv,,,) .- Ai(A,,, + A,,Dw).
dB ,n

To see this it is sufficient to show, in view of (2.24), that if X LI(B1) is a
vector-valued function, X =0 outside some compact K c B1, and div X L (where
div X is defined in the distributional sense), that n, div X =0.

But if X is obtained by mollifying X in the usual way, then for all sufficiently
small e, j div X =0. Since div X =(div X) converges to div X in L1, the result
follows. [3

B. v satisfies a linear equation. We need to calculate the Euler-Lagrange equation
for Vm by calculating

d

t=0
A,(Am + A,,(Dv,,, + tDq)).

Let us write
i--1

(5.26) A,(A+ B)= A,A+A,_IA@B+ A,_A@AjB+A,B,
j=2

so that

A_IA@B

will always denote this particular linear combinations of terms aab, where aa and ba
are components of Ai_IA and B, respectively.
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Then for Cc(B1)

d A(A,,+Am(Dv,,+tDq))=A_(A,,+A,,Dv,,))A,,Do.(5.27) d--- t=o

It follows from (5.12), (5.13), and Lemma 5.4 that v, satisfies the Euler-Lagrange
equation given by

0 X [DF’(A +hDv)- DF’(Am)] D
dB

+A . [DFi(Ai(A +ADv)) DF (A,A)]
i=2

[A_(A + AmDvm)D]

+ DF(AA + t(A(A +ADv)-AA)) dt
i=2

(5.28)
[A(A +Dv)-AA][A_,(A +Dv)D]

DF(A+ tDv) dt DvD

+ DF(AA+ t(A(a + ADv)-AA)) dt
i=2

j=2

j=l

We aim to show that v satisfies the linear equation

for all e C(B).
This is an elliptic system with ellipticity bounds given by

k

(5.3o) llfl(A)ff+ 2 F(AA)(A-A)(A-A)cII
i=2

for all e Horn (N; N).
The necessary calculations are simplified by the following lemmas.
LMMa 5.5. Suppose {f}c L(B), {g}c L+n(B) (some >0), and is con-

stant. Suppose

fm
gm g in L +n,

+ for some > 0, some <, m.A A and



1532 NICOLA FUSCO AND J. HUTCHINSON

Then

f,,gm ag in L1+.
Proof. For any p C(BI) we have

(5.31) f (fg-ag)p=f (f-a)g,p+a f (g-g).
B

The second integral on the right side converges to zero as m .
To see that the same is true of the first integral we note that for each e 0 there

exists E B1 with [E e such that f a uniformly on B1 E. Then

If l [g[ [1 c supn, Ifm l [gm[ l+n
lE B

0 as m.

Moreover,

[E[/(1+’)

IE ) 1/(l+n)

/c Igl/

_-< c(),

where c(e)- 0 as e 0. Since e > 0 is arbitrary, it follows that the first integral on the
right side of (5.31) also converges to zero as m

This establishes the lemma.
Remark. The case gm---- 1 is also of interest.
LEMMA 5.6. Suppose p, q >- 0 and all ai >-- O. Then

(Ea/P)(Ea) _-< cEa+q.

Proof. Multiply out the left side and use Young’s inequality. [3

LEPTA 5.7. IA,aml----< clAal if 1 <-j <-_ i, for some c independent of m.

Proof. Ifj 1 this follows by expanding the determinant corresponding to each
component of AiA, along an arbitrary row (or column) and recalling IAml is uniformly
bounded in m. The result follows for general j by repeating the argument. [3

LEMMA 5.8.

Ai(Am q- hmDvm) AiA a.e. as m -.
Proof This follows from (5.11)(vi) and the fact A--AA is clearly a continuous

function.
We now proceed with the proof of (5.29).
Apply Lemma 5.5 to the first integral on the right side of (5.28), with

fm= D2FI(Am + th,Dvm) dt,

g,, Dv,, g Dv.
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Then f,,- D2FI(A) almost everywhere from (5.11)(vi), and g,,----’g in L2 from
(5.11)(ii). Also,

Ifg I--< c(1 + -lDvi-=)lDv
<= c(IDvml +

and so fg e L/(-) uniformly in m. Lemma 5.5 now implies

](5.32) DZFI(A + tADv) dt DvD DFI(A) Dv D.

We next consider the second integral on the right side of (5.28). It is convenient
to write this integral in the following form:

i=2

[ (a_la +Dv)(a_la +D)
k

(5.33)

k

E (A + B’m + C).
i----2

We first claim

(5.34) A->+ DF’(A,A)(A,_IA) Dv)(A_,A) Dq).
dB

To see this, apply Lemma 5.5 with

fm D2Fi(AiAm + t(Ai(Am + AmDvm)-AiAm)) dt,

g,=(Ai_lA,Dvm)Ai_lA,,.
Then

f,, -, D2Fi(AiA) a.e.,

gm----’(Ai_lA@Dv)Ai_lA

Moreover,
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It follows from (5.11) that f,gm LS/(s-1), uniformly in m. Hence (5.34) is valid
by Lemma 5.5.

We next claim

(5.35) ,,-->0 as m-->oo.

To establish this, apply Lemma 5.5 with

fm= DF(AA, + t(A(A, + a,Dv,)-AA.))

j=2

gm 1.

Then f0 almost everywhere (using (5.11)(vi)). Also,

j=l j=2

(using (H4) and (5.7))

j=2

+cX’d/ X;d2/lA;Dv.,I AJ-a/sIAjDv.,
j=

<= c E IAjAmIS-2Am-aIAjDvml
j=2

j=l

using Lemma 5.7.
It follows from (5.11) that f,,, e L/-’ uniformly in m. Thus (5.35) is established

from Lemma 5.5.
Finally, we claim that

(5.36) C -->0 as m-->oo.

To see this we calculate

c IA,A,,I-2 Y 2Jm-llAjDDml2+c xK-’IADvI
j=l j=l

->0 as rn-->c

from (5.11). This proves (5.36).
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Thus (5.29) is established, using (5.28), and (5.32)-(5.36).
From standard regularity theory it now follows that

(5.37) v C(B1),

and, moreover, that for any K c c B1 and any -> 1, we have from (5.29), (5.30), and
(5.10) that

(5.38) sup ID’vl <-- - IDvl-K .]B

where c e(K, M, i).

C. An estimate of I(v,.)--Im(V) from above. We will show that for almost
everywhere (1/2, 1) there exists a subsequence (depending on t) for which

(5.39) lim (Itm(Vm)-Itm(V))O.

This, together with the estimate from below in Part D, are the main estimates.
In order to establish (5.39) we need to define comparison functions Wm that

"connect" v to Vm.
More precisely, for each (1/2, 1) and each 6 (0, 1/4) we define

(5.40)

as follows.
For x B1 write

(5.41)

Let

t, wl,sWm Wm Ak

x= r, where r=lxl and w =x/Ixl.

rv(no)
v([t- 8+2(r-(t-

r<__t-8,

(5.42) w,,(rw) t-r r-(t-8/2)- v(tw)+
8/2

v,(tw) t-r t,

vm(r) r 1.

Thus Wm equals v on Bt_. On the annulus B_/ B_ we obtain w by taking
v restricted to B B,_ and then composing with a diffeomorphism from B,_/ B,_
to Bt B,_. On Bt B,_/ we obtain Wm(r) for / 2 r by linearly interpolating
between v(t) and Vm (t). Finally, Wm agrees with v on B

We claim

(5.43) Wm AkW’(B1) for a.e. (, 1),

and establish some estimates.
First note that

(5.44) sup IDw[ <= c sup IDvl <- c
Bt-8/2 Bt

from (5.38). It follows that

(5.45)

for i=1,...,k.

sup IA,Dwl <- c
Bt-/2
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Next consider the annulus Bt" Bt_,/2. Let 7"1,""" ’J’n--1, / be an orthonormal
basis for R n, where u is a radial vector (and so Zl," ", %-1 are orthogonal to u). Then
on Bt Bt-,/2

t-r r-(t-8/2)
.-D,v(t)+ "-D,Vm(tO),(5.46) Ozwm(r)
8/2 r 8/2 r

and so

(5.47) IO,w(r)l c(1 +[Ov(t)l),
since tire2, (t-r)/(/2)l, (r-(t-/2)/(/2)l, IDvl c.

Similarly,

2
(5.48) Dwm(rW)= (Om( tW) v( tw)),

and so

(5.49) IDw(rw)[ c-llm(t)-v(t)l.
It follows that

(AiDw(rw), i)

=D,w(rw) A’’’A D,w(rw)
r
Dv tw + D,v tw

=1 r 8/2 r

On expanding we obtain terms of the form

f(Drv(t or Drvm(t)) A’’’A (Driv(t) or Drivm(t))
where Ifl c. Such terms are norm bounded by

j=l

since D.v( t)l c.
Similarly,

=Dvwm(r A D,,Wm(r A’’’A D,i_lWm(rW
2

=-d Vm( tW) v( tw)) ^

-1 t-rt
A (-’- Djv( to9 +

j--1 r

As before, such terms are norm bounded by

r-(t-t/2), t_ Djv,(tog)).8/2 r

C-Ivm(tOa)--V(UO)I 1 IADv,(Uo)

It follows from the above that on Bt "-Bt_/2

(5.50) [AiOw,.l<=c(l/,-llv-v,l) 1+ IADvml +clA,Dvl,
j=l

where the left side is evaluated at rw for t-/2r t, the right side is evaluated at

tw, and lik.



PARTIAL REGULARITY IN NONLINEAR ELASTICITY 1537

Since /)m Wm on B1 Bt,

Hence

I(v.,)-I(w,,,)<=O.

It(Vm)- Itm(V) (lm(Vm)- I(Wm) --(Im(Wm)- Itm(V))

(5.5) <-_t(w,.)-’(v)

E (F(Dw,,,)- Fm(Dv)).
tBt_ i=1

From (5.12) we stimat for any

If(Dw)[ (1 -r)D2FI(Am + rA,Dw) dr Dw Dw

(5.52)
c(1 + A=lUwl-2)lUwl.

For 2i k we similarly have from (5.13) that

IF(Ow)l=aL2 (1-r)DeF[AAm+r(A(A+AmDw)-AA)] dr

(Ai(Am + mDw) AAm)(A(A + ADw) AAm)

cX2(lA,aml-2 + IA,(A + amDw)- A,aml-2)
(5.53)

[A,(am + XmDw)- A,am[

c IAAm-+ 2 s-ADw
j= j=

c I&AI-2a-21&DwI+ c 2 a-l&Owl.
j= j=

From (5.47), (5.48), and (5.52), we calculate (with the left side evaluated at rw and
the right side at tw, where t-/2NrN t)

IF(Ow)[ c( l + -l[_ Vml + [Ov[)=

(5,54)
C(I

Similarly, for 2 N N k, we have from (5.50) and (5.53), with the same evaluation
convention, that

i s--2 2j--2[Is<w)l I&AI
j=l

+ lAl +lAl
/=0

j=l

1+
/=0
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The first term on the right side is bounded by

c IAAI-A-=(1 + -=[v v[)
j=l

i--1

+c Y [A,A,.I-A(1 + 6--[v v,.l=)lAOv,.l
/=0

+c E IAAmI-=A-=IADv,.I
j=l

(where we have used [AAI < cIA,A[ and h--<- ch for l<=l<=j 1)

_-<c(1 / -2[V--Vm[2)
i--1

+cA-2lv- vl2 IAAI-2A-aIADv[
j=l

/c IAA,.I--A-=IADv.,I=.
j=l

Similarly, the second term on the right side of (5.55) is bounded by

i--1

j=l 1----0

+ c Z A-IADvI
j=l

+ c E A-2IA)Dv,.I.
j=l

It follows that for 2 =< =< k

m(Dwm)l < c 1+ 6-21v- v,,,I2+ IAAI -2S2j-2IAjDvml2

j=l

(5.56)

i-1

+CA2m6-2IV--/)ml2 IAjAmlS-2A2Jm-21AjDvml2
j=l

i--1

+CAa-IV--VmI AJ-2IAjDml.
j=l

Remember that the left side is evaluated at rw and the right side at tto, where
t-6/2<=r<-t.
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(5.57)

Applying Fubini’s theorem to (5.54) and (5.56) it follows that

i-x-sup Iv- vl= IAA, IADv
OB B j=

+c X.-2-lv v,l + X-2lDvl + AJ,-21AjDOml
OB =2

-ll-C(I--s*s sup II)- l)ml A-=IADv .
B B j=

It follows from (5.11) and Lemma 5.10 that for almost everywhere (1/2, 1) there
exists M, < and a subsequence depending on for which

(5.58)

k

IDvmI+ A221DvI + A-=IAA,I-=IADv,I
B j=2

k

/ A-=IAjDvI M,.
j=2

We may also assume from (5.11) that

(5.59)

Finally, notice that h-:z/S(v,,-v)---’O in wl’S(B1) (from (5.11)(ii), (iii)). It follows
--2/sfrom (5.58), by using a countable dense set of test functions, that h,, (Vm- V)---’O

in WTM(OBt) for almost everywhere (1/2, 1). It then follows by the Sobolev compactness
theorem, together with the fact that s > n- 1 dimension(0B,), that

(5.60) lim h’,,[:z/s sup Iv-v,,{=O
B

for almost everywhere (1/2, 1).
Remark 5.9. This is the main point in the proof where we require s > n- 1.
It follows from (5.57)-(5.60) that

k

Fm(Dw,)<=ct(l+Mt)(5.61) lim sup Y
m-oo tlt_a/2 i=1

for almost everywhere (1/2, 1) and some subsequence depending on t.
On the other hand, we easily see from (5.52), (5.53), and (5.45) that

(5.62) F2(Dw,Y )<c.
t--/2Bt-

Finally, from (5.52), (5.53), and (5.38) we see that

(5.63)
k

E F(Dv)
tBt_,$ i=1

=< C&

From (5.51) and the fact that 6 (0,1/4) is otherwise arbitrary, it now follows, for
almost everywhere (1/2, 1) and for some subsequence depending on t, that (5.39) is true.
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LEMMA 5.10. Suppose {urn} is a sequence ofLl(B1) functions such that 8, [u,,[ M,
where M is independent ofm. Thenfor almost everywhere (0, 1) there exists a constant

Mt < oo and a subsequence depending in such that

Ira(t):= Io [Um[M.
Bt

Proof If the claim were not true, there would exist S c (0, 1) with ol(s) > 0
such that S implies lim,_ I, (t) .

Let

{ aM }Si- tS’I,(t) >- if m>-i.

Since SiS as i--> , it follows I(sj) > a/2 for some j. But then

B, 8, 2 a

which contradicts the hypotheses.
This proves the lemma. [3

D. An estimate of l’,n(Vm)-l’,,,(v) from below. By estimating I(v,,)-I(v) from
below, and using (5.39), we will establish that, for almost everywhere (1/2, 1) and for
some subsequence depending on (which can be taken to be the same subsequence
as for (5.39)), the following hold:

(5.64) lim - IJv,, Dr]2 O,

(5.65) lim ; AS,,[alDv,nlS 0 if s > 2,
dBt

lim - ]AiamlS-aA-a]AiDvml2-- 0 if/-- 2,..., k and s >(5.66) 2,

lim - Ais-alAiDv,,,ls,, --0 if i-- 2,’’’ k.(S.67)

Thus, weak convergence in (5.11) is converted into strong convergence.
To show these limits recall

k

(5.68) I(v,,,) I’.,(v) Y F(Dv.,) -F(Dv).
ti=l

(5.69)

Write

F(Dv.,) F(Dv) 8 F(Dv,,, Dv)

+8 Fk(Dv,,,)- F(Dv)- Fm(Dvrn Dv)

=A+B.
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From (5.12)

Am (1-7-)DaF[Am+rAm(DVm-DV)] dr (Ovm-Ov)(Dvm-Ov)

e T (1-r)(l+lAm+rAm(Ov-Dv)[-) d, IDv-Ovl

(using (H3)(b)).
But from [E, Lemma 8.1] there exists > 0 such that, for any two n x N matrices

A and B,

(5.70) (Iel-=+ Inl"-=) ( ,)IN + nl-= d.

Thus, for some > 0,

_
( + Ials-= + A=lOv Ovl-=)lOv Ovl=A

dB

(5.7)

ID DI +2-ID DI.
On the other hand, we can estimate B in a similar way to that in lEG, eqn.

(2.16)]. Namely,

Bm DF(Dv+(Dv-Dv)) dr

DE ,(Ov Ov d, Ov Ov

(using the fact that F(0)= 0)

  (fo fo )D2F vDv + r(Dm D dz dv (Dv Dv)Dv

(Io Io )D:F[A + A(,Dv + r(Dv Dr))] dr d,

(Dv Dr)Dv

(using (5.12)).
We now apply Lemma 5.5 with

fm OF[m+m(pOv+(vm-Dv)) dd,

g Dv Dr.

Then f DF(A) almost everywhere and gO in L.
Also,

Ifgml c(1 + X-2lDvml’-2)(1 +[Ovml)
c( + IDyll + *-=lDv -’)

--2/s s--2 1)/s=c(+lDvl+x (x IDvl)<- ).

It follows that fmg L/(-) uniformly in m.
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From Lemma 5.5 it now follows that

(5.72) B1 -* 0 as m -* c.

We next consider Fm(Dv.,) F(Dr) for 2 _-< _-< k. These cases are treated a little
differently from i= 1. We have

-ft F(Dvm)- F(Dv)
=A (1-’)DF[AA,+’(A(Am+AmDv)-AA)] d-

(li(Nm + mOvm)- AiAm)(Ai(Am + mDvm)- AiAm)

__2 (1-,)O2Fi[AiemWT(Aiem+AmOo)-Ainm) d,

(A(A + ADv) A,Am)(A,(Am + AmDV)

= (1--)DeF[A,A., + -(A(A,. + A,.Dvm)-A,Am)] dr

[(A,(Am + hmDVm)- A,Am)(Ai(Am + hDv)-hiA)

-(A,(A + hDv)-AA)(A,(Am + hmDv)- AiAm)

(5.73) + (1-)DF[AA+(A(Am+IDvm)-AAm)]

-(1 )DF[AAm + (A(A +Dv) AA)]

(A,(Am + AmOv A,A)(A(A + hmDv) A,Am)

=C +D2
Moreover,

C=2

([A(A +Dv) A(a +

(5.74)
[A(A +Dv) A(A +Dv)]

+2[Ai(Am + mOvm)- Ai(Nm +

=m+F,
where we have used the identity

.( nn)

We have for some > 0,

(from (5.13))
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E > h7. ( z)[A,A + z(A,(A + hmDvm) A,A.)[- dr

IA,(Am + AmDvm)- A,(Am + AmDVl{2)
(using (H4)(b))

> h. (IA,A. -2 + IA,(A. + hmDvm)- A,Aml-2)

IA,(A. + ,.mDVm)- A,(A,.. + AmDv)I

(using (5.70))

--> o ([A,am[-:z+ -:

(5.75)
E A-’Ai_jAm AjDvm
j=l

E *-IA-jAm (AjDVm -AjDv)
j=l

(5.76)

Also,

F 2 (1 --)D2Fi[A,Am + 7"(Ai(A q- ,mDv)-AiAm)] d’r

Ai-1Am () Ovm .Dr) + E j-iAi_jAm @ (AjDv AjDv)
j=2

We now have from (5.68), (5.69), (5.71), (5.73), (5.74), and (5.75)-(5.76) that

Itm(Vm)-- Itm(V) > O" B (IDv" Dvl+ X’TlDv Dvl)+ BE

(5.77)
+o- n ([A,Am[-:z+X-i=2

Y XA_Am @AjDVm
j=l

E A-’A_A,,, @(AjDvm -AjDv)
j=l

k

+ Y (Gm+H+D).
i=2

We first apply Lemma 5.5 to G, with

Io"fro=2 (1-’)DFi[A(Am+-(Ai(Am+ImDVm)-AiAm)] dr),

gm Ai-lAm )(Dvm Dv)I-IA_jAm, for each j 1,. ., i.
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Then fm D2Fi(AiA) almost everywhere, and gm’-"O in L2. Moreover,

( )If,,gm[ C IA,AI-=+ A-=)IA,_AmI--IADvmI- (1 + IDyll)
j=l

( )c 1 + IDv,l + E A-2)IAjDvI-2+ Y
j=l j=l

<--c 1 +IDv,,I+A24/s E (A-2/SlAiDVml)S-2
j=l

)j=l

c 1 + IDvml + ""m2--4/s E (A-IADv,I)

It follows that fmgm E Ls/(s-1), uniformly in m. From Lemma 5.5 it follows that

(5.78) G/,,o0 as mooo.

We next claim

(5.79) H/o0 as mo.

To see this, apply Lemma 5.5 with

f,,=2 (1--)D-Fi[AiA,+’r(A(A,,+AmDvm)-AiA,,)] d-

j=2

g,, 1,

where we fix j e {1,. , i}.
Then fm --)0 almost everywhere (using (5.11)). Moreover,

( /(If.l--< c IA,A[-= + A’-=)[ADv..I-z 1 + 2 A-IIAjDv,[
j=l j=2

< c IAiAm]- 1+ 2 A-IIAjDvI + 2 A’-2)[AjDvm --2

j=2 j=l

j=l

N c 1 + 2 IA;A]/=-IA-’IA;DvI+ "-m2--4/s 2 (A-2IA;DvI)
j=2 j=l

+A-=/s (A-:[AjDI*)(-1)/]
j=l

It follows from (5.11) that f L/(-), uniformly in m. From Lemma 5.5 we see
that (5.79) holds.
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Finally, we claim that

(5.80) D
To show this, let

fm (1-q’)D2Fi(AiAm +’r(Ai(Am + mDvm)-AiAm))

-(1 -r)DZF(AAm + r(A(Am + ADv)-AA)) dr]

Then f 0 almost everywhere. Moreover,

Ifl
j=l j=

c 1 + 2 A’-2)lAjOVml"-2
j=l

N c 1 + 224/s 1-[NDvm["
j=l

Thus f L/-z(L if s 2) uniformly in m.
If we apply Lemma 5.5 with gm 1 we can now establish (5.80).
Combining (5.39) with (5.72) and (5.77)-(5.80), we have that for almost everywhere

(, 1) there exists a subsequence depending on for which

0 lim (I(Vm)-- I(V))

(5.81) + 2 IN,Am 2 h-lA-A@(ADvm-ADr)
i=2 j=l

k s-2

i=2 j=l

2 A-A-Am @(NDvm NDv)
j=l

This now establishes (5.64) and (5.65). Moreover, from the triangle inequality,

IA,A I
(5.82) _

i--1+ 2 A-A_Am @NDvm + a ADv O,
j=2

i--1 s--2

lim 1- 2 - Ai-jAm @AjDVm + i--m AiDvm
(5.83) i-

1-A_Am@ADv+1-ADv + 0,
j=l

where
From (5.82) with i= 2, and (5.64), it follows (5.66) is true with i=2. Suppose

(5.66) is true for i=2,..., l(l<k). Then it follows from (5.82) with i= 1+ 1, the fact
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that ]Al+,Aml c]AiAm[ if <= l, and from (5.64), that (5.66) is true with i= + 1. It now
follows that (5.66) holds for i= 2,..., k.

We now claim that (5.67) is true for 2,..., k.
First note that for j 1,. , k we have

.72[X%-’A,_jA OADv]-2[o I < c a2-’/(X%-2/]ADv])--
->0 as m->c,

since s > 2.
From this and (5.83) it follows that

i--1

(5.84) lim /n-2 A-IA_A,,Q)ADv,+A-IAiDv,,, =0
j=l

for i=2,. -, k.
From (5.65) and (5.84) with 2, it follows that (5.67) is true with 2. Suppose

(5.67) holds for 2,. , l(l < k). Then it follows from (5.84) with + 1 that (5.67)
is true with l+ 1. This establishes (5.67) for 2,..., k in the case where s > 2.

Consider now the case where s 2. Then directly from (5.81) we have in the case
where 2 that

0 > 1,rn (-B [Dvm-Dvl2+IA’(S)(Dv’-Dv)+A"(A2Dv’-A-Dv)I2)
Using (5.64) it follows that

0= lim =,

Since s 2 implies n 2, and hence AiDvm is trivial if i> 2, it follows that (5.67) is
now established in the case where s 2.

This completes the proof of (5.64)-(5.67).

E. Completion of proof. Choose (, 1) such that (5.64)-(5.67) are true for some
subsequence.

In order to obtain a contradiction to (5.2) we first use (5.1) and (5.59) to compute

(5.85) + IAi(Am + h(Ov),)ls-2h2g-2lAi(Dvm (Ov).)[e

i=2

i=2

Since r< h it follows from (5.64) that Dvm Dv in L:(B), and hence (Dvm)
(Dv). Thus the integral on the right side of (5.85) converges to fn IDv-(Dv)l:.

1-2/sIf s > 2 then A:/Dvm0 in L(B) from (5.65), and hence A Dv 0. Thus
the second integral on the right side converges to zero.

Next note that since (Dv) (Dv), it follows that A(Dvm) is bounded uni-
formly in m for 2,..., k (with the bound possibly depending on ).
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Hence, for 2, , k,

IA,(A +,X.(Dv)I- ’-Am IA,(Dvm-(Dv))I

"’*s22i-4-]- E A+2J-41AsDvml2

j=l

(using IA,Aml <- cIAA.I if 1 _-<j _--< i)

"-s22i--4 -t- 1-2/s)2 lJm-2Is
j=l

-->0 as meo

(using (5.66), (5.67), and the fact we may here assume that s > 2).
Finally, for 2,. , k,

is --2Am [A,(Dvm-(Dvm))[ <- c h ’s-2 1 + E IAjDVm[
j=l

--> 0 as rn --> c,

from (5.67).
It follows that

XTf U(Xm. rr,.)--> IDv-(Dv).I

as m-> c. But

(5.86)
lDv (Dr),12 <--_ c"2 sup ID vl2

U.

from (5.38), where c2 c2(M). Hence

A2 U(xm, 7"rm) <- 2c2"r

for all sufficiently large m, contradicting (5.2) if we set Cl 2c2(M).
This contradiction completes the proof of Theorem 5.1. [3

6. Proof of the main theorem. We first show how Theorem 5.1 is iterated in the
standard manner. We continue to assume u AkWl’S() is a minimiser of I[. and
I[. satisfies the hypotheses (H1)-(H4).
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LEMMA 6.1. Suppose 0< a < 1 and M > O. Then there exists 0< 7" < 1/2 and e > 0
such that, for any Br(x)c f, if

I(O.),l < M,

U(x,r)<e,

then

for each 1= 1, 2, .
U(x, 7"1r) <= (7"1)2U(x, r)

Proof Using the notation of Theorem 5.1, first choose 7" such that

(6.1) 0 < 7" < 1/2. c.(2M)7"_<- 7"2. 7". < 1/2
Next, choose e so that

M
(6.2) O< e =< eo(7", 2M), 7"-%,/2=<__.

2

Suppose

(6.3) Br(x) II, ](Du),,r[ < M,

We will prove by induction on >= 0 that

(6.4)

First note that

(6.5)

U(x,r)<e.

( 1
I(Du)x,-,-’r]<= M 1 +-+’’’+

2

U(x, 7"lr) <- (7"1)2aU(x, r).

I(Du ).-’+’r Du )x..’rl <= - IDu Du )x,’rlr[
(x,l+r)

<= --" - [Ou-(Ou)x,’rl
(x,-Ir)

<= -[ U(x, rr)]/.
Note that (6.4) is trivially true of 0. Assume that it is true for some I. Then

I(Du)x, , l /

(1 1)M 1 +-+. .+ + r-(U(x, rr))1/

M 1+-+. + + (’)(U(x,

(using (6.4))

(using (6.2), (6.3)

(using (6.1)).

_<-- M 1 +7+’’ "+7+ (7"1)a

=<M 1+2 +. .+7+



PARTIAL REGULARITY IN NONLINEAR ELASTICITY 1549

Also, from (6.4), (6.2), (6..3) we can apply Theorem 5.1 with M and r there
replaced by 2M and ’tr, to deduce

U(X, ’/’/+lr) c(2M)z2 U(x,

<= .s .,)2s U(x, r)

(using (6.1) and (6.4))

=(-’+l)2SU(x,r).

The proof is now completed by using induction of/.
LEMMA 6.2. Suppose u AkWl’S(l). Then

lim - IA,(Du-(Du)xr)I =0
r0 J B(x,r)

for almost everywhere x 1) and for 1, , k.
Proof Let {As}ss be a countable dense subset of Hom (R"; RN).
By considering the set of Lebesgue points of Du and ofthe functions IA,(Du

for 1, , k and c S, there exists E c f with "(f--- E) 0 such that

(Du),,,,- Du(x),

A’(Du-A)I IA,(Du(x)-A,)],
as r0, forallxeE, aS, and i=l,...,k.

We have for all such x, a, and i,

lim sup BrO (x,r)

(using (2.17))

IA,(Du -(Du),rl

lim sup B [A,(Du As + As (Du),,rl
rO (x,r)

--<C limsup IAj(As-(DU)x,r)lSB
r0 =0 (x,r)

]Ai_j(Du-As)l

=c E IA.(Ao-mu(x))lSlA,-(mu(x)-Ao)l.
j=O

Since As is dense in Hom ("; N), we can make the right side arbitrarily small.
This establishes the lemma. E]

6.1. Completion of proof of Main Theorem 4.1. Let

fo Ix 12" lim (Du)x,r Du (x), and
O

rO (x,r)

Then "(l)---l)o)= 0 by Lemma 6.2. Moreover, by standard arguments (e.g., [E]
or [G]) it follows from Lemma 6.1 that 12o is open and u Cl’S(-o)o []
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7. Concluding remarks. It is clear that the methods of the paper can be applied
to other problems.

7.1. We could include quasi-convex, nonpolyconvex terms in (4.2) by allowing
F to be quasi convex. More precisely, the hypotheses (H1)-(H4) would remain
unchanged, except that (H3)(b) would be replaced by the strict quasi-convexity
condition

F’(p+Dp)- I F’(p)+y(IDpI2+IDqI))

for all q C(Rn; RN) and all pR,,N.
The F term is then treated essentially as in [EG] to obtain (5.71). Note that (5.30)

needs to be replaced by the appropriate Legendre-Hadamard condition.

7.2. Model problems of the form

I[u]= l +lOul+ IA,Dulz

i=2

or more generally of the form

I[u] [Dul+ l+lOul2+ [A,Oul=
i=2

where s _-> 2 if n 2, s > n- 1 if n > 2, and s’>= 2, are easily treated by our methods.
Such model problems were discussed (from an existence point ofview) in [GMS, 6.A].

In order to prove partial regularity, we take the quantity U(x, r) to be

U(x, r)=n }Du-(Du)x.,.12+lDu-(Du)x,rl max{’’
(x,r)

k

+ Z [IA(Du-(Du)x,r)I2+IA,(Du-(Du),.rI’]
i=2

The arguments involved in this case, as opposed to the arguments involved in
treating the model problem (1.3), are somewhat easier, as no degeneracy in ellipticity
in the AiDu terms is allowed.

Partial regularity theory for such problems, but in the case s > n, has also been
recently treated in [GMS2].

7.3. Many model problems of the form

I k

[Dul2 + IDul, + IA,Dul’,
i=2

where s 2 if n 2, s > n 1 if n 2, and s s2 2. Sk 2, are covered by the
present arguments. More generally, we could include more than one term involving
ADu. We have not checked, however, the appropriate most general conditions on the
exponents.

Similarly, we could formulate more general structure conditions. It is not necessary
that the integrand in (4.2) split as a sum of terms involving the AiDu separately. In
this more general case, we define the normalised functional

I.,[w] f F.,(Dw),

where F,, is obtained by linearisation about (Am, A2Am,’’’, AkAm).
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PERIOD DOUBLING WITH HIGHER-ORDER DEGENERACIES*

BRUCE B. PECKHAMt AND IOANNIS G. KEVREKIDIS

Abstract. A family of local diffeomorphisms of R" can undergo a period doubling (flip) bifurcation as
an eigenvalue of a fixed point passes through -1. This bifurcation is either supercritical or subcritical,
depending on the sign of a coefficient determined by higher-order terms. If this coefficient is zero, the
resulting bifurcation is "degenerate." The period doubling bifurcation with a single higher-order degeneracy
is treated, as well as the more general degenerate period doubling bifurcation where a fixed point has -1
eigenvalue and any number of higher-order degeneracies. The main procedure is a Lyapunov-Schmidt
reduction: period-2 orbits are shown to be in one-to-one correspondence with roots of the reduced "bifurca-
tion function," which has Z2 symmetry. Illustrative examples of the occurrence of the singly degenerate
period doubling in the context of periodically forced planar oscillators are also presented.

Key words, period doubling, bifurcation, bifurcation function, Lyapunov-Schmidt, Z2 symmetry

AMS(MOS) subject classifications. 39, 15

1. Introduction. This paper describes the local bifurcations that take place when
we perturb a diffeomorphism Go of R which has a fixed point with a single eigenvalue
equal to -1. Since Go has a nonhyperbolic fixed point, it is necessary to consider
higher-order (nonlinear) terms in order to describe the phase portraits near the fixed
point of the map Go, both by itself and also under perturbation in a family G,, Ix Rk.

When Go is a map of R, any even-order term in its Taylor series expansion can
be eliminated by a change of variables. This is a direct result of the normal forms
theorem. After eliminating the constant and second-order terms, the linear coefficient
will be -1 and the sign of the resulting coefficient of the third-order term will determine
whether Go will undergo a supercritical or subcritical period doubling (flip) bifurcation
JAr], [GH]. If the third-order coefficient should happen to be zero (a higher-order
degeneracy), then the sign of the fifth-order term becomes important. Perturbations of
the resulting map (Go(x) =-x+ cx5+ o(xS), c O) produce a greater number of
topologically distinct phase portraits than do perturbations of the nondegenerate
(Go(x) =-x + cx3+ o(x3), c 0) map. Two parameters are needed to fully capture all
possible phase portraits near the (singly) degenerate map. By the same token, a
degenerate bifurcation will generically occur only in families with at least two par-
rameters.

This discussion naturally extends to multiply degenerate period doubling maps:
Go(x) -x + cx2k+1 + O(x2k/), C 0 (k- times degenerate). These codimension-k
bifurcations will generically occur only in families with at least k parameters.

In 2, we consider the model k-1 times degenerate period doublings fo(x)-
-x + 6x2k+ where 6 + 1, and the corresponding model k-parameter unfoldingsf(x)
-(e + 1)x- e2x3 ekx2k-1 + 6X2k+l. We present the mathematical theory in 3.
We show that the period-2 orbits of the individual maps we study are in one-to-one
correspondence with the zeros of a "reduced" bifurcation function. This bifurcation
function is obtained by using a standard Lyapunov-Schmidt reduction. Because the
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topological equivalence of the maps we study is determined by the period-2 orbits and
their stability, knowledge of the corresponding bifurcation functions is sufficient to
provide us with the topological classification of the original maps. When we consider
a family of maps, the possible behaviors of the bifurcation functions are given by
standard singularity theory. We need only interpret the singularity theory results in
the bifurcation context of the original family of maps. In particular, we show that each
family in the class of period doubling bifurcations that we treat is "equivalent" to one
of the model families we describe in 2.

The singly degenerate period doubling has a special significance in two-parameter
families of maps such as those generated by periodically forced oscillators, which
possess period-q "resonance horns" whose boundaries typically consist of saddlenode
bifurcations for the qth iterate of the map. We and other researchers [KAS], [MSA],
[P1], [P2], [P3], [SDCM], [VR] have repeatedly observed such a degenerate period
doubling bifurcation on the boundaries of period-2 resonance horns. In 4 we describe
two models of periodically operated chemical reactors (a chemostat with simple
predator-prey kinetics, and a continuous stirred tank reactor (CSTR) with a single
irreversible exothermic reaction) where this bifurcation occurs.

The bifurcation diagrams we obtained for our degenerate period doublings turned
out to be virtually the same as those for a Hopf bifurcation with higher-order
degeneracies for a flow [GS], [Ta]. Consequently, work on the Hopf bifurcation
suggested approaches to the period doubling problem. Our analysis in its final form
parallels that of Golubitsky and Schaetter [GS, Chap. VIII]. In particular, the use of
the Lyapunov-Schmidt reduction to obtain a bifurcation function, as well as the
unreduced function with which to start, was suggested by their exposition. Using the
reduction on a "finite sequence space," however, appears to be a new idea in this
paper. (We have since found out that Vanderbauwhede [Va] and Brown and Roberts
[BR] have independently started using the Lyapunov-Schmidt reduction on finite
sequence spaces in current research as well.) See also the bibliography in [GS] for the
original references using the Lyapunov-Schmidt reduction and singularity theory to
study the Hopf bifurcation for flows.

The Hopf problem for flows and our problem are analogous because both can be
reduced to finding roots of the same Z2-symmetric bifurcation function. The period
doubling problem, interestingly, turns out to be significantly easier to handle than the
Hopf bifurcation. Many of the issues that [GS] had to treat simply did not appear in
the period doubling analysis. Consequently, we are able to obtain slightly stronger
stability information from the bifurcation than was obtained for the Hopf bifurcation
in [GS]. We discuss the comparison with the Hopf bifurcation further in 5.

To place our work in context, we provide Table 1, showing model unfoldings for
bifurcations with higher-order degeneracies. The unfoldings in the table are not always
exactly as in the corresponding reference, and the references are not intended to be
complete. In all cases, e Rk is the unfolding parameter of the codimension-k bifurca-
tion; 6 +/-1.

The most widely known higher-order degeneracy in Table 1 is the saddle-node
(for either the flow or map) with a single higher-order degeneracy, commonly called
the cusp bifurcation. The map and flow cases are exactly analogous. We will encounter
saddlenode bifurcations with higher-order degeneracies in this paper for period-2
orbits, because they appear in the unfoldings of period doubling points with more
than one higher-order degeneracy. Higher-order degeneracies in the Hopf bifurcation
for maps, however, are much more complicated to treat than degeneracies in the Hopf
bifurcation for flows. The map case includes not only all the subtleties of the flow
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TABLE

Flows:
Name Vector field Unfolding References

Saddlenode x’ 6x
Hopf r’= tr2k+l

0’= to+r

X’ e + e2X -t- + ekxk-I + tXTM

r’= e + e2r3+ + e2kr2k-I + tr2k+l

O’=oWr

[Ar], [GH]
[Ar], [GH],
[GS], [Ta]

Maps:
Name Map Unfolding References

Saddlenode x x + xTM

Hopf /.2k+l
0-> 0+eo+r

Period Dblg x -x -- x2k+l

X e + (e + 1)X +" + ek_lXk-1 + tXk+l

err + e2 r3 +" + e.2krEk-1 + tr2k+l + h.o.t.
0- 0+to + rZ+h.o.t.
x -(e + )x EkX2k-1 + tX2k+1

[Ar], [GH]
[Ch]

this paper

case, but also some monumental additional problems caused by resonant interaction
of periodic orbits, and the existence of invariant sets other than equilibria and closed
orbits. Chenciner [Ch] has performed much work on this problem. Note that the
higher-order terms must appear, even in the model unfoldings.

We point out that [HW] provides a short description of the period doubling with
a single higher-order degeneracy (k 2 in Table 1). That model, but not the theorems
in this paper, is relatively well known to bifurcation researchers.

2. The model period doubling families. This section is devoted to describing the
bifurcations that take place in the specific families we use as our models. The new
results, including the justification for choosing these particular families as models, are
given in 3. The interested reader may skip directly to that section, if desired. We do,
however, make some effort in this section to prepare the groundwork for the techniques
of 3. In particular, we use the zeros of several "bifurcation functions" to help us
describe the topological classification of our model families. These bifurcation functions
will turn out to be special cases of the more general bifurcation functions obtained
from the more general maps treated in 3. (See Corollary 3.13.)

Recall that for maps of R having a fixed point with a -1 eigenvalue, the normal
forms theorem JAr], [GH] allows us to eliminate any even-order term by a change of
variable. Thus the absence of even-order terms from our models should seem reasonable.
Keep in mind that, because we are describing local bifurcations, we are only interested
in the germs of our functions in phase x parameter space. The base point of all our
model germs is the origin of R x Rk.

DEFINITION 2.1. The local (near (x, e)= (0, 0)) family

(2.2) f;,(x) := --(e + 1)x- e2x3 ekX
2k-1 + 6X2+, 8 +1

is called the model local period doubling bifurcation family with k-1 higher-order
degeneracies. The mapfo;,(x) -x + 6x2+ (for x near zero) is called the modelperiod
doubling bifurcation map with k-1 higher-order degeneracies.

Note that the parameter e (el, e2,..., e) is in R, k >_-1. We will often drop
the subscripts k and 6 since their values are assumed to be fixed for a given family.

2.1. Individual maps: Stability of periodic orbits. We first describe the behavior of
the map f =f;k, for fixed values of the parameters. Zero is the unique fixed point
near x 0 off for any e near 0. The fixed point is attracting for E 0 and repelling
for el > 0. Since f is an orientation preserving diffeomorphism of R, fixed points are
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the only form of recurrence it can have. Once these fixed points of f have been
located, the topological equivalence class of f2 and therefore that of the orientation
reversing f, is determined by the directions in which iterates of f2 progress in the
intervals of R\(fixed points of f2). (This can be proven by fundamental interval
arguments.) For nonzero x, it is apparent that if f2(x)-x- O, then x is on a period-2
orbit forf iff(x) x > 0, the orbit ofx increases under iteration off2 iff(x) x < 0,
the orbit of x decreases under iteration of f2. Since the behavior off is completely
determined by the roots and sign of the function f(x)- x, we call it a "bifurcation
function" associated with the family f--f;k, in (2.2).

Even in the nondegenerate case (k- 1 in f;k,), the second iterate f2 is somewhat
cumbersome to handle. The algebra is greatly reduced by noticing that f is an odd,
or Z2-symmetric, function of x "f(-x) -f(x). The consequence is that x is a period-2
orbit if and only if f(x)=-x. Thus f2(x)-x =0 is equivalent to -f(x)-x =0. We
have chosen to use -f(x)-x instead of f(x)+ x because when they do not equal
zero, sgn (f(x)- x)= sgn (-f(x)- x). Thus the function -x-f(x) is also a bifurca-
tion function for (2.2).

Furthermore, -x-f,(x) xP,(x), where

(2.3) Pe;k,(U) := P(u):= el + e2u d-" d- ektl k-l- 61g k.
Since x 0 is always a fixed point, the roots of P(x2) with x 0 are precisely the
period-2 points. That is, each positive root r2 of P(u) corresponds to the period-2
orbit r---r. For x 0 the sign of -f(x)-x and therefore the sign of fE(x)-x is
determined by the sign of P(x2). So the stability of the fixed point and any period-2
orbit is also determined by the sign of P. Thus, P (u) becomes our third and simplest
bifurcation function.

It may help to keep in mind Fig. l a, where we graph the three bifurcation
functions f(x)-x,-f(x)-x, and P(x2) for a specific example: (;k, 6)=
((.000016,.0024,.09),3, +1). Figure lb shows the phase portrait for f2 that Fig. la
determines.

2.2. Bifurcations. We are now ready to analyze the bifurcation sets in phase x
parameter space (R Rk) that exist in the model families f;k. for fixed values of k
and 6. These consist of the nonhyperbolic fixed and period-2 points, possibly with
higher-order degeneracies.

FIt. la. Three bifurcation functions. FIG. lb. The "flow" off
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We will treat the fixed-point bifurcations first. Since f is an orientation reversing
diffeomorphism of R, the only potential bifurcations for the unique fixed point zero
are period doublings. From (2.2), the set in R x Rk of fixed points, which we call D,
is {x 0}; the set of period doubling bifurcations is D := {x el 0}; more generally,
the set of period doubling bifurcations with at least i-1 higher-order degeneracies is
apparently (look ahead to Definition 3.1--the model families in (2.2) are already in
normal form on the center manifold) the codimension + 1 (dimension k- i) hyperplane
given by

(2.4) Di:=Dk {(x,e)cRxRk’x=el .=ei=0}, i=0,...,k.

The superscripts have been chosen to indicate the codimension of the corresponding
set when projected to the k-dimensional parameter space. The set of simple (nondegen-
erate) period doubling bifurcation parameters is thus, as usual, a codimension-1 set
in the parameter space.

The nonhyperbolic period-2 points are treated by considering f. Since f is an
orientation preserving diffeomorphism of R, the only potential bifurcations for the
period-2 orbits are saddlenodes, possibly with higher-order degeneracies. By definition
[Ar], [GH], a map g:RR has a saddlenode with i-1 higher-order degeneracies at

Yo if g(y)-y has a zero of multiplicity i+ 1 at y Yo. So the period-2 points in our
models have saddlenode bifurcations with i-1 higher-order degeneracies at Xo if, for
a fixed value of e, f(x) x has a zero of multiplicity + 1 at x Xo 0. But f2(x) x
having a zero of multiplicity + 1 at x Xo 0 is equivalent to P(x2) having a zero of
multiplicity + 1 at x Xo 0. If we define S,, as the set of period-2 points and Sk,J
as the set of period-2 saddlenode points with at least j-1 higher-order degeneracies
for 1 _-<j _-< k- 1, then these sets are

(2.5) SJ := SJk, {(x, e) c R x Rk: Pi(x2) O for O<-_ <=j, x # O}.

2.3. The low codimension period doublings. We can now use (2.4), (2.5), and the
sign of P to determine the bifurcation diagrams and phase portraits for the
codimension-k bifurcations with k 1, 2, 3.

k 1. When k 1 then e 8‘1 and (2.2) becomes the simple (nondegenerate) period
doubling bifurcation: fe;1,(X) --(8‘1 "k- 1)x + X3. P(u) 8,1 tu and P’(u) -6 O.
From (2.5) we see that period-2 points exist whenever 68‘ > 0 and are located on the
parabola x +. The period-2 orbits are stable for 6 + 1 and unstable for 6 -1.
Since P’(u) 0 all period-2 points are hyperbolic. A bifurcation diagram with three
representative phase portraits for 6- +1 is shown in Fig. 2. This is the supercritical
case. The arrows on these phase portraits indicate the direction of travel of second
iterates off. The same figure can be used for 6 =-1, the subcritical case, by reversing
the direction of the e-axis and the direction of the arrows on the phase portraits.
Changing the arrow directions means that the stability of the fixed point and any
period-2 orbits for 6 1 will be the reverse of the stability for 6 + 1.

k 2. In this case, which really motivated the whole paper, (2.2) represents the
singly degenerate period doubling bifurcationf;2,a(x) -(el + 1)x e2X3 --1- tX5o Since the
coefficient 8‘2 of the x term, which determines the criticality of the simple period
doubling bifurcation, is allowed to change from positive to negative, we will have both
supercritical and subcritical period doublings. All the fixed-point bifurcations have
already been identified in (2.4). For the period-2 bifurcations, we use the bifurcation
function P;2,(u)=P(u)=8‘l+8‘u-6u, so P’(u)=e2-2u and P(u)=-20.
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-2.o

fix_ed_points_.

0.0 2.5

FIG. 2. Supercritical simple period doubling.

By (2.5), the period-2 points in R x Rk are SO= {el =-e2x2+ tX4, e2 26x2} and they
project to r(S) {6el >0}U {6e2>0 and e_-> -46e} in the e-parameter plane R=.
The nonhyperbolic period-2 points are all (nondegenerate) saddlenode bifurcations.
They are given by S {e --tx4, e2-- 2tX2, X # 0} and project to zr(S)
{e (-6/4)e22, te2> 0}. The formulas for the projections to the e parameter plane are
obtained by eliminating x from the expressions for So and S1.

Figure 3 shows sketches of the above sets for 6 +1 in phase x parameter space.
The projections to parameter space are drawn on the fixed-point plane {x 0}. The
surface o$2,+1 of period-2 points, the plane D of fixed points, the period doubling line
D, the saddlenode curve $2,+1 and its projection the ezr(S2,+) to parameter plane,
drawn in the {x 0} plane, are all indicated in the figure. Note that all the bifurcation
points occur on the "folds" of the period-2 surface o$2,+1

Various two-dimensional bifurcation diagrams (pieces of Fig. 3) are shown in Fig.
4: 4a gives the projection of the bifurcation sets S (saddlenodes) and D (period
doublings) to the parameter space; the other three are representative one-parameter
cuts of Fig. 3: 4b and 4c each have a fixed value for e=, while a small circular path

period-two surfaces,

period I/’ \ !
doublings DI I" V_e2

FIG. 3. Singly degenerate period doubling.
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(c)

(b)

e2 constant

’1

2= constant

(d)

tan 0-- -2 ’12 22 =constant

FIG. 4. Aspects of singly degenerate period doubling.

around the origin in the e-plane yields 4d. Arrows all indicate the "flow" of the second
iterate off;2,/l. (Compare Figs. 4b and 4c with Fig. 3.1 in [GS, p. 260]; compare Fig.
4d with Fig. 136 in JAr, p. 283].)

As in the simple period doubling case, Fig. 3 and all Fig. 4 diagrams could be
converted from the +1 case to the =-1 case by reversing the directions of the
el axis, the e2 axis, and the "flow" lines. The stability of the fixed point and all period-2
orbits is opposite for the two cases.

k >- 3. The program for computing the bifurcation submanifolds can obviously be
continued for the model period doublings of any codimension. Because the computa-
tions are more lengthy but not much more enlightening, we merely list the results, with
special attention to the (k, i)= (3, + 1) case.

The fixed-point bifurcation sets satisfy DD D=...=D-D where
D-D is the codimension-j manifold in R xRk of period doubling points with
exactly j- 2 higher-order degeneracies. Similarly, the period-2 bifurcation sets satisfy
S, S, =.-. = S,2 S, where SSk, is the codimension-j manifold in R x R
of period-2 saddlenodes with exactly j-2 higher-order degeneracies. The set S, and
its projection to parameter space have the explicit parametric representations

Sk, (x, [e,, ek])= x, -- (--1) k xk,
(2.6)

__()X6,()X4,__()X2]),xO}

(2.7)
7r(S.’) { (e.. . e,) /(-1)’+’

4 F_.2k F-’kk3
e k,

k2 tek > 0
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When k 3 we obtain

S30,6 {(X, El, /2, E3) (X, --2x2. 3x4 -1-" lX6, E2, E3) X 0},

,6 {(X, 81, 82, 83)= (X, e3x4 2X6, --283X2+ 3X4, 83) X O}

S,6 {(X, El, e2, e3) (X, X6, --38X4, 3x2), x 0}

(cf. (.6)) ( o$3,+1), the set of all parameter values with period-2 orbits, is described
below.

e(S,+I)={(E1, E2, E3)=(E3[W-(E2, E3)]2+2[W-(E2, E3)] E2, E3)

](El, E2, E3)=(E3[W+(E2, E3)]2+2[W+(E2, E3)]3, E2, E3),

e30, e2<00re3<0, e2@,
3J

where

W+(e, e3) :=
3

$3,+1) (1, t2, 3)= k’,, 3 e e > 0

(cf. (2.7)).
Because the full phase x parameter space is now four-dimensional, the best pictures

we can draw are either "slices" or projections of the four-dimensional space. Figure
5 shows the slice corresponding to e3 constant < 0. Note the appearance of the cusp
point on the curve of saddlenodes, so named for its location on the projection of the
saddlenode curve to the parameter plane. Such a point appears only for k_-> 3. The
slice corresponding to e constant > 0 we do not show, because it is qualitatively the
same as Fig. 3.

fe (x) (e +1) -e2x3 e3xS-
3 constant

FIG. 5. Doubly degenerate period doubling.
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I,

II

III

fe (x) (e +1) -e2x3 3 xs-

III
x=O

FIG. 6. Doubly degenerate period doubling" parameter space.

Figure 6 shows the saddlenode surfaces 7r(S,/1), the cusp curve r( -$3.+1) (where
the two saddlenode surfaces, one defined with W/ and the other with W_, meet), and
the period doubling plane 7r(D) in the three-dimensional parameter space. The set
qTe( 0$3,+1) is bounded "above’ in Fig. 6 by the higher of the saddlenode surfaces
(inclusive) and the period doubling plane (not inclusive). Compare our Fig. 6 with
Fig. 6 in [Ta]. Note that the plane { 0, 3- const 0) appears in both Fig. 5, as the
fixed-point plane, and in Fig. 6, as the leading edge of the graph.

3. General period doubling families. In 2 we analyzed the local topological
behavior of the special families of diffeomorphisms of R’f;,()=-(+l)-
x s:k-x+ xk+. We now treat the more general case of a local family of
diffeomorphisms of R.

DEFINITION 3.1. Fix k >-1. Let G(x, )= G(x) be a representative of the germ
of a C:+ function satisfyin

(1) G" U - R, U is a neighborhood of (Xo, o) in R" R.
(2) G(xo, Wo) Xo.
(3) D,,G(xo, $Xo) has a single eigenvalue of-1 and no other eigenvalues on the

unit circle.
(4) On its one-dimensional center manifold, the map G.o can be transformed by

a C2k+1 change of coordinates to a C2k+l map of the form y -y + cy2k+l + o(y2k+l),
c#0.

Then G(x, Ix) is a local period doubling bifurcation family with k-1 higher-order
degeneracies, and G,o is a local period doubling bifurcation map with k- 1 higher-order
degeneracies.

The main goal of this section is to establish Theorem 3.15, where we show that
on its center manifold, every k-parameter period doubling bifurcation family with
k- 1 higher-order degeneracies is, at least generically, the "same" as one of the model
families f;,,, where =sign (c). The main technical tools for Theorem 3.15 are the
existence of a "Z2-symmetric bifurcation function" related to the original period
doubling family (Theorem 3.3) and the universal unfolding theorem from Z2-singularity
theory (Lemma 3.21). We are then able to compare G, to the appropriate model family
via their respective bifurcation functions.
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The Lyapunov-Schmidt reduction. Let G(x, IX) be a period doubling family with
any number of higher-order degeneracies. For simplicity, we will assume (Xo, Ixo)=
(0, 0). As with our special functions f;k, in (2.2), the implicit function theorem
guarantees that G(x, IX) has a unique fixed point near x=0 for each Ix near zero.
Having only one phase variable (along with the tn parameters) on the center manifold
implies that the only other local recurrence can be in the form of period-2 points [CMY].

The period-2 points (including the fixed point) of G are characterized by the roots
of the function " R x R x R - R x R defined by

(3.2) (x, y, Ix):: ,(x, y):-- (y-G(x, IX), x-G(y,
The reason this function turns out to be more useful than G(x)-x is twofold:
deals only with first iterates of G, and it has an obvious symmetry that will be quite
useful. Specifically, @.l =.t@, where is the reflection that interchanges the
variables x and y in both the domain and range of @. That is, ,(x, y)= (y, x)=
(x-G(y, IX), y-G(x, IX)) t(y-G(x, IX), x-G(y, IX)) O(x, y).

We now perform the Lyapunov-Schmidt reduction [GS, 1.3] on to get the
following theorem. Although the theorem is stated for C functions, we will be
interested mainly in the case p oo.

THEOREM 3.3. Let G(x, IX) be a Cp, 2k + 1 <- p <-_ oo, localperiod doubling bifurcation
family with k-1 higher-order degeneracies as in Definition 3.1, with (x0, Ixo)= (0, 0).
Define (x, y, IX) by (3.2). Then there exists a C bifurcation function b :R Rm- R
of the form b(s, IX)= sB(u, ix), u:-s2, such that solutions of (x,y, ix)=O for
near (0,0,0) are in one to one correspondence with solutions of b(s, ix)=0 for
near (0, 0).

Proof The Lyapunov-Schmidt reduction to prove Theorem 3.3 is standard [GS,
1.3], but we include most of the computations since we will be interested in the

specific bifurcation function we get via the reduction, as well as some ofthe intermediate
functions defined in the proof.

Case 1: x R. In standard coordinates, the linearization of o at (0, 0) is L:=
Dx,yO(0, 0) (1 ix). Thus the kernel of L, ker L=((1, -1)), and range L- ((1, 1)). Note
that R2=ker L)range L so that E(x, y) := ((x + y)/x/, (x+y)/x/) is the projection
onto range L, and (I-E)(x,y):=((x-y)/v,-(x-y)/x/) is the projection onto
ker L. The equation (x, y, IX)= 0, which we wish to solve, is equivalent to the two
equations (with the x/ factor introduced for convenience):

(3.4a) x/ E(x, y, IX) (0, 0),

(3.4b) x/(I- E)(x, y, IX) (0, 0).

These two equations are more conveniently expressed in coordinates with respect
to the splitting R2= ker Lrange L. Formally, this can be defined by the change of
coordinates from (x, y) with respect to the standard basis on R2 to (s, r) with respect
to the new basis which we choose as {(1,-1), (1, 1)}. The coordinates are related by
x(1, 0)+y(0, 1)= s(1,-1)+ r(1, 1), or x- s+ r and y= r-s. Since the s component
of the new coordinate version of (3.4a) is automatically satisfied by definition of E,
as is the r component of the new coordinate version of (3.4b), the two vector equations
in (3.4) are equivalent to the two scalar equations

(3.5a) Q(s, r, ix):=1/2{Er-G(s+r, ix)-G(-s+r, ix)}=O,

(3.5b) 1/2{-2s G(s + r, IX) + G(-s + r, IX)} 0.

Equation (3.5a) is the r component of (3.4a); equation (3.5b) is the s component of
(3.4b).
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Since Q(0, 0, 0) 0 and (oQ/or)(O, 0, 0) 2 # 0, then the implicit function theorem
implies that there exists a unique C function R(s, IX) satisfying R(0,0)=0 and
Q(s, R(s, IX), Ix) =0 for (s, IX) near (0, 0). Plugging this new function R(s, IX) into the
left-hand side of (3.5b), we get our reduced bifurcation function b(s, Ix)"

b(s, Ix):= 1/2{-2s G(s + R(s, Ix), Ix)+ G(-s + R(s, Ix), Ix)}
(3.6)

-G(s + R(s, Ix), Ix)+ (-s + R(s, Ix)).
The latter form is obtained by substituting Q(s, R(s, Ix),Ix)=0 from (3.5a) into the
first line of (3.6).

It can be verified directly that R(-s, Ix)= R(s, Ix), and therefore that b(-s, Ix)=
-b(s, Ix), but this is really a consequence of the equivariance of the original function

with respect to the reflection fit. This is because b(s, Ix) is really the coordinate
representation of a map from ker x Rk to ker, and 9] acts on ker by 9](s(1, -1))
fft(s, -s) (-s, s) -s(1, -1).

That b(s, Ix) has the form sB(s, Ix) is immediate from the odd symmetry of b(s, Ix).
The one-to-one correspondence between solutions of b(s, Ix)=0 and @(x, y, Ix)=0 is

(3.7) (s, Ix) --> (s + R(s, Ix), -s + R(s, Ix), Ix).
Note that if s 0, solutions s and -s correspond to the same period-2 orbit, but these
are distinct solutions for ’(x, y, Ix) 0 and (y, x, Ix) 0. This completes the proof
for xR.

Case 2" x Rn, n > 1, and the coordinates x (Xl, , xn) have been chosen with
respect to the basis {ei}i"=l so that matrix of DxG(0, 0) has the block form/ (- ),
where B is an (n-l)x (n-l) matrix. The 2n x2n matrix of the linearization of
L Dx,y@O(0, 0) with respect to the induced basis {fl," ", f2}
{(el, 0),. ., (e,, 0), (0, el)," ", (0, e,)} becomes L= (- _). The first and (n + 1)st
rows of L are identical, but using the fact that no other eigenvalues are on the unit
circle, it can be shown that the remaining rows are independent. (This would be easier
to see if {ei} were a basis putting B into Jordan canonical form.) So we still have
the dimension of ker L 1. In fact, ker L (fl- f,+) and range L
(f + fn/, f2, , f,, f,+e, , f,). We also still have R-" ker Lrange L. The coor-
dinates with respect to this splitting are s on ker L, and (r, x, , xn, y2, , Yn) on
range L, where xl s + r and yl r- s, and x (x,. , x) and y (y,. , yn) are
in coordinates with respect to {ei}i%. Solving x/E(x, y, Ix) 0 in the new coordinates
is equivalent to Q 0, where

Q(s, r, X2, Xn, y, y., Ix)
:=(1/2(2r- GI(S 4r r, x2," "’, Xn, Ix) GI(-S -k- r, Y2; ", Y,, Ix)),

(3.8)
y- G(s + r, x, , x., Ix), , y. G.(s + r, x2, , x., Ix),

x2- G2(-s + r, y, y,, Ix),..., x, G,(-s + r, y, y,, Ix))=0.
This equation can be solved uniquely by the implicit function theorem for C functions
r, x,..., x,, Y2,""", Y,, all in terms of s and Ix in a neighborhood of (s, Ix)= (0, 0).
We shall call these solutions R(s, Ix), X(s, Ix), and Y(s, Ix). That is,

(3.9) Q(s, W(s, Ix), Ix) 0,

where W(s, Ix):= (R(s, Ix), X2(s, Ix)," ", Xn(s, Ix), Y2(s, Ix)," ", Y,(s, Ix)). Differenti-
ation of (3.9) with respect to s and using the block form of DxG(0, 0) yields

(3.10)
OW

0.
Os
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As for any Lyapunov-Schmidt reduction involving a symmetry, the symmetry R is
inherited as Wi(s, ) RW(s, I), interpreted as

(R(-s, g), XE(-S, g), Xn(-s, g.), YE(-S, ), ", Yn(-s, I))

(R(s, g), YE(S, g),’’’, Yn(s, g), XE(S, I),’’’, X(s, I)).

Thus Y(s, )- X(-s, I),j- 2,. ., n, and R(s, g)- R(-s, I). The bifurcation
function, analogous to (3.6), is

(3.11)
b(s, g) 1/2(-2s Gl(s 4- R(s, I), XE(S, It),’" ", Xn(s, g), g)

4- G(-s 4- g(s, ), X2(-s, I), ", X(-s, I),

where G (G1,. Gn). It is clear from the first line, since R(s, ) R(-s, ), that
we still have our Z2-symmetric bifurcation function: b(-s, g.)=-b(s, I). So b(s, g) is
still of the form sB(s2, g). The one-to-one correspondence between roots of b(s,g)
and (x, y, I), analogous to (3.7), is given by (s, i)- (X(s, I), Y(s, I), I), where

(3.12)
X(s, I):= (s 4- R(s, ), X2(s, I), ", X,(s, I)),

Y(s, I):= X(-s, g) (-s 4- R(s, g), XE(-S, I), ", X,(-s, g)).

Thus the theorem is true for x Rn, with the assumed coordinate system.
Case 3: x R", n > 1. Change this general case into the special coordinate form

of Case 2 by a linear change of variable. Then follow the procedure outlined in that
case. El

We now prove two corollaries that give some insight into the mechanics of the
Lyapunov-Schmidt reduction of Theorem 3.3.

COROLLARY 3.13. For our model families f;k.(X) --(el + 1)x e2x3
ekX

k-1 + Xk+, the bifurcation function bf(s, ) sBf(s2, ) -f(s) s. Also,
Bf(u, e)- P;k,(U), where P;g.(u) is as defined in (2.3).

Proof. Because our model families f;k, are odd, it is apparent from (3.5a) by
letting G(x, e)=f;k,(X) for any fixed values of k and 8 that Q(s, O, e) 0, so R(s, e)=0
must be the unique solution to Q(s, R(s, ), e)=0. Thus, from (3.6), b(s, e)= sBy(s, e)
becomes -s f(s). But =-s f(s) els + e2s +" + ekS

2k- 8Sk+l sP;k,(S). So
By(u, )= P;k,(u). F1

So the seemingly ad hoc method we used in 2 to analyze our model families
turns out to be merely a special case of the more general Lyapunov-Schmidt reduction.

COROLLARY 3.14. Let G(x, ) be a local period doubling family with k-1 higher-
order degeneracies at (x, I) (0, 0) R x Rm. If {(x, I): X2 X 0} is the center

manifold (instead ofjust the center eigenspace) of G(x, I), then
(A) the functions X(s, i) and Y(s, ), defined in (3.12), are zero for j 2, 3," ", n,
(B) the bifurcation function of [G] the bifurcation function of [G restricted to its 1 + m

dimensional center manifold].
Proof. (A). We can show there exists a solution to (3.8) with xj =yj-0, j-

2, , n. By uniqueness of solutions, the functions X(s, I) and Y(s, g) must be zero
for j_-> 2.

(B) This follows from (A) by directly computing the two bifurcation functions
using (3.8) and (3.11). El

Corollaries 3.13 and 3.14 suggest that using the Lyapunov-Schmidt reduction to
obtain the bifurcation function bc(s, g) should be compared to the more topological
alternative of obtaining a bifurcation function -f(s) s from G(x, I) by the following
steps:
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(1) Restrict G(x, IX) to its 1 + m dimensional center mainfold: f(xl, Ix):=f.(xl):=
G((x, H(x, Ix)), Ix), where the center manifold is the graph of H:R R - Rn-.(2) Put the resulting function into its normal form f(s, Ix):= f(s):= h.of.o h(s),
where h(x, Ix):= h.(x) are the coordinate changes to put f. into its normal form f..

(3) Use the resulting odd symmetry to replace the bifurcation function f2(s)-s
with the simpler function -f.(s)-s.

Besides being a single step, the Lyapunov-Schmidt reduction has another major
advantage over the center manifold/normal forms technique. Although the normal
forms theorem guarantees a polynomial change of coordinates to put f.(x) into its
normal form up to any finite order, the existence of a coordinate change to eliminate
all even-order terms in x is not guaranteed. Thus step (2) above may not even be
possible. On the other hand, if we put the function f.(xl) into its normal form only
up to some finite order, step (3) would not be possible because the resulting function
would be odd only up to that finite order. Note also that the original function G(x, Ix)
being C does not imply that its center manifold realization is C. The Lyapunov-
Schmidt bifurcation function be(s, Ix), however, is C.

Universality of the model families. We now use Theorem 3.3 and some standard
results from singularity theory to show that the model unfoldings we considered in
Chapter 2 are "universal unfoldings." More specifically, we prove that, when restricted
to a center manifold, any map in a local period doubling family is topologically
equivalent to one of the model family maps. If certain nondegeneracy conditions are
satisfied, the whole family of center manifold maps will be "equivalent" to one of the
model families. Our notion of equivalence is embodied in the statement of the theorem.

We use the following notation. Let G(x, Ix) be any C period doubling family
with k- 1 higher-order degeneracies at (0, 0). Let bc.(s, Ix) sBc.(S2, Ix) be a bifurcation
function obtained from G as in Theorem 3.3. Assume x is a coordinate along the
eigenspace corresponding to the -1 eigenvalue for the fixed point x 0 for Ix 0. Let
g.(x) := g(x, Ix) be the realization of G(x, Ix) on its 1 + m dimensional center manifold.
By Definition 3.1, the center manifold map in normal form up to order 2k + 1 for Ix 0
is y -y+ cy2k+l q.. o(y2k+l). Letf(z):=fe;k,,(Z) be the model family -(e + 1)z- E2Z3-

ekz:zg-I -b tZ2/+, where 3 -sgn (c). Recall the definitions of the bifurcation sets

D and S in (2.4) and (2.5) for the model families f;k, We now analogously definek,5

the bifurcation sets for G.

Dg {(x, Ix) R x R" x is a fixed point for g.},
Dg {(x, Ix) R x R" x is a fixed point for g. with eigenvalue -1 and at least

i- 1 higher-order degeneracies} for i_-> 1,
S {(x, Ix) R x R" "x is a period-2 point for g.},
Sg {(xl, Ix) R x R’" x is a period-2 point for g with eigenvalue 1 and at least

i- 1 higher-order degeneracies} for i-> 1.

THEOREM 3.15. Let G(x, Ix) be a C period doublingfamily with k 1 higher-order
degeneracies. Define its center manifold representation g(Xl) and the modelfamilyf(z)
as in the above paragraph. Assume the "eigenvalue crossing condition:" VA(Ix)0,
where h (Ix) is the eigenvalue of the unique fixed point of g. Then

(a) There exists a neighborhood N of (0, O) in R x R" and a C function N-
{RxRk}:(x,,Ix)-(z,e) of the form (x,Ix)=(Z(x),O(Ix)) with the following
properties:

(1) aP (0, O) --> (0, O).
(2) For each fixed parameter value Ix, g(xl) restricted to the neighborhood N and

f,<)(z) restricted to aP(N) are topologically conjugate to each other.
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(3) xlt maps fixed points, period-2 points, and bifurcation manifolds of g to fixed
points, period-2 points, and corresponding bifurcation manifolds off, respectively. (That
is, I" Dgi D for i= 0,... k, and Sig S, for i= 0,... k-1.)

(b) Let k and 6 be fixed. Anyfamily that can replacef:k, in Theorem 3.15(a) must
have at least k parameters. This justifies calling the period doubling bifurcation with k 1
higher-order degeneracies a codimension-k bifurcation.)

(c) If IX Rk and

(0 i=0,’’’,k-1V\ Ou’ (o,o)

is independent, then and air are C diffeomorphisms.
Before beginning the proof of this theorem, we make the following comments:
(1) Recall that in the proof of Theorem 3.3, b,(s, Ix) and therefore B,(s, Ix) were

defined using the implicit function theorem. Although this means the bifurcation
functions and their derivatives are not usually computable, their values at (s, Ix) (0, 0)
are computable. (See, for example, Lemma 3.16.) Consequently, the nondegeneracy
conditions in part (c) of the theorem are computable.

(2) The nondegeneracy conditions in part (c) will generically be true. Thus, for
a generic k-parameter family of maps, will be a ditteomorphism. Since the C
ditteomorphism preserves the bifurcation sets, and the bifurcation sets for the models
are analytic, this is what guarantees that the bifurcation manifolds will all be C and
that the pictures obtained from applications (see 4) all "look like" the bifurcation
pictures obtained from the model families in 2. In particular, the orders of tangency
of corresponding bifurcation manifolds will be the same as in the model families. In
the codimension-2 case, with only one higher-order degeneracy, the projection to the
parameter space of the bifurcation manifolds will always (generically) show a curve
of saddlenodes for the second iterate of the map being tangent to a period doubling
curve where it terminates. (Look ahead to Figs. 7-9 in comparison to the model family
bifurcation diagrams in Figs. 3 and 4.)

(3) Note that the center eigenspace coordinate xl can be replaced by any phase
space coordinate not perpendicular to xl by a one-dimensional linear change of
coordinates independent of the parameter. Consequently, any generic phase variable
coordinate can be used in place of a center eigenspace coordinate xl in drawing the
bifurcation sets. This is exactly what was done to obtain Figs. 7-9.

(4) This is a technical comment comparing our notion of "equivalence" implied
by the existence in the theorem of the function to the oft-used notion of "topological
conjugacy." Recall that g(Xl,Ix) and f(z, e) are (locally) topologically conjugate
families if there exists a local homeomorphism @(xl,Ix)=(h,(xl), +(Ix)) such that
g h-I of.()o h. If the individual topological conjugacies h(xl) do not necessarily
vary continuously with respect to the parameter Ix, then the families are said to be
"mildly topologically conjugate" [NPT]. Because Theorem 3.15 guarantees that
and f.)(z) will be topologically conjugate to each other for each fixed value of Ix,
our equivalence implies the two families g(xl,Ix) and f(z, e) are at least mildly
topologically conjugate (by letting + =) as long as the parameter space map
is a homeomorphism.

We point out that although the conjugacies h(xl) and the functions Z,(xl) of
the theorem are not the same, they are related. Specifically, they will agree on all the
bifurcation sets Dg and Sg. This includes the fixed and period-2 sets. Thus, when
restricted to the bifurcation sets, h(xl) will not only vary continuously with respect
to the parameter Ix, but will also be C.
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Consequently, when the parameter space map O(IX) is a ditteomorphism, the
existence ofthe function ofTheorem 3.15 is a stronger property than mild topological
conjugacy but not comparable to topological conjugacy. Topological conjugacies have
the stronger property that the individual conjugacies h,(Xl) should vary continuously
with the parameter; our equivalence has the stronger property that the function is
a (C) diffeomorphism, and consequently that the individual conjugacies h,(xl)
restricted to the bifurcation surfaces are also diffeomorphisms.

The rest of this section is devoted to the proof of Theorem 3.15. We begin with
the following lemmas.

LEMMA 3.16. If X R and c O, then G(x, O) -x + CX
2k+l 31- O(X2k+l) implies

b(s, O) -cs2k+l + O(x2k+l).
Proof. We differentiate the definition of b(s, Ix) in (3.6), using the derivatives of

R(s, Ix) at (0, 0), which we obtain from (3.5a) by repeated implicit differentiation. Since
R is even in s, we immediately know that (cCR/19sJ)(O, 0) 0 for odd j. We also know
from the proof of Theorem 3.3 that R(0, 0) 0. It is relatively straightforward to show
that the implicit differentiation yields

192R
(0, 0)

1 192G
s x (o, o)

194R
(0, 0)

1 194__G (0, 0) +3 192____G (0, 0) 2 193---G (0, 0) + (0, 0)
19S4 - 19X4 ; OX OX L-x

In general,

aR
(0, 0)

1 aG
-o - ox-- (o, o)+...

where the omitted terms all have factors of (cCG/OM)(O, 0) with 2 =<j_-< k-1.
Using these derivatives, and the fact that b(s, Ix) is odd in r (so that all even

derivatives of b with respect to r vanish), we obtain

Ob (0, O) O,
Or

(3 17) O3b--------G (0, O)
19r

(3.18)

1930(0,0 3 /190 },ox--- --t (o, o)

OSG a4G 192019b (0, O)= (0, O)- 5 (0, O) (0, O)---
Or Ox 19X4 19X2

15 1930
(0, O)/’

4 1923

[ 194G 30G {03G-5 (o, o) + (o, o) 2 (o, o)
19X4 - 1922 1923

1
_
(-G+ Ol--5 (0, o))}].

The expressions for the seventh-order derivative are not pretty. In general, however,
we have the relation

19kbG 19kG
=-(0,0)+.19rk (0, O) 19xk

where the omitted terms all have factors of (19JG/19xJ)(o, O) with 2_-<j-< k-1.
The lemma follows immediately.
Note. The sign of (3.17) determines the criticality of the nondegenerate period

doubling bifurcation. If it is negative, the bifurcation is supercritical; if it is positive,
the bifurcation is subcritical; if it equals zero, there is at least one higher-order
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degeneracy. If both (3.17) and (3.18) are zero, there are at least two higher-order
degeneracies.

LEMMA 3.19. Let the C period doublingfamily G(x, It), its center manifold realiz-
ation g(xl), and the bifurcation function be(s, it) be as in the paragraph preceding
Theorem 3.15. Then there exists a neighborhood N of (0, O) in R xR" such that for
(s, it) c N, g2(xl)-Xl has the same sign as be(s, it), where (s, it) and (Xl, It) are related
by the C diffeomorphism (x,it)-(s+R(s, it),it) (as in (3.12)).

Furthermore,for eachfixed It, the multiplicity ofthe corresponding zeros ofg2(Xl) x
and be(s, It) is the same.

Proof. Theorem 3.3 guarantees that roots of G2(x) -x are in one-to-one correspon-
dence with roots of be(s, It). Since roots of G2(x)-x must be on the center manifold
of G(x, It), the roots of g2(x)-Xl must also be in one-to-one correspondence with
roots of G2(x)- x, and therefore with roots of be(s, It). The correspondence is indicated
by (3.12) in the proof of Theorem 3.3:

(3.20) s -x X(s, it) (s + R(s, it), X2(s, it), X(s, it))--x s + R(s, it).

For each fixed It, the multiplicities of corresponding roots of g(X1)--X and
be(s, It) must be the same, because if they are not, then a perturbation of G could be
made so that their roots would not correspond. (It can be shown that an arbitrarily
C small perturbation of G(x, It) can be chosen to perturb g2(X1) X or be(s, It) from
a zero of multiplicity p to a function with p distinct real roots.)

We have left only to show that the signs of the two functions are equal. Since for
fixed It we already have the zeros and their multiplicities corresponding for g(x)-x
and be(s, It), and since these two functions are perturbations of go2(Xl) Xl and be(s, 0),
respectively, the signs will be the same for g2(Xl)-Xl and be(s, It) if and only if the
signs of the leading coefficients of gg(xl)-Xl and be(s, O) are the same.

According to Definition 3.1, if x c R then in normal form up to order 2k+ 1,
G(x, O) -x t_ cx2k+l _]_ O(x2k+l), C O. This makes G(x) x g(x) x
-2cx2k+l + O(x2k+I). Lemma 3.16 implies be(s, O) -csk+l / O(s2k+I). If It =0, then
s 0 corresponds to x Xl 0+ R(0, 0)= 0, so the signs of the leading coefficients of
g(x) x and be(s, 0) correspond. If x R but G(x, O) g(x, 0) is not in normal form
up to order 2k + 1, a near identity polynomial change of coordinates x h(y) can put
g(x) into this normal form. That is, go(y): h-l(go(h(y))) is in normal form up to
order 2k + 1. By perturbation arguments as in the second paragraph of this proof, the
multiplicity of the zeros of (y)-y, g(x)-x, bg(s, 0), and bg(, 0) must all be the
same. The same logic works along a whole path of coordinate changes from ht, [0, 1 ],
from the ho :-- identity to hi := h. Therefore, by continuity, the sign of the leading
coefficient of ,(y)-y and g(x)-x must be the same, as must be the sign of the
leading coefficient of bg(s, 0) and b(g, 0). Since the sign of the leading coefficients of
,(y)-y and b(, 0) are equal by the previous paragraph, this forces the sign of the
leading coefficients of g(x)-x and bg(s, 0) to be the same.

If x R with n > 1, then the realization of G on its center manifold can also be
obtained by a near identity change of coordinates. So by a continuity argument similar
to that in the paragraph above, the leading coefficient of g(x)- Xl will have the same
sign as the leading coefficient of be(s, 0).

One consequence of Lemma 3.19 is that the period doubling map with k-1
higher-order degeneracies can be alternatively characterized by

cgiBG( tl, It)
--0 for =0,. , k- 1,

Ou (o,o)
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but

B(u, W)
Out, # 0.

(o,o)

Another consequence is that the sign of bG or BG can be used to determine stability
of the fixed and period-2 orbits of G(x, Ix) and g(xl, Ix). It is usually more practical,
however, to do this by eigenvalue computations, especially because, as mentioned after
the statement of Lemma 3.19, the bifurcation functions are defined via the implicit
function theorem.

Technical note. Lemma 3.19 and Theorem 3.15 are both stated under the assump-
tion that the coordinate xl is already a coordinate on the center eigenspace for Ix 0.
When G(x, Ix) does not originally come in this form, there is some leeway in choosing
x. Its choice, however, involves a change of coordinates from the given form of
G(x, IX). If the change of coordinates is orientation preserving, a path to the identity
argument as in the last two paragraphs of the proof of Lemma 3.19 can be used to
show that the leading coefficient of g(xl)- Xl will have the same sign as the leading
coefficient of ba(s, 0). The case of an orientation reversing change of coordinates is
converted to the orientation preserving case by noting that the change of variables

xl--x leaves bg(s, Ix) the same and leaves the leading coefficient of g(x)-x the
same.

This note shows that even though the bifurcation function constructed in the proof
of Theorem 3.3 is not necessarily unique (there is a choice of coordinates made in
reducing Case 3 to Case 2), the zeros, including multiplicities, and signs at correspond-
ing nonzero points of any two bifurcation functions arising from the same original
function must all be equal.

We now recall the universal unfolding theorem for Z2-symmetric bifurcation
functions.

LEMMA 3.21. Define the k-parameter family of Z2-symmetric bifurcation functions
U(S, E):= EoS+elS3+ "+EkS2k-l+s2k+l, 6--+/-1. Let V(s, IX) be any family of Z2-

symmetric bifurcation functions satisfying V(s, O) cs2k+ +. , with sgn (c) 6, and

(o’V(s,l))OS’ (o,o)

Then in a neighborhood of (0, 0), there exist C functions M, X, and d such that

(3.22) V(s, Ix) M(s, IX) U(X(s, IX), .(IX))

with

M(s, IX) > O, (OX/Os)(s, O) > O, X(s, O) O,

+(0) =0, M(-s, IX) M(s, IX), X(-s, IX) -X(s, IX).

Furthermore, there is no family having the properties of U(S, e) with fewer than k
parameters.

Proof Combine Proposition 2.14 [GS, p. 256] and Proposition 3.4 [GS,
p. 259].

Proof of Theorem 3.15. (a) Recall from the paragraph preceding the statement of
Theorem 3.15 that g(xl, IX) is the center manifold realization of G(x, IX) and f(z, e) is
the appropriate model family. We will define the function so that the sign of
g(x)-x will be the same as the sign off(z)-z for (z, e)= (x, IX). As previously
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noted in 2.1, this will guarantee that g andf will be topologically conjugate to each
other for fixed values of the parameters (and appropriately restricted neighborhoods).

Let b,(s,l) and bi(S ) be the bifurcation functions determined from G(x, I)
and f(z, ), respectively, as in the proof of Theorem 3.3. Let R"(s, ) and RI(S, ) be
the respective functions defined following (3.9), with the superscripts added to distin-
guish the R’s arising from the different functions G and f

2By Lemma 3.19, g(Xl) X has the same sign as b,(s, I), where (s, I) and (Xl,
are related by the diffeomorphism (Xl,l)=(s+Rg(s,l),g). Also by Lemma 3.19,
f2(z)-z has the same sign as b(S, e), where (S, e) and (z, ) are related by the
diffeomorphism (z, e)=(S+ Rf(s, ), e)= (S, e). This last equality follows from the
proof of Corollary 3.13, where we showed that R(S, e)= O.

Also, by Corollary 3.13, bf(S, e) cos + elS +" + EkS2k-1 + tS2k+1, which equals
U(S, e) as defined in Lemma 3.21. Lemma 3.21 can therefore be used to show that
there exist functions Z and + such that bg(s, p.) and b(S, ) have the same sign for
(S, e)= (E(s, t), t(l)). Note that this C map will be a diffeomorphism if t(l) is a
diffeomorphism.

Combining the results of the two paragraphs above, we see that the signs of
g2(Xl)-Xl, b,(s,t), b(S,e) and f2(z)-z are all the same for xl=s+g"(s,l),
(S, e) (E(s, I), +(t)), and S z. These relationships define the map xIt(Xl, t) by the
composition

(3.23) (Xl, l)-. (s, l)- (S, e)-. (z, ).

Each map in the composition is C in a neighborhood of (0, 0) and each fixes (0, 0).
Therefore the same is true of xIt. This establishes (a)(1) and (a)(2) of Theorem 3.15.
Part (a)(3) is true because each map in (3.23) preserves not only the zeros but also
their multiplicities. (This is true for the first and third maps by Lemma 3.19, and for
the middle map by (3.22).)

(b) If there existed a family that could replace f in Theorem 3.15(a), then its
bifurcation function would be a "universal unfolding" in the space of Z2 bifurcation
functions with fewer than k parameters. This would contradict the last sentence of the
universal unfolding theorem for Z2-symmetric bifurcation functions, Lemma 3.21.

(c) The condition that

{(OiB"(u’l))V.Ou
i=0,’.. k-l}(o,o)

be independent is equivalent to the Jacobian determinant ]Oe/Ol=o 0 and therefore
is equivalent to the map ( being a local diffeomorphism. In this case is also
a local diffeomorphism.

4. Applications. Theorem 3.15 states that any period doubling diffeomorphism
with k-1 higher-order degeneracies is equivalent, both in terms of its topological
behavior under iteration (restricted to its center manifold) and in terms of its bifurcation
sets, to one of our model families of 2. In order to support these theoretical results,
we used a version of the continuation routine AUTO [DK] that we adapted for use
with maps to investigate two examples where we knew a period doubling with a
higher-order degeneracy to exist. Both are two-parameter families of maps generated
by flows of periodically forced planar oscillators. The stroboscopic map and its
derivatives were calculated using ODESSA [LK]. Because our applications involved
only two parameters, we would not expect to see a period doubling with more than
the single higher-order degeneracy. The bifurcation diagrams we produced from these
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applications should be compared to Figs. 3 and 4 for our model period doubling map
with a single higher-order degeneracy.

4.1. Resonance horns in forced oscillators. Consider a system of two autonomous
coupled nonlinear ODE’s

dx/dt f(x, p), f: R2 x R -> R2,

where p R is a parameter. Assume that for p Po the system above has an asymptoti-
cally attracting closed orbit with frequency Wo. Consider the two-parameter family of
forced oscillators

dx/dt=f(x, po+ g(wt)),

where a and w are the parameters (a is the amplitude of the forcing and g has period
T 1/w). A more convenient second parameter is the ratio o/Wo of the forcing to the
natural frequency. Taking the time T return map of this flow (sometimes referred to
as the stroboscopic map) gives us a two-parameter family of invertible, orientation
preserving maps of the plane. The asymptotic attractivity of the limit cycle of the
unforced oscillator guarantees the existence of a normally hyperbolic attracting
invariant circle for small forcing amplitude a. According to standard circle map theory
[Ar], [Ha], we expect resonance horns (also called entrainment regions of Arnol’d
tongues) entering the first quadrant of the o/Oo-a parameter plane for every rational
value of W/Wo. The boundaries of the "q/p resonance horn" emanating from W/Wo
q/p are saddlenode bifurcation points for the qth iterate of the map. Inside this q/p
resonance horn, the corresponding map has at least one (typically two: a stable and
unstable pair) period-q orbit. In particular, we are interested in the situation where
q 2, when the boundaries of the 2/p horns are saddlenode bifurcations for the second
iterate of the map. In continuing these saddlenode curves towards higher values of a,
we have repeatedly found them to terminate at a degenerate period doubling where
they collide with a period doubling curve. (This was a much easier and less expensive
ways of locating the degenerate period doubling points than the method suggested by
Definition 3.1 or comment 1 following the statement of Theorem 3.15. To compute the
normal form of a map on its center manifold and/or (OiB(u, ix)/Oui)lo,o), we would
need higher derivatives of the stroboscopic map generated by numerically integrating
the forced oscillator flows.)

Figures 7 and 8 show various features of the period doubling with a single
higher-order degeneracy in the context of a 2/3 resonance horn for our first system of
periodically forced ODEs:

dx ax2
X1-(Vo+ cos (o)x +

o"+x
dx2 zf X X2 ax2(Po+ a cos (oor))x2 + xdr 1 zf- x x2 b " X2

X

These ODEs model a predator-prey system (protozoa preying on bacteria in a chemos-
tat). Here xl is the dimensionless concentration of protozoa, x2 is the dimensionless
concentration of bacteria, and zy is the dimensionless feed concentration of a substrate
on which the bacteria grow with Monod-type kinetics [PK]. The parameter we vary
periodically is the flow rate of the chemostat. The autonomous system for a =0.4,
b 2.8125, zy 12.4, and Po 0.2 has a single attracting limit cycle of period T 18.999
units of dimensionless time -.
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FIG. 7. Predator-prey parameter plane.

dDO’\kx

Amptude

FIG. 8. Predator-prey: singly degenerate period doubling.

Figure 7 shows the boundaries of the 2/3 resonance horn for this model (ar
a/0.00265). As we follow both sides of the horn boundary towards higher values of
a we encounter degenerate period doubling points Deft and Dright. Figure 8 is a
three-dimensional representation of the full four-dimensional phase x parameter space
of the solution surface and the codimension-1 bifurcation curves in the neighborhood
of Deft. Compare this diagram to Fig. 3.

Another example where we also observed this phenomenon is the Continuous
Stirred Tank Reactor (CSTR) in which a simple exothermic reaction A --> B takes place.
This classical chemical reaction engineering system can be modeled by the following
set of dimensionless ODEs:

dx2--x+B Da (1- x2) exp (XE)+3(T-x2),

where x is a dimensionless concentration of reactant A, x2 is a dimensionless tem-
perature, and Da (the Damkoehler number), B (the dimensionless heat of reaction),
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Tc Tc,o + a cos (wr) (the coolant temperature), and/3 (the dimensionless heat transfer
coefficient between the reactor and the coolant fluid) are parameters. For B-22,
Da- 0.085, /3 3, and T,o- 0 the autonomous system (a 0) has an attracting limit
cycle of period To--1.094996 surrounding an unstable steady state. In a previous
publication [KAS] degenerate period doublings were observed on both 2/p horns
studied (the 2/1 and the 2/3 horns). Figure 9 is a three-dimensional representation of
the full four-dimensional phase xparameter space of the solution surface and the
codimension-1 bifurcation curves in the neighborhood of the equivalent of the Drigrt
point of Fig. 7 for the 2/1 resonance horn of the periodically forced CSTR (ar-
0.063036). Compare Fig. 9 also to Fig. 3.

Forcing

AmplitUdear

FIG. 9. Forced CSTR: singly degenerate period doubling.

Recent studies by McKarnin, Schmidt, and Aris [MSA] (a periodically forced
surface reaction model), Schreiber et al. [SDCM] (a periodically forced Brusselator),
as well as by Vance and Ross [VR] (a periodically forced CSTR) have also repeatedly
revealed degenerate period doublings on the boundaries of 2/p resonance horns. This
bifurcation appears therefore to be ubiquitous in models of periodically forced oscil-
lators arising in various disciplines.

4.2. High-amplitude closing of the resonance horns. In our example (Fig. 7), as
well as in the numerous studies of periodically forced oscillators we referred to above,
the phenomenon of high-amplitude "closing" of the 2/p, and generally of the q/p
resonance horns was observed. It has been shown that this "closing" phenomenon
implies the existence of certain codimension-2 bifurcations for the maps [AMKA],
[P1], [P2], [P3]. In most horns, the boundary consists of codimension-1 saddlenode
bifurcation curves for the qth iterate of the map along with certain codimension-2
points on these curves. For a 2/p-horn, however, this boundary typically changes from
a saddlenode curve for the 2nd iterate of the map to a period doubling curve in order
for the horn to close. The point at which they change is the codimension-2 degenerate
period doubling point.

See the references above for details and [Ga] for a related analytical study.

5. Discussion.
5.1. The Hopf bifurcation with higher-order degeneracies. As we mentioned in the

introduction, certain higher-order degeneracies in the Hopf bifurcation for flows
generate bifurcation diagrams almost identical to those for the period doubling bifurca-
tion with higher-order degeneracies. This is not surprising if we look at the model
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flows of Table 1:

r’ e r + e2 r3 H- d- E2k_ r2k-1 d- tr2k+1,

Circular limit cycles exist whenever r satisfies r( el + e2r2 +" + 82k-1 r2k-2-4r- tr2k) O.
That is, the roots of this function determine the topological phase portraits of the
corresponding flows. But this function is precisely rP;k.a(r2), the bifurcation function
we defined in (2.3) and used for our model period doublings in 2. In both cases, the
root at r 0 corresponds to a "center" fixed point; other roots correspond to limit
cycles for the Hopf flow and period-2 orbits for the period doubling map. Roots of
higher multiplicity determine higher codimension bifurcation manifolds in both cases.

To prove that the general Hopf bifurcations are all like the above models,
Golubitsky and Schaeffer ([GS] and references therein) define a function, analogous
to @ in 3, whose roots determine the limit cycles for a given flow. Among several
factors complicating the Hopf analysis are the facts that is defined on an infinite-
dimensional function space and that its kernel is two-dimensional. After performing
a Lyapunov-Schmidt reduction on this function, however, they obtain the same
"reduced" bifurcation function as we obtained in Theorem 3.3. That is, both problems
can be reduced to finding roots of the same bifurcation function.

We illustrate a more geometric connection between the Hopf bifurcation for flows
and the period doubling bifurcation for some fixed parameter value in Fig. 10. The
flow in R2 induces a map in R by taking a return map of the flow along a line (not
a ray) through the origin. (Let the origin be a fixed point of the map.) Limit cycles of
the flow correspond to period-2 orbits of the induced map.

5.2. Other "finite sequence spaces." We characterized period-2 points of G(x) in
this paper as roots of the function @(x, y)= (y-G(x), x-G(y)) and then used the
Lyapunov-Schmidt procedure to reduce @ 0 to a simpler system Brown and Roberts
[BR] and Vanderbauwhede [Va] have recently used Lyapunov-Schmidt reduction for
functions on similar "finite sequence spaces" whose roots characterize periodic points
of periods other than 2. In general, a period-k

k
orbit {x, xk} of G" Rn- R is

Xk)characterized as a root of the function @" (R") -> (R") k defined by (x1, .,
(x2- G(xl), x G(x2), , x- G(xk)). The Lyapunov-Schmidt reduction starts from
this function.

Acknowledgments. The authors acknowledge useful discussions and suggestions
by Professors D. Aronson, M. Golubitsky, M. Krupa, R. McGehee, and A. Vanderbau-
whede, and the referee. The hospitality of the Center of Nonlinear Studies at the Los
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FIG. 10. Period doubling and Hopf bifurcations.
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VARIATIONAL PRINCIPLES WITHOUT DEFINITENESS CONDITIONS*

PAUL BINDING?:I: AND QIANG YE?

Abstract. Variational characterizations of eigentuples are discussed for a self-adjoint problem Ax ABx
in a Hilbert space H. If the pair (A, B) is simultaneously real diagonable in a certain sense, and if B is 1-1,
then all eigenvalues obey certain minimum and maximum principles for a generalised Rayleigh quotient.
Sup-inf and inf-sup principles are established for eigenvalues which obey certain interlacing inequalities.
Applications are made to both finite- and infinite-dimensional cases.

Key words, minimax principles, indefinite eigenvalue problems

AMS(MOS) subject classification. 49G05

1. Introduction. The study of pairs of self-adjoint operators has a long history.
For example, Weierstrass [25] produced a canonical form for a pair of quadratic forms
in finite dimensions, and this subject has been revived in recent years, often in the
setting of self-adjoint operators on (perhaps indefinite) inner product spaces (cf. 17],
11 ]). The latter topic was given a firm foundation in infinite dimensions by Pontryagin,
Krein, and subsequent workers (cf. [7], 15]). Differential eigenvalue equations involv-
ing indefinite operators have been the subject of much recent interest, as evidenced
by [18].

This considerable activity has been largely devoted to extending classical results
from definite to nondefinite pairs. The pair (A, B) of operators in a Hilbert space H
is self-adjoint (respectively, definite) if A and B are self-adjoint (respectively, admit a
definite linear combination). Here we shall discuss variational principles for eigenvalues
of a class of pairs with no definiteness assumptions. In definite cases (say with B
definite), such principles usually involve the generalised Rayleigh quotient

r(x)=a(x)/b(x)

where

(1.1) a(x) (x, ax), b(x) (x, Bx),

and r(x) is defined for all nonzero x D(A)f’ID(B). On the other hand, if B is
indefinite, then b(x) necessarily vanishes for certain nonzero x, and then the very
definition of r(x) needs modification. It is perhaps for this reason that few variational
principles exist for nondefinite pairs. There is recent finite-dimensional work [2] but
it seems unrelated to ours. An approach to definite pairs via indefinite inner product
spaces was given by Phillips [22] and generalised by Textorius [23] to possibly singular
pencils. This approach involves triple extrema, and we hope to return to this elsewhere,
but here we shall concentrate on single and double extrema.

Eigenvalue equations

(1.2) Ax ABx

involving nondefinite pairs (A, B) arise in various applications. One of the earliest
comes from separation of variables in boundary value problems for waves that are
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electromagnetic, acoustic, etc. This leads to two (or more) parameter problems like
Ax=(AB+txC)x (cf. [24]). Depending on/x/A and the boundary conditions for A,
this problem is generally nondefinite. Another application concerns quantum theory
of crystal lattices, involving operators A of the form -A+ q, where q is a periodic
potential [16]. Recently Deift, Hempel, and others have made several investigations
of this topic, B representing the potential of an impurity (cf. [8]). Another seminal
nondefinite application of (1.2) lies in the stability analysis of population genetics
models, where A is a Neumann Laplacian and B is a linearized natural selection term
(cf. [10]). Much subsequent work has been carried out on abstract versions, e.g., [14].
We also note that quadratic eigenvalue problems can frequently be put into a nondefinite
form (1.2) satisfying our hypotheses. We cite Greenlee’s work [12] which applies to
certain problems in fluid dynamics, and we shall analyse a problem from mechanics
in 4.

For such problems, it turns out that all but finitely many of the real eigenvalues
are of either positive or negative "type," depending on the sign of one of the quadratic
forms in (1.1) (usually b(x)) at eigenvectors, and those of positive (respectively,
negative) "type" accumulate only at +oo (respectively, -oo). For example, the real
eigenvalues Aj of the regular Sturm-Liouville problem

(1.3) (-py’)’+qy=Awy (p>0)

(with indefinite weight w) may be indexed so that Aj - +/-oe asj - +/-oe and A corresponds,
for Ijl>_jl, to an eigenfunction y with j-1 internal zeros. For j>-jl (respectively,
j-< -jl), Aj is of positive (respectively, negative) "type." For a history of such results,
see Mingarelli [20], who calls jl (which we take to be minimal) the Haupt index after
his 1915 paper [13]. For recent work on abstract generalisations of (1.3), including
various matrix and partial different equation problems, we refer to [5]. Similar consider-
ations apply to other aspects of (1.3): for large J I, the A (and the corresponding
eigenfunctions) behave much as for the (left) definite case. As an example, the
eigenfunctions for j I_>j span a subspace K of finite codimension, and K is a Hilbert
space in the inner product generated by a of (1.1) (cf. [9] and [6] for an abstract version).

The importance of the regularity index jl for variational principles was pointed
out in [19] for matrix problems, and in [1] for the problem

(1.4) (-A+ q)y= Awy,

where A is the n-dimensional Laplacian with Dirichlet boundary conditions.
Specifically, if a certain diagonability condition holds, then for j->jl the eigenvalues

A are of positive "type" and can be characterized by

(1.5) A=sup{inf{r(x):x C+ f’l S}: codim S k},

with a similar formula for j-< -j where the eigenvalues are of negative "type." Here

(1.6) C {x D(A) D(B): +/- b(x) > 0},

S is a subspace of H, and k depends on j. On the other hand, it has been conjectured
(in private communication) that no such characterization is possible for eigenvalues
Aj with Ijl<j. We shall refer to the latter as "overlap" eigenvalues, since those of
positive and negative "type" are no longer separated, and indeed a(x)= b(x)--0 is
possible, so some eigenvalues may not have a defined "type."

We shall see that (1.5) is valid under quite general circumstances, and does indeed
characterize some (although not all) "overlap" eigenvalues. Various related "dual"
formulae will also be given. Section 2 contains preliminary results, including a general
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minimum principle, valid for all eigenvalues. This gives a complete recursive charac-
terization of eigenvalues for certain pairs. Section 3 is devoted to double extremum
principles like (1.5), with simple (mostly finite-dimensional) illustrations. Section 4
contains applications to various matrix, differential, and integral equation problems,
including (1.3) and (1.4).

2. Preliminaries. Let us start with our basic assumption, which is the existence
of a linear homeomorphism T which "simultaneously diagonalises" A and B. More
precisely, we assume the following:

(A1) There exist
(i) an integer index set J, not containing zero,
(ii) a bounded linear operator T on H with bounded inverse,
(iii) a complete orthonormal basis ej(j J) of H,
(iv) real aj and real flj taking the sign of j, such that T*ATej-

aje, T*BTe fle, j J.
Remarks. Assumptions (ii) and (iii) mean that the elements Te form a Riesz basis

of H. We stress that explicit knowledge of T is unnecessary; only its existence is
required, and sufficient conditions on A and B will be given in 4. Also (iv) is a "real
diagonability" condition; it is straightforward to relax this to all but finitely many j J,
using constructions given in [21] for the span of the remaining Te.. For notational
simplicity, however, we shall adopt (iv) as stated.
We also need some definitions before stating the minimum principle. A complex

number A is an eigenvalue of (A, B) if the eigenspace E := N(A-AB) is nontrivial,
and x is a b+ eigenvector if x E (q C; see (1.6). We write hj olj/[j, and for any
real h we define index sets

I= {j: +(a- hflj) >_0}, I I fq I ={j" h

and subspaces

Span { Tej" j I}, S Span { Te:j I},
where Span means closed linear span. This notation allows considerable freedom in
the ordering of the Aj, e.g., in the case of several accumulation points. In our examples,
A -< A+I will hold separately for positive and negative j (although A1 < A_I in the case
of"overlap" eigenvalues). As an illustration, suppose that b is definite on each separate
eigenspace. If h is an eigenvalue of (A, B), then S turns out to be the Span of those
E, on which b is positive definite and/z _> A, together with those on which b is negative
definite and/x _< h. Also E S f-] S S.

THEOREM 2.1.
(i) I 0e h is an eigenvalue of (A, B).
(ii) If h admits a b+ eigenvector x, then

h min {r(x)" x S VI C+}
and x is a corresponding minimiser.

(iii) Eh is spanned by the set of minimisers (using both possible signs) in (2.1).
Proof.
(i) If I # 0, then aj h/3 for some j. Thus

(A-AB)Tej= T-*(aj Aflj) ej O.

Conversely, if 0 # x E and

(2.2) T-1x y , ye,
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then

(2.3) 0= T*(A-AB)Ty= Y (a-A)ye.
jJ

If I , then the inner product of (2.3) with ek gives Yk 0. Thus y 0, so we obtain
the contradiction x 0.

(ii) If x S fq C+, then (2.2) gives

(2.4) r(x)= E lyl=l

If, moreover, x e E f3 C+, then (2.3) implies yj 0 unless j e I so

x s c+ =__ s c+.
It follows that _> may be replaced by in (2.4), and the proof is complete for

the + sign case. For the sign case, we replace (A, B) by (-A, -B) and apply the +
sign case.

(iii) I partitions into two subsets, one positive and one negative. These subsets
generate b+ eigenvectors Te, which by (ii) are minimisers for the two sign cases.
Moreover these minimisers span S, which as we saw above equals E.

COROLLARY 2.2. Equation (2.1) may be replaced by

h max {r(x)" x S: f"l C+}.

Proof Replace A by -A and apply Theorem 2.1(ii).
Let us briefly examine the consequences for definite pencils in finite dimensions.

If B is (say positive) definite (the "right" definite case), then the S are trivial, and
the S nest. In fact all eigenvalues for (A, B) may be calculated recursively via (2.1),
beginning with the least eigenvalue A, for which S- H. This is the standard "gen-
eralised Rayleigh quotient" recursive characterization, since C+- H\{0). If instead
A-AoB is (say positive) definite then b takes the sign of A-Ao on E. Thus again
(2.1) characterizes the eigenvalues for (A, B) recursively, beginning with the least > Ao
(for which S-- H) and the greatest <Ao (for which S--H). Similar considerations
apply in infinite dimensions provided the extreme eigenvalues above exist, but the
recursions stop at accumulation points of eigenvalues. See 4 for applications.

We shall need two specific results for perhaps nondiagonable pencils in two
dimensions, and we shall first examine the role Theorem 2.1 plays in the indefinite,
but real diagonable, case. Recall the notation hj aj/fl.

LEMMA 2.3 Let dimH 2 and J {-1, 1}.
(i) Ifh_l <- hi then min {r(x): x 6 C+} hi.
If A_ > h then
(ii) inf {r(x): x C+} =- and
(iii) max {r(x): x C+} hi.
Proof Lemma 2.3 (i) follows from Theorem 2.1 since S- H. For (ii) we follow

(2.2) to give

(2.5) r(x) /--I O--1 -" 1(/- A-1)Iyll2/(fl-,[Y-ll2 + flllYll2).
Now let Y-1 1, yl and/31Y1 $-/3_1 to give the result.

Lemma 2.3(iii) follows from Corollary 2.2 since S, H.
The other characterizations degenerate for this problem, e.g., A=

min {r(x): x E,} in (ii).
We can now derive the two special results that we need later. Real diagonability

of the corresponding pencils is not assumed.
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(2.6)

then

COROLLARY 2.4. Let aj, flj be as in Lemma 2.3, and ao R. If h-1 > i1 and

a(y) := a_ly2 + ay2 + ctoy_ly,

inf{a(Y)/(fl-ly21 + fllYl2)" fl-ly21 +fllY >0, (Y-l, Yl) R2} -.
Proof This follows from Lemma 2.3 (ii) provided we choose the sign of Yl in

(2.5) so that ceoy --< 0.
For the second result, we retain the index set J {-1, 1} for convenience, even

though we assume/3-1 0.
LEMMA 2.5. Let O_ <0<1 O1, O0,0 and a(y) be as in (2.6). Then

inf {a(y)/(fllYl + floY-lYl)" fllY / BoY-lYl > 0, (Y-i, Y) 2} -c.

Proof We set y =/3o if/3o 0 and ya 1 if/30 0. It follows that

fly2 + floY-lY > 0

for all y_ > 0, and as y_-. o, a(y)/y21--> a_l This suffices for the conclusion.

3. Double extremum principles. We need one more finite-dimensional result in
preparation for the variational principle.

LEMMA 3.1. Let dim H n < o, b(uo) < 0 and let J have p positive elements. Then
there exists a p-dimensional subspace U, orthogonal to Buo, with b positive definite on U.

Proof Let u_j, O<_j<_ n-p+ 1, be a basis for a maximal b-negative subspace S.
The elements Bu_j are linearly independent, so their span BS has dimension n-p. By
the law of inertia, b is positive definite on U (BS)’.

In order to state the variational principle efficiently, we shall split the index sets

I into two. Specifically, we define

J {+j > 0: )tj -> A}, T Span { Tej’j J,}

with similar definitions for T T>.+ S+/- T_>+/- T_<_<, T<a, and Note + (cf. the illustra-
tion before Theorem 2.1).

THEOREM 3.2. Let A admit a b+/- eigenvector, and suppose i > A, where

dim T< k < c, dim T>_, <,
T>_ 0 1. Then A O’k+, wherea f-) T<, {0} and dim T<,) >

(3.1) tr =sup {inf{r(x)" x Sfq C+}; codim S= m}.

The dual result involves replacing A by -A, and is as follows.
COROLLARY 3.3. This is the same as for Theorem 3.2, with the following changes:

all inequalities (except "m >_ l") are reversed, and "sup" is interchanged with "inf."
Remark. Since T is 1-1, it need not be known explicitly to determine dim Tx,

etc. Roughly, the dimension conditions state (in the case of a b+ eigenvector at A)
that there must be enough A [A,/z[ to "cancel" any Aj- ->

Before proving Theorem 3.2, we shall discuss some simple illustrations. Suppose
first that dim H =4, and J {+1, +2}. We shall concentrate on the positive sign case
of (3.).

Example 3.4. If A_ < A_ < A1 < A, then the pencil is definite (there is no "over-
+lap"), try- A (with k 0), in agreement with (2.1), and tr A2 (with k 1, 0),

in agreement with [19].
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+ withExample 3.5. If A-2 < A < A2 < A-1 then the pencil is indefinite, and trl A 1,

k 0, 1. We know of no other results that characterize "overlap" eigenvalues like
A1.

More generally, we have the following result.
THEOREM 3.6. If dim H 4, then all quantities try. are either infinite or else charac-

terize eigenvalues via eorem 3.2 or Corollary 3.3.
We shall not prove this here, since there are many cases. We may note, however,

that = in Examples 3.4 and 3.5, while =- in Example 3.5. Also (3.1)
gives A_ with k 1, 0, in Example 3.5, and the remaining eigenvalues A can
be characterized via Corollary 3.3 in the above exaples.

The simplest infinite-dimensional situations with 0 and 1 are obtained by
expanding the sequences Aj in Examples 3.4 and 3.5, using negative j to the left and
positive j to the right.

Another infinite-dimensional case may be of interest. We assume that B has only
finitely many (counting multiciplicity) negative eigenvalues, i.e., there are only finitely
many negative fl. If J J U J U N where J1, J: consist of (possibly infinitely many)
positive integers, N consists of finitely many negative integers, and

Ai < A for any J1 and j J N,

then the eigenvalues {Ai" J1} are characterized by Theorem 3.2. Note that if N
i.e., B is positive definite, then the classical minimax theorem characterizes A for J1.
So this result says that the minimax theorem remains valid even in the presence of
negative index eigenvalues provided that they do not destroy the extreme structure of
{A" i J}. There is, however, an index shift in the characterization.

Proof of eorem 3.2. The negative sign case in (3.1) may be reduced to the
positive sign case by the transformation (A, B) (-A,-B), so we shall discuss only
the positive sign case. Then Theorem 2.1 gives

A min {r(x)" x C+ S},

and since T(T-S) +T< +T has dimension k + l, it will suffice to prove that for
any S with codimension k + l,

(3.2) there exists x S C+ such that r(x) A.

Now let

(3.3) E T+T
be a subspace of (finite) dimension > k+ l, so there is a nonzero Uo v+ wZ S,
where v T_a and wT2. Since r(v)<A,r(w)>,and b(v)>O>b(w) itfollows
that

(3.4) a(v)Ab(v) a(w)b(w) and (v, aw)=(v, Bw)=O.

We must consider three possible cases.
Case 1. b(Uo) >0. Then (3.3) gives

r(uo) lAb(v) + b(w)]/[b(v) + b(w)]

and the right side A by Lemma 2.3 (iii), since A < . Thus x Uo suffices for (3.2).
Case 2. b( uo) O. By assumption, dim T<, > k + l, so there is nonzero x S +

Choose x y-luo+ yz, where (y-l, y) . Now b(z) > 0 and by (3.4)

(3.5) a(uo) a(v) + a(w) < b(v) + b(w) b(uo),
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so a (Uo) < 0. Thus

r(x) a(uo)y2_l + a(z)y + 2Re(uo, Az)y-lYl]/[ b(z)y21 + 2Re(uo, Bz)y_lyl]

can be made ___A by virtue of Lemma 2.5, and (3.2) is satisfied.
Case 3. b(uo)<0. Lemma 3.1, with H replaced by Z (3.3) gives a b-positive

subspace U
_
Z of dimension > k, orthogonal t Buo. Now choose a subspace V c T+___x fq

+T<, of finite dimension so that Q= U+ V has dimension >k+/. Evidently Q is
b-positive and orthogonal to Buo, and so there is q 6 Q f-)S such that

(3.6) b(q)>0 and (q, Buo)=O.

Moreover dim Q < c, so q T+___ + T, for some u </x, and arguing as for Case 1 we
conclude r(q) -< u, i.e.,

(3.7) a(q)<_,b(q).

Now choose x=y_luo+ylq, where (y_l,Yl)GN2. We may then use (3.5), (3.6),
(3.7), and , </x to show that

r(x) a( uo)Y_l + a(q)y+ 2Re( uo, aq)y_lyl]/[b(uo)y2 + b(q)y2]

can be made -<A by virtue of Corollary 2.4, and again (3.2) is satisfied.

4. Applications. Our starting point is a special case of a canonical form in [4].
THEOREM 4.1. Suppose A I + C and B is 1-1 with B, C compact symmetric on H.

Then there exists a linear homeomorphism TofH, andsubspaces F, Gsuch that dim F <
GA (i.e., G with the inner product generated by A) is a Hilbert space and, relative to the
(A-orthogonal) direct sum H FO) G, T’AT AF@ I, T*BT BFO) Q, where Q is

1-1, compact and symmetric on G.
Explicit constructions are given in [4], AF and BF being the Gram operators (in

the usual inner product) for A and B on F. Thus assumption (A1) in 2 reduces to
real diagonability of the finite-dimensional operator B{IAF, but as we mentioned in
the remark after (A1) this diagonability is unnecessary if we use the constructions of
[21]. Essentially, therefore, our results hold for (1.2) with A, B as in Theorem 4.1. For
more general situations, e.g., with B merely bounded and symmetric, see [4].

In finite dimensions, the results of 19, Thms. 2.1, 2.2] correspond to the case 0
of Theorem 3.2 and Corollary 3.3, and the classical situation of definite pencils is a
special case of this. The bounded operator setting given above applies directly to
integral equations with symmetric kernels. We remark that there are frequently several
problem formulations, which affect (/3j) signs, Aj accumulation points, etc. For example,
the eigenvalues A of a compact symmetric operator F can be obtained via the pair
(F, I), which is not covered by Theorem 4.1, although (A1) is satisfied. The reciprocals
A -1 can be obtained via the pair (/, F), which does fit Theorem 4.1 and (A1). All
(nonzero) eigenvalues are characterized via Theorem 3.2 and Corollary 3.3: for (F, I),
C= H, while for (I, F), C are defined by F.

It may also be noted that Theorem 4.1 can also be used to treat (1.2) in the case
A P + C, where P is positive definite with a compact inverse and B, C are bounded.
Then

(4.1) P-1/2Ap-1/2--- I/ C and P-/2Bp-/2-- B
with C1 and B1 satisfying the hypothesis of Theorem 4.1, and p-l can be combined
with T. We stress that T (and p1/2), which are difficult to calculate in general, which,
need not be determined explicitly: for example codim S equals j if and only if codim
(TS) equals j. This applies to certain types of unbounded operator equations, including
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various self-adjoint uniformly elliptic boundary value problems like (1.3) and (1.4).
Specifically, B and C are the multiplication operators associated with w and q,
respectively, and Py (-py’)’ for (1.3) and Py--Ay for (1.4). Then the above condi-
tions follow if all coefficients are L on a compact domain for the equation, and 1/p
is L1. We then obtain, for example, [1, Cot. 2.9] in the case 0 of Theorem 3.2.

Finally, let us examine a gyroscopic stabilization problem from mechanics [3],
which leads to a quadratic eigenvalue problem

(4.2) (A:zI + AiG+ C)y 0

where G =-G* and C C*> 0. Using a standard linearization, we may rewrite this
in the (nondefinite) form (1.2) where

A [ iGI ] and N [ CO -I0]"
Under the (gyroscopic stabilizability) condition G2 + (kI + k-1 C)2 < 0 for some k > 0,
it is shown in [3] that each eigenvalue of (4.2), and hence of (1.2), is real and of
definite type. Thus the real diagonability condition is satisfied, i.e., assumption (A1)
holds as stated.

It is also shown in [3] that if iG is n n and has p positive eigenvalues, then the
eigenvalues for (4.2), i.e., for (1.2), satisfy

i lp < l lp < O < lp i < lp+ i

Thus our results characterize )tj for j < p n, j > p, and 1 -< j -< 2p n if 2p > n (respec-
tively, 1 >-j >- n 2p if n > 2p).
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Abstract. This paper continues the study of persistence of invariant tori in a class of differential
equations that describe indirectly- or capacitatively-coupled systems of nonlinear oscillators. In a
previous paper the authors proved that when the unperturbed torus is hyperbolic it persists under
weak coupling, and the flow on the perturbed tori was analyzed. In this paper the persistence of
invariant tori is proved in certain degenerate cases in which the invariant manifold in the unper-
turbed problem is not normally hyperbolic. This is done by proving the existence of fixed points in
appropriate Banach spaces.
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1. Introduction. A number of applications in physics and biology lead to a
system of the form

dxi
dt

fi(xi) + 5P(xo x), 1,..., N,
(1.1) dxo ehp ( l

N )
i---1

(cf. [16], hereafter referred to as Part I, for references to the applications). In (1.1)
P is an n n constant matrix of permeability coefficients or conductances, and the
parameters e-1 and 5 measure the relative capacity of the subunits and the coupling
strength, respectively. In the absence of coupling the evolution in the ith subunit is
governed by the n-dimensional system

(1.2) dx
dt

j(x),

and it is assumed that there is a nonconstant periodic solution

with least period T > 0 of (1.2) for i 1,.--, N. The variable x0 represents the state
of the coupling medium, through which the subunits are coupled [13], [12].

In this paper we study the following generalization of (1.1)"

(1.4)

dxi f,(x,) + 5  (x0, 5),
dt
dxo e Bxo + .Cixdt =

i= 1,...,N,
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Here xi E ’, i 1,..., N, x0 E N., B is an N2 N2 matrix, and Ci is an N2 n
matrix, and thus (1.4) is a system in N.+M, where M ’N=l n. We assume that
each n-dimensional system (1.2) has a nonconstant periodic solution (1.3) with least
period T > 0, and we make the following assumptions about (1.4).

ASSUMPTION 1.1. (a) e o-p for e0 > 0, 5 >_ 0, and p e (0, 1).
(b) For i 1,... ,N,

are (k + 1)-times continuously differentiable with k >_ 2.
(c) For each i 1,..., N, 1 is a simple multiplier of

dxi
dt

and the remaining ni- 1 multipliers have modulus less than 1.
(d) The eigenvalues of B have negative real parts.

In Part I we studied the persistence of invariant tori for the singular (p > 1) and
regular (p 1) cases, where standard results could be used to prove the existence
of invariant tori for small coupling that lie near certain invariant tori that exist in
the uncoupled system. In this paper we study the degenerate case p (0, 1), and as
we shall see shortly, this case is far more difficult due to the fact that the coupling
vanishes faster than the capacitance.

The M-dimensional system, which consists of (1.2) for 1,...,N, has the
N-dimensional invariant torus ToN in M defined by

(1.5) xi i(0i), i 1,..., N.

Therefore, when 0 < p < 1, ToN N. is an invariant manifold of the unperturbed
system (5 0) of (1.4) that consists of the N2-parameter family of N-dimensional
invariant tori TN0,c,

(1.6) X0 C, C N2,
Xi i(Oi), 1,...,N.

The simplest example arises for N N2 1, n 2, in which case the invariant
manifold at 5 0 is the cylinder C 3.

The problem we address in this paper is that of determining which, if any, of the
invariant tori in (1.6) persist for 5 > 0. The standard results [4], [9] on persistence of
invariant manifolds for flows are not applicable to the degenerate problem that arises
from (1.4) at 5 0, because the compactness of the unperturbed invariant manifold
is essential for the proofs. In fact, the invariant manifold (1.6) that exists for the
unperturbed problem does not persist, and the question is which of the invariant
tori persists. Thus the problem is in essence a bifurcation problem. We address this
problem in 3, where we show that the invariant torus given by

N

iron,x0
i----1

xi rli(Oi), 1,..., N
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persists for all small 8 > 0. That is, a one-parameter family of invariant tori bifurcates
from (1.6) under Assumption 1.1.

In the following section we show that, depending on the value of p, (1.4) can be
transformed into one of the following systems of generalized phase-amplitude equa-
tions.

(a) 1 1/k <_ p < 1,

(b) 0<p<l,

d-- w / ,(a, w, z, tt, p),

dw A(-la)w + /(a, w, z, #, p),

dz
d- p# [Qz + Z(a, w, z, tt, p)].

d--- ca + S(a, w, z,

dw(1.9) d- A(gt-la)w + 142(a, w, z, #),

dz
d-- # [Qz + Z(a, w, z, #)].

Here a and w are scaled variables in the phase-amplitude coordinates and z is the
deviation of x0 from the average over ToN; thus a E N, w E N1 with N1 M- N,
z e iN2. The parameters # and p arise from a scaling of (cf. (2.9) and (2.10)), and
# 0 as 0. In both cases the invariant tori correspond to invariant manifolds
of (1.8) and (1.9), and in both cases they are smooth in the natural parameterization
for fixed. Furthermore, in the first case the tori are also smooth in a fractional
power of .

The existence and the smoothness of invariant tori are established in 3 where we
construct invariant manifolds of (1.8) and (1.9) that correspond to invariant tori of
(1.4). This is done as follows. Let I be an open interval. For (1.8) we look for a pair of
smooth mappings qp N X I KN rp :N X I N2 for some p such that for
each # I, qp and rp are 2r-periodic in each component of a N, and the manifold
defined by w qp(a, #), z rp(a, #) is an invariant manifold of (1.8). Similarly, for
(1.9) we look for smooth mappings q iN -- iN r N N2, for all small
# > 0 such that q and r are 2r-periodic in each component of a iN, and the
manifold defined by w q(a), z r(a) is an invariant manifold of (1.9). Such pairs
are called integral manifolds in [5] and [6], and as we show in 3, these give rise to
invariant tori of (1.4). Furthermore, the smoothness of the invariant tori is determined
by the smoothness of the integral manifolds. In particular, integral manifolds that
are smooth in the natural parameterization give rise to smooth invariant manifolds,
and those that are also smooth in # give rise to smooth invariant manifolds that vary
smoothly with .

In 4 we study the asymptotic behavior of solutions of (1.8) in a neighborhood
of the invariant manifold w qp(a, #), z rp(a, #). It is shown that for sufficiently
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small tt > 0 and p > 0, there is a neighborhood of the manifold in which solutions of
(1.8) are attracted to the manifold at an exponential rate in time. We state and prove
a similar result for (1.9). These results completely describe the behavior of solutions
of (1.4) in a neighborhood of the perturbed torus. That is, for each small ti > 0, there
is a neighborhood of the perturbed torus in which solutions of (1.4) are attracted to
it at an exponential rate in time. These neighborhoods shrink to (1.7) as 5 ---, 0
and the rates at which solutions are attracted to the perturbed tori tend to zero as

----, 0.
The smoothness of integral manifolds in related systems was first studied carefully

by Kelly in [11], where systems of the following type are analyzed.

(1.10)

dO
d-- a + eO(O, x, z, e),

dx- Ax + X(O,x,z,e),

dz
d--- Cz + Z(O, x, z, e).

The basic assumption made there is the following.
ASSUMPTION 1.2. (a) A and C are constant square matrices in real canonical

form, A has eigenvalues with negative real parts, C has eigenvalues with positive real
parts, a is a constant vector.

(b) O, X, and Z are defined and k-times continuously differentiable in

Ne {(0, x, z, e): 0 arbitrary, IIxll + IIzll + lel < 5},

and wi-periodic in Oi.
(c) O, X, and Z, and the Jacobian of X and Z vanish when (x, z, e)= O.

Under this assumption it is shown that (1.10) has an integral manifold x u(O, e),
z w(O, e) which is k-times continuously differentiable. Note that the matrix A
in (1.10) is a constant matrix, whereas we have studied in [15] and in this paper
the existence and smoothness of integral manifolds of similar systems in which the
counterpart is a function of one of the dependent variables. Furthermore, (1.10) does
not degenerate at e 0.

Systems related to (1.8), (1.9), or (2.7) are studied in [3], [5]-[7], [11], and [14].
For example, in [3] Diliberto considers the following systems:

(1.11)

dO
d- + O (0, y, e) + 0(0, e),--- B(O, e)y + a(O, e) + Y(O, y, e)y,
dt

(1.12)

dO
d- + e [01 (0, y, ) nt- 02(0, )1,

dy
d- e [B(O, e)y + a(O, e) + Y(O, y, e)yl,

under the following assumption.
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ASSUMPTION 1.3. (a) E zN, y jM, and is a constant vector. (1(, Y,
2(, e), B(t?, e), a(O, e), and Y(O, y, e) are wi-periodic in , continuously differentiable
in (, y), and continuous in (0, y, ).

(b) Y(O, O, e) =_ 0 and a(O, e) -- 0 as e O.

(c) There is b > 0 such that (B(O, O)y, y) >_ bllyll2 for all y e jM, and (0) < b
for all O, where (0) is an eigenvalue of

with

In(0) + (0)]

f (a)

It is shown that under this assumption (1.11) or (1.12) has an integral manifold
y S(O,e), where S is continuous and S(O,e) 0 as e 0. The system at
(1.12) degenerates at e 0, as do the systems studied here, but the former lacks the
normal component that appears in our equations. Furthermore, hypotheses like those
in Assumption 1.3 are difficult to check in the original form (1.4) of the equations we
study.

Systems similar to (1.8) or (1.9) have also been studied by Hale. The existence
of Lipschitz continuous integral manifolds is established in [5] for the system

d
d--- d(e) + O(t, , y, x, e),

(1.13) dy Ay + Y(t,,y,x e)
dt

dz
d--- eCz + eZ(t, , y, z, e).

Similar results are obtained in [6] and [7]. However, the matrix A in (1.13) is a constant
matrix, whereas the counterparts which appear in (1.8) and (1.9) are functions of one
of the dependent variables. Moreover, some of the technical assumptions made for
(1.13) are not met by the systems related to our degenerate problem, and therefore
we cannot apply the existence result in [5] directly. Finally, the smoothness of the
manifolds with respect to parameters is not studied in detail there, but smoothness
with respect to parameters is important when investigating the flow on the manifolds.

2. Reduction of the equations. In this section we introduce transformations
that convert (1.4) to suitable forms for the degenerate case. We first review the
transformations introduced in [16]. For each i 1,---,N, there is an ni x (Hi- 1)-
matrix (I)() each entry of which is a (k+ 1)-times continuously differentiable function
of Oi, with the following properties:

o,(o, + T,)
 ?i(oi)T ?i(Oi) I(ni_l)x(n,_l)
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for all 0i E 1i. Then, for each xi in a neighborhood of the orbit of (1.3), there are

0i E J and yi JI-1 such that

(2.1) (0,) + O(0)yi- x 0.

Equation (2.1) defines a transformation between a neighborhood of the torus ToN and
x where is a neighborhood of the origin in N. Thus we can convert (1.4) to

the system for , y, and x0, where

1 Yl

(2.2) 0= and y= yijn-l, i=l,...,N.

N YN

We can write x0 as the average plus a deviation by defining a :jN j N2,

(2.3)

and setting

(2.4) x0 a(O, eS) + z.

Finally, define an N-dimensional vector w and an N x N-diagonal matrix ft by

co1 CO1
2r

(2.5) w and t- ".. where wi -, i- 1,..., N,

CON CON

and let

(2.6) a f0.

Using (2.1), (2.4), and (2.6), we obtain from (1.4) the following system of ordinary
differential equations for a, y, and z.

do"
d-- w + S(cr, y, z, 5,

__dY A(a_la)y + Y(a, y, z, , eS),dt

dz
d- e5 [Bz + Z(a, y, z, 5, eS)].
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Here A(O) is the N1 N1 matrix defined by

N

A(O) A(O),
i--1

where Ai(Oi), i--- 1,... ,N, is the (ni- 1) (ni- 1) matrix defined by

A,(Oi) i(oi)T[Dfi(i(Oi))i(8i)

S, Y, and Z are defined by

S(, y, z, (, #) ’O(--1, y, z -[- a(’-l, ), (),
Y(a, y, z, 6, #) y(-la, y, z + a(-la, #),
Z(o’, y, z, (, ) C(’-lo)y b(’-lo", #)0(-1o", y, z + a(gt-la, #), 5),

where

Oi(O,y, xo,5) fi(Ti(Oi))Tfi(ri(Oi) + Oi(Oi)Yi)
1

+ k(,(e,))g,(xo,m(e) + (e,)m,...,(e) +(e),)

+ e,,(e,),(xo,,(e) + O(th)yl,... ,N(ON) + ON(ON)YN,5),

and O(O,y, xo,5) (01(O,y, xo,5),...,ON(O,y, xo,5))T and Y(0, y, xo,5)
(Yl(O,y, xo,5),...,N(O,y, xo,5))T. Finally, C(O) is the N2 X Nl-matrix defined by

C(O) [C1 (I)1 (01)... CN(N({ON)],

and b(O, #) is the N2 N-matrix defined by

&
(o, #)#b(O, #)

Under Assumption 1.1(b), each entry of A(O) is a k-times continuously differen-
tiable function of and a Ti-periodic function of Oi for each i 1,..., N. It follows
that each entry of A(-la) is a k-times continuously differentiable function of a and
2r-periodic in each component of a. Under Assumption 1.1(c), if i(0) is a funda-
mental matrix solution of

dyi
Ai(O)yi,

dO

then there are positive constants ai and Hi such that

I[,(0),I,-1(Oo)1[ <_ He-’(-o) for 0 >_ 0o.

Here and hereafter we define the norm I111 of e by
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n

where xi is the ith component of x. The functions S" j/N G jRN. jR2 jN,
y jN X jY2 X j2 jN1, and Z N N. 2 ___, jN2 are k-times
continuously differentiable. Moreover, they are 2r-periodic in each component of a,
and

(.s)
s(o, u, z, 5,,) o(llull + 151),
Y(a, y, z, 5, #) (o(llyll 2 + 151),
z(, u, z, ,,) o(llull + 151).

Remark 1. The Floquet reduction could be used to transform (2.7) further to a
system in which the second equation becomes a perturbation of a linear system with
constant coefficients. However, the periodicity in some of the components of a might
have to be doubled in the vector field obtained by the reduction, if the reduced system
is to have real variables. In particular, the period in ai is doubled when the linear
system

dyi

dO
A()y

has a real negative multiplier. This reduction leads to no simplification in the analysis
and is not used here.

Next we introduce scalings for y and ti that depend on p.

1
(2.9) 1- - <_ p < l y p’#’w, 5= p’#

(2.10) 0

where

(2.11)

Using (2.9) and (2.10), we obtain from (2.7) the following systems of equations (2.12)
and (2.13), respectively.

(2.12)

do
d--- w + S (a, p#w, z, p#", e0p#),

dw A(-a)w + p-’#-Y (a, p’#w, z, p’#’, eop#),

dz
d-- pl [eoBz + eoZ (a, p#w, z, p"#’, eop#)]
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+ S (a, yew, z, #, e0V),dt

(2.13) dw
+

We have chosen the scalings (2.9) and (2.10) in order for the vector fields in (2.12)
and (2.13) to satisfy the following conditions. In view of (2.8), the right-hand side of
the first equation in (2.12) consists of w and the term whose derivatives with respect
to a, w, z, and # of order less than or equal to k are of the order o(p) p O. The
right-hand side of the second equation and the terms inside the brackets of the third
equation consist of the linear terms and the terms whose derivatives tend to zero
p 0. The derivatives of the nonlinear terms in (2.13) with respect to a, w, and z
satisfy similar order estimates with respect to #.

Equations (2.2) and (2.13) are special cases of the equations given at (1.8) and
(1.9), respectively, and w indicated above, they satisfy the conditions stated
in Assumption 2.1 below. Hereafter we analyze (1.8) and (1.9) under Assumption
2.1, but we note that (2.12) satisfies Assumption 2.1 (a)-(e), while (2.13) satisfies
Assumption 2.1 (a)-(c) and (f).

ASSUMPTION 2.1. (a) A() is an N1 x Nl-matrix that has the form
N

i=1

where for each i, A(O) is an (n- 1) (n- 1)-matrix each entry of which is a
k-times continuously differentiable T-periodic function of and there are hi, Hi > 0
such that ff () is a fundamental matrix solution of

dy
dO

Ai(O)y,

there are positive constants ai and H such that

II,(o)-l(Oo)ll < He-’(-) for 0 > 0o.

(b) The spectrum of Q lies in the left-half complez plane. Thus there are positive
constants/2 and K2 such that for t >_ s,

(c) The g-dimensionl vector a nd the g x g-mtri f re defined b (2.15).
(d) There are neighborhoods F1 andF of the origin inN and N., respectively,

and open intervals I and I1 such that if E N x F1 x F x I,

S E x Ii jN,
V E x Ii
Z ExI1 ___+ffN..
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For each p E 11, ,, 14;, and Z are 2r-periodic in each component of a and k-times
continuously differentiable in E. There are A(p) and Ai(p), i 1,2, such that if
0 _< ml +m2 +m3 +ma _< k

for all (a, w, z, #) E, and

O
p

o, i=1,2

__
)1 (0)

o, o,

as # ---, 0 for all a N and p 11.
(f) There are neighborhoods F1 and F2 of the origin in N1 and :tN2 respectively,

and an open interval I (0, #o) such that if E jN X F1 X F2,

8" E I N )/)" E x I N Z" E x I N

For each # I, ,S, 142, and Z are 2r-periodic each component of a and k-times
continuously differentiable in E, and there are (#) and (#), 1, 2, such that if
0 <_ ml +m2 +m3 <_ k,

OamlOWm2Ozm3
(0", W, Z, #)

OmlTm2-bm3

O0.mlOWm2Ozm
(a, W, Z,

oml--[-m2--bm3z
O0.mlOwm2Ozm (0", W, Z, #)

<_

__()11(),

_<

for all (a, w, x) e E, and

’(P’-----), ,1(#), 0

as # ---, O.
Remark 2. In what follows we assume without loss of generality that I c_ (-1, 1).

We also assume that 0 E I whenever the statement # ---, 0 appears.
We summarize the results concerning the transformations for the degenerate prob-

lem in the following proposition.
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PROPOSITION 2.2. Suppose that the conditions stated in Assumption 1.1(a), (b),
and (d) are satisfied with 0 < p < 1. Using the transformations defined by (2.1), (2.4),
and (2.6), we obtain from (1.4) the system oI ordinary differential equations (2.7) .for
a, y, and z. Further, when 1 1/k <_ p < 1, we obtain (2.12) from (2.7) using (2.9).
Equation (2.12) has the form (1.8) and satisfies the conditions stated in Assumption
2.1(a)-(e). When 0 < p < 1, we obtain (2.13) from (2.7) using (2.10). Equation
(2.13) has the form (1.9) and satisfies the conditions stated in Assumption 2.1(a)-(c)
and (f).

We recover the solutions of (1.4) from the solutions of (2.12) and (2.13) by the
transformations (2.1), (2.4), (2.6), (2.9), and (2.10). Therefore integral manifolds of
(2.12) and (2.13) generate invariant tori via these transformations. We summarize
the relation between the integral manifolds of (2.13) and invariant tori of (1.4) in the
following proposition.

PROPOSITION 2.3. (a) I] the pair w qp(a,#), z rp(a,#) is an integral
manifold of (2.12), then

xi yi(wlai) + p#Vi(wlai)qp,i(a, #), i 1,...,N,

(2.14) Xo rp((,

#--
P

is an invariant torus of (1.4) for 1- 1/k <_ p < 1.

(b)

i 1,--.,N,

xo r(a) + a(-a, o#),

is an invariant fords of (1.4) for 0 < p < 1.

qp,i(a,#) and q,i(a) are the components of qp(a,#) and q(a), respectively, which
correspond to components yi of y in (2.2).

Remark 3. In view of (2.3), the one-parameter families of invariant tori given
in Proposition 2.3 bifurcate from (1.7) when the integral manifolds tend to zero as

# -- 0.
The existence of integral manifolds for (1.8) and (1.9) under Assumption 2.1 will

be established in 3.
3. Existence of invariant tori in the perturbed system. In this section we

prove the existence and smoothness of integral manifolds for (1.8) under Assumption
2.1(a)-(e). We also prove their existence and smoothness for (1.9) under Assumption
2.1(a)-(c) and (f). The technique which we use to construct the integral manifolds is
an extension of those used in [5], [3], and [11]. The construction is done as follows.
We define a map on a closed subset of a suitable Banach space of functions, and show
that the map has a fixed point. This fixed point is an integral manifold of (1.8) or

(1.9), as the case may be.
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Let pk(m I, n) be the set of all k-times continuously differentiable map-
pings s" gim I gin endowed with the norm

Ilsll max sup (a,) "a e C I <
O+jk OaiOJ

and such that

s(a + 27rei, tt) s(a, #) for all a e tim and i 1,..., m,

where e is the ith unit coordinate vector in im. Then PCk(m I, n) is a Banach
space (cf. [2], [11]). Let Bk(I, m, n) be the closed ball in PCk(m I, JR’) with radius
A and center at the origin. For (1.8), let (t, a, #,q, r, p) be the solution of

(3.1) - ca + ,S(a, q(a, #), r(a, I), #, p), (0, a, #, q, r, p) a,
where (q, r) Bk (I, N, N) Bkh (I, m, n). We will choose I, A, and p in such a way
that this definition makes sense. Then let A(t, to, a, #, q, r, p) be the fundamental
matrix solution of

dw
(3.2) d-- A(Ft-(t’ a’ #’ q’ r, p))w, A(to, to, a, #, q, r, p) IN, xN.

The properties of (t, a, #, q, r, p) and A(t, to, a, , q, r, p) are studied in the Ap-
pendix. By Lemm 5.1-5.11, which we prove in the Appendix, (t, a, , q, r, p) and
A(t, to, a, , q, r, p) are k-times continuously differentiable with respect to t, to, a,
and , and have the following properties.

PROPERTY 3.1. There are positive constants p, Kt,m, Kl,m, Cl,m, Cl,m, H, and
such that for 0 < p p and s 0 the following holds.

0 (s a,#,q,r,p)l
(b) For2l+2mandl+mk,

I1 0+ (s’aOa ...Oa,Om ,#,q,r,p)

Kl,m, [(p),k(--8)]i (l+m)A(P)"k(l+2A)s--m --i=1

(C) For0l+mk-1,

(s, a0

(llq +

l+2m+1

i--1
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(d)

IIA(0, s, a, #, q, r, p)]1 -< K1e[fh-H()k]8.

(e) For l <_14- m <_ k,

ol+mA
(0, s, ao, #, q, r, p)_

Cl,m (-8) e(-[H+(l+m)(l+2A)l(p)k}s

l i-1

(f) For0_<14-m_<k-1,

ol+mA0+’A
(0 s, a (0, s, aOa, Oa, O#m #’ ql, rl, p)

Oaoi Oa, O#m #’ q2, r2, p)_
Ol,m (llql q2[ll+m 4- [Irl r2111+m)

(--8) e(-[H+(l+m/l)(l+2A)lA(o))s

L i--2

Estimates in Property 3.1(a)-(c) will be crucial in the contraction mapping argu-
ment used later.

To establish the existence of integral manifolds we define a mapping So (So, So,2
on BkA (I, N, N BkA (I, N, N2) by

(3.3)
fSp,1 (q, r)(a, #) G1 (s, a, #, q, r, p) ds,

So,2(q r)(a, #) a2(s, a, #, q, r, p) ds,

where

G1 (s, a, #, q, r, p) A(0, s, a, #, q, r, p)l/Y((s), q((s), #), r((s), #), #, p),

(3.4) G2(s, a, #, q, r, p) p#e-oQz((s), q((s), #), r((s), #), #, p)

(s) (s, a, #, q, r, p).

We will show that for sufficiently small IPl, So has a fixed point in k--l(N X

I,N X 7ck-(N I,N), and that this fixed point is an integral manifold of
(1.8).

In the remainder of this section we assume that 0 < p _< p is fixed and pl

is sufficiently small. By Assumption 2.1(d), we may also assume without loss of
generality that

(3.5) A(p) _< p for 0 < p _< p.
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We summarize the results, which concern some estimates associated with G1 (s, a, tt, q, r, p)
and G2(s, r, i.t, q, r, p), in the following lemmas. The proofs are given in the Appendix.

LEMMA 3.2. For 0 <_ +m <_ k there is a positive constant K such that for s <_ O,

(3.6)

(3.7)

LEMMA 3.3. For 0 <_ + m <_ k 1 there is a positive constant C such that for
s<_O,

(3.s)

O+’G Ot+,G
O0.i ::-’il’Om (8, 0", , ql, r, p)

Oai, Oai, O#m
(s, a, #, q2, r2, p)

(_8) e{/31-[H+(l+m+l)(l+2A)l(P)t}s

L i=0

(3.9) <- CAu(p)tk-m (Ilql qelI+. + fir1

(ptt)i+l(_s) e[O.-(l+m+l)(P)t(l+2A)]
L i=0

Now we are ready to state and prove one of the main results.
THEOREM 3.4. Under Assumptions 2.1(a)-(d), there is Po > 0 such that for

0 < p <_ Po So, defined by (3.3) and (3.4) maps BkA (I, N, N)x BkA (I, N, N2) into itself
and has a unique fixed point (qp, rp) in the closure of BA(I,N, NI) x BkA(I,N, N2) in

7)ck-1(N x I,N) x :Pck-l(lig x I,jN). (qp, ro) is an integral manifold of (1.8)
such that, if O <_ + m <_ k-1,

(3.10) ol+mrp
OaOt. (a, t) ---* 0
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as # ---, O. Moreover, qp and rp satisfy the system o.f first-order quasilinear partial
dierential equations

(3.11)

Oqp [w + ,(a*, qp, rp, #, p)] A(-la*)qp + W(a*, qp, rp, #, p),
Oa

o [ + s(*, q,, ,, p)] p, [Q + z(*, q, ,,, p)]
Oa

(at a a*). In addition, under Assumption 2.1(e),

(3.12) qp(a, #) --- 0 as # ----, 0 for all a E N.

Proof. Choose Po such that 0 < Po <_ pl and for 0 < p _< Po,

(3.13) 1 >_ 2[H + k(1 + 2A)]A(p),

(3.14) f12 _> 2k(1 + 2A)
A(p)
P

(3.15) KAy(p) +1
_< A, j 1,2,

ki=o

(3.16) CAy(p)
+1

__< , j 1,2.
Li=O

By Lemma 5.1, (3.13), and (3.14), Sp(q, r) :PCk(N X I,N X :)Ck(N X I, N2
(cf. [11]). By Lemma 3.2 and (3.15), Sp(q,r) BA(I,N, N1) BkA(I,N, N2). By
Lemma 3.3 and (3.16), Sp is a contraction in :PCk-I(N I, N) pC-I(N
I, N.). The existence of a pair (qp, rp) now follows from these facts.

It is shown in [3] that such a pair (qp, rp) defines an integral manifold. However
the proof is easy and we include it for completeness. It is easily shown that

(s, (t, a, #, q, r, p), #, q, r, p) (s + t, a, #, q, r, p),

A(0, s, (t, a, #, q, r, p), #, q, r, p) A(t, s + t, a, #, q, r, p).

It follows that

q((t), ) A(t, s + t)l/((s + t), q((s + t), ), r((s + t), #), #, p) ds

A(t, s)14;((s), q((s), #), r((s), #), #, p) ds,

r(O(t), #) e-QSZ((s + t), q((s + t), #), r((s + t), #), #, p) ds

e(-z((), q((), .), (e(/, .),., ) a.
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This shows that

a (t a, #, q, r, p), w q((t, a ,#,q,r,p),#), z r((t,a,#,q,r,p),#)

is a solution of (1.S) (cf. [1]). Thus (qp, rp) is an integral manifold. Moreover, by
Lemma 3.2,

ol+mrp
__
A#k-m

for 0 _< l+ m < k- 1. Now (3.10) follows from (3.17). Equation (3.11) follows
from the fact that the manifold defined by w qp(a, #), z rp(a, #) is an invariant
manifold of (1.8) (cf. Part I). When )/V and Z satisfy Assumption 2.1(e), we consider
the restriction of Sp to the closed subspace of PCk(jN X I, gl XOk(:N X I, :N.
consisting of all (q, r) such that

as # ---* 0 and obtain (3.12).
COROLLARY 3.5. Under Assumption 1.1, .for 1 1/k <_ p < 1, there is a 1 > 0

such that for fixed 5 E (0,51), (1.4) has a Ck-1 invariant torus given by Proposition
2.3(a) and Theorem 3.4. The invariant tori are (k- 1)-times continuously differen-
tiable in 5-P, and they bifurcate from the invariant torus of the unperturbed system
defined by (1.7).

The construction of an integral manifold of (1.9) is similar. Let TaGk(m, jn) be
the Banach space of all k-times continuously differentiable mappings s m n
such that

and for each i- 1,..-, m,

+ : e

Let B(m, n) be the closed ball in 7aCk(jm, Jg") with radius A and center at the
origin. Let (t, a, q, r, #) be the solution of

do"
(3.18) d- w + S(a, q(a), r(a), #), (0, a, q, r, #) a,
where (q, r) e BkA (N, N) BkA (N, N2). Then let h(t, to, a, q, r,/z) be the fundamental
matrix solution of

dw
(3.19)

dt
A(-l(t, ao, q, r, #))w, A(t0, to, a, q, r, #) IN1 NI"

We define a mapping Su (S#,I, S#,2) on BkA(N, N1) x BkA(N, N2) by
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(3.20)

where

fS,1 (q, r)() el(s, a, q, r, It) ds,

q.

(3.21)

We will show that for all sufficiently small # > 0, S has a fixed point in Pck-l(N,
gl) X PCk-I(N, N2) and that this fixed point is an integral manifold of (1.9).

THEOREM 3.6. Under Assumptions 2.1(a)-(c) and (f), there is #o > 0 such that
for 0 < o S,, defined by (3.20) and (3.21), maps B(N,N) x B(N, N2) into

itself and has a unique fixed point (q,, r,) in the closure ofB(N, N1) xB(N, N2) in

PCk-(N,N’) x Pck--l(N,N). (q,r,) is an integral manifold of (1.9) such
that if O k- 1

Oro, o,Oa Oa

as p O. Moreover, q, and r, satisfy the system of first-order quasilinear paial
differential equations

Oa

Oru [w + S(a*, q, r, It)] # [Qrt + Z(a*, q, r, It)]Oa

(ata=a*).
Proof. One derives estimates similar to those given in Lemmas 3.2 and 3.3 using

Property 5.13 given in Appendix and then repeats the argument in the proof of
Theorem 3.4. D

COROLLARY 3.7. Under Assumption 1.1, for 0 < p < 1, there is a 1 > 0
such that for 0 < 5 < 51, (1.4) has a Ck-1 invariant torus given by Proposition
2.3(b) and Theorem 3.6. These invariant tori bifurcate from the invariant torus of
the unperturbed system defined by (1.7).

Remark 4. If e 0(-p and 1- 1/k <_ p < 1, and w qp(a, It), x rp(a, It) is an
integral manifold of (2.12) whose existence is proven in Theorem 3.4, then by (2.9),

(3.22) y pItqv(a, It), z rp(a, It), 5 pIt

is an integral manifold of (2.7). Also, if e o5-p and 0 < p < 1, and w q(a),
x r(a) is an integral manifold of (2.13) whose existence is proven in Theorem 3.6,
then by (2.10),
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v z

is an integral manifold of (2.7). The integral manifolds for the systems of degenerate
type (1.12) and (1.13) are at most Lipschitz continuous in 0 and continuous with
respect to parameters, whereas (3.22) is (k- 1)-times continuously differentiable in 0
and 6, and (3.23) is (k- 1)-times continuously differentiable in 0.

4. Asymptotic behavior of solutions near integral manifolds. In this sec-
tion we study the behavior of solutions of (1.8) in a neighborhood of the integral man-
ifold w qp(a, #), z rp(a, #). We assume that I C + and show that the integral
manifold is asymptotically stable for small p > 0 in the sense that there is a Pd > 0
such that for each p E (0, Pd) and # E I, there is a neighborhood of the integral man-
ifold such that any solution of (1.8) through a point in the neighborhood approaches
the manifold at a exponential rate in time (cf. Proposition 4.4). This leads to the
following conclusion. For all small 6 > 0, there is a neighborhood of the unperturbed
torus (1.7) such that the distance between any solution of (1.4) through a point in
the neighborhood and its projection onto the torus defined by (2.14) decays at a ex-
ponential rate in time (cf. (4.33)). This result is stated in Theorem 4.5. We present
similar results concerning the behavior of solutions of (1.9) near the integral manifold
w q,(a), z rt,(a and the behavior of solutions of (1.4) near the corresponding
invariant tori in Proposition 4.7 and Theorem 4.5.

Let

w u + qp(a, z v + r(a, t).

Then (1.8) becomes

d- w + S0(a, u, v,#,p),

du
d-- A(fl-la)u + U1 (a, u, v, #, p)u + U2(a, u, v, #, p)v,

dv
d--- p#Qv + V1 (a, u, v, #, p)u + V2(a, u, v, #, p)v,

where

,So(a, u, v, #, p) S (a, u + qp(a, #), v + rp(a, #), #, p)

Y]((T, t.t, p) -- Sl ((Y, U, V, ].t, p)U + S2 (0", U, V, , p)V,
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and

S(a, u, v, #, p) -w (a, su + qp(a, #), sv + rp(a, #), #, p) ds,

S2(a, u, v, #, p) -z (a, su + qp(a, #), sv + rp(a, #), #, p) ds,

OW
Ul (a, u, v, #, p) -w (a, su + qp(a, #), sv + rp(a, #), #, p) ds

Oq (, )Sl(, u, , ,, p),
Oa

U2(a, u, v, , p) (a, su + qp(a, ), sv + rp(a, ), ,, p) ds

Oqp
o (’ ,)s(, u, , , ),

(. . . . o) (. + o(, ). + o(, ). .)
o (’ .ls(. . .. ).

OZ
v(, , v, ,, ) , ds

o (, )s(,,, ,, ).Oa

Denote by Sn(X,) the open ball of radius in n centered at x. Choose
neighborhood of the origin in N+N, which we call , such that

(4.2) S (o, A) SN, (o, A) + ) c F F.

Then for p E (0, Po), ,0, U1, U2, V1, and V2 are defined and continuously differentiable
in N X X I. Choose a positive number o such that

(4.3)

For # e I, p e (0, po), and (u,v) e SN,+N(O,o),

(4.4) I[o(, u, v, , p)ll - A(p)#,

(4.5)
u,(, , , , p)II _/1 (P) -1- /(P)kA,

IIv(, , , , p)ll

_
A2(p)p# 4- A(p)#kA,

1,2,

i= 1,2.
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Let

() o(, *, u*,,*,,, p),

() (, o*, *, *,,, p),

() (, *, ., ., , p)

be the solution of (4.1) with initial value

a(0, a*, u*, v*, t, P) a*,

v(0, a*, u*, v*, , p) v*.

u(0, a*, u*, v*, t, P) u*,

If (u*,v*) e Sgl+g2(O, eo), there is tl > 0 such that (4.6) exists and (u(t),v(t)) e
SN1+g2 (0, 0) for t E [0, tl). Let u (t, to) .=.(t, to, a*, u*, v*, #, p) be the funda-
mental matrix solution of

du A(f-la(t, a* u*
dt

a(to, to, a*, u*, v*, , p) IN,.
We assert that .=.(t, to) decays exponentially as t increases in Lemma 4.1. The proof
of this lemma is similar to the one for Lemma 5.8 in the Appendix and is left to the
reader.

LEMMA 4.1.

u*, v*,,p)ll _< Kle-[-Hx(p)"k](t-t) for to <_ t.II=(, o *,

We can write u(t) and v(t) in the form

and now (4.4), (4.5), and Lemma 4.1 lead to the estimate

[lu(t)ll

_
Klllu*lIe-- K1 [I(P)-t- (p)#k/k] e-[’-Hx(p)ttk](t-s) (II(,)II + llv(,)ll) d8,

(4.7)

llv(t)ll gully*lie-p"t + Ku [2(P)P# +
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We prove the following two lemmas in order to show that the functions u(t)
and v(t), which satisfy (4.7), decay exponentially as t increases when and p are
sufficiently small.

LEMMA 4.2. Suppose that h is a continuous nonnegative function on the closed
interval [to, tl] such that

h(t) <_ eAl(t-t) B1 zt- C1 e(A-A1)(s-t) B2 + C2 e-A(--t)h(T) dT ds

for all t E [to, ti], where Ai, Bi, and Ci are real numbers and Ci >_ 0 for i 1 and 2.
Then

(4.8) h(t) <_ en(t-t) [B + (B2C Br)

where

1 e-n(t-t)
for all t [to, t],

n v/(A2 A1)2 + 4CC2 IA2 All + 22.,

A+A2+R max{A1, A2} + 2.,

A2 A + R A2 A + IA2 A11r= +2-,
2 2

C1C2 ds
2-

v/(A2 Ai)2 + 4CC2s

Proof. Let

(4.9) G(t) B + C e(A2-A)(s-t) B2 + C2 e--A(--t)h(T) dT ds.

Then

(4.10) h(t) <_ eA (t-to)G(t).

On the other hand, G(t) is twice continuously differentiable on (to, t). Moreover,

(4.11) [ ti -A2(-t) h(T) dT]G’(t) C1e(A-A)(t-t) B2 + 62 e

Differentiating (4.11) again and using (4.10), we find that

(4.12)
G"(t) (A2 Ai)G’(t) + CC2e-A(t-t)h(t)

_< (A2 A)G’ (t) + CIC2G(t).

Let
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G(t) er(t-t)H(t).
Then using (4.12), we obtain

H"(t) + TH’(t) _< 0.

It follows that

H’(t) <_ H’(to)e-n(t-t)

and

(4.14) H(t) <_ H(to) + H’(to)

From (4.9) and (4.13), we find that

1 e-7(t-t)

(4.15) H(to) G(to) B1.

From (4.11), (4.13), and (4.15), we obtain

(4.16) H’(to) G’(to) rH(to) B2C1 Blr.

On the other hand, according to (4.10) and (4.13),

(4.17) h(t) <_ eAl(t-t)a(t) <_ e(Al+r)(t-t)H(t).
Now (4.8) follows from (4.14), (4.15), (4.16), and (4.17).

LEMMA 4.3. Suppose that hi and h2 are continuous nonnegative functions on the
closed interval [to, tl] such that for t E [to, tl],

hi(t) e-al (t-to) 51 4. 51 eal (8--tO) [h (8) + h2(8)] d.

where ai, bi, and ci are real numbers and ci O. Then for t [t0, t l,

(4.18) hi(t) < e-R(t-t) [|bl 4- (b2cl blrl)
1 e-R(t-t)|]

k R j

(4.19) h2(t) < e-R(t-t) [b2 4- (blC2 b2r2)
1 e-R(t-t)]

where
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rl
al-Cl-(a2-c2)+R al Cl (a2 c2) + lal Cl (a c2)1

2 2

a c (a c) + R a2 c2 (al Cl) + la Cl (a2
2 2

Ro a c rl a2 c2 r2 min{al Cl, a2 c2} -0,

Cl C2 ds:0
v/[al cl (a2 2)] 2 + 4CLC28

+o,

+/:o,

Proof. It can easily be shown that h and h2 satisfy

(4.20) h (t) _< e-(-c)(t-t) b + c e(a-c)(s-t)h2(s) ds

(4.21) h2(t) _< e-(a-c)(t-t) b2 + c2 e(a-c)(s-t)h(s) ds

Substituting (4.21) in (4.20), we obtain

Set

h(t) <_ e-(a-c)(t-t) b + Cl e[a-c-(a-c)l(s-t)

x b + c e(-)(-t)h(T) dT ds

A -(a c), B b, C c, i 1, 2.

Now (4.18) follows from Lemma 4.2. A similar argument leads to (4.19).
We set

(4.22)

al 1 (P)k(2A + 1 + 0)H,

Cl K1 [/1 (fl)+

c2 K2 [A2(p)p# + A(p)#kA]

Then for all sufficiently small p > 0, al -cl (a2 -c2) is positive and bounded away
from zero for all tt E I uniformly. Ro now becomes
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(4.23)
1 ds

Ro a2 c2 clc2 v/fal Cl (a2 c2)l 2 + 4CLC2S

Since

ClC2 :pitK1K2 [)l(p)-}-)(p)itkA] [2(P)q-(P)itk-lA],p
and the integral in (4.23) is bounded, there is a O/d > 0 such that for all small p > 0,
R0 defined by (4.22) and (4.23)satisfies

(4.24) Ro > pitOZd

for all it E I. On the other hand,

bl + b2 + (b21 blrl + blc2 b2r2)
1 e-Rt

R

b [1 + (c2 rl) R +b2 1 + (Cl- r2)

Ilu*llK1 [1 + (c2 -F1) R + IIv*llK2 1 + (Cl r2)

It is easily seen that there is L1 > 0 such that for all small p > 0,

(4.25) maX {Kl [l + (c2 rl R
,Ke 1+(cl-r2)

for all it E I and t > 0. It follows from Lemma 4.3 that

1 e-Rt

R

Ilu(t)II + Ilv(t)l] _< e-nt [bl -t- b2 -t- (b2c blrl + blC2 b2r2)--

<_ L1 (llu*ll + IIv*ll)e-p"aat.

For all sufficiently small p > 0, if

(u(t),v(t)) e SN+N.(O, eo) for all t e [0, t).

For such u* and v*, a(t), u(t), and v(t) exist and (4.26) is valid for all t e [0, cx) (cf.
[10]). In particular u(t) and v(t) decay exponentially. We summarize this result in
terms of solutions of (1.8) in Proposition 4.4.
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PROPOSITION 4.4. Suppose that

, () ,(, ,*, *, z*,,, ),

(a.e7) o ,() (, *, o*, *,,, p),

() z(, o*, *, *, , p)

is the solution of (1.8) with the initial value

(4.28) a(0, a* w* z* a*,,P)
z(O, a* w* z* z*,#,P)

w(O, a*, w*, z*, #, p) w*,

Then there are positive constants Pd, Old, d, and L1 such that for all 0 < p < Pd, if

then (4.27) exists for all t >_ 0 and

(4.29) IIw(t) qp(a(t), /)]1 + I[z(t) rp(a(t), I)11

Proposition 4.4 now enables us to determine the asymptotic behavior of solutions
of (1.4) near the invariant torus defined by (2.14). Let ’ denote the set of all points
(x0, xl,..., XN) in M+N2 given by

. (02-1 * a u --1 , ,
1,... N,x a + p # O(w a )w,

(4.30) . Gd* + a(a-o*,,o) for 0 < , < d I1*11 + I1*11 < ,
where the relationship between 6, p, #, n, and u is given by (2.9) and (2.11). Then

’ is a neighborhood of the unperturbed torus defined by (1.6). In view of (3.10) and
(3.12), we may assume that for p E (0, pa) and # E I,

d NIIq(, )11 / IIr(, )11 < - for all a e

We will show that when 5 > 0 is sufficiently small, the solution of (1.4) through any
point in ’5 is attracted to the invariant torus defined by (2.14). Let

(4.31) xi i(t) i (t, x0, xl,’", Xv, 5), 0,..., N

be the solution of (1.4) with the initial value

* * 6)= * i=0,... N.(4.32) i (0, x0, x,..., Xv, xi,

Let
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L2 max sup
<i<N o<o<T

If xi,* i --0,... N, are given by (4.30), then

Co(t) (t) + (-(t),

i 1,...,N,

where a a(t), w w(t), z z(t), defined in (4.27) and (4.28), is the solution of
(2.12) with # 5-P/p. It follows that

N

I1,(t) [?,(w-l,(t))+ P#’(w-a’(t))qp,’(a(t) #)] II
i--1

+ IIo(t) [rp(a(t), it) + a(-a(t), eoPit)] II
N

<_ pitL2E II,(t) q,,((t), )11 + IIz(t) ,((t), t)ll
i----1

<_ (pitL + 1) L (11w* qp(a*, )11+ IIz* ,(*, )11)

We summarize this result in Theorem 4.5.
THEOREM 4.5. Under Assumption 1.1 with 1- 1/k _< p < 1, there are positive

numbers 5d, d, ad, and Ld with the following properties. We define a region
by (4.30). Then jz is a neighborhood of the unperturbed torus defined by (1.7). For
0 < d the solution of (1.4) through a point in is attracted to the invariant
torus defined by (2.14) in the following sense.

(4.33)

N

lie,(t) [,(F,(t))+ pito,(w-la,(t))qp,,(a(t) it)] II
i----1

+ IIo(t) [,((t), ) + a(-la(t), eopit)] II

In (4.33), ,(t), i= 0,-.. ,N, are the solutions of (1.4) defined in (4.31) and (4.32).
a(t), w(t), and z(t) are the solutions of (2.12) defined in (4.27) and (4.28). Here the
relationship between x, 0,..., N, and (a*, y*, z*) is given in (4.30). (qp, r) is
an integral manifold of (2.12) that defines an invariant torus of (1.4) via (2.14).

Next we study the behavior of solutions of (1.9) near the integral manifold w
q(a), z rt, (a). Let

w u + q(a),

z v + r,(a).
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Then (1.9) becomes

(4.34)

where

do"
d- w + So(a, u, v, #),

du
A(t-la)u + UI (a, u, v, #)u + U2(a, u, v, )v,

dv
d- #Qv + V1 (a, u, v, #)u + V2(a, u, v, #)v,

S0(a, u, v, #) 8(a, u + q,(a), v + r(a), #)

(o, ) + & (o, , v, ,)u + &(o, u, , ,)v,

(,) s(o, q,(), (o), ),

OS
Si (a, u, v, #) w (a, su + q. (a), sv + r. (a), #) ds,

(a, su + q. (a), sv + r. (a), ) ds,
OS

&(,u,,)

and

10W
(lSl(.. ...
Oq.OW

(. + q.(l, + .(. & ()&(... ).(...)
OZ

(a, su + q.(a), sv + r.(a), .) ds (a)S(a, u, v,y(,,,)

w:(, u, , ,) -, (, + q,(), + ,(), ,) d ()&(, u, v,

Choose a neighborhood of the origin in N+N: that satisfies (4.2). Then for
I, S0, U1, U2, V1, and V are defined and continuously differentiable in N X O.

Choose a positive number a0 that satisfies (4.3). For I and (u, v) SN+N(O, eo),

(4.35) IISo(a,u,v,#)ll <- A(#),

IIU(, , v, )II /1 () -]-/()A, 1, 2,
(4.36)

Let
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=(t) =o(t,*,*,*,.),

(4.37) u u(t) u(t, a*, u*, v*, #),

v(t) (t, *, *, *,)

be the solution of (4.34) with initial value

o-(o, o-*, u*, v*,,) *, u(O, o*, u*, ,*,,) u*, v(O, o-*, u*, *, ,) v*.

If (u*,v*) E _NI+N2(0, g’0), there is tl > 0 such that (4.37) exists and (u(t),v(t))
SN+N2(O,o) for t [0, tl). Let u ..(t, to) .=.(t, to, a*, u*, v*, #) be the fundamen-
tal matrix solution of

du
d- A(2-1a(t’ a*, u*, v*, #))u,

’’(;0, tO, O’*, U*, V*, ) INN.
We may assume without loss of generality that for # I,

A(#) < wi, i 1,...,N.

It is shown in Lemma 4.6 that .=.(t, to) decays exponentially as t increases. Again its
proof is similar to the one in Lemma 5.8 and is left to the reader.

LEMMA 4.6.

ll.b.(t, t0, or*, u*, v*, #)11 --< K1e-[-()H](t-t) for to <_ t.

Write u(t) and v(t) in the form

(t) _=(t. o)* + (t. ) [Ul(O(). (). v(). )u()

+v((). (). ()..)()1 d.

V(t) "Qtv* + .Q(t-s) [Vl ((8), u(8), v(8), )(8)

+U((), (), (),.)()] d.

Equations (4.36), (4.37), and Lemma 4.6 lead to

Ilu(t) K1 I[u* lie-[-()H]t

o

IIv(t)ll _< g211v*lle-.* + K2 [2(m)m + (.)A] e-.-(*-) (llu(s)ll + IIv(s)ll) ds.

Now let
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(4.38)

al fll A(#)H, b Kx Ilu*ll,

K1 [(,)+ (,)a],

K [(,), + (,)a].

Then using an argument similar to the one leading to (4.24) and (4.25), we conclude
that there is a 5d > 0 such that for all small it > 0, R0 defined by (4.23) and (4.38)
satisfies

for all it E I, and that there is L > 0 such that for all small it > 0,

R K2 1 + (el r2)
1 -Re-nt -<

for all t > 0. It follows from Lemma 4.3 that

(4.39)
-nt [bl + b2 + (b2cl blr + bc2 b2r2)

For all sufficiently small p > 0, if

(*, *) s+ o, -(u(t),v(t)) e SNI+N2(O, eo) for all t e [0, tl).

For such u* and v*, a(t), u(t), and v(t) exist and (4.39) is valid for all t e [0, (x)) (cf.
[10]). In particular u(t) and v(t) decay exponentially. We summarize this result in
Proposition 4.7.

PROPOSITION 4.7’. Suppose that

(4.40)

(t) (t, *, *, z*, ,),

(t) (t, *, *, z*, ,),

z z(t) z(t, *,

is the solution of (1.9) with the initial value

(4.41)

a(0, a* w* z* p)= a*

w(0, a* w* z* )= w*

z(0, a* w* z* t)= z*
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Then there are positive constants itd, (d, gd, and L1 such that for all it E itd, if

then (4.40) exists for all t > 0 and

IIw(t) qt (a(t))l[ + IIz(t) r,

_< L (llw q.()ll / IIz r.()ll)

Next we study the behavior of solutions of (1.4) near the invariant torus defined
by (2.15). Let : denote the set of all points (x0, xl,..., Xg) in jM+N2 given by

* (w-la) + iti(wiai )wi 1, N,Xi i * *(4.42)
x=z*+a(-i*,o) for0Gi <2and ]]*+z*]] < ,

where the relationship between , g, , and is given by (2.10) and (2.11). Then
is a neighborhood of the unperturbed torus defined by (1.fi). In view of (3.10) and
(3.12), we may sume that for a sufficiently small 6 > 0,

ed N.]]q,(a) + ]lr,(a)} < for all a e

We will show that the solution of (1.4) through any point in is attracted to the
invariant torus. Consider the solution of (1.4) defined in (4.31) and (4.32). If x,

0,..., N, are given by (4.42), then

i= 1,..-,N,

0(t) z(t) + a(2-a(t), eoit),

and it follows that

N

i=1

/ IIo(t) [r,((t)) / a(t-la(t), eoit)] II
N

< itCL2 E I]w(t) qg,(a(t))l] + Ilz(t)
i=1

< (itCL2 + 1)([[w(t)- qu(a(t))ll + [Iz(t)- ru(a(t))[I

<_ (itCL2 + 1) 1 (llw* q,(a*)[I + Ilz* rg(a*)ll)e-’at.

We summarize this result in Theorem 4.8.
TEOEM 4.8. Under Assumption 1.1 with 0 < p < 1, there are positjve numbers

d, gd, 6d, and d with the following properties. We define a region J:e by (4.42).
Then - is a neighborhood of the unperturbed torus defined by (1.7). For 0 < 5 < d
the solution of (1.4) through a point in is attracted to the invariant torus defined
by (2.15) in the following sense.
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(4.43)

In (4.43), i(t), i= 0,...,N, are the solutions of (1.4) defined in (4.31) and (4.32).
a(t), w(t), and z(t) are the solutions of (1.9) defined in (4.40) and (4.41). Here the
relationship between x, i 0,..., N, and (a*, y*, z*) is given in (4.42). (q, %) is
an integral manifold of (2.13) that defines an invariant torus of (1.4) via (2.15).

5. Appendix.

5.1. Properties of flows along periodic surfaces. In this Appendix we will
prove a number of technical lemmas that are used to prove the existence of integral
manifolds in 3. Specifically, in Lemmas 5.1-5.11, we will develop several properties
of (t, a, It, q, r, p) and A(t, to, a, #, q, r, p), which are defined as solutions of (3.1)
and (3.2), respectively, under Assumption 2.1(a)-(e). These properties are used in
the existence proofs for (1.8). Similar results for (t, a, q, r, It) and h(t, to, a, q, r, It),
defined as solutions of (3.18) and (3.19), respectively, under Assumption 2.1(a-c) and
(f) are stated in Property 5.13 and they will be applied to (1.9).

Choose A such that

SN,(0, A) C F, i= 1,2.

Recall that (t, a, It, q, r, p) is a solution of (3.1) where S satisfies Assumption 2.1(e)
and (q, r) e BkA(N X I, 1igl BkA (1ig I, g2). For the following Lemmas 5.1-
5.11 assume that (q, r), (ql, rl), (q2, r2) e BkA (//N I, 1iN1 Bk(N I, g. ). The
proof of Lemma 5.1 is left to the reader.

LEMMA 5.1. For each p E I1, (t, a, It, q, r, p) exists for all t , a tN,
and It I, and it is k-times continuously differentiable with respect to t, a, and It.
Moreover, for i 1,.-., N,

(t, o + e,, , q, , p) (t, ,o, , q, , p) +
Define

0 (t,a0 0-T t, s, a, It, q, r, p --a-gao It, q, r, p Oao (s, a, It, q, r, p).

LEMMA 5.2. For all t, s ft,

(5.1) liT(t, s, o-, t, q, r, p)l[ -In particular, for t <_ O,

Odp
(t a, It, q, r, p)yj6o

_
e-’k(P) (l+2A)
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Proof. x T(t, s, a, It, q, r, p) satisfies the following linear system.

dx
d-- R(t)x, T(s, s, a, It, q, r, p) I,

where

R(t)
OS

((t), q((t), It), r((t), It), It, p)

08 Oq
+w((t), q((t), It), r((t), It), It, p)a ((t), It)

OS Or+-z ((t), q((t), It), r((t), It), It, p)-a ((t), It),

Therefore

(t) (t, ,, q, p).

T(t, s, a It, q, r, p) I + R(u)T(u, s, a It, q, r, p) du

and it follows from Assumption 2.1(d) that

liT(t, s, a, It, q, r, P)II -< 1 + A(p)Itk(1 + 2A)liT(u, s, a, It, q, r, p)[[ du

Now (5.1) follows from Gronwall’s inequality (cf. [1]) and (5.2) follows from (5.1) by
setting s 0. [3

LEMMA 5.3. For 2 < + 2m and +m < k there is a positive constant Kl,m such
that for t < O,

(5.4)

0g+’
(t, aoo,,.
l-b2m-1

i=1

[A(p)Itk(--t)] } e--(l+’O(P)"(+2A)t

Proof. It is easily shown inductively that for 2 < + 2m and + m < k

X
0’+ (t, a0Oal Oa OItm It, q, r, p)

satisfies the following nonhomogeneous linear system:

dx
d- n(t)x + f(il,...,it,m) (t),

Oaox... Oao aIt, (0, cr, It, q, r, p) O.
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System (5.5) has the following properties.
PPOPEITY 5.4. Matrix R(t) is given by (5.3). f(il,...,i,,m)(t) is a (finite) sum of

terms of the form

Oml+m2-t-m3+m4.
al am1BI"" BmzCl C,a,

where

Oral+m2Zt-m3+m4 Oml-t-m2Tm3Tm4

ooo.OzO OlO.OzO
((t), q((t), ), ((t), ), , ),

0,.+’,
O#ml,.

(t), V- 1,.’., ml,

0.,+xz, q
Bu Oaz,#x.,

((t), tt)bu,1 b,z, u 1, m2,

(t), v 1,’", u2,u,

u I, , m3,

O13,u,v +m3,u,v
Cu’v O0"’3,u ,1"’" 00"3, v13,,

0 <_ mi _< +m, 1,...,4,

o.... (t), v 1,...,u3,u,

l <_ml +m2+m3+m4 <_l+m,

1 <_ l,v + ml,v, 12,u,v + m2,,v, 13,u,v + m3,u,v <_ + m 1,

m4 + ----ml,v -I- m2,u,v X2,u m3,u,v - X3,u
v=l u=l \v--1 \v--1

Note that

=m.

m2 m3 m2 m3

(5.6) if m4 + E X2,u + E X3,u =0 then m + E U2,u + E U3,u >_ 2.
u=l u=l u:l u=l

By the variation of constants formula (cf. [71, [8]),

0+’ f0(5.7) 00./01 :::-----ilO. (t,a,#,q,r,p) T(t,s,a,#,q,r,p)f(il,...,i,m)(s)ds.

Now we prove (5.4) inductively. By Lemma 5.2, Property 5.4, and (5.6), there is

K2,o > 0 such that for t _< 0,
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By Lemma 5.2 and (5.7)

0

<_ K2,0A(p)ttk (-t)e-2"(O)lzk (l+2A)t.

Again by Property 5.4, there is K0,1 > 0 such that

and by Lemma 5.2 and (5.7),

0 (t, ao

Thus (5.4) holds for + 2m- 2.
Assume that (5.4) holds for all and such that 2 < +2 and + < +m-1.

By Lemma 5.2, Property 5.4, and (5.6) there is Kl,m > 0 such that for t < 0,

/+2m--2

lls<,,,... ,,,,,,> (t)II <- Kt,,A(P)#k-m E [/(p)"k (-t)] e-- (l+m)A(P)l(1-k2A)t
i--0

Now (5.4) follows from (5.7), El

LEMMA 5.5. For 0 <_ -q- m <_ k- 1 there is a positive constant Kt,. such that

fort <0,

(.8)

[A(P)#k(--t)] } e-(l+m+l)&(P)l(l+2A)t

Proof. The proof is by induction. Let

1 (t) (t, t70,/t, ql rl P),

Since

a p)(t) (t, u, q,,’,
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where

1 (t) 2(t) [-1 ,2] ds,

S1 S(i (s), ql((s), It), rl (1 (s), It), It, p),

s: s((),q((), ,), :((), ,), ,, ),
and

IISl -2[[ ,(p)Itk [l[ql qllo + Ir rllo + (1 + 2A)[l(s) 2(s)1]
it follow8 that

IlOx(t) 2(t)11 A(p)k (llq q2ilo + lirx 2110)

o
+ A(p)Itk(1 -t- 2A)I[1 (s) ()11 ds.

By Gronwall’s inequality

II(t) (t)ll

(p)Itk ([Iql q2110 -’[" I[’F1 r2110) lfe--A(p)p,l(l+2A)$
A(p)#k(l + 2A)

< (llqx qllo / IIr rl[o) A(P)itk(--t)
Therefore (5.8) hold8 for + m 0.

It i8 easily shown that for 1 _< + m _< k- 1,

0+- 0+-

satisfies the following nonhomogeneous linear system:

dx
R(t) +

01+m2+ (o) oo ::oo, (o) 0.

System (5.9) has the following properties.
PROPERTY 5.6.

R (t) --ffa ( (t), q((t), it), ri (l (t), #), it, p)

0,. Oql--w( (t), ql (1 (t), It), rl (1 (t), ), It, P)--(1 (t), It)

OS Ori+b-((t), ((t), ,), ((t), ,), ,, p)-j((t), ,)
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and f(,,...,h,m)(t) is a (finite) sum of terms of the forms

(5.10) oml+m.+m3+m4St al t B t 2 C2 2 Ct tgm.C1 u-1 (clu Cu) u.+.l Cm3,OOwm.Oz.30#m4 a,

(5.11)

(5.12)

Oml+mg.+m3+mt
(5.13)

OffmOwm.Ozm30#m4

Om+m2+m+m’$2 ) a’"a2 B2t ...B2m2C...C2m.

where for i 1, 2,

0 <_ mi _< +m, i 1,..-,4, 1 _< ml +m2 +m3 +ma _< +m,

ma + mr,,, + me,,,,, + X,,, + ma,,,,, + Xa, m.
v=l u=l \v=l \v=l

In (5.10), (5.11), and (5.12)

1 <_ ll,v + mt,, <_ + m- 1, v 1, , ml,

1 < 12,u,v + m2,u,v <_ + m 1, u 1,..., m2, v 1,..., u2,,

1 <_ 13,u,v + m3,u,v _< + m- 1, u 1,..., m3, v 1,-.., u3,.

In (5.13)
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1

_
ll,v -}-ml,v

_
+ m, v 1,..., ml,

1 <_ 12,u,v -[ m2,u,v

_
+ m, u 1,..., m2, v 1,..., u2,u,

1 <_ 13,u,v -m3,u,v

_
+ m, u 1,..., m3, v-- 1,..., u3,u.

On the other hand, by the variation of constants formula,

0’+’ (t, ao (t, a
Oaoil Oaoi O#m #, ql, rl, p) Oaoil Oaoi O#m #, q2, r2, p)

T(t, s, (r0, #, ql, rl, P)i,...,i,,m)(S)ds.

Now assume that (5.8) holds for all and such that + <_ + m- 1. By
Lemmas 5.2 and 5.3, and Property 5.6 there is K,m > 0 such that for t _< O,

(5.15) l+2m }E [/(P)itk(--t)] e-(l+m+X)A(P)ttk(l+2A)t
i=0

Now (5.8) follows from (5.14) and (5.15).
Next we will state and prove some properties of A(t, to, a, #, q, r, p), which is

defined as the fundamental matrix solution of (3.2), where n(o) satisfies Assumption
2.1(a). The proof of Lemma 5.7 is left to the reader.

LEMMA 5.7. For each p E 11, A(t, to, a, #, q, r, p) exists for all t, to
JtN, and # I, and it is k-times continuously differentiable with respect to t, to, a,

fori=l... Nand #, and Ti-periodic in ai
Let

max{Hi},
I<i<N

1 min.{ai},
I<i<N

H= max
I<i<N d

By Assumption 2.1(d), there is pl > 0 such that for ]p[

_
Pl,

(5.16) A(p)#k <
__

for all it I,
-H

and

(5.17) A(p) < wi, i= 1,... ,N.

In the remainder of this section we assume that [p[ _< pl.

LEMMA 5.8. For to <_ t,
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(5.18) IIi(t, to, o, , q, r, P)ll - Kle-[l-H(P)uk](t-t)"

Proof. Let Ai(t, to, a, #, q, r, p) be the fundamental matrix solution of

(5.19)

dwi
dt Ai(w-li(t, a, #, q, r,

A(to, to, a, #, q, r, p) I.

By (5.17)

d. (t, a, #, q, r, p) > 0.
dt

Therefore we can take Oi wi(t, a, #, r, s, p) as an independent variable in (5.19)
and obtain

dwi dt

dOi dOi dt

wi + Si ((t), q((t), #), r((t), #), #, p) Ai(Oi)wi

8i((t), q((t), #), r((t), #), it, p) Ai(Oi)wi.Ai(Oi)wi
wi + Si((t), q((t), it), r((t), it), it, p)

By the variation of constants formula, Ai, as a function of 0i, is given by

A,(O)- (O,)-(O)A(O)

8i ((t), q((t), it), r((t), it), it, p)
wi + Si((t), q((t), it), r((t), it), it, p)

Ai(s)Ai(s)ds.

Suppose O/ wli(to, a, q, r, it, p). Then Ai(O/) I. Moreover for to

_
t, o

_
Oi.

Therefore

By Gronwall’s inequality we obtain

IIA(O)II <_ He

Hie-[aw-(a+H, IIAllli(P),k](O-Ol/(w-;(Plt1

Since
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i(t, a, #, q, r, p) i (to, a, It, q, r, p)

wi(t to) + 8i ((s), q((s), #), r((s), #), #, p) ds

> (- (p))(t- to),

it follows from (5.16) that for to <_ t,_
Kle-[l-H(p)ttl(t-t)

Now (5.18) follows from the fact that

N

A(t, to, a #,q,r,p)=Ai(t, to a tt, q,r,p)
i--1

LEMMA 5.9. For 1 <_ + m <_ k there is a positive constant Cl,m such that for
to<t<O,

0*+’A
(t, to, a, #, q, r, p)oo

[/+2m ]
__

Cl,m [ i= (--tO) -[-HA(p)#k](t-t)-(ITm)A(p)lzk(l+2A)t

Proof. It is easily shown inductively that for 1 < + m < k

ol+mA
Oa... OaO#m

(t, to, a, #, q, r, p)

satisfies the following nonhomogeneous linear system:

d__x A(t_ldp(t, ao #,q,r,p))x + g(i ...,i,m)(t)dt
(5.21)

0t+’A
oo..,oo(to, to, o, , q, , p) 0.

System (5.21) has the following properties.
PROPERTY 5.10. g(i,...,it,m) (t) is a (finite) sum of terms of the form

OnA (fl-l(t))a-.. anbn+OOn

where
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1 <__ lv +my _< +m, v-- 1,...,n,

0

_
ln+l + mn+i

_
+ m- 1,

n+l n+l

lv l, mv m.
v--1 v--1

By the variation of constants formula,

0t+’A
(t to, a, #, q, r, p) A(t, s, a, #, q, r, P)g(i,...,i,m)(s) ds.

Now we prove (5.20) inductively using Lemmas 5.2, 5.3, and 5.8, Property 5.10, and
(5.16) and (5.22).

LEMMA 5.11. For 0 <_ + m <_ k- 1 there is a positive constant C,m such that
for to <_ t <_ O,

0+’A
(t, to a (t, to, a

Oaoix Oaoi O#m #, ql, r,, p)
Oaoi Oa, O#m #’ q2, r2, p)

(5.23) ,m (llql q21ll+m + I]rl r21ll+m)

(-to) e--[--HA(P)k](t--to)--(l+m+l)A(P)k(l+2A)to

L i--2

Proof. Let

A (t, to) A(t, to, a, #, q, r, p), A2(t, to) A(t, to, a #, q2 r2 p)

We easily show that, for 0 _< + m _< k 1,

of+reAl Ol+mA2x

satisfies the following nonhomogeneous linear system:
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dx
d-- A(fl-ll(t))x + (il,...#,,m)(t),

ol+mA1 (ol+mA2

oo oo,o,, (to, to) oo o,o,, (to, to) o.

System (5.24) has the following properties.
PPOPEPTY 5.12. (il,...,i,m)(t) is a (finite) sum of terms of the forms

n-i
cOnA (-Xl(t))al an b2n+l)Orn

(5.26) 2 1 2OnA (l’t-l(t))a a2 (av av av+ anbn+00.n v--1 )

(5.7)

where for i 1, 2,

OnA OnA
(t-l2 (t) )] a21 2 2

ff--’n (-
11 (t)) -n ""anbn+l,

- 01v-t-my iav Oav, ""Oav,,O/.tm’(t)’

b+
0’+1+’’+ Ai

oL....oL.o/
n+l n+l

Ely--1, Emv --m.
v--1 v--1

v-- 1,...,n,

(t to)
O#m,+

In (5.25)and (5.26)

1 <_n<_l+m,

1 <_ l, +my <_ +m, v 1,...,n,

0 <_ ln+ +mn+ <_ +m- 1.

In (5.27)

O<_n _l+m,

l <_ Iv + mv <_ + m, v l, n,

n 0 if and only if ln+l and mn+l m.

By the variation of constants formula,

(5.2s)

ol+mA1 ol+mA2
oo ooo, (t, to) o oo, (t, to)

h(t, 8, (T0, , ql, rl, P)(i,...,Q,m)(8) ds.
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Now we prove (5.23) inductively using Lemmas 5.2, 5.3, 5.5, 5.8, and 5.9, Property
5.12, and (5.16) and (5.28). rl

Recall that (t, a, q, r, #) is a solution of (3.18) where 8 satisfies Assumption
2.1(f) and (q, r) e Bk(N, jN1 X BkA(g,N2 ), and A(t, to, a, q, r, #) is the funda-
mental matrix solution of (3.19) where A(O) satisfies Assumption 2.1(a). Suppose that
(q,r), (ql,rl), (q2, r2) e SkA(g,gx) X SkA(g,g2). We only state the following
properties of (t, a, q, r, #) and h(t, to, a, q, r, ) because the proofs are similar to
those of Lemmas 5.1-5.11 and even simpler.

PROPERTY 5.13. (a) For each # E I, (t, a, q, r, #) exists for all t E i, a jN,
and it is k-times continuously differentiable with respect to t and a. Moreover, for
i- 1,...,N

(t, a + 2rei, q, r, #) (t, a, q, r, #) + 2rei.

(b) If

0-10 (t a,q,r,#) (s,aT(t, , o, , , ) o 0o ’ ’ )’
then for all t, s

liT(t, s, o, q, r, )11 e’k(")(l+2A)]t-s]"

In particular, for t _< 0,

(c) For 2 _< _< k there is a positive constant Kt such that for t _< 0,

(t,a,q,r,#)
_
gl y [()(--t)] e-/’k(")(l+2A)t.

i=1

(d) For 0 _< _< k- 1 there is a positive constant Kg such that for t _< 0,

0 0
0ff/0... 0if/0 (t, if0, ql, rl,.) 0if/0 :::0ff/0 (t, if0, q2, r2,.)

/+1

< (llql q2ll + Ilrl r21l) [,x(.)(-t)] e
i=1

(e) For each # I, A(t, to, a, q, r, #) exists for all t and to 1i, and a E N.
It is k-times continuously differentiable with respect to t, to, and a, and Ti-periodic

fori=l N.in a

(f) If

then for to _< t
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[[A(, o, o, q, r, #)1] < He-[l-HA()l(t-t)"

(g) For 1 _< _< k there is a positive constant C such that for to <_ t <_ 0,

0A a
Oai, Oat (t, to, q, r, #)_

Cl -to) e-[B-H()](t-t)-lA()(l+2A)t
"___

(h) For 0 < < k- 1 there is a positive constant C such that for to < t < 0,

0zA 0IA
0(r/, 0(r (t, to, fro, ql, rl, #) 0r/Ox.. "0r/O, (t, to, (x0, q2, r2, #)

Fl+. "1
<_ Oz (llq qllz + llrl rll) [(-t0)J.= e--[--H()l(t--t)--(l+l)X()(l+2A)t

5.2. The proofs of Lemmas 3.1 and 3.2. In this section we prove the lemmas
in 3 that lead to Theorem 3.4. Recall that G1 (s, a, u, q, r, p) and G2(s, a, #, q, r, p)
are defined by (3.4) where (t, a, #, q, r, p) and h(t, to, a, #, q, r, p) are the solutions
of (3.1) and (3.2), respectively.

Proof of Lemma 3.1.

cOl+raG1
Oal OaO#m

(s, a, #, q, r, p)

is a (finite) sum of terms of the form

(5.29) 11 + 12 l, jl + j2 m,

0 < l, 12 < l, 0 _< jl, j2 < m,

where A and ]/V are as in (3.4). The second factor of (5.29) is in turn a (finite) sum
of terms of the form

(s.3o)

where

Oml+m2+m3+m4
al amBI Bm.C Cm3
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u I, , m3,

0 _< mi _< 12 -}- j2, i 1,..., 4, 1

_
m -]- m2 + m3 + m4

_
12 + j2,

ml

v=l

ml,v -F m2,u,v + X2,u + m3,u,v - X3,u j2.
u:l \v:l \v:l

Now (3.6) follows from (5.29), (5.30), and Property 3.1(a)-(e).
Note that

ol+m2
Oal Oa,O#m

(s, a, #, q, r, p)

is a (finite) sum of terms of the form

Om Ol-Fm2
_

O#ml (Ple-p’Qs) Oal Oa,O#m2

ml+m2=m, O<_ml, m2 <_m,

where Z is as given in (3.4). Now we show inductively that, for 0 _< m,
m

O#m (P#e-p"Qs) (-1)m-1 [mpm(Qs)m- pm+#(Qs)m]

and it follows that there is H, > 0 such that for s _< O,

(5.31)
m -- I K2p#ePt2s’

m [Pm(--8)m-1 -I- pm+l#(--s)m] ep"s,

m=O,

m>O.

On the other hand, using Property 3.1(a) and (b) and an analysis similar to the one
in the first part of the proof, we obtain the estimate
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(5.32)
01-}-m2Z

o,...o,,o2
<()- [()(-)] -+2"(+

i=0

Now (3.7) follows from (3.5), (5.31), and (5.32).
Proof of Lemma 3.3.

O+G O+G1
Oa... Oa,O (s, a, , q, rl, p) Oa... Oa,O (s, a, , q, r:, p)

is a (finite) sum of terms of the form

0zl+JlA1

O0"ii,

02"-J2W2

ll+12=l, j-t-j2=m,

0 <_11, 12 <_ l, O <_ jl,j2 <_ m,

where for i 1, 2,

hi h(0, s, a, #, qi, ri, p), l/Yi W(Ti(S), qi(Ti(S), #), ri(Ti(S), #), #, p).

On the other hand,

i2,1 Oi2,12 Oj2 i2,1 i2,12 Oj2

is in turn a (finite) sum of terms of the forms

Oml+m2+maTm4i
am1 m2 Cu+l Cm3OamOw2OzaO,al 1B B1C Cl(C C)

Oml+2+m3+m4Wl al B 2 2Bu-(B B)Bu+l B2C Cm3OalOwOzO al

c c0l+,+m3+m,W " (-- av+ amlOalOwOz

OaOw2OzO, OaOwOz30,
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where

Oll,v+ml,V Ti (S), V 1," .,ml,

u 1,. , m2,

b,v 012.... +m2.... Ti
O#m2.... (8), v 1,...,u2,u,

u I, , m3,

v 1,..., U3,u,

0 <_ mi <_ 12 + j2, 1,..., 4, 1 _< ml + m2 + m3 + m4 _< 12 + j2,

ml m2 I]2,u m3 3,u

Ell,vnt-EE12,u,vnt-EE13,u,v =12,
v=l u=l v=l u=l v=l

m4 + ml,v m2,u,v X2,u + m3,u,v + X3,u j2.
v=l u=l \v=l \v=l

Now (3.8) follows from this fact and Property 3.1.
Observe that

O+G O+G:
00.il.. O0.i O#m

(8, 0", , ql, rl, p)
Oail Oaiz O#m

(8, a, , q2, r2, p)

is a (finite) sum of terms of the form

Of+m2 Zl

m + m2 m, 0

_
ml, m2

_
m.

An analysis similar to the one in the first part of the proof leads to the estimate

of+m2 Z1 ol+m2 Z2

[)(p)#k(--8)]i -(l+m2+l)A(O).k(l+2A)s

k i=0

Now (3.9) follows from (3.5), (5.31), and (5.33).
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THE EXISTENCE OF INFINITELY MANY TRAVELING FRONT AND
BACK WAVES IN THE FITZHUGH-NAGUMO EQUATIONS*

BO DENGt

Abstract. Consideration is given to the FitzHugh-Nagumo equations of bistable type. The existence of
traveling front and back waves with any finite number of pulses is proved. The speed of such a multiple
pulse wave is characterized by its number of pulses: the more pulses it has, the slower it travels. Traveling
impulse and traveling train solutions are also found. These traveling waves arise from the bifurcation of a

doubly twisted front-back wave loop. The method is based on the theory of heteroclinic loop bifurcation,
the geometric theory of singular perturbation and the Melnikov method.

Key words, traveling wave, twisted heteroclinic loop, singular perturbation, Melnikov integral

AMS(MOS) subject classifications, primary 35K57" secondary 34B99, 34C28, 34C45, 34D15

1. Introduction. Consider the FitzHugh-Nagumo equations

(1.1) vt v,, +f(v)- w, w, e(v- yw),

where f(v)=v(v-a)(1-v) is a cubic polynomial and 0<a<1/2, e>0, and y>0 are
parameters. A solution (v, w)(x, t) that is bounded over xR and R is called a
traveling wave if it is a function of one variable and there is a constant c so that
(v, w)(x, t) (v, w)(x + ct).

The simplest traveling waves might be constant, or steady-state solutions. Depend-
ing on the value of y, there are one, two, or three steady states (of. Fig. 1.1), which
are the intersections of the nullclines w =f(v) and v yw. In this paper, however, we
are interested in the case when y is greater than the critical value Yl := Vmax/fmax and
there are three steady states. We restrict our attention further to the leftmost and
rightmost stable states, which we denote by al and a2 in Fig. 1.1, respectively, and

FIG. 1.1. 3/0 is chosen so that al and a are symmetric with respect to the inflection point (/)inf,finf) of the
cubic curve w =f(v). The thickly drawn segments g and 2 on w --f(v) do not contain the extreme points but
they are long enough so that contains a =0 and the intersect point {w= wz} f) w=f(v)} and gz contains

a2 and (1, O) as interior points, respectively.

Received by the editors September 28,1989; accepted for publication (in revised form) October 30,1990.
t Department of Mathematics and Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-

0323.
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study nonconstant traveling waves connecting al and a2. The various types ofconnecting
waves considered here are as follows. A traveling wave (v, w)(x + ct) is said to be a
traveling front if

lim (v, w)(x + ct) al and lim (v, w)(x + ct) a,

exist for all x. Likewise, by a traveling back wave we mean the same limits exist except
that the first limit is a2 while the second limit is a A traveling wave solution is said
to be an impulse of a if

lim (v, w)(’r) a

An impulse of a2 is analogously defined. Last, a traveling wave solution is said to be
a traveling train if (v, w)(’) is periodic in -.

We further characterize the waves of the same type according to their numbers
of pulses contained. To be precise, choose and fix a neighborhood of each al and a:
for the equations. A traveling wave has a pulse from al if there is a closed interval
’/’0’l’’/’l such that (v, w)() arises from the chosen vicinity of al, enters into the
vicinity of a2, and only afterwards falls back to the vicinity of al as - increases from
’o to 1 (cf. Fig. 1.2). A pulse from a2 is defined similarly. A front (back, respectively)
wave is called k-front (k-back, respectively) wave if it has k pulses from al. A front
(back, respectively) without a pulse is referred to as a simple front (back, respectively).
An impulse of ai is called a k-impulse if it has k pulses from ai. A traveling train is

pulse

(a)

voru

x

(b)

FIG. 1.2. (a) One pulse (thickly drawn curve) forms when the traveling wave jumps from a given
neighborhood of a into a given neighborhood of a and only afterwards drops into the neighborhood of a
again over an interval " [%, h].

(b) When the traveling speed c > O, a 1-front here moves to the left with time.
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called a k-train if within the minimum period of the periodic traveling wave there are
k pulses. An impulse or a traveling train is simple if there is only one pulse. We
emphasize that the comparison among fronts or other types of waves in terms of the
number of pulses makes sense only if the neighborhoods of al and a2 are fixed, but
they are allowed to vary with parameters.

The profiles of a given traveling wave are simply the graphs of v and w over the
real line (cf. Fig. 1.2). Thus, a traveling wave moves to the left with time if the traveling
velocity c is positive. Likewise, it travels to the right if c < 0. Also, it is trivial to verify
that if (v, w)(x+ct) is a traveling wave then (, )(x+(-c)t):=(v, w)(-x+ct) is
another traveling wave solution, traveling in the opposite direction. For this reason,
we only consider the existence of leftward traveling waves (i.e., with c > 0) from now
on.

By smoothness in this paper we mean differentiability of as many times as needed.
Our main result is the following theorem.

THEOREM 1.1. Let 0<a<1/2 be fixed in the FitzHugh-Nagumo equations (1.1).
There exists a small eo and two smooth functions y(e) and 6(e), 0 <- e <-Co, such that
the following is satisfied for all 0 < e < Co.

(a) On the relevant y, c)-parameter space there are two smooth curves c Ci,o( y)
defined on the interval IT-y(e)[ < 6(e) and i= 1,2 (Ci,o here and all other curves below
are smoothly parametrized by e also, but e is usually suppressed for simplicity) such that
(1.1) has a simple front wave of speed cl,o(y) and a simple back wave of speed C2,o(y).

(b) There is a sequence {Cl,k(Y)}_l of smooth curves of the left half interval
0 < y(e) y < 6(e) such that (1.1) has a k-front wave of speed el,k(Y) for every k 1,
2,... and O< y(e)-y<6(e). Similarly, there is a sequence {C2,k(Y)}=l of smooth
curves of the right half interval 0 < y y( e < 6( e such that (1.1) has a k-back wave of
speed C2,k(Y) for every k= 1, 2,... and 0< y-y(e)<6(e).

(c) There is a smooth curve c,(y) of the left half interval 0< y(e)- y< 6(e) such
that 1.1 has a simple impulse wave ofa with speed c1,(y) for every 0 < y( e 3’ < 3(e ).
Similarly, there is a smooth curve c2,(y) of the right half interval 0< y-y(e)< 6(e)
such that (1.1) has a simple impulse wave of a2 with speed e2,( y) for every 0< y- y(e) <
().

(d) The simplefront and back wave curves Ci.o( y) intersect transversely at y( e ). The
intersectionpoint, (y(e), c(e)), is smooth in e. At e =0, (y(0), c(0))= (9/(2-a)(1-2a),
(1-2a)/x/) := (Yo, Co). The slopes of c,o( y) satisfy C,o(Yo) =0 and C,o(Yo) <0, respec-
tively, at e O. Moreover, forfixed e > O, 3’ and 1, 2, the sequence { Ci,k (3’)} is monotone
decreasing in k O, 1, 2,... and converges to the corresponding impulse curve c,( y) as
k--> oo. Furthermore, every Cl.k curve is asymptotically tangent to the cl,o curve from the
left of y(e) as 3’ -> Y(e)- and, similarly, every C2,k curve is asymptotically tangent to the
C2,o curve from the right of y(e) as y--> y(e)+.

(e) There is a neighborhood of (y(e), c(e)) in the (y, c)-parameter space for each
0 < e < eo such that (1.1) has a simple traveling train solution for some speed c if and
only if y, c) is in this neighborhood and lies below the curve Cl, LJ c2, LJ y(e), c(e)). See
Fig. 1.3.

It would be of mathematical interest to assume that the recovering variable w also
diffuses slightly along the spatial line. This leads to the consideration of the following
system of reaction diffusion equations"

(1.2) vt v,,, +f( v) w, wt Kw,,, + e( v yw).

This is the same as the FitzHugh-Nagumo equations (1.1) except for a small diffusion
term W,x with I1 << 1 in the w-equation. It is easy to see that the steady states of (1.2),
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FIG. 1.3. The bifurcation diagram of Theorem 1.1. Qx and Q2 here are the Melnikov functions associated
with the simple front wave and the simple back wave, respectively. The simple front (back, respectively) wave
curve cl, (C2,o, respectively) is the level set of Qx--0 (Q2 0, respectively).

in particular, the steady states al and a2, are the same as those of (1.1) and all the
definitions for traveling waves of different types considered above can be directly
extended for (1.2). As we will see later, the following theorem is a direct consequence
of Theorem 1.1 in the context of singular perturbation.

THEOREM 1.2. Let 0< a < 1/2 be fixed in (1.2). There are small constants eo and Ko
and smooth functions y(e, ), c(e, ), and 6(e, ) of 0 <- e <- eo and [1 <- o such that
for 0 < e < eo and [] <= o all the conclusions of Theorem 1.1 are satisfied when y(e, ),
c(e, ), and 8(e, ) are substituted for y(e), c(e), and 8(e), respectively. Moreover,
y(O, )= To and c(O, )= Co, the same constants as in Theorem 1.1. In this case, of
course, all the curves Ci.k depend smoothly on as well.

The FitzHugh-Nagumo equations have been studied extensively for the last two
decades. This system of reaction-diffusion equations is a qualitative model for several
applications including nerve conduction (Hodgkin and Huxley (1952), FitzHugh
(1961), and Nagumo, Arimoto, and Yoshizawa (1963)), neuronal interactions at the
population level (Wilson and Cowan (1972)), chemical and biochemical reaction
(Ortoleva and Ross (1975)), as well as electronic transmission lines (Nagumo, Arimoto,
and Yoshizawa (1963)). The references quoted here only reflect the author’s limited
understanding on this subject. For the case when y =0, Hastings (1974), (1976) and
Casten, Cohen, and Lagerstrom (1975) have studied the existence of impulse and
traveling train solutions. Rinzel and Keller (1973) have studied the same problem
except that the function f is replaced by a piecewise continuous function f=
H(v-a)-v with H to be the Heaviside step function. For the case when e, a, y are
all small, Hastings (1982) and Evans, Fenichel, and Feroe (1982) have studied the
existence of impulse solutions of double pulses and traveling trains of multiple pulses.
Their results are closely related to the saddle-focus homoclinic bifurcation theorem
by Sil’nikov (1970). Feroe (1982) and, more recently, Wang (1988I) have also studied
this type of phenomenon with the piecewise linear function f For large y, Carpenter
(1977) has studied the existence of traveling front and back waves as well as impulse
and traveling train solutions through a constructive singular perturbation approach.
Rinzel and Terman (1982) have also considered the same problem for the piecewise
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linear case. Indeed, as pointed out by one of the referees of this paper, the existence
of traveling waves for (1.1) has been the subject of many other researchers including
Aronson and Weinberger (1975), Conley (1975), Greenberg (1973), Keener (1980),
Langer (1980), McKean (1970), Pauwelussen (1980), Rauch and Smoller (1978), and
probably many more. With only a few exceptions, all the traveling wave solutions
investigated so far can be characterized as simple wave solutions in our terminology.
The multiple pulse front and back waves obtained here have not previously been
proved to exist, nor investigated numerically.

The proof of the theorem is based on three important theories in dynamical
systems, namely, the bifurcation theory of a doubly twisted heteroclinic loop by Deng
(1991), the geometric singular perturbation theory by Fenichel (1979), and the Melnikov
method. Although the idea of using the Melnikov integral together with singular
perturbation theory can be found in Kokubu, Nishiura, and Oka (1988) and Lin (1989),
our singular perturbation approach is quite different. Whereas other researchers empha-
size the "singular" aspects of the problems which inevitably lead to techniques like
asymptotic expansion, matching principle, etc., we only need to address the "regular"
aspects of the singular perturbation problems. This point ofview is taken from Fenichel
(1979) which asserts that a singular perturbation problem is essentially a regular
perturbation problem in terms of invariant manifold theory, in particular, the center
manifold theory. Extending his idea via invariant manifold theory to connecting orbits,
we naturally see some connections between the singular perturbation theory and the
Melnikov method.

This paper is organized as follows. In 2, we will state the heteroclinic loop
bifurcation theory from Deng (1991) from which the proof of our main result Theorem
1.1 will be derived. The remaining sections are devoted to verifying all the conditions
of that theorem. Specifically, we will introduce the Melnikov function (which was
called the separation function by Kokubu, Nishiura, and Oka (1988)) in 3. In 4-8,
all the nondegenerate conditions of Theorem 2.1 will be verified. At first sight, these
conditions may appear next to impossible to check. However, since they are all generic
with respect to the existence of a heteroclinic loop, it is not too surprising to see that
the existence of the twisted loop, which only requires our extended Melnikov method,
indeed contains enough information for its genericity. In 9, Theorem 1.2 will be
proved based on the singular perturbation method and the proof of Theorem 1.1.

In Theorem 1. l(e) it appears that the neighborhood around (y(e), c(e)) where
the traveling train solutions may occur, as well as the lengths of those curves for
traveling front, back and impulse waves, depend on the parameter e. In fact, they can
be made uniform for all small e > 0. Unfortunately, we cannot show this fact in this
paper. It requires some nontrivial modification and generalization of our Theorem 2.1
to singularly perturbed systems. The same comment also applies to Theorem 1.2 with
respect to e > 0 and [[ << 1.

This paper was originally inspired by the work of Rinzel and Terman (1982).
David Terman helped me understand their work correctly. This made it possible for
me to find the twist structure of the front-back wave loop at the bifurcation point
(yo, c0) through their numerical bifurcation diagram for the simple front, simple back,
and simple impulse waves (cf. Fig. 1.3). Finally, let us mention the other equally
important motivation that lies beyond the scope of this paper. We would like to
eventually prove that all the multiple pulse front and back waves found here are stable
with respect to the PDEs (1.1) and (1.2). The fact that the steady states al, a2, the
simple front, simple back, simple impulse, and simple train solutions near the bifurca-
tion point (%, Co) are all stable is well known. (See, e.g., Rinzel and Terman (1982)
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and the references therein. See also Wang (1988II) for the stability problem of multiple
pulse impulses for the piecewise linear case.)

2. The bifurcatioa of a twistel heterocliaic lool. Recall that a traveling wave (v, w)
is a function of one variable . Thus, if we let u :- v’, where the prime denotes the
derivative in ’, then (v, u, w) satisfies the following system of first-order ordinary
differential equations:

(2.1) v’:u, u’:cu-f(v)+w, w’:e-(v-yw).

For e > 0, it is trivial to check that this system has three equilibrium points when y > y
(of. Fig. 1.1). They are those points (v, u, w) satisfying that u 0 and (v, w) equals to
the steady states of (1.1) discussed in the Introduction. For this reason and for simplicity,
we will denote throughout the equilibria with u 0, (v, w)= ai just by ai alone. Also,
as the counterpart of traveling front of (1.1), a solution of (2.1) is call a heteroclinic
orbit from al to a2 if

lim (v, u, W)(’r)=al and lim (t, U, w)(’r)--a2.

A heteroclinic orbit from a2 to al is defined analogously. On the other hand, a solution
of (2.1) is called a homoclinic orbit to al if

lim (v, u, w)(’) a.

A similar definition applies to a homoelinic orbit to a2. Note that a heteroclinic orbit
of (2.1) from al to a2 (respectively, from a2 to al) gives rise to a traveling front
(respectively, back) wave of (1.1) while a homoclinie orbit of (2.1) gives rise to an
impulse wave of (1.1). In a similar way as in the previous section, we can define
k-heteroclinic, k-homoclinic, and k-periodic orbits with respect to some neighborhoods
of al and a2 for (2.1). We leave this to the reader. Therefore, our strategy to prove
Theorem 1.1 is to prove the same theorem except that (1.1) is replaced by (2.1) and
the traveling fronts, etc., are replaced by heteroclinic orbits, etc., respectively. To do
this, we will apply a theorem on the bifurcations of a twisted heteroclinie loop from
Deng (1991) (el. Theorem B of Deng (1991)). Although that theorem as well as the
result on singular perturbation by Fenichel and the method of Melnikov integral are
available for any finite-dimensional system, we will treat them only in 3 here for
simplicity. Also, we need to warn the reader in advance that the theorem we are about
to state is the time-reversed version of Theorem B of Deng (1991). Note that upon
time reversal, the stable manifold becomes the unstable manifold and vice versa. Also,
a heteroelinic orbit from a to a2 becomes a heteroclinic orbit from a2 to a, and so
on. But a homoclinic orbit of al remains the same.

To state the theorem we begin with its hypotheses (2.2a)-(2.2e). Since the bifurca-
tion problem to be discussed is of codimension two, we will only include the so-called
relevant parameter a(a =(y, c) in our case) in a vector field X := X(x), where x
and a 2. We certainly allow other parameters (say e in our case) to be included in
the vector field but we will usually suppress them unless otherwise indicated.

(2.2a) The relative expansion of a. Let X denote a family of vector fields in 3
parametrized by a relevant parameter a in E. Suppose a a(a), i= 1, 2
are hyperbolic equilibrium points ofX for all a and are relatively expansive
in the sense that the eigenvalues A of the linearization DX’(ai) satisfy

AI<A:<O<A3 and A3+A2>O.
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Of course, A here also depends on ai for i= 1, 2. The eigenvalues A2 and
3 are called the principal stable and the principal unstable eigenvalues,
respectively. Their eigenvectors are thus referred to as the principal stable
and the principal unstable eigenvectors, respectively (see (1.2) of Deng
(1991)).

(2.2b) The nondegeneracy of a heteroclinic loop. There is a parameter value ao so
that the equation x’=X(x) has a nondegenerate heteroclinic loop.
Specifically, there exists a simple heteroclinic orbit z* from al to a2 and a
simple heteroclinic orbit z* from a2 to al at the same parameter ao. Moreover,
by nondegeneracy we mean that the following two conditions are satisfied.
First, z*(’) is asymptotically tangent to the principal stable eigenvector of
at, j # as ’-/ and the principal unstable eigenvector of ai as - - -c,
respectively. Second, the following strong inclination conditions hold:

(2.2b’) lim T,.,(, W] Ta, W’ + Ta,W.s,

(2.2c)

where i, j 1, 2 and # j, TpW means the tangent space of a given manifold
W at a base point pc W. Also, W, W’, W is the standard notation for
the stable, unstable, and strong stable manifolds of ai, respectively. They
are two-dimensional, one-dimensional, and one-dimensional, respectively,
in this case (see (1.5) and (1.7) of Deng (1991)).

The double twist of a nondegenerate heteroclinic loop. Let Zl* and z* form a
nondegenerate heteroclinic loop. Let

lim z*(’)-__a_ + ,. z*(’)-a
ei

be the unit principal unstable and stable eigenvectors along which the
heteroclinic orbit z* comes from a and goes towards at, respectively, then
e- and ej- point to opposite sides of TzT W} at r--oo and
respectively. Here, i, j 1, 2, ij (cf. Fig. 2.1 and see (1.9) and Definition
1.1 of Deng (1991)).

Remark. The definition of twisted heteroclinic orbit has much in common with
that of twisted homoclinic orbit. The geometric notion of twisted homoclinic orbit was
given by Deng (1989) and Chow, Deng, and Fiedler (1990), based on the author’s
strong A-lemma. It was inspired by a work of Yanagida (1987).

w7

FIG. 2.1. A nondegenerate and doubly twisted heteroclinic loop in 3. e and e. point to the opposite
sides of W.
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(2.2d) The continuation of z*. There exist two curves 0-hetl and 0-het2 in the
parameter space a E2 which intersect at ao transversely so that when
c E 0-heti there is a simple heteroclinic orbit zi, from a to aj and z, is
the continuation of z* in the sense that zi, z* and zi, (r) are continuous
in r and a (see (1.1a) of Deng (1991)).

(2.2e) The transverse crossing of the stable and unstable manifolds along z*. Let
Qi(a) be the Melnikov function defined in the next section; then the gradient
vectors VQl(co) and VQ2(ao) are linearly independent (see (1.10b) of Deng
(1991)). We remark that since the discussions of Melnikov functions in 3
is independent of what follows, we may certainly find out the precise
definition before continuing.

THEOREM 2.1. Suppose conditions (2.2a)-(2.2e) are satisfied. Then the following
holds.

(a) There is a sequence {k-hetl}=l ofsmooth curves in such thatfor every k 1,
2,... the equation x’= X(x) has a k-heteroclinic orbit from a to a2 if and only if
a k-hetl. Similarly, there is a sequence {k-het2}=l of smooth curves in 2 such that
for every k 1, 2,... there is a k-heteroclinic orbitfrom a to al ifand only ifa k-het2.

(b) There is a smooth curve hom for each i= 1, 2 such that there is a simple
homoclinic orbit of a if and only if a homi.

(c) The curve O-heti is simply the level set of Q O, and it is divided by the other
O-hetj curve into two parts. Let O-hetbe the half of the O-heti curve that points to the
gradient direction of VQj (cf Fig. 2.2). Then all the curves {k-hetl}_l together with

0-het

Q=O

FIG. 2.2. The bifurcation diagram of Theorem 2.1. The doubly twisted heteroclinic loop is drawn in R2.
V Qi and 0-hetf point to the same side of the 0-heti curve which is the level set Qi 0 and Qi is the Melnikov

function for the primary connection from ai to aj when a ao.
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homl are in the sector bounded by 0-het/l and 0-het and converge to ao asymptotically
tangent to O-het-. Moreover, {k-ketl}k=l lies between the 0-het/ and hOml curves and
converges to the hom curve monotonely in k-1, 2,... (cf Fig. 2.2). Analogous result
holds for the sequence {h-het2}=l and the hOmE curve.

(d) Let A be the sector bounded by the homoclinic curves hOml and homE. Then
there is a simple periodic solution of the vector field X if and only if s A.

Proof. The theorem is the same as Theorem B of Deng (1991) provided that the
vector field X is replaced by its time-reversed vector field -X. Thus the proof is
complete. What follows is meant to help the reader pin down the parallel comparisons
between the Melnikov functions from condition (2.2e) and from that theorem, respec-
tively. First, the Melnikov function Q here is essentially a positive constant multiple

--(1) --(1)/of Qi there. Second, the condition (1.10b) of Theorem B is replaced by OQ/Os > 0
which was really what we used in the proof of Theorem B of Deng (1991). Note that
the 0-heti curve here is the si-axis there, which is the level set Q)= 0, and that the
positive direction of si in Theorem B, which is the same as 0-het- here, was chosen

(1)lOsin correspondence with OQi/ O. This positive derivative in turn is equivalent to
--(1)that VQI1) and O-het point to the same side of the level set Q =0. Also, the linear

independence of V,lr(1) and V,2r(l is equivalent to the transverse intersection of O-hetl
and 0-het2 at So.

3. The Melnikov method. Let X(x) be a sufficiently smooth vector field in 3
with parameter s. Let a and 2 be two equilibrium points having a two-dimensional
stable manifold W (ai, s) and a one-dimensional unstable manifold W" (ai, s), respec-
tively. In what follows we will write W, or W(ag) interchangeably for the stable
manifold and so on for simplicity, provided that there is no confusion involved. Suppose
at some So there is a heteroclinic orbit z* from a to a2 (an identical consideration
can also be given to a2 to al connections). Then it must be z* WU(al) WS(a2) at

So. We would like to know how the heteroclinic connection z* changes with the
parameter. In many applications, the Melnikov method presented below is very useful
for attacking this problem.

Naturally, we would like to examine how the "signed distance" between the stable
and unstable manifolds changes with the parameter. To implement this intuitive idea,
we choose and fix a point Zo* z* from the orbit and a two-dimensional plane 5; which
is perpendicular to z*’ and through Zo*. The intersection E (q W is necessarily a curve,
whereas E f3 W is just a point for every s near So. Choose and fix a vector e on X
that is perpendicular to the curve E 0 W at Zo* and So. Let be a straight line that
goes through the point pU(s):= El’) W"(al, s) and that is of the direction of e. Then
must intersect the stable manifold Efq W(aE, s) at a unique point p(s) for s

sufficiently close to So. p"(s) and p(s) can be chosen differentiable and satisfying
p(so) pU(so)= Zo*. Now, there must be a smooth function Q(s) such that

(3.1) pS(s)-p"(s) Q(s)e or Q(s)= (p(s)-pU(s)). e/llell =.
See Fig. 3.1. The function Q(s) serves what we called the "signed distance" between
W(a,) and W"(al) above. We will call it the Melnikov function (or the separation
function by Kokubu, Nishiura, and Oka (1988)). We are interested in the solutions of
Q(s) 0 since that precisely gives rise to those parameters at which there is a hetero-
clinic orbit from a to aE.

Several modifications can be made in the construction of Q(s) above. The
requirements that E be perpendicular to z* and that e be perpendicular to E f-) W are
not necessary. For instance, take the case where X is the same as above but e is replaced
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FIG. 3.1. The long dashed curve represents the intersection curve of the stable manifold of a at the

bifurcation point a=a and the plane ,. The Melnikov function Q(a) is defined as Q(a)=
(p( -p"( ))e/Ilell 2,

by another vector that is just transverse to the stable manifold curve E WS(a2, ao)
at Zo*. Similarly, let be the line through pU(a) that is parallel to , let
be the corresponding intersection point lEWS(a2, a), and let Q(a)=

 /ll ll = be the Melnikov function. Then it is easy to see from Fig. 3.1
that there is a nonzero constant/3 independent of a so that

Q(a flQ(a + o(l()- p()l).

In fact,/3 Ilellcos 0/ll ll and/3 is positive (respectively, negative) if e and point to
the same (respectively, opposite) side of W(a2)f-)E, where 0 is the angle between e
and (cf. Fig. 3.1). It is clear that if we want to solve the equation Q(a)=0 by the
implicit function theorem it is important to know the behavior of the partial derivatives
of Q at the bifurcation point a ao. But, this alternative definition Q simply says that
both functions are essentially the same in the sense that

(3.2)
oQ(ao)

fl
oQ(ao)

Oa Oa

The same conclusion also holds true if we relax the choice of to be a plane transverse,
instead of perpendicular, to the heteroclinic orbit z*. We also remark that the definition
of the Melnikov function above is not necessarily just restricted to vector fields in R3.
It can be easily extended to stable and unstable manifolds of any finite dimensions
under the condition that they are in general position along Zo*. Moreover, in the case
of nonhyperbolic equilibrium points, we can analogously define the Melnikov function
between WU(al, a) and WCS(a2, a). Another extension we will need later is the "signed
distance" between points of a center unstable manifold WCU(al, a) and a center stable
manifold WCS(a2, a) whose dimensions satisfy, for our consideration only, dim Wcs=
dim Wu= 2 and dim Wc= 1. Let and e be the same as above. Then f-) WCU(al, a)
is a curve too. Suppose this curve is parametrized by w e [-1, 1] so that w--0 always
corresponds to the intersection point W"(al, a). Let pU(a, w) be a given point
from El) W and pS(a, w) be the corresponding point of If’) f’) Wcs, where is the
line through pU(a, w) with direction e. Define

(3.3) q(a, w)- (pS(, w)_ pU(, w)), e/Ilell,
which represents a differential along the e direction from W to Ws. Of course, we
have q(c,0)=Q(a), where Q(c) is the Melnikov function between W"(al) and
WS(a2). The purpose to introduce this function q(a, s) is to relate the condition

Oq(ao, O)
0

Ow
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to the transverse intersection of WCU(al, ao) and WCS(a2, ao) along the connection z*
at ceo. The other useful property is

(3.4)
aQ(ceo) oq(ceo, o)

ace ace

which will be used later in computing the derivative of q(., 0).
Now, let us return to Theorem 2.1, in particular, the choice of the Melnikov

functions Ql(ce) and Q2(ce) from the hypothesis (2.2e). Note that we explicitly talked
about the directions V Qi(ce) which determine the bifurcation directions of those
multiple pulse heteroclinic orbits in our main theorem. But, on the other hand, we
have the freedom of choosing either e or -e, which is also transverse to W (a, ceo) f] E,
in the definition of the Melnikov function Q(ce). Thus, from now on we will specify
the direction e. To this end, recall the strong inclination limit (2.2b’). From that

+condition, we can easily conclude that the principal stable unit eigenvector e is
+transverse to the stable manifold WS(a2, ceo) near a. Thus, e defines an orientation

for WS(a2, ceo). Now, in the definition of Ql(a), choose a vector e which points to the
+same side of WS(a2) at Zo* as el does up to the flow homotopy. Indeed, when Zo* is

+sufficiently close to a, we can simply let e=el. And, as mentioned earlier, Q(ce) can
be chosen to be (or essentially to be) a positive constant multiple of ,eo() in the proof
of Theorem B of Deng (1991), or (5.41), (5.43) of Chow, Deng, and Terman (1990).

So much for the theoretical aspect of the Melnikov function Q(ce). When an
application comes, what really matters is the so-called Melnikov integral which provides
us with a computable formula for the derivative aQ(ceo)/Oce. We introduce this integral
below.

Without loss of generality, let E and e be perpendicular to z* and E fq W,
respectively. Let the orbit z*(r) be parametrized so that z*(0)= Zo* and z*(’) satisfies
the equation x’= Xo(x). Consider the variational equation y’= DXo(z*(r))y along
z* and its adjoint equation y’=-(DXo(z*(r))ry. Then there is a unique bounded
solution p(r), ’e, of the adjoint equation with the initial condition (0)=e (see,
e.g., Palmer (1984)). It is well known that

a, (-o)=- q()" ox"o(z*())a, a,
where Q(ce)= (p$(ce)_pu(ce)). e/llell= (see Holmes (1980), Palmer (1984), or Gucken-
heimer and Holmes (1983)). In particular, when the vector field is two-dimensional
and e is chosen to be of the orthogonal vector (-z*’(0),z*’(0)) of z*’(0) where
z*’(0) := (z*’(0), z*’(0)) is the component form, it can be directly checked that

p(’) =exp tr DXo(z*(s)) ds (-z*’(r), z*’(r)),

where tr A means the trace of a given square matrix A. See, e.g., Melnikov (1964),
Holmes (1980), and Palmer (1984). Note that e here is uniquely determined (cf. Fig.
3.2). In summary, we have

(3.5)

exp tr DXo(z*(s)) ds (-z*’(r), z*’()) ace
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el

FIG. 3.2. The unique choice of the vector e.

which is referred to as the Melnikov integral. Last, let us remark that in light of (3.2)
we will sometimes slightly abuse the notation by writing oQ(ao)/Oa as the same
Melnikov integral as above provided that the directions e and point to the same side
of the stable manifold. A justification for this is based on the statement of Theorem
2.1 that only the signs of the derivatives of a Melnikov function really count.

4. Proof of conditions (2.2a, d). Beginning with this section, we will show that the
hypotheses (2.2a-e) of Theorem 2.1 are satisfied for the reduced FitzHugh-Nagumo
equation (2.1). It is straightforward to see that the condition (2.2d) for the continuation
of the simple heteroclinic orbits is superfluous. Indeed, it is implied by the existence
of the simple heteroclinic orbits z* at ao from condition (2.2b) and the linear inde-
pendence of V Ql(aO) and V Q2(ao). The reason to include it in the statement of
Theorem 2.1 is simply for a convenient parallel comparison between that theorem
and Theorem B of Deng (1991). Thus, the condition (2.2d) may now be removed from
our checklist.

To show condition (2.2a), recall the equilibria ai (vi, 0, w) from 1 and consider
the linearization of (2.1) at a

V’=U, U’=cU-f’(vi)V+W, W’=e--(V-yW).
C

The corresponding characteristic equation is

A(A, e)=A(c-A)(eY+A)-f’(
\c /

v) +;t +-=0.
C

When e 0, it is straightforward to check that since f’(v)< 0 for i= 1, 2 (cf. Fig. 1.1),
A(A, 0)=0 has roots

c -x/c2 -4f’(vi) c + x/c2- 4f’(vi)
(4.1) A1 <A=0<A32 2

Since A(O, e) -f’(vi)ey/c + e/c > 0 for e > 0 and 0A(0, 0)/0A -f’(v) > 0, the second
root A must move to the left of the origin while A1 and A3 stay uniformly away from
the origin for small e>0. Hence Al(e)<A2(e)<0<A3(e) and A3(e)+A(e)>0 for
small e > 0 by continuity. This proves condition (2.2a) that the equilibrium points are
relatively expansive by definition.

5. Proof of condition (2.2b). The methods used in this section include the geometric
theory of singular perturbations by Fenichel (1979) and the Melnikov method discussed
above. It is a rather long section but it contains all the information we will need for
verifying the remaining conditions (2.2c-e).
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Let us begin with the singular perturbation. The singular parameter for (2.1) is e.
When e 0, it becomes

(5.1a) v’= u, u’= cu-f(v)+ w, w’=0.

Note that the variable w can be regarded as a parameter and the entire cubic curve
w =f(v) on the plane u 0 consists of equilibrium points of (5.1a). Let i be a bounded,
connected and closed segment on the cubic curve w =f(v) which contains ai and the
intersection point {w wj} fq {w =f(v)} but does not contain any of the extreme points
of the cubic curve (cf. Fig. 1.1). It is easy to check that the linearization at is

V’= U, U’=cU-f’(v)V+ W, W’=O,

where v are those points that {w=f(v)}c , and thus f’(v)<0 since does not
contain any extreme point. Similar to (4.1), the roots for the characteristic equation
are the same as Aj in (4.1) except that f’(vi) there is now replaced by f’(v). It is also
straightforward to check that the corresponding eigenvectors are

(5.1b) Vl v2 v3 A3
v) 0

See Fig. 5.1. Since A and A are strictly nonzero, the eigendirections vl and v are
normal to g. Therefore, gi is normally hyperbolic according to Fenichel (1979). Thus,
by Theorem 9.1 of Fenichel (1979), there exists a global center-stable manifold WS(i)
and a global center-unstable manifold WU(gi). These manifolds are smooth in e for
[el<< 1. Moreover, when e>0, W is precisely the stable manifold WS(a, e) of a
while the unstable manifold W (a, e) of a is the unstable fiber, called ff by Fenichel
(1979), through ai. WU(a, e) is also smooth in e for lel<< 1. Furthermore, all the
invariant manifolds above depend smoothly on all other parameters. Thus, our strategy
now becomes to show the existence of a connection, i.e., W (a, e) f’) WS() 0, when
e 0 and to show the continuation ofthat connection for e > 0 by the Melnikov method.

FIG. 5.1. The strange loop at e =0. The two vertical heavy curves are c and 2, respectively. At the
critical parameter (% c)= (yo, Co), Zl* lies on the plane {w=0} while z*z lies on the plane {w= w2}, connecting
g and g2. At the appropriately perturbed point (% c)= y(e), c(e)) with e > O, z* becomes a connection from
a to a2, and it connects opposite sides of W(), which is the stable manifoM of a after the perturbation
e > O. Similarly, z*2 connects opposite sides of W(’2) when (y, c) (y(e), c(e)) and e > O.
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The existence of the desired connections when e 0 is given in the Appendix.
The useful properties are summarized as follows. There is a connection Zl* (Vl*, u*, 0)
from al=0 to the intersection point {w=0}VI c2--(1,0,0 for (5.1a) when C=Co=
(1 2a)/x/ for all y and Vl* > 0, Ul* > 0. For the same Co, when y To 9/(2-1)(1 2a)
there is a connection z* (v2*, u2*, w2) from a2 (v2, 0, w) back to the intersection
point {w= Wz}fq 1 for (5.1a) with u* <0, where v= yoW, w2=f(v) and (yo, Co) is
the same as in Theorem 1.1(d).

Next, let us show that these two connections can be continued for parameters
near (e, y, c)= (0, yo, Co) via the Melnikov method. We consider this question for the
Zl* connection first. Let Zo* be an arbitrarily chosen point from Zl*, and let Z be the
corresponding plane perpendicular to z* at Zo*. Without loss of generality, let Zl*(0) Zo*
and Zl*(r)= (v*, u*, 0)(r) up to time translation along the solution. Since w in (5.1a)
can be regarded as a parameter, the center-stable manifold WS(2)f3 Z of 2 on Z
can be parametrized by w. Let e be the vector (-Ul*’(0), v*’(0), 0) (which is labeled as

el in Fig. 5.1) on {w=0} as discussed in the last section for vector field in 2; then e
must be transverse to WS(2) near Zo* since it points forwards (cf. Fig. 5.1). Let
Q(e, y, c) be the corresponding Melnikov function for W"(a, e) and WCS(2) (we
will see later in 7 that the direction e is indeed consistent with the requirement of

+3 that it points to the same side of WS(a2) as e does). On the other hand, as
mentioned earlier, since w can be viewed as a parameter for the two-dimensional system

(5.2) v’= u, u’= cu-f(v)+ w,

we can define a Melnikov function Q(c, w) for the connection (v*, u*) at the parameters
w 0 and c Co with respect to the corresponding straight line Z fq {w 0} and the
same direction e on {w =0}. It is easy to see that (o/oC)Ql(O, yo, Co)=(o/oc)Q(Co, 0).
Thus, by (3.2) and the Melnikov integral (3.5) we have, up to a positive constant
multiple,

(5.3a)
(0, To, Co)=-f exp (-cr)(-u*’(’r), v*’(7")) (0, u* (’r)) dr

exp (-cr)u* (r)2 dr < O.

(5.3b) Q---2 (0, To, Co) O.
oy

Therefore,

(5.3c) C,o(Yo, 0)
0 or C,o(3o) 0

0y

by the implicit function theorem. Similarly, define the other Melnikov function
Qz(e, y, c) for WU(az, e) and WS(’) with the same kind of choices of Z and e except
that (v*, u*, 0) above is replaced by (v2*, u*, w2), where w is a constant satisfying
v yoW2, w =f(v). By the same argument,

(5.4a) oQ___2 (0, yo, Co) f exp (-cr)u*(r)2 d’r < O.
Oc

Therefore, by the implicit function theorem, the solutions of Q1--0 can be expressed
as a function of c cl,O(y, e), or c C,o(y) for short, near (0, Yo, Co). Moreover, an
identical argument yields

OC
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The only difference is that oQ/o/(0, Vo, Co)=OQ/ow (Co, w2)" ow/03,<o. Indeed,
since w2 is strictly decreasing in y (cf. Fig. 1.1) and, by the Melnikov integral (3.5),

(Co, w2)=- I_ exp (-c7.)(-u’2’(7.), v*’(7.)). (0, 1) d7.

f-oo exp (-c7")u*(7") dT" > 0

for u2* < 0, we have

(5.4b)
oQz

(0, yo, Co) < O.

Thus, by the implicit function theorem the solution function c C.o(y, e), or C2,o(y),
of Q2 0 satisfies

(5.4c) 0C2.o(3’o, 0)
< 0 or C.o(3,o) < 0.

03’
This and (5.3c) show that cl,o and c2,0 intersect transversely near (3’0, Co) for small e.
More precisely, the C:,o curve crosses the cl,o curve transversely from above into below
as 3’ increases through 3"0. Let the intersection be (3’(e), c(e)). Then at (3’(e), c(e))
with e > 0 there exists a heteroclinic loop connecting a and a_.

Next, to show the heteroclinic orbit z* of (5.1a) converges to a: along the principal
stable eigenvector of a we only need to show that z* is not contained in the strong
stable manifold WSS(a2, e) of a2 which is the stable fiber, ff, through a2 on the
center-stable manifold of . Since in limit e 0 lies on {w w} while Zl* lies on
{w=0} and w2>0 because 3"o=9/(2-a)(1-2a)#O for 0<a<1/2 and w2=f(v2), vz=
)’oWE 0, s still stays away from z* uniformly for small e > 0 by continuity. Similar
arguments apply to the z* connection.

Last, to show the strong inclination property (2.2b’) along Zl* we show first that
the center-stable and the center-unstable manifolds of (5.1a) intersect transversely
along Zl* at the limit e 0 and then we will relate this transverse intersection to the
strong inclination property for e > 0. Recall that 1 and 2 lie on {u--0} and can be
parametrized by w so that when w-0, c--Co there is the connection z* from al to
2[q{w=0}. Recall the definition of the differential function q(e, % c, w) along the
forward pointing direction e from 3, where e is the same as in the definition of the
Melnikov function Q above in this section (cf. Fig. 5.1). As mentioned earlier in 3,
we need to show

Oq(O, 3’, Co, O)
OW

SO

in order to prove the transverse intersection of WCS(2) and WU() along z*. However,
by treating (5.1a) as a two-dimensional system (5.2) again, it is easy to see that the
differential q between W and W for the three-dimensional system (5.1a) at e =0
is precisely the Melnikov function Q(c, w) of (5.2). Thus, Oq(O, 3",co, O)/Ow=
oQ(Co, O)/ow. Hence, by (3.2) and the Melnikov integral (3.5) we have

oq(O, O) [ exp (-c7")(-u*’(7"), v*’(7")) (0, 1) aT"% Co,

Ow
(5.5a)

=-/_ exp (-c7.)u*(7.)dT"<0
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since u*(z) > O. Similarly, for the other connection z2* from a2 back to 1, we can show

a(O W2)% o,
[ exp (-c’r)u*(’r) da" > 0

Ow

since u2*(r) < 0. This shows that by definition WU(i) and WCS(j) intersect transversely
and the corresponding strong inclination property is satisfied by the strong A-lemma
of Deng (1989), (1990). By "strong inclination property" for nonhyperbolic system we
mean that the same limit as (2.2b’) exists except that W}, W’, and W in the formula
are understood as WCS(aj), ’(ai), and g(ai), respectively. Because the strong inclina-
tion property is generic, that is, it persists for those small perturbations of the vector
field along which there exists the continuation of the connection z*, the strong
inclination property (2.2b’) also holds true for sufficiently small e > 0. This completes
the proof for condition (2.2b).

Remark. The nonzeroness of the Melnikov integrals in (5.3a), (5.4a), (5.5a), and
(5.5b) have also been derived by Lin (1989).

6. Proof of condition (2.2c). Recall that the connection Zl* is twisted if the principal
+eigenvectors e2 and el along which the other connection z2* comes from a_ and goes

to al, respectively, point to opposite sides of the stable manifold WS(a:) of a: along
Zl*. Using the same strategy as above, let us examine the limiting case e 0 first. Note

+that in limit e 0, el is of the direction of the center eigenvector v: of al and e is of
the direction of the unstable tangent fiber -v3 of a2 (cf. Fig. 5.1). Thus, it suffices to
show v2 of al and -v3 of a_ point to opposite sides of the center stable manifold WCS(a)
of a. To show this, recall the differential function q from the previous section and
the property (5.5a). Oq/Ow < 0 implies that WCU(l) and WCS() must split in such a
way that when w >0, WCS(2) lies behind WCU(l) near z* (cf. Fig. 5.1). Thus, v2 of
al and v3 of the intersection point 2 fq {w 0} point to the same side of WCS(2). Since

v3 of 2 fq {w 0} and -v3 of a point to opposite sides of WS(2), the desired result
is proved. Similar arguments show that z2* is twisted. This proves condition (2.2c).

7. Proof of condition (2.2e). Recall from (5.3a, b) that when (e, y, c)= (0, 3/0, Co),
oQ/oc < o, OQ1/O’y 0. Also recall from (5.4a, b) that oQ2/oc < O, oQ2/oy < 0. It
obviously follows that V Q1 and V Q2 are linearly independent for small e > 0, where
the gradient operator V is taken with respect to the relevant parameters 3’ and c. Last,
from the proof of the twist of z/* above, it is easy to see that the vectors ei and e- do
point to the same side of WS(a) (cf. Fig. 5.1). Hence, the Melnikov function Q, 1,
2, satisfies the specific requirement with respect to the direction ei in 3. This proves
condition (2.2e).

Remark. Back in 1980, Langer proved that the stable and unstable manifolds cross
transversely with the velocity parameter c for small e > 0. This is also implied by the
nonzeroness of oQ/oc, which also indicates the direction in which the transversal
crossing takes place.

8. Proof of Theorem 1.1. As discussed in 2, to prove Theorem 1.1 we only need
to show that Theorem 2.1 is applicable to the reduced FitzHugh-Nagumo equation
(2.1). We have shown in 4-7 above that the hypotheses of Theorem 2.1 are all
satisfied. Thus, it is only left to determine the bifurcation directions for the curves of
the multiple pulse front and back waves by Theorem 2.1(c). Again, recall from (5.3a, b)
and (5.4a, b), or from the previous section, that oQ/oc < O, oQ1/oT O, and oQ2/oc < O,
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oQ:/oy<O at (e, 7, c) (0, 7o, Co). That is, VQ1 and VQ2 point downward at (3, c)=
(3,(e), c(e)) on the (3’, c)-plane for small e _->0. Therefore, all the interesting bifurca-
tions take place in the southwest sector bounded by Q1 0 and Q: 0 in the (3,, c)-plane.
This completes the proof. I-1

9. Proof of Theorem 1.2. To prove this theorem it suffices to show that the reduced
traveling wave equations when restricted to the center manifold with respect to the
singular parameter K are "almost" the same as the FitzHugh-Nagumo equations (1.1).
To begin with, recast (1.2) into the traveling wave equations with z x + ct:

(9.1) v’=u, u’=cu-f(v)+w, w’=x, Kx’=cx-e(v-3"w).

Treating as a singular parameter and writing this equation in terms of the fast time
:= z/ variable, we have

(9.2) f)=u, fi=(cu-f(v)+w), =r,x, 2,=cx-e(v-3"w),

where the dot means the derivative in t. Note that when 0 the equilibrium points
of (9.2) consist of the entire three-dimensional manifold:

o := x=-(v-,w
c

The linearization of (9.2) at g0 when 0 is I? t)= I/ 0 and J eX. It has only
one nonzero eigenvalue c > 0 and the corresponding eigenvector (0, 0, 0, 1) is normal
to the manifold go. For simplicity, let g’o also denote a sufficiently large, connected,
and compact set in what follows. Therefore, in the context of Fenichel (1979) the
invariant manifold go is normally hyperbolic. Also by Theorem 9.1 of Fenichel (1979)
again there is a center manifold

:= {x= h(v, u, w, ,)}

in a neighborhood of g’o for all I[ << 1, and it is a smooth continuation of g’o, namely,

h(v, u, w, O) =e-e- (v- 3"w).
C

Here, the other parameters are suppressed from the expression of h for simplicity. It
is very important to note from (9.2) that when e =0, {x =0} is always an invariant
manifold regardless of the parameter . This implies that the function h can be chosen
so that

(9.3) h(v, u, w,K)=e--(v-3"w)+O(e).
C

According to the singular perturbation theory of Fenichel (1979) this manifold gK is
invariant for both the slow and fast equations (9.1) and (9.2) for all I]<< 1. Now,
recasting (9.1) on the center manifold g’K yields

(9.4) v’=u, u’=cu-f(v)+w, w’=e-(v-3"w)+O(er,),
C

because of w’= w h(v, u, w, ) and the estimate (9.3). Note that this is exactly the
same FitzHugh-Nagumo equation (1.1) except for a perturbation term O(eK) to the
w equation. Now, it is easy to see that all the analysis for (2.1) in the previous sections
applies to (9.4) as well. More specifically, e is the singular parameter, 3" and c are the
relevant parameters. The additional parameter represents a trivial direction of



1648 Bo DENG

perturbation. That is to say, it will not change any qualitative structure of the system
with respect to the heteroclinic loop bifurcation of Theorem 2.1, neither the singular
perturbation structure in terms of e nor the Melnikov method. This completes the
proof.

Appendix. The result presented below is taken from McKean (1970) and Casten,
Cohen, and Lagerstrom (1975). Consider (5.1a). Since w’=0, we can treat w as a
parameter. For fmin < W0 <fmax, there are three roots for -f(v)+ Wo 0. Denote them
by 1 </32 </33 which implicitly depend on Wo (cf. Fig. A). Then (5.1a) is equivalent to

du

since dr=dv/u. Now, it is straightforward to check that u=A(v-fll)(3-v) with
A ---t-1/x/, C--A(fll + f13--2f12) is a polynomial solution going through fll and/3. In
particular, when w0=0, /31 =0, /32 a, /33 1, and A 1/v/ we obtain a connection
with a positive speed cl,0 (1 2a)/x/. Denote the corresponding solution by (v*, Ul*);
then 1 > v* > 0, u* > 0. This implies that the connection is from al to 2 f’l {w 0} since

v*’= u* >0. On the other hand, choosing A =-1/x/, we obtain another connecting
orbit (v*2,u*) for C2,0=A(1+3--22). But, in this case u*<0 since
thus v*’<0. This implies that the connection is from 2{w Wo} back to
{w Wo}. Thus, it is only left to determine whether the corresponding speed c is positive
and equal to 1.o at some 3’ in order to obtain a "loop." Because the cubic curve
w=f(v) is symmetric with respect to the inflection point (tinf,finf):--((l+a)/3,
(1 + a)(1-2a)(2-1)/27) of w=f(v), we can choose (v, w) from the curve w=f(v)
to be the point that is symmetric to the origin (0, 0) with respect to the inflection point.
Because of this symmetry C2,o=--(fll+3--2fl2)/x/=(1--2a)/v/=Cl,o at Wo w2. A
direct computation yields yo:=V2/W2=9/(2-a)(1-2a), which is the same as in
Theorem 1.1(d). Certainly, for this parameter yo, the connection (v2*, u2*) is from a2
back to 1 f-) {w w2}.

FIG. A. /31 < f12 < f13 are the roots of wo-f(v)=O.
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STABILITY ANALYSIS OF STATIONARY SOLUTIONS OF BISTABLE
REACTION-VARIABLE DIFFUSION SYSTEMS*

HIDEO IKEDAf AND MASAYASU MIMURA

Abstract. From a wave-blocking viewpoint, a bistable reaction-variable diffusion system is considered:

ut=(O(z)uz)z+lf(u, v),

zER, t>O.

v, (D(z)vz)z + trg(u, v),

Depending on tr and D(z), there exist stationary solutions that connect two stable states at z +o. By
using the linearized stability criterion, the role of these solutions in wave-blocking phenomena is discussed.

Key words, stability, variable diffusion, singular perturbation, wave-blocking

AMS(MOS) subject classifications. 35B25, 35B40, 35K57

1. Introduction. In this paper, we consider the following reaction-diffusion system"

Ut--- (D(z)Uz)z +l--f(u, v),

(1.1) zR, t>O,

v, (D(z)Vz)z + crg(u, v),

where D(z) is the variable diffusion rates of u and v. For the nonlinearities f and g,
we assume that there exist three constant steady states as in Fig. 1: Two of them
(u+, v+) are stable, while the other (Uo, Vo) is unstable. 1/tr2 is the ratio of the reaction
rates of u and v. If o- is small, u reacts faster than does v. Conversely, if o- is large,
the situation is vice versa. In chemical terms, (1.1) describes the situation where two
ion components u and v diffuse in one-dimensional heterogeneous medium and react
with each other in bistable dynamics.

g<O

v+

u_ o u+

FIG. Functional forms off 0 and g O.
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In studying the influence ofvariable diffusion on qualitative properties of solutions,
there are many works on scalar equations. The main concerns are with the existence,
stability, and bifurcation properties of nonconstant stationary solutions. Along these
lines, [M], [Y], [CH], [FH], and [FP] treat these problems in a finite interval or on
the whole line. From an application viewpoint, in [P] and [K] wave-blocking
phenomena due to the effect of a change in geometry of a nerve axon on the propagation
of potential waves are studied.

Here we are interested in these problems for a system of equations (1.1), when
the variable diffusion rate D(z)=d(z/e), where d(:) is a strictly monotone CI(R)
function satisfying

(1.2) d(:) d as

1 as :-+o
and e is a small positive constant. That is, this situation indicates that the diffusion
rate D(z) has an abrupt change at z =0. Let

x "r(z) ds/d

Clearly, r maps R into R and its inverse --1 is well defined. Introducing x as the
independent variable into (1.1), we have

ut (X)Uxx +lf(u, v),

(1.3) xR, t>0,

v, 5(x)v,,,, + crg(u, v),

where tS(x)= 1/d(’r-(x)/e). Set e=0. Then (1.3) reduces to the following limiting
system:

ut tSo(X)U,,x +If(u, v),

(1.4) xR, t>0,

where

vt tSo(X)V,,,, + trg(u, v),

5o(X) {1/ d, x<0,
1, x>0.

When e > 0 is sufficiently small, perturbation techniques suggest that (1.4) becomes a
nice approximation to (1.3) in some sense. So we study the above limiting system (1.4).

When d 1 or 50(x) 1 (homogeneous medium), (1.4) reduces to a usual reaction-
diffusion system

1
ut u,,, +--f(u, v),

(1.5) xR, t>0.

v,= Vxx+trg(u, v),
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For (1.5), we could expect that there are traveling wave solutions connecting one stable
state (u_, v_) at x---c and the other (u+, v+) at x- +o. In fact,when f and g are
specified as

(1.6)
f(u, v)=u(1-u)(u-a)-v,
g(u, v) u /v,

there are three constant steady states (0, 0), (if+, if+/5’), and (if_, _/3’) for some values
of a and 3’, where if_ and if+ (_+) are two solutions of (1-u)(u-a)=l/%
Numerical simulations show that two different types of traveling wave solutions
connecting (0, 0) at x - and (if+, +/3’) at x + coexist: one is a front wave that
propagates to the left direction, and the other is a back wave that goes in the opposite
direction (see Fig. 2). We state briefly the results obtained in [IM2]. Suppose that f
and g take the form (1.6) for simplicity and 5’0, 3/1, and y: are the critical values as
shown in Fig. 4. The qualitative property of traveling waves depends on the value of
or. When cr is sufficiently large, there is a unique stable traveling wave solution for
fixed /) 3’0 as in Fig. 5(i). On the..other hand, when cr is sufficiently small, there are
three solutions for fixed 3’ (3’0, ’,_) as in Fig. 5(ii); two of them are stable, whereas
the other is unstable.

What happens in the ease when d 1 (heterogeneous medium)? As in Fig. 3,
numerical simulations show three typical behaviours when cr is sufficiently small, where
a, or, and 5’ are the same values as in Fig. 2: (i) When d is close to 1, we could expect
that the front and back waves pass through the point of discontinuity x =0 and
propagate to the left and right directions, respectively (see Fig. 3(i)). (ii) When d is

FIG. 2. (i) Traveling front wave. (ii) Traveling back wave (a =0.25, o’=0.1 and /= 10.5).
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(i)

V------
0.0 00.

r------

(iii)

FIG. 3. Numerical computations for wave-blocking phenomena: (i) When d is close to 1, the front and
back waves pass through; (ii) When d is large, thefront wave is blocked, whereas the back wave passes through;
(iii) When d is small, the front wave passes through, whereas the back wave is blocked.

large, the back wave passes through the point x 0 and propagates to the right direction,
while the front wave is blocked at x =0 (see Fig. 3 (ii)). (iii) When d is small, the
situation is opposite to that in (ii) (see Fig. 3(iii)). The last two cases (ii) and (iii)
indicate that the traveling waves are blocked and there appear new stationary solutions.
These evidences clearly show that such wave-blocking phenomena are caused by the
heterogeneity of 8o(X).

For the problem of wave-blocking phenomena in a heterogeneous medium, the
dependency on d of stationary solutions is considered in [IM1] when is sufficiently
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FIG. 4. Critical values of /.

(ii)

SF

FIG. 5. The global diagrams of traveling waves with respect to 7. The symbols SF, SB, UF, and UB stand

for a stable front branch, a stable back branch, an unstable front branch, and an unstable back branch,
respectively: (i) r is sufficiently large; (ii) cr is sufficiently small.

large or small. Suppose that r is sufficiently large. If y is fixed to satisfy 3’ (71, ),
there exist two stationary solutions for large d (see Fig. 6(i)) and if y is fixed to satisfy
y (yo, yl), there exist two solutions for small d (see Fig. 6(ii)). On the other hand,
if cr is sufficiently small, then the situation is different from the above. If y is fixed to
satisfy y (y2, ), then there exist two stationary solutions for large d (see Fig. 7(i)).
However, if y is fixed to satisfy y (yo, y2), there exist two solutions for large as well
as small d (see Figs. 7(ii) and 7(iii)). This evidence shows that the qualitative property
of stationary solutions depends on the value of tr as well as d.

Integrating these and using complementary numerical results, we arrive at the
following conjecture. For simplicity, we consider the case when r is sufficiently small
and y satisfies y (71, y2). Under this situation, there are one front wave and one
back wave, which are stable, in a homogeneous medium. For large fixed d, the front
wave is blocked at x 0 and one of the stationary solutions _U*, _V*) acts as its barrier,
while the other (/*, *) acts as a separator between the barrier and the traveling like
front wave (in a heterogeneous medium) as in Fig. 3(ii), whereas the back wave passes
through. On the other hand, for small fixed d, the back wave is blocked and one of
the stationary solutions (U., V.) acts as its barrier, while the other (_U., _V.) acts as
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u(O;o;d)

u(O;o;d)

(ii)

FIG. 6. The schematic global diagrams of stationary solutions of (1.1) with (1.4) when tr is sufficiently
large" (i) y > 71" (ii) 3’0 < 3’ < 71.

u(O;o;d)

d*
(ii)

u(O;o;d)

0_*

(iii)

FIG. 7. The schematic global diagrams of stationary solutions of (1.1) with (1.4) when tr is sufficiently
small: (i) 3’ > 3’2" (ii) 71 < 3’ < 3’2" (iii) 3’0 < 3’ < 3’1.
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a separator between the barrier and the traveling like back wave as in Fig. 3(iii),
whereas the front wave passes through. For intermediate fixed d, there are no stationary
solutions and two waves pass through the discontinuous point x-0 as in Fig. 3(i).

Motivated by this evidence, we study the stability of the stationary solutions
constructed in [IM1]. When r is sufficiently small and y satisfies y e (/1, ’/2), for
instance, the result is stated as follows. For large d, the (_U*, _V*)-branch is stable and
the 0", 9*)-branch is unstable, while for small d, the ., 9.)-branch is stable and
the (_U., _V.)-branch is unstable (see Fig. 7(ii)). The details will be discussed in 3.

Since 6o(X) is discontinuous at x=0, let us define weak solutions (u, v)(t, x) of
(1.4) by (u, v), which satisfies the following equations"

u, 6o(X)Ux, +lf(u, v),

(1.7)a X 6 R\{0}, t>0

vt 6o(X)V,,, + trg(u, v),

with boundary conditions

(1.7)b

and compatibility conditions

(u, v)(t,+oo)=(u+, v)

(u, v)(t,-0) (u, v)(t, +0),

(1.7)c t>0.

(ux, v,)(t,-0) (u,, Vx)(t, +0),

We now study the spectral analysis for the linearized equations of (1.7)a around
the specified stationary solution obtained in [IM1]. The spectrum of the linearized
operator consists of essential spectrum and isolated eigenvalues. Since the essential
spectrum is strictly bounded away from the imaginary axis to the left (see the Appendix),
it is sufficient for the stability argument to study the distribution of isolated eigenvalues
only. Our assertion is that there is only one eigenvalue that essentially determines the
stability and its sign corresponds, in a one-to-one manner, to that of the Jacobian of
the matching condition which is defined in constructing solutions by use of singular
perturbation methods (see (2.14)). Here we discuss only the case where r is sufficiently
small. The case where r is sufficiently large is briefly stated in the final section.

We first state the following assumptions on the nonlinearities f and g (see Fig. 1):

(A1)

(A2)
(A3)

(A4)

(AS)

f= 0 is S-shaped and consists of three branches u h_(v), ho(v), and h+(v)
(h_(v) < ho(v)<= h+(v)), and g=0 intersects each branch once. That is, there
is only one intersection point on each branch u h_(v) (respectively, u ho(v)
or u=h+(v)), which is denoted by (u_,v_) (respectively, (Uo, Vo) or
(u+, v+))(v_ < Vo< v+). The signs off and g are both negative in the region
above the curves f= 0 and g 0.

(v) "h+.h_,)f(u, V) du has a unique isolated zero at v* e (Vmi,, /)max)"
f,(h+(v), v)<0 for re[v_, v/], g(h_(v), v)<O<g(h+(v), v) for ve
(v_, v+), and g,(h+(v), v)h’(v)+g,(h+(v), v)<0 at v=v+.

f,(u, v)<O for (u, v)e{(u, v)lh_(v)<=u<=h+(v), v_<=v<=v+}, g,(u, v)>
0 and go(u,v)<O at (u, v) (u+, v+).

gv(U, v)<0 for (u, v){(u, v)lg(u, v)-O, v_ <- v <- v+}.
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Throughout this paper, we shall use the following function spaces. For I R_,
R/, or R, positive numbers r and/x, and an integer n, let

x.,(I)= ucC"(I)[llullx:,(,=-Z sup e"lxl u(x) <+
i=0 xI

,() . x,() u(0) =0,

BC’(I) {the set of functions all of whose derivatives of
order are bounded and uniformly continuous on I}.

2. Construction of stationary solutions. We assume that cr is sufficiently small.
First, we shall summarize the existence result for stationary solutions of (1.7) which
is stated in [IM1]. Putting y x, we rewrite the stationary problem of (1.7) as

(u, v)x,

O’2o(y Uyy +f u, v)=0,

(2.1) y R/{0},

6o(y)Vyy + g(u, v) O,

u(+/-) u, v(+/-) v+/-,

where -= {u BCI(R) BC2((-, 0]) BC2([0, )) 18o(y)uyr BC(R)). Let us seek
a solution of (2.1) (u, v)(y; ; d)x under (A1)-(A4). Since 8o(y)(d 1) -has a
discontinuity at y 0, we separate the problem (2.1) into the following two pas:

2o(y)Uyy+f(u V :0,

yR+,
(2.2)5 o(y)1)yy + g(.u v +/-) O,

u(+m) u,, u+/-(0) a,

v+/-(+) v, v+(o) t,

where a and /3 are constants that will be specified later. Using classical singular
perturbation techniques, we construct solutions of (2.2)5 in each subinterval R+, and
then determine a and/3 so as to match these solutions in the Cl-sense at y-0. In

2.1, we construct outer solutions that are approximate solutions to (2.2)+/- outside a
layer region, and in 2.2, we construct inner solutions that are approximations to (2.2)+
in a boundary layer region. In 2.3, using these approximate solutions, we construct
singular limit solutions as cr 0, which become nice approximations to (2.1) uniformly
on R. Finally, in 2.4, by using the singular limit solutions we prove the existence of
solutions of (2.1) for a sufficiently small (but not zero) t and draw the global picture
of solution structures with respect to d. We emphasize that it is inherited from that of
the singular limit solutions as o- 0.

2.1. Outer solutions. We consider the reduced problems, by putting r 0 in (2.2)5.
These are described by

f(u +, v+/-) 0,

(2.3)5
o(y)1)yy-l-g(U O,

yR+/-,

v(+/-) v, v+/-(0) =/3.
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Since f(u +, v+) =0 are reduced to u+= h+(v+) by the conditions v+(+c)= v+, (2.3)+
can be rewritten as

5o(y)vyy+g(h+(v+), v+) 0, yR+,
(2.4)+

v(+/-) v, v+/-(0) =/.

Here/3 is arbitrarily fixed to satisfy/3 (v_, v/).
LEMMA 2.1. Equations (2.4)+ have unique strictly monotone increasing solutions

VS(y;/ (y z R+) and V(y;/3; d)(y z R_) satisfying

’ (_)IVS(Y;/3)-v+[X+,(R+),IV(Y;/3; d)-v_lx._,
where /x+= /-D+(v+) and t-(d) =,/-clD-(v-) with D+/-(v) gu(h+/-(v), v)h;(v)+
go(h+/-(v), v). Moreover, V-(y; 8) (respectively, Vff(y; ; d)) is continuous with respect
to 8 in the X+,I(R+) (respectively, X,_(a).z (R_))-topology and satisfies

Vo (o; ) 2 (h+(v), v) dv

resp., V(O; ; d)= 2d g(h_(v), v) dv

Using Vo+(y ) and V(y; ; d), we define U(y ) and Ug(y .; d) by

and

U-(y;/3) h+( +Vo(y; fl)), yR+

U(y; fl; d) h_( V(y; fl; d)), y R_,

respectively. Although U-(y; fl) and U(y; ; d) do not satisfy the boundary condi-
tions at y 0, we expect that when cr is small, (US, V:) become nice approximations
to solutions of (2.2)+ outside a neighborhood of y=0, which are called the outer
solutions of (2.2)

2.2. Inner solutions. We introduce W=(sc) with the stretched variable sc y/o- such
that (U= + W=, V=) become approximations to (2.2)+ in a neighborhood of y =0.
Substituting (U= + WS, V=) into (2.2)+/- and then setting r=0, we have the following
problems with respect to W="

(2.5)+/-
6o()(W:)+f(h+/-(fl)+ W, fl)=0,

WS(+/-) 0, W:(0) h(t ).

When v* < v/, COo(/3) is uniquely determined for any/3 [v*, v/] by aoo<,)f(u, ) du
0. When v_<v*,col(/3) is uniquely determined for any /3[v_, v*] by
h_(Cl)f(u, /) du 0. Using COo(/3) and co1(/3), we define 1, Z2, and 3 in (c,/3)-space

in R2 as follows. For v_ < v* < v/,

El= {(c, ) R2l v* <= <--_ v+, cOo(C]) < a < h+(]) or v_<-_ <- v*, h_() < a < wl()};

for

-.2 {(O, i) R21 v-</3 < v+, o90(/3) < cr < h+(/3)};

for

Z3 -= {(or,/3) R21 v_ -</3 =< v+, h_(/3) < cr < co1(/3)}.
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LEMMA 2.2. For any (a, fl)Ei (i=1,2,3), the (2.5)+/- have unique strictly
monotone increasing solutions W-(sc; a, fl)(:ER+) and W-(:; a, fl; d)(:R_)
satisfying

2wff(’, , )l x+<, ).(R+) Wff(; ,’, d)lX_<,;a),(R_),

wherer+(fl) -f.(h+(), ) andr_(; d)= -df.(h_(), ). Moreover, WS(; a, )
(respectively, WS(; a, fl; d)) is continuous with respect to (a, fl) in the X+(,),I(R+)
(respectively, X_(,; d).l (R_))-topology and satisfies

d
W(O a, ) 2 f(u, ) du

ep., (o; , ; f(u, u

2.3. Singular limit solutions. In the previous sections, we constructed the lowest-
order approximations (U(y;fl)+ W-(y/r; a, ), V-(y;/3)) and (Uff(y;/3; d)+
W(y/o’; a, ; d), V-(y;/3; d)) to the problems (2.2)+/-, respectively. In order to con-
struct an approximate solution to (2.1), which belongs to 9, we choose a and/3
such that U-(y; )+ W-(y/o-; a,), V-(y; /3)) and (U(y; ; d)+ W-(y/o-; a,; d),
V-(y; fl; d)) are matched to give Cl-continuity at y=0. That is, we determine a and
/3 as functions of d such that

(2.6)

d d
Oo(a, fl; d) m--z= W-(O; a, /3)---7= W;(O; a,/3; d)=O,

a a

d
o(fl; d)=-T Vo(O; fl)---

ay
d
-7 v(o; ; a):o.
ay

We call the relations Oo(a,/3; d)= 0 and o(fl; d)= 0 the inner and outer matching
conditions, respectively. By Lemma 2.1, we find that

o(fl; d)= 2 g(h+(v), v) dv- .2d g(h_(v), v) dv.

Then we directly obtain the following result.
LEMMA 2.3. o(/3 d) 0 has a unique root fl flo(d) for all d > O, which is strictly

monotone decreasing and satisfies

limflo(d)=v+ and lim/30(d)=v_.
d$O d’oo

On the other hand, by Lemma 2.2, o(a,/3; d)= 0 is rewritten as

h_(fl) f h+(fl)
d f(u, ) du- f(u, ) du =0,

that is,

(2.7)
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LEMMA 2.4. do(a, fl) is a function defined in each i (i- 1, 2, 3) and satisfies
(O/Off)do(a, fl) < O. Moreover:

(i) For any fixed fl satisfying v* v+, do(t, fl) is less than 1 and monotone
increasing in (tOo(fl), ho(fl)) and monotone decreasing in (ho(fl), h/(fl)) and satisfies
lim,oo() do(a, fl) =0= limh/() do(t, fl) and limh/() (O/Oa)do(t, fl) =0=
(O/Oct )do( ho(fl ), /3 );

(ii) For anyfixed satisfying v_ fl v*, do(a, fl) is greater than 1 and monotone
decreasing in (h_(fl), ho(fl)) and monotone increasing in (ho(fl), tOl(fl)) and satisfies
limh_ do(c,/3) +c= lim,,o, do(c, fl), and (O/Ot)do(ho(fl), fl) =0;

(iii) For fl v*, do(t, fl)= 1 in (h_(fl), h/(fl)).

Consequently, by Lemma 2.3, it is sufficient to determine a a(d) such that

(2.8) o(a, flo(d); d)=0

holds, which is obtained by Lemma 2.4. Combining the above results, we obtain
Lemma 2.5.

LEMMA 2.5. (i) When v_ < v*< v/, the following three cases occur"

(a) If flo(1)> v*, there are two points dl and d2 (dl <1 <d2) such that (2.8) has
two roots a Cl(d) and a =_al(d) with Cl(d)> _al(d) and Cil(dl) _al(dl) defined for
d (0, dl] and has two roots t 6(d) and a a_(d) with (d) > a_(d) defined for
d [d2, );

(b) If flo(1)< v*, there are two points dl and d2 (dl<l <d2) such that (2.8) has
two roots a a(d) and a _al(d) with Oil(d) > _al(d) defined for d (0, dl] and has
two roots t a(d) and a a_2(d) with Yz2(d)> a_(d) and ci(d)= _a2(d2) defined for
d [d2, c);

(c) If/3o(1) v*, (2.8) has two roots a a(d) and a a_(d) with 6(d) > a_(d)
defined for d (0, 1] and has two roots t c(d) and t _a2(d) with a(d)> _a(d)
definedfor d 1, c). Especially when d 1, Cil(1) c2(1), _al(1) _a2(1), and (2.8) also
holds for any a (6(1), _a(1)).

(ii) When v*<-v_, there is dl(<l) such that (2.8) has two roots a =c(d) and
a _al(d) with Cl(d) > _al(d) and Cl(dl) _al(dl) defined for d (0, dl].

(iii) When v+ <- v*, there is d2 (>1) such that (2.8) has two roots a c2(d) and
a _a2(d) with c2(d) > _a2(d) and c2(d) _a2(d) defined for d [d2, ).

For any (a*(d),/3*(d)) satisfying the inner and outer matching conditions (2.6),
we define

Uo(y; (d))+Wo(; (d),fl (d)), yR+,
Uo(y; tr; d)=-

U-(y; fl*(d); d)+ W {--Y; a*(d), fl*(d); d}, yR_
/

and

f V-(y; /3*(d)),
Vo(y" o-" d)=-

iVy(y; fl*(d); d),

which becomes the lowest-order approximate solution uniformly on R. We call
(Uo, Vo)(y; tr; d) a singular limit solution of (2.1). By Lemma 2.5, we obtain Theorem
2.1.

THEOREM 2.1. Suppose that (A1)-(A4) hold and d and d2 are the same constants
as in Lemma 2.5.
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(i) When v_ < v*< v/, the following three cases occur"

(a) Ifo(1) > v*, (2.1) has two singular limit solutions

(Uo,,, Vo,,)(y; tr; d), (_Uo,,, _Vo,,)(y; or; d) for d (0, d,],

(/]ro*, Qo*)(Y; tr; d), (_Uo*, _Vo*)(y; tr; d) for d

(b) Ifo(1) < v*, (2.1) has two singular limit solutions

(Uo,,, Vo,,)(y; o-; d), (_Uo,,, _Vo,,)(y; tr; d) for d (0, dl],

(/]ro*, Qo*)(Y; o’; d), (_Uo*, _Vo*)(y;tr; d) for d

(c) If flo(1) v*, (2.1) has two singular limit solutions

Uo,,, Vo,,)(y; or; d), _Uo,,, _Vo,,)(y; tr; d) for d (0, 1 ],

(/o*, ’o*)(Y; or; d), (_Uo*, _Vo*)(y; tr; d) for d

(ii) When v*<-_ v_, (2.1) has two singular limit solutions (o,,, Qo,,)(y; r; d) and
_Uo,,, _Vo,,)(y; o’; d) for d (0, dl].

(iii) When v+<-_ v*, (2.1) has two singular limit solutions (*o, Qo*)(Y; tr; d) and
(_Uo*, _Vo*)(y; r; d) for d [d2,

2.4. Existence theorem. We construct solutions of (2.1) for small tr, which tend
to the above singular limit solutions as tr$ 0 in a suitable topology. We assume that
(a*(d),/3" (d)) satisfies the inner and outer matching conditions

(2.9) ,o(*(d),/*(d); d)=0= q’o(#*(d); d)

and moreover

(2.10) o(a*(d), fl*(d); d) O.

In order to prove the existence of solutions of (2.1) for small but not zero tr, we need
to assume (2.10). For any fixed a,/3 A {( a,/3 )1 [a a *(d>l + *(d>l _-< we
first look for solutions of the problems (2.2)5, which take the forms

u+(y; o-; a, fl)= U-(y; fl)+ W-(Y; a, fl)+r+(y; o’; a, fl)
/

(2.11)+

and

(2.11)_

where

+ h+(V-(y; fl))s+(y; tr; a, fl),

v+(y; tr; ce, fl)= V-(y;/3) + cr2Y+ (; ce,/3) +s+(y; tr; ce, fl),

/v
u-(y; tr; a, ; d)= U(y; ; d)+ W-; ce, [3; d) + r-(y; tr; ce, ; d)

+ h_(V(y; ; d))s-(y;tr; a, ; d),

v-(y; ty; a, fl; d)= V-(y; ; d)+tr:ZY-(Y; ce, ; d + s-(y; o-; ce,/3; d),
/
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with

Y-(:; a, fl) {g(h+(fl)+ Wg-(sr; c,fl),fl)-g(h+(fl),fl)} ddrl

and

with

Y(s:; a, fl; d d I I "-- {g h- fl + W(sr; a, fl d fl g h_ fl ), fl } d drl

and/x is an arbitrarily fixed number satisfying/x > max (/x+,/x_(d)). Let us define a
function space (R+) by

-= Xp,(R) x Xp,(R)

for any fixed constant p (0< p < min (+, _(d))). Then we obtain the following result
for the remainders = (r, s).

LZMMa 2.6. ere are > 0 and > 0 such that for any (0, ) and (, )
A, there exist t(;a,)(R) for which (2.11) satisfy (2.2). Moreover,
t(; a,), (t/a) (; a,) and (t/)(; a,) are uniformly continuous with
respect to (, a,) (0, )xA in the (R)-topology and satisfy

IIt(; , )lla> o(1),

I] Ot o(1),

(; , ) :o(1)
(n)

as 0 uniformly in a, A
Finally, we construct a solution of (2.1) on the whole interval R by matching

(u+, v+)(y;; a, fl) and (u-, v-)(y; g; a, fl; d) at y=O in the Cl-sense. For this
purpose, we define

(2.12)

d d
(r; a,/3; d)= r u+(0; or; a, 13)- cr

dy
u-(0; r" a,/3" d),

d
v+(0; r; a,/3)-

d
*(r; a,/3; d)=y yy v-(O; o’; a,/3; d),

and determine a and/3 as functions of o- and d such that the relations

(2.13) (o-; a,/3; d)=0=(r; a,/3; d)

hold. We call (2.13) the matching condition. We extend and continuously so as
to be defined for r 0. Putting r 0 in (2.12), we obtain by Lemma 2.6 that

,(0; , t; a)= o(, t; d),

q,(0; , t; a)= ’I’o(t; d).
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Here we define I(d) by using the Jacobian of the matching condition (2.13) at o-=0 as
follows"

(2.14) I(d) sign{J(d)}

with

where

J(d)-= det
a>o(*(d), t3*(d); d)

o__,i,o(/,(d); d)

’o( (d>, t*d; d

2_ %(/*(d); d)

+l for x>0,
sign {x} 0 for x 0,

-1 for x<0.

Since a*(d) and fl*(d) satisfy (2.9) and (2.10), we find by Lemmas 2.1 and 2.2 that

0

aft
,I,o(/*(d), d)=

dg(h_(fl*(d)), fl*(d))-g(h+(fl*(d)), fl*(d))
x/2 t3*(d) g(h+(s), s) as

<0

and

a (d 1)f(c*(d),/3*(d))
(2.15) o(a*(d), fl*(d); d)=ace x/2 fh+(/3*(d))

.o,*(d) f(u, (d)) du

We note that l(d) is essentially determined by the inner matching condition. Since
l(d) # 0 follows from assumption (2.10), the implicit function theorem can be applied
to (2.13). That is, there is tr2>0 such that there uniquely exist continuous functions
a(cr; d) and/3(tr; d) satisfying (2.13) for tre [0, try) and limo a(tr; d)= a*(d) and

lim+o fl(tr; d)= fl*(d). Thus, we obtain the desired theorem.
THEOREM 2.2. Suppose that (A1)-(A4) hold and d is fixed arbitrarily such that

(a*(d), fl*(d)) satisfies (2.9) and (2.10), that is, I(d) # 0. Thenfor any cr 6 (0, o’2) there
exists a solution (u, v)(y; tr; d) of (2.1) corresponding to the singular limit solution
(Uo, Vo) such that

+ IIv(y; r; d)- Vo(y; o-; d)ll ,,(>-*0Ilu(y, ; d)-Uo(y; tr; d)llo,(.>
holds as o , O.

COROLLARY 2.1. Suppose that (A1)-(A4) hold and dl and d2 are the same constants
as in Lemma 2.5.

(i) When v_< v*< v/, the following three cases occur"

(a) If/3o(1) > v*, (2.1) has two solutions

(U,, V,)(y;tr;d)(l(d)=l), (U_., V_.)(y; cr;d)(l(d)=-l) forde(O, dl),

(*, Q*)(y; or; a)(I(a) =-1), (_u*, _v*)(y; r; a)(I(d) 1) for d e[a2, oo);

(b) If/3o(1) < v*, (2.1) has two solutions

(u,, v,)(y;;a)(i(a)=l), (U,,y,)(y;;a)((a)=-l) fora(o,a],

(O*, Q*)(y; o’; a)(I(a) -1), _u*, _v*)(y; or; a)(l(a) 1) for d e (d2, o0);

(c) If/3o(1) v*, (2.1) has two solutions

u,, V,)(y; ; d)((d) l), U_ ,, y,)(y; ; d)((d)= -l) for cl e (O, 1),

U*, V*)(y; o; d)(l(d) -1), _U*, _V*)(y; o; d)(l(d) 1) for d e (1, oo);
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(ii) When v*<=v_, (2.1) has two solutions (,,Q,)(y;G;d)(I(d)=l) and
(_U., _V.)(y; tr; d)(I(d):-1) for d (0, dl).

(iii) When v+<=v*, (2.1) has two solutions (/]*, lT*)(y; tr; d)(l(d)=-l) and
(_U*, _V*)(y; r; d)(l(d) 1) for d (d2, ) (see Fig. 8).

Remark 2.1. If f and g are given by (1.6), the cases where y > y:, 3’ (y, y),
and Y(Yo, Y)correspond to (iii) (v+ <= v*), (i)(b)(v_<v*<v+,o(1)<v*), and
(i)(a) (v_ < v* < V+, flo(1) > v*), respectively.

I(d) l(d)

d]

u(O o;d)

I(d) -1 I(d)

’l(d)

(c)

u(O;;d)

(d)

I(d) -1 I(d)

(i)

u(O;;d)

I(d)

l(d)=-I

(ii)

u(O;o;d)

(q)

FIG. 8. Global pictures of stationary solutions of (1.1) and these l(d): (i) v_<v*<v+" (a)/3o(1)> v*,
(b) /3o(1)< v*, (c) /3o(1)= v*" (ii) v*<-_v_ (iii) v+<-v*.
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3. Stability of stationary solutions. Our aim in this section is to show that under
(A1)-(A4), I(d) corresponds in a one-to-one manner to the stability of stationary
solutions of (1.7) constructed in 2, that is, the stationary solution is stable (respectively,
unstable) if and only if I(d) is +1 (respectively, -1). We remark that this result is
closely related to the index argument on stability properties of nerve equations [Evl ],
[Ev2], [AGJ], [GJ], [I].

3.1. Preliminaries for stability analysis. Let (U, V)(x; or; d) be a stationary sol-
ution of (1.7). We will determine its stability by the linearized stability criterion. The
linearized eigenvalue problem of (1.7) at (U, V)(x; r; d) is given by

where
d2

 o(X)

d2

crg’’a 6o(X -xZ+ Crg’’a

Here f,a, ,a, g,a, and g,a denote the paial derivatives of f and g evaluated at
(U, V)(x; g; d). The underlying space for (3.1) is taken as BC(R)x BC(R) with

(,a) x .
Since ,a is a sectorial operator, its spectral analysis assures the nonlinear stability
or instability of the stationary solution (for instance, see [HI). Therefore it suffices to
consider the following two problems:

(i) Distribution of the essential spectrum;
(ii) Distribution of isolated eigenvalues.

Noting that (u, v) are both stable constant solutions, we first show the following
proposition.

PgOOSTON 3.1. Assume (A1)-(A4). en there exists a positive constant l
independently of d and such that

Re {essential spectrum of (3.1)} _-<-o’1

holds for any d > 0 and small cr > O.
The proof is given in the Appendix.
Since the essential spectrum of (3.1) is strictly bounded away from the imaginary

axis, the stability property of the stationary solution is studied by the distribution of
the isolated eigenvalues. The complex number h is called an eigenvalue of (3.1) if and
only if (3.1) has a nontrivial solution (, ,)(x; or; d; A) belonging to BC(R) x BC(R).
Therefore the eigenfunction (go, q)(x; or; d;A) must belong to @(,d). By the
definition of @, the eigenvalue problem (3.1) can be rewritten equivalently as

(3.2)5
6o(X)gox +lf’d go +lf"d q’+ Ago +,

cr ty x R+
8o(X) qxx + trg’’a go + crg’ a qt hp+,

with compatibility conditions

(3.3)
go+(O; or; d; A)= go-(0; or; d; A),
+gox(O; o-; d; A)= go;(O; o-; d; A),

qt+(0; tr; d; A)= O-(0; or; d; A),

q,+(0; tr; d; A)= g,;(0; or; d; A),
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where o+(x; o-; d; A), O+(x; r; d; A) BC2([0, oo)), and o-(x; r; d; A),
O-(x; or; d; A) BC2((-oo, 0]). Then, the eigenfunctions o and of (3.1) are, respec-
tively, represented as

0(x; or; d; A)=
f+(x; d; A),r;

o-(x; or; d; A),

and

d" A)= O+(x; o’; d; A),
,(x;

[ @-(x; o-; d; A),

Let us rewrite the problems (3.2)+, (3.3) as the four-dimensional systems

dx

(3.4)+/-

1 fo,d) 1 fo,aV / o(X) I);/o(X),

dx

xR+/-,

crg"a v:/8o(X) + (A crg’a)v:/8o(X),

(3.5)
+(0; or" d" A)= v-(0" o’" d; A),D1

+
32 (0; O’; d; A)= v(0; o-; d; A),

+
)3 (0; O’; d; A) vf (0; or; d; A),

+
v4 (0; or; d; X)= v(0; r; d; A),

where v: o (Vl )2, V3, V4 we simply)2 (/gx /)3 I]+, and )4 i]/. Using V t,
write (3.4) as

d
V+/-=A(x o" d; A)V+/-, xR+/-.(3.6)+/-
dx

Since the stationary solution U, V)(x; or; d) approaches the equilibrium states (u+/-, v+/-)
with exponential order as x - +oo, the asymptotic behaviour of eigenfunctions for large
Ixl can be studied by using the limiting systems of (3.6)+/- with constant coefficients

d
V A(+oo; o-; d; A)V+/-, x R+/-,(3.7)+/-

dx

where

A(+oo; r; d; A)=

0 1 0 0

(A-(1/cr)f,(u+/-, v+/-))/8o(+oo) 0 -(1/cr)f,(u+/-, v+)lo(+Oo) o
10 0 0

-ogu(u+/-,v+)16o(+) o (A-o’g,(u+,v+/-))/8o(+oo)

with 80(+oo)= 1 and 80(-oo)= 1/d. Let/x:(tr; d; A) (i= 1,2,3, 4) satisfying Re {/z:}--<
Re {/:} _--< Re {/z:}-<_ Re {/x:} denote the eigenvalues of A(+/-oo; tr; d; A).
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LEMMA 3.1. There exists a positive constant 12 independently of cr and d such that

Re {/z(er; d; h)}=< Re {/z(o-; d; h)}<0

< Re {z(o-; d; h)}-< Re {tz:(cr; d; h)}

hold for all C, -= { C[Re {}-> -/2}.
This lemma can be proved in a way similarly to Lemma 4.1 in [I], so we omit the

proof.
By virtue of Lemma 3.1 and (3.7)+, (3.6)+ has just two linearly independent

solutions V-(x; or; d; A) (i 1, 2) for any A Cl2, which satisfy

V-(x; o-; d; A)->O as x-->oo (i= 1,2)

and (3.6)_ has just two linearly independent solutions V-(x; tr; d; A) (i 1, 2) for any
A Cl2, which satisfy

V/(x; tr; d; A)->0 as x->-o (i= 1,2).

By a short calculation, we can find that/x=(tr; d; A) (i= 1,2,3,4) and V=(x; tr; d; A)
(i 1, 2) depend analytically on A

A nontrivial solution of (3.4)+/-

V+(x; o’; d; A), x->O,
V(x; d; A)-=

[V-(x; tr; d; A), x_<0,

which corresponds to an eigenvalue A e CI, must satisfy

V+/-(x; tr; d; A)->0 as x-> +oo.

Hence V+/-(x; tr; d; A) can be written as

2

V+(x; r-d" A) E O V (x; o’; d; A), x R+
i=1

for some constants a (i 1, 2). Conditions (3.5) lead to

2 2

E aTV-(O; tr; d; A)= E aTVT(O; tr; d; h).
i=1 i=1

That is, h ho is an eigenvalue of (3.1) if and only if the vectors V:(0; tr; d; A) (i 1, 2)
are not linearly independent when h- ho. Let

(3.8) g(tr; d’, A) det IVY-(0; tr; d; h), V(0; r; d’, h), V-(0; tr; d’, h), V(0; tr; d’, h)].

We find that g(tr; d; A) is an analytic function of h CI and we have the following
lemma.

LEMMA 3.2. For any h C, h is an eigenvalue of (3.1) ifand only ifg(cr; d; A) =0
holds.

3.2. Relation between I(d) and stability of stationary solutions. In order to examine
the distribution of eigenvalues, that is, to find solutions h of g(tr; d; A) 0, we construct
linearly independent solutions V:(x; r; d; A) (i- 1, 2) satisfying

d
(3.9):

dx V:= A(x; o’; d" A)V xeR+,

(3.10)+/- V:(x;
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First, we solve the following problems for (q5, q+) in Rs:

(3.11)5

1 f,,d05 1 f,,d+,
o X O + +- ,xo

6o X d/x + 0-g,,a + 0-g,,a d/ A d/5

q+(+) 0, q5(0) a,

xRs,

q5(+) O, q5(O) b,

where a and b are arbitrarily fixed constants, and denote their solutions by (+, +)-
(x; 0-; d; A; a, b). Letting

(3.12)

q+(x; 0-; d; A; 1, O)

V:(x; 0-; d" h)=
px(X; 0-; d; A; 1, O)
$+(x; 0-; d; A; 1, O)
$(x; 0-; d; A; 1, O)

q+(x; 0-; d; A; O, 1)
px(X; 0-; d; A; O, 1)

V:(x; 0-; d; A)
$5(x; 0-; d; A; 0, 1)
@(x; 0-; d; A; O, 1)

(x e Rs),

(x R+),

we find that V(x; 0-; d; h) (i= 1,2) are linearly independent solutions of (3.9)+,
(3.10)+, and that V-(x; 0-; d; A) (i 1, 2) are linearly independent solutions of (3.9)_,
(3.10)_. Making use of V:(x; 0-; d;A) (i=1,2), we are able to seek A satisfying
g(0-; d; A)= 0 and arrive at the following stability theorem.

THEOREM 3.1. Assume (A1)-(A4) and let (Uo, Vo)(X; 0-; d) and U, V)(x; 0-; d)
be an arbitrary singular limit solution and the corresponding stationary solution constructed
in 2 and define l(d) by (2.14). Then there exists a positive constant 13 such that for
any h E Co-13 the following hold: If l(d)= 1, the equation g(0-; d; A)=0 has no roots,
that is, U, V)(x; 0-; d) is stable. Conversely, if l(d) =-1, g(0-; d; A)=0 has a unique
simple positive root A(0-; d), that is, (U, V)(x; 0-; d) is unstable (see Fig. 8).

The proof will be given in the next section.

4. Proof of Theorem 3.1. In this section, we shall represent the explicit form of
the function g(0-; d; A) and then find solutions A of g(0-; d; A) 0.

First, setting y x, (3.11)5 can be rewritten as

0-2ao(y)5yy +?:"d(I)e + ?tr,d %/,5__ 0.2/(I)5,

(4.1)+
dao(y)XItyy + ff,’ddP + g," ,v p,xItS,

dP+(+oo) O, ripS(o) 1,

5(+oo) O, +(0) b,

yER+,

where/_e A/0., ]o,d =f( U(y/x/; 0.; d), V(y/x/-; 0.; d)), and ?.d,gu ,and’dare
similarly defined. Here we may set a= 1. For solutions (p5, xitS)(y; 0.; d;/x; b) and
(q+/-, q5)(x; 0.; d; A; a, b) of (4.1)5 and (3.11)5, respectively, we have the following
obvious relations:

(5, ,5)(x; 0.; d; A; 1, O)- (cP +, +/-)(x/-x; 0.; d; A/0.; 0),

(5, $5)(x; 0.; d; A; 0, 1)= (5, 5)(x/x; 0.; d; A/O.; 1)
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By using singular perturbation techniques, we solve (4.1)+ for any/x C13, where 13 is
a positive constant specified later. To do so, the discussion will be divided into four
cases according to the dependency of/x on o-:

I. /z =/z(r) O(1) (that is, A(tr)= O(tr)) as tr$0.
For the other three cases, we have I/x(cr)ll’ oo as tr $ 0, and we know by Lemma

1.1.1 of [Ec] that there exists a real positive and continuous function to(g) satisfying
to(o-)l’oo as orS0 such that/z(o-) is represented as

(4.3) /z(tr) to (tr)fi.(tr),

where/2(r) satisfies I (0)l 0 (that is, under the assumption/x C13, it holds that either
Re {/2(0)} > 0 or if Re {/2(0)} 0, Im {/2(0)} # 0). Then, with z x/to(r) y, (4.1)+ are
rewritten as

(4.4)+ 6o(Z)*zz +[/[[[[ + * *o(o-)to[o’)

+/-(+/-oo)=0, +/-(0)=,

+(+oo) O, +/-(0) b,

"’ gUwhere f,d =f(U(z//crw(cr); or; d), V(z/V’crto(cr); or; d)) and f g,d, and are
similarly defined. We discuss (4.4)4- by dividing the coefficient of z, say cr2to(cr),
into the following three cases:

II. r2to(r)0 and to(r)’ (that is, rA(cr)0 and h(r)/r’) as orS0;
III. cr2to(r)- K for some positive constant K (that is, erA(or) is bounded but does

not converge to zero) as cr $ 0;
IV. cr2to(r)’c (that is, crh(cr)’o) as r$0.
Case I. /z(cr) O(1) as cr $ 0. In order to construct approximate solutions to

(4.1)+, we formally put cr--0 in (4.1)4.. The resulting equations are

yR+/-,

:(+oo) O, (0) b,

where fd4"=f.(U-(y;*(d)), V:(y;fl*(d))) with the outer solutions (U:, V:)-
^0 0 0(y; B*(d)) obtained in 2.1. f’ gd and g’ are smflarly defined. By (A3), the

first equations in (4.5) are written as

o -fd Wo/’
Then (4.5)4- are reduced to the following equations:

o(y)(XlrS)yy + {H4"(y; d) -/x(O)} O,

qo(+) O, qo(O) b,

yR4.,

where H4"(y d) (fd4""+/- o,;4.g2 ,u’4")/f,,’4" The following lemma is very useful for our
purposes.

LEMMA 4.1. Consider the problems for H4":

(4.7)+
ao(y)I/+/- + {H4"(y d) -/x}II O,yy

n+(+oo) o, n+/-(o) . yR+/-,
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Then there exists a positive constant 13 such that for any/x Cl3 {/x CIRe {x} => --/3},
the (4.7)+/- have unique solutions II+/-(y; d; ).

The proof is given in the Appendix.
We thus find that, for any/.(0) Cl3, the (4.5)+/- have unique solutions

o(Y; d;/x(0); b)= bII+/-(y; d;/x(0))

and

Oo(Y; d;/x(0); b) =-fd :(y; d;/x(0); b)/fd:.
By using these functions (P:, ), we now construct solutions (,) of (4.1).
However, S(y; d; (0); b) do not satisfy the boundary conditions at y=0, so that
we must modify these by adding other approximate solutions in a neighborhood of
y 0. That is, we introduce correction terms F(y/) such that (+F,) become
approximate solutions to (4.1) uniformly on R. Substituting (O+F,S) into
(4.1) and setting =0, we have the following problems"

6o()(F)+f,(h(*(d))+ W,*(d))FS=bP(; d), R,
(4.8)

rg() 0, rg(0) 1 bh(*(d)),

where y/, W are the inner solutions obtained in 2.2. With the representation

P(; d)= h(*(d)){f,(h(*(d)), *(d))-f,(h(*(d))+ W, *(d))}

+{f(h(*(d)), *(d))-f(h(fl*(d))+ W, *(d))},
solutions of (4.8) are represented as

(w)()Fg(; d; b)= {1-bh(fl*(d))}
(w)(0)

b(Wg)() ((Wg),(n))- W)c(ff)P(; d) dff d.

Using the functions (,) defined by

o(Y; d; (0); b)+Fo d; bo(y; ; d; (0) b)=

o(y," ; d; (0) b) g(y,. d., (0)., b),

we can obtain solutions (, )(y; ; d; (); b) of (4.1) for any () satisfying
(0) e CI, which satisfy

The proof can be done by using standard singular peurbation techniques (see 2 or
[IM1]). By (3.12) and (4.2), (3.8) is represented as

g(; d; ())= g(; d; ())

=-{(rg)e(o; d; 0)- (rX)(0; d; 0)}
+x {(*o),(o; d; (o); 1)- (,),(o; d; (0); 1)I+ o(1)

as 0. From the condition (2.10), it follows that

(r)e(o; d; o)- (r)e(0; d; 0)= {(W)ee(0)- (W)ee(0)I/(W)e(0)
(4.9) (d lg(a*(d), fl*(d))/(Wg)e(0)

0.
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Here, with
R p+/-/z=/z +i/z and o= +iQ

we define G(d;/z) by

G(d" Ix) (+0 )y(0; d; L/; 1) (xltff)y(0; d;/z; 1)

and show G(d; tz) 0 for any/z Cl3. We rewrite (4.6)+/- with b--1 as the following
problems for (P+/-, Q+/-)(y; d;/z; 1):

o(y)Pyy + {H+/-(y; d) IzR}P + tzlQ O, y R+,
(4.10)+/-

P+/-(+c) O, P+/-(0) 1

and

to(y) Qyy + {H+/-(y; d) -/zR}Q IzlP 0, y R+/-,
(4.11)+/-

Q+/-(+c) =0, Q+/-(0) =0.

Multiplying (4.10)+/- by Q+/- and integrating these over the intervals R+/-, we have

to(y)(P+)y(Q+)ydy+ {g+(y; d)-tzR}P+/-Q dy

(4.12)+/-

+Ix’ Q+/-)2 dy O.

Similarly, multiplying (4.11)+/- by P+/- and integrating these over the intervals R+/-, we
obtain

-to(+0)(Q+/-)y(O; d;/x; 1)- to(y)(P+/-)y(Q+/-)ydy
(4.13)+/-

/ {g+/-(y; d)-tzR}P+/-Q dy-tz’ (p+/-)2 dy=O.

Combining (4.12) with (4.13), we know that

): )2} Q{(P +(Q dy=-ao(O)( )(0;d;; 1).

We thus find

Im {G(d;/z)} (Q+)y(0; d;/z; 1)- (Q-)y(0; d;/x; 1)

-" o(-Oi I(P- +(- ay

1 ) 2}+o(+O) {(P+ +(Q+) dy

which implies that G(d;) 0 if i 0.
Next we consider the case g 0; that is, is a real number. Letting R(y; d; )

(O/O)(y; d; g; 1), we obtain the following equations"

o(y)Rr+{H(y; d)-}R =.o, y a,
(4.14)

R() =0, R(0) =0.
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Multiplying (4.14)+ by xlrS and integrating these over R+, we have

-to(-t-0)(R+)y(0; d;/z)-- ()2 dy.

Thus, we know that

d
G(d’/x)=

0 0-- (XIt)y(0; d;/; 1)-- (-)y(0; d;/z; 1)
d

1 +)1 ()2 dy + (o dy
ao(-O) ao(+O)

<0

holds for any/x >-13. On the other hand, we obtain

G(d; 0)= (xlr)y(0; d; 0; 1) (xI)y(0; d; 0; 1)

---{(V-)yy(O; fl*(d))-(V-)yy(O; fl*(d))}/( V-)y(O; /3*(d))

{-g(h+(#*(d)),/3*(d))/6o(+0)

+ g(h_(*(d)), *(d))/6o(-O)}/(Vff)(O;/3*(d))
<0

(see 2.1). Combining these inequalities, we find that

G(d;/z) # 0 for any/z > 13
(if necessary, we choose the positive constant 13 to be smaller). Therefore we find that

(4.15) G(d; tz) # 0 for any/x(tr) satisfying/x(O) C13
so that from (4.9)

g(tr; d; A(r)) # 0

holds for any A(tr)= tr/z(o’) satisfying/x(0) 6 C13, when tr is sufficiently small.
Case II. tr2w(o-)$0 and w(tr)’c as o-$0. Since (4.1)+/- and (4.4) are quite similar

forms, applying the same method as that in Case I to (4.4)+/-, we can conclude that

g(tr; d; A(tr)) # 0

for any A(tr) satisfying rA(o-)0 and A(tr)/cr’oo as tr$0.
Case III. trEw(tr)- K as tr$0. For this case, (4.4)+/- fall into regularly perturbed

problems, because the coefficients of +/-zz do not degenerate as (r $ 0. First we construct
approximate solutions to (4.4)+/-. Using the transformation : z/x/- and putting tr 0
in (4.4)+/-, we obtain the following systems"

(4.16)+/-

:(+/-) O, g=(0) b.

Noting that/2(0) satisfies

(4.17) Re {/2(0)}=>0 and I,(o)lo,
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we find that

:(; d; fi(0); b)= b exp { /K(0)/8o(+0) :}.

Therefore, (4.16)+/- are reduced to

8o()(:)+{fu(h+/-(fl*(d))+ W, fl*(d)) K/.(0)}:

(4.18)+/- -f,(h+/-(fl*(d))+ W:, fl*(d)):, R+/-,

b(+) O, (0) 1.

Applying results similar to Lemma 4.1 to the systems

6o(:)I/% + {f (h(/3*(d)) + WS,/3*(d)) z}I/+/- 0, : R+/-,

n(+) 0, n(0) 1,

we find that (4.18) have unique solutions :(s; d; (0); b) for any (0) e C satisfying
(4.17). According to a standard peaurbation process, for any (0) satisfying (4.17),
we can find exact solutions (, )(z; ; d; (); b) of (4.4) which satisfy

In a way similar to that in Case I, we obtain

g(; d; A())= g(; d; ()())

()
[{(;)(0; d; (0); 0)- ()(0; d; (0); 0)

x {(xIt-)(O; d;/2(0); 1)- (qt-)(O; d;/2(0); 1)}+ o(1)]

o(
{(,o e(o; ; (o; o-((o; ; (o;

/ 8o(+0)
+ 8;(0) o(1)]

as r$0. Put
+(tr; d;/z) {(o )(0; d;/z; 0)- (ff)(O; d;/z; 0)}

x {/K/X/80(+0) + x/K/X/8o(--0)} + O(1).

Since (tr; d;/x) can be extended continuously so as to be defined for o-=0, we obtain

8(0; d;/x)= {((I)-)e(0; d;/z; 0)- ()e(O; d;/z; 0)}

x {4,lao(+O)+4,/ao(-O)}.

In a way similar to that in Case I, we know that

(r; d;/z) 0 for Im {/x} 0.

That is, ff(tr; d; ) =0 has no roots satisfying Im {} 0. Then it suffices to consider
the case when/x is a real number; that is, for any/z > 0, we find roots/x of if(0; d;/x) =0.
For any/z>0, if(0; d; )=0 is equivalent to the equation

G(d; tx)=-(-)(0; d;/x; 0)- (ff)(0; d;/x; 0)=0.



STABILITY OF STATIONARY SOLUTIONS 1675

Therefore, we consider G(d; Ix)= 0 instead of if(0; d; Ix)= 0. By the same method as
that in Case I, we can show that

d

dix
G(d; IX)<0 for any IX>0,

and

G(d;)=-4/o(+O)-4/*o(-O)+O()-,- as IX’.
Moreover it holds that

G(d" O)=(dp +o)(0, d, 0 0)-()(0; d" 0; 0)

{(w)(0; *(d),/*(d))

-(w-)(0; *(d), t*(d))}/(W-)(0; *(d),/*(d))

=(d- 1)f(a*(d), fl*(d))/(W)(O; a*(d), fl*(d)).

Using the relations (2.14) and (2.15), we conclude that

sign {G(d; 0)}=-l(d).

Then we directly have the following.
LEMMA 4.2. If l(d)= 1, (0; d; IX)#0 for any IX>0. Conversely, if I(d)=-l,

there exists a unique simple positive number Ix* d) satisfying , (0; d; Ix*(d)) 0.
Applying the implicit function theorem to (00; d; Ix)=0, it follows from Lemma

4.2 that
(i) When I(d)= 1, (00; d;/2(0))#0 for any/2(00) C satisfying (4.17);
(ii) When l(d)=-1, ff(00; d;/2(00))=0 has a unique simple positive root/2(d; 00)

satisfying (4.17) such that lim_,o/2(d; 00)= Ix*(d).
Therefore, if l(d)= 1, g(00; d; A(o’)) 0 holds for any A(00) 00w(00)/2(00) satisfying
(4.17), while, if l(d)=-l, g(00; d; A(00)) =0 has a unique simple positive root A
() ,o()(d; ).

Case IV. 002w(00)’ as 0050. In the same spirit of the proof of Lemma 4.3 in
Case I, we can prove that

g(00; d; A(00)) 0

for any h(00) satisfying 00h(00)’ o as 00 0. So we leave the proof to the reader.
Combining the above four cases, we are able to complete the proof of Theorem 3.1.

5. Concluding remarks. In the previous sections, we have not mentioned the case
where 00 is sufficiently large. Here under the assumptions (A1) and (A5), we briefly
state the results on the stability as well as the existence of stationary solutions for this
case. Let v= h(u) be the function uniquely defined by the relation g(u, h(u))=0 (see
(A5)) and let S=u_f(u, h(u))du. In [IM1], under the assumptions (A1) and (A5),
we have shown the following existence result:

(i) When S < 0, there exists dl (<1) such that (1.7) has two stationary solutions
U,, V,) and _U,, _V,)( U, > _U,) for any d (0, dl);

(ii) When S> 0, there exists d2 (> 1) such that (1.7) has two stationary solutions
(*, "i?*) and (_U*, _V*)( 0"> _U*) for any d (dE, ) (see Fig. 9).

Using the same method as that in 3 and 4, we can show that when S < 0, the
upper branch corresponding to (U,, V,) is stable, while the lower one corresponding
to (_U,, _V,) is unstable. Conversely, when S>0, the lower one corresponding to
(U*, _V*) is stable, whereas the upper one corresponding to (O*, *) is unstable.
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u(O;o;d)

. (stable)

U_ (unstable)

d
()

u(O;o;d)

()

FIG. 9. Global pictures of stationary solutions of (1.1) and their stability; (i) S <0; (ii) S>O.

In this paper, motivated by the wave-blocking phenomena, we have discussed the
stability property of stationary solutions for the special case when the reaction rates
of u and v are totally different; in other words, cr is very large or small. Unfortunately,
we are not able to discuss here the case when the reaction rates are almost equal. This
is a future problem.

Appendix.
Proof of Proposition 3.1. The location of the essential spectrum for the operator

T’d is contained in the union of the following two sets:

S+/-= {h Cldet (-v:D++ N+-AI)=0, v6 R},
where

D+=
0 6o(+) L Crgu crg, j’

f=f,(u, ) and f, g:, and g are similarly defined. From the relations

det (-2D+N hi) 0,

it follows that

h2 + (2 v26(+ l
f" crg) A + ( v26( f ) V26o(+C) crg fv g, O.

The roots of these equations are given by

h - 2 v26 +c +
l
f + crg ft trg +4f,,gu

or

h=-2u26(+)+--f"+’g-cr f-crg +4fg

Using the assumptions (A3) and (A4), we find that for small cr > 0,

Re A<_-- -2v26(:t:)+cr +crg+
cr

-orgy

V26o(+O) + o-g.
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That is, for any v R and small tr > 0

Re h -<_ trg

hold. Then we can conclude Proposition 3.1 with I1 =-max {g+, g-}(>0). [3

Proof ofLemma 4.1. Proving Lemma 4.1 is equivalent to showing the following.
LEMMA A1. Consider the homogeneous problems

(A1)
6o(y)(lI:)yy + {H+/-(y; d) -/x}rl 0,

n:(+oo) =o, n:(o) =o.

yR+,

Then there exists a positive constant such thatfor any tx Cl, the (A1) have only trivial
solutions.

Proof Let L be linear operators defined by

L+u+=- 6o(y)Uy + H+(y; d)u+.
According to the Sturm-Liouville theory, all the eigenvalues of (A1) are real and
simple. Furthermore, it is known that the eigenfunctions uS corresponding to the
largest eigenvalues/x have no zeros in R+, respectively. Without loss of generality,
we assume Uo -> 0 in R+. That is,

(A2)+
6o(y)(u-)yy +{H+(y; d)-txS}u- =0,

uS(+) =o, uS(O) =o

yR+,

hold. On the other hand, the derivatives of the outer solutions V, say P+ =- V)y > 0,
satisfy the following equations"

(A3)+
o(y)Pyy + H+(y; d)P O, yR+,

P+/-(+/-o) =0, P+/-(O) V:)y(O; fl*(d)).

Using the above relations (A2)+ and (A3)+, we obtain

tXo uoP dy= {6o(y)(Uo)yy+H+/-(y; d)u:}P dy

=-6o(+O)(u:)y(O)P+/-(O)+ {6o(y)Py+ H+/-(y; d)P+/-Iu- dy

-60(+/-O)(u:)y (0)P+(0).

Then

tXo -6o(+/-O)(uo)y(O)P+(O) Uo dy

hold. Noting that (uff)y(O) > O, (uff)y(O) <0, P+/-(O)>O and u:(y)P+/-(y)>=O in R+/-, we
find that

/Zo }, Lemma A1 is proved.Thus if we put max{/z-, +
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INTEGRAL EQUATION METHODS IN A QUASI-PERIODIC
DIFFRACTION PROBLEM FOR THE

TIME-HARMONIC MAXWELL’S EQUATIONS*

J. C. NEDELEC" AND F. STARLINGt

Abstract. The problem of the time-harmonic Maxwell’s equations is considered in the exterior in R
of a domain which has a doubly periodic structure in a plane of R3. It is proved that except for a discrete
set of value of the frequency, this problem has a unique solution.
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Introduction. There is an increasing interest in the study of radiation patterns
created by the new periodic structures of phased arrays antennas. These antennas
consist in the superposition of a great number of identical electromagnetic horns. The
calculus of the radiation pattern of such a horn, when it is considered separately from
the others, can be handled by integral equations techniques (see [1]). However, the
complete calculus by this method, taking account of all mutual influences, leads to a
great number of unknowns and consequently to very heavy computations. Here, we
present a mathematical model of such a problem that shall lead us, later on, to its
numerical resolution. It is based on a reduction to a "quasi-periodic" formulation (see
[4]), which enables us to focus the analysis of one "elementary scatterer." On that
starting point, we modify the methods in [1] to get existence and uniqueness results,
which shall justify a rough numerical method. New mathematical difficulties, which
differ from those found in [1], appear in our analysis and are to be be related to the
kind of model discussed.

The paper is organized as follows. In 1, we introduce the mathematical model
and framework to be considered. Section 2 is devoted to the analysis of uniqueness
properties for this model. Finally, 3 gives the integral equation formulation of the
problem, which provides existence results and will lead to numerical computations.

1. The mathematical model. This section will lead us to a precise mathematical
framework for our electromagnetic diffraction problem. We begin with a general
description of the geometrical setting of the problem.

1.1. Geometrical structure and notation. If Y and Y’ are elements of C, Y
(Yl "’’,Y,.) Y’=(Y’1, ", y), we will use the following general notation:

Y:= (Yl,""", 37) is the complex conjugate of Y,
Y. Y’ := YlY +" + Y,,Y’,, is the scalar product of Y, Y’,
Y. Y’ := y137 +. + y37’ is the Hermitian scalar product of Y, Y’,
YI :- Y. ,-)1/2 (y1371 +... + y37)1/ is the modulus of Y.

Let (el, e, e3) be an orthonormal basis of 3, related to a system of coordinates
(Xl,X2, X3).

Let w be a bounded open regular set of N3, with connected complement in N3;
w will be our basic scatterer, repeated periodically in a plane of N3.

Indeed, we will consider a "doubly periodic" scatterer, consisting in the union of
identical scatterers, translated from 0 in the following way.

Received by the editors May 2, 1988; accepted for publication (in revised form) July 4, 1990.
f Centre de Math6matiques Appliqu6es, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
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then

We assume that (dl, d2) are two positive reals such that

VI (il, i2) a Z2 if O)I :-- 0.) + il dlel + i2de.;

(1.1) O)l["]tOj---- f I # J, J Z.
Our doubly periodic scatterer is defined by the disjoint union

S:= U
JZ

(d, d) hence represents the double periodicity of the structure. (See Fig. 1.) This
geometrical structure leads us to the following splitting in the system of coordinates,
which will widely simplify the notation: we will write

(Xl, X2, X3) (X, Z)

where X stands for the 2 element (Xl, x2) and Z stands for the element x.
Property (1.1) implies that we can choose an origin 0 in such that to is

completely embedded in the "cylindrical" set of 3:

l’:= ]-dl/2, d1/Z[x]-d2/2, d2/2[ x.
We will call this set the "elementary cell."

We will see in 1.4 that the diffraction problem, which is set on 3\ can be
reduced to a boundary value problem which is set only in the complement of to with
respect to the "elementary cell" f. To this end, we define such an exterior domain by

fext :=

and we will also need to truncate this domain ext to obtain some compactness
properties in 2; thus, we set, for every real p,

a xt := a x, n {(x, z) /Izl <

As a is bounded, we can assume that it is embedded in a set

{(x, z)   /IZl <
for a positive real Po. It follows that contains a5 if p >_-po.

We also define sections E of the "elementary cell" by setting

E’ := ]-dl/2, d1/2[x]-d2/2, d2/2[ x {Z /Izl p}

for every real p _-> Po.
Finally, we set Q := ]-d/2, d/2[ x]- d2/2, d2/2[.

OOOO

FIG.
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1.2. Maxwell’s equations. Generally speaking, the determination of the time-
harmonic diffracted field by a perfectly conducting body gives rise to the following
kind of boundary value problem, where the time dependence, in exp (-iwot) (with
i= x/Z-l), is dropped by linearity:

(Max. 0) Find (e, h) such that
curl e-itootzh 0 in the exterior domain,
curl h+ kooee 0 in the exterior domain,
II X e --ll X einc on the conducting body.

(e, h) satisfies an outgoing wave condition at infinity.

Here einc is the electric part of the incident electromagnetic field; k, the wave number
of the phenomenon, is related to the pulsation of the incident wave tOo by the formula
k- tOov/e/x with e and/x the electromagnetic characteristics of the exterior domain; n
is the outwardly directed normal on the body.

Following 1], we can eliminate h from these equations to obtain the equivalent
problem:

(Max. 1) Find e such that
Ae/ k2e- 0 in the exterior domain,
div e- 0 in the exterior domain,
n X e --ll x einc on the conducting body.

e satisfies an outgoing wave condition at infinity.

In this form, the diffraction problem has been widely analysed and its mathematical
properties are well known (see [1], [2]; part of our study will be based on this
knowledge). However, our doubly periodic scattering problem has not, strictly speaking,
a physical meaning because we assume that the scatterer is of infinite extent. Hence,
to give a precise meaning to problems (Max. 0) and (Max 1), we must add some specific
conditions on the behaviour of the diffracted fields, and also specify an appropriate
outgoing wave condition, generalizing the usual ones.

First of all, we restrict our study to the case where the incident field has a plane
wave structure. Other kinds of excitations of such a system are possible. Thus, we
write, in a fixed system of coordinates (X, Z),

inc(1.2) einc(x, Z) eo exp (iK. X) exp (iKz- Z)

where the wave vector of ein is k K+ Kz, Ik] k, and K Vect (el, e2), Kz Vect (e3).
Consequently, the tangential component of our diffracted field, which is matched

with the incident field on conductors, will satisfy the following "quasi-periodicity"
condition:

For all J (jl, j2) 6 7/2, if Xj := (jl dl, j2d:z),
(n e)(X + Xj, Z) (n e)(X, Z) exp iK Xj).

This suggests searching for a diffracted field e satisfying such a "quasi-periodicity"
condition not only on the conductors, and for the tangential component of the field,
but everywhere in R3\ and for the whole field e. In fact, we can guess that this
requirement is necessary, for, assuming that the solution of our problem is in some
sense unique, an Xj translation of the scatterer gives rise to the two following kinds
of solutions"

.eJ (X, Z) e(X + Xj, Z) (translation of the scatter),

e*(X, Z) =e(X, Z) exp (iK. X) (modification ofthe incident wave),
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so that writing eJ (X, Z)= e*(X, Z), we find again our "quasi-periodicity" condition:

(1.3) For all J in 7/2, e(X + Xj, Z) =e(X, Z) exp (iK. X).

We can now state our "quasi-periodic" boundary value problem, in a more specific
form:

(1.4) Find e defined on 3\g such that
ZXe + k2e 0 in 3\$,
div e 0 in 3\,
!! X e -!1 x einc on each conductor.

e satisfies (1.3) and a suitable outgoing wave condition at infinity.

Here einc has the form (1.2).
At this point, a precise meaning for the outgoing wave condition can be derived.

It is easily seen that a function e satisfying conditions (1.4) can be expanded in a
"quasi-periodic" Fourier series for sufficiently large

(1.5) e(X, Z) 2 exp (i(K+K) X)e(Z),

where

and

K, := (2rj/dl, 2jl4),

Iz} > po

J (jl, j:)

1

J e(X, Z) exp (-i(K+ K,). X) dtrx.,,,(z) :=

This series (1.5) is absolutely convergent and termwise infinitely differentiable,
for e, solving problem (1.4), is necessarily very regular.

Furthermore, each component e(.) must satisfy

02
(1.6)

OZ2 e.(Z) + (k2 -IK+ K, I)e, (Z) 0 for IzI > po.

The general solution of (1.6) can, of course, be given explicitly; however, having
in mind that (1.6) is a Helmholtz equation set in a classical framework, we will select
the different kinds of solutions by the usual Sommerfeld’s radiation conditions:

e(Z) O(1) for large [Z] and all J in 7/2,

(1.7) 0

O[Z]
ej(Z)-itx(k)ej(Z)= o(1) for large [Z and all J inT/2

where

(1.8)
,uq(k) := (k- IK+ KjI2) l/2 if k _>-IK +

,uv(k) := i(IK+ KI2- k2) 1/2 if k < IK+ K, I.
1.3. Functional spaces. In this section, we describe the functional setting needed

to state our boundary value problem in a suitable mathematical form.
We shall use standard notation for the usual functional spaces: L2(G) is the space

of complex square integrable functions defined on G, where G stands either for an
open regular set of R3, or for the regular boundary of such a domain. The norm and
scalar product on L2(G) will be denoted, as usual, by[. Io, and (. [. )o,.
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C(G) (respectively, C(t)) is the space of regular functions defined on G
(respectively, G), with compact support in G (respectively, G).

H(G) is the usual Sobolev space of order s, s .
Ha(G) is the set of functions u in Hi(G), with Au in L:Z(G).
L’I(G) (respectively, H:C(G), H,:(G)) is the set of functions which are in

L2(GR) (respectively, H(GR), Ha(GR)), where GR := G f’l {(X, Z) 3/](X, Z)] < R}
for every positive R.

We need to define Sobolev spaces of "quasi-periodic" functions. To this end, let
C(3) be the space of those scalar functions u C(3) satisfying:

(i) u has compact support in Z, i.e., Supp u c {]Z] < p} for some real positive p.
(ii) u(X + Xj, Z) u(X, Z) exp (iK. Xj) for all J (j, j2) :y3, with Xj

(jldl,j:&).
For an open set O 3, C(O) will be the space of restrictions to O of functions

of C(3), and Co(O) the subset of C(O) of those functions with compact support
in O.

This enables us to consider the following "quasi-periodic" Sobolev space, closure
of C(O)in Hi(o), i.e.,

HK( O) := C(O)u’(.

It is not difficult to see that, equipped with the usual Hi(0) norm and Hilbertian
scalar product denoted by I" I.o and (. ]. )1.o, HK(O) becomes a Hilbert space.

To reduce our boundary value problem to one set only in the "elementary cell", we need a space of functions, defined on t, which can be extended to 3\ as
"quasi-periodic" functions, in a sufficiently smooth way, with respect to conditions
dictated by the partial differential equations. To this end we define:

2,1o ext /(K-The "quasi-periodic" extension of u 6 L (f ), say L2’lc([3\,), defined
by

u (K) is given in -ext.._ Xj, for each J in Z2, by
un)(X + X:, Z):= u(X, Z) exp (iK. Xj), for almost every (X, Z) in fext.

l_/1 (-ext-The space --a./ , of functions which are in H(’ext) [")H1A(ext), and for
which the "quasi-periodic" extension u(K belongs to HIA’Ic(Nt3\S). This space,
equipped with the natural norm II. I1 ,. given by

2 2 2t/II A," IAUl0,I: -I- u 1,1-

is a Hilbert space. Two facts which will be useful in the sequel can be shown: first,
(x)Ha.K can be given a weak characterization by means of a Green formula (see

proof of Proposition 1.1); second, C(-ext) is a dense subset of the Hilbert space
(-ext)HA,K
We will also use the Fr6chet spaces of functions that are locally in Hc(fext) or

/_./1 -ext’in ,,a,K :, in the same sense as above. They will be, as above, designated by
/_/1,1oc/(- extH;loc(,-ext) or a. t.. :.

For vector-valued functions, defined on an open set 0 of 3, we will use the
following notation. F(O, C3) will always stand for the space of complex fields e:=
(e 1, e2, e3), with ei F(O), where F is any of the functional spaces described above.
Note that with our choice of a basis (el, e, e3), we can identify F(O, C3) with {F(O)}3.

For vector fields defined on 0o, we will write HS(0o):= {H2(0)}3, and following
1 ], we will split H (0o) in two subspaces of tangential fields and normal fields to Ow:

if n is the unit normal vector of 0o, we have

e := He+ (e. n)n
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where II is the normal projection on the tangent plane to 0oo. Thus we can set

TH’(Ow) := {e H’(Ow)/(e. n) =0},

NH’(Ow):={eH’(Ow)/e=en, eH’(Ow)},

and so

Hs Ooo TH" Ooo ( NHS Ooo

For the norms, we will use the standard Sobolev spaces notation, noting that all
the new "quasi-periodic" spaces that we have defined are Hilbert spaces when equipped
with the norms issued from the usual Sobolev spaces.

Finally, we recall some facts about Green formulae and traces. For sufficiently
smooth e and e*, defined on a regular open set O of R3, the following formulae hold:

I [Ae. e* + curl e. curl e* + div e div e*] dv

l’(1.9)
[(curl e x n). e-+ Yo div e(n. e*)] do-,

oO

(1.10) Ae. e* dv V e’. V e*" dv + ye. Toe do-.
c=l 0 0

We now give a precise formulation of these properties in our "q.p." framework.
PROPOSrrION 1.1. Let e and e* belong to C(R3, C3). Then (1.9) and (1.10) can

be written

(1.11)

(1.12)

[Ae. e* + curl e. curl e* + div e. dive*] dv
ext

[(curl e x ) e* + "/o div e(. e*)] do-,

Ae. e* dv V e. V e*" dv + Tie" Toe* do-.

(’ext, c3) and e* inMoreover, these formulae can be extended to e in HA,K

H](12ext, C3). (The integrals over Ow are then to be considered in a duality sense.)
Remark. As mentioned earlier, we will show in fact that (1.12) leads to the

following characterization of Ha,K1 (-ext, C3)
(- ext H(12ext, ../1 ’ext,, C {e C3) fq a C3)/

(1.12) holds for every e* Hc (12ext, C3)}.

Proof 0-ext can be written in the following form:

0’ext-- 060 U 0- where 012 is a lateral boundary, i.e.,

01) {-dl/2, dl/2} x [-d2/2, d2/2] x U { d2/2, d2/2} x [-dl/2, dl/2] x .
It is easy to see that "q.p." conditions for regular functions imply that the sum

(-ext, _/-1 /lext Cover Of/vanishes. To extend these results to Ha,/ C and K\a functions,
we have first to give a precise meaning for the traces on Ow and 0:

Using a compactly supported smooth extension of the normal field n, defined on
0oo, to a neighbourhood of Ow, with the property that Inl-= 1 near ooo, for e in

/’-ext girl /-ext C3), we can define the traceso ,C)..ao

yocurlen in TH-1/(Ow), 3q(n" E) inH-I/(dw).
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Here 3’1(’) stands for the second trace or normal derivative of a function defined in
1-/1 () exta neighbourhood of 0w. As usual, for e in H(fext, Ca) a* ca), we can define

the traces

Yo div e in H-1/2(Oto), yle in H-1/2(Oto).

Note that only the local regularity near 0w is needed to define the traces above.
In an equivalent way, we can define the same kind of traces on 0"

Yo curl ex n in TH-1/2(Of), yl(n" E) in H-1/2(Of),

yodive in H-1/2(0), Tie in H-1/2(’]).

The presence of "corners" and the infinite extent of this boundary is handled by
a suitable localization of trace definitions.

Formulae (1.9) and (1.10) are used in the setting of the above definitions, and are
lrl ()extnaturally extended for functions in H(’ext, C3) A,a C3). We have to prove that

if e is, moreover, in (-ext,HA,K C3) then there is no contribution from 0f. In fact,
(-ext, C(1.11) (respectively, (1.12)) gives the following characterization of Ha,K )"

/,oext n (-).,ext, /../1 () ext
a.K C )= {ee C3)f-),,a C3)/(1 11) (respectively, (1.12))

holds for every e* in/../ (-ext, C3)}.

To see this, we write

Tie" e* &r [71 e</)]l" e* dtr + [’le(K)]2" e* &r

where
F1 := {-dl/2} x ]-d2/2, d2/2[ xR,
F2 := ]-dl/2, d,/2[ x {-d2/2} x,
[" ]i is the jump across Fi of functions with traces on these boundaries"

[U]l := u((-dl/2)+, x2, x3)- u((-d/2)-, x2, x3),

[U]2 :----- U(Xl, (-d2/2)+, X3) --U(Xl, (-dl/2)-, X3).

The + or signs represent the two sides of each boundary 0f. oriented by the axes
(0, el) and (0, e2) (see Fig. 2).

F1

F

FIG. 2



1686 J.C. NEDELEC AND F. STARLING

It is not difficult to see that e(’) is in Hx(3\, C3) if and only if the jumps [/le(/)]
vanish, yielding the required result.

These formulae are also valid if we take .o ext instead of 1)ext but we then must"’/9

consider contributions from
We now come to some facts involving traces and differential geometry tools. The

following formulae can be used for smooth e, e*:

(1.13) Yo dive div,o (He)+2He. n+ yl(e" n),

(1.14) n e* 3/0 dive 2He e* + ’yle Toe*
when e and e* satisfy lie He* =0. Here, div0o( is the superficial divergence of a
tangential field to 0to, H is the normal projection operator on the tangential plane of
0to, and H is the mean value of the curvature at each point of the smooth surface

1 /()ext C3)These formulae can be extended, by density, to fields e in H([),ext, C3) il A.

and e* in H(’ext, C3).
For a detailed analysis of all these properties, we refer the reader to [1].

1.4. The boundary value problem. We now have all the elements needed to set a
mathematical boundary value problem, describing the physical situation, and which
can be handled by standard functional analysis tools, related to Sobolev spaces
formulations

Our "whole space" problem will be:

(1.5) Find e in Hlc([3\ C3) ( HIA’lc([3\ C3) such that
Ae+ k2e 0 in 3\,
div e 0 in 3\,
n x e -n x einc on 0S.

e satisfies outgoing wave conditions (1.7).

We show that this problem is equivalent to the following one, which is set only
in the "elementary cell":

(1.16) /’-/l’lc/’oext C3) such thatFind e in A.K t--

Ae+ k2e 0 in ,-ext,
dive 0 in.O.ext
n e -n einc on

e satisfies outgoing wave conditions (1.7).

Indeed, e satisfying (1.15) can be extended by "quasi-periodicity" and its "quasi-
periodic" extension e(: is easily found to solve (1.16). Conversely, the restriction to

/__/1,1oc/(-ext C3) and so solves (1.15)l)ext of any solution of (1.16) is clearly in --a,/ -Our study will now be focused on the analysis of problem (1.19) or on a slight
extension of it:

lr l’lc/I’- ext C(1 17) Find e in a,/ - such that
Ae + k:e 0 in 12ext,
dive 0 in flext,
n x e c TH1/2(Oto).

e satisfies outgoing wave conditions (1.7).

2. Uniqueness properties. Our purpose is to establish the following uniqueness
theorem.
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(P)

THEOREM 2.1. The problem:

Find e in loc extHx’,/( (12 )suchthat
Ae+ k2e 0 in fext,
div e 0 in 12ext,
axe=0 on Oto.

e satisfies the outgoing wave conditions (1.13)

can have nontrivial solutions only if k belongs to a set gsing of exceptional values, gsing
is a countable set ofpositive reals that can be ordered in a nondecreasing sequence kn)n>=o,
tending to

Theorem 2.1 will be proved after some preliminary work: we will show that we
can identify the restriction to .).ext of a solution of (Pk) with an eigenvector of an
operator acting on L2(12ext) for which a complete spectral decomposition can be done.P

To see how the truncated problem must be set, we begin by an analysis of some
properties of a solution of (Pk).

2.1. Properties of solutions of (Pk)- We begin with the following proposition.
PROPOSITION 2.2 Let e be a solution of (Pk). Then e belongs to C(’ext), and

the following expansion holds for IZ[ > po:

e(X,Z)= Y, exp(i(K+K2).X)e(Z)
JET/2

where the e2’s are given by

e.(Z) e+ exp (itx.Z),

ej(Z) e exp (- i/xjZ),

Z> Po,

Z < -Po.

This series is absolutely convergent and termwise infinitely differentiable.
Proof. Regularity properties are local properties; thus, it can be easily deduced

from the usual regularity properties (cf. [1], [2], for example), that

e C(12\o, C3) (regularity up to 0o).

Having in mind then that the "q.p." extension of e, e() satisfies the Helmholtz equation
in R3\S, and using elliptic regularity properties for this equation again, but in R3\S,
we see that regularity goes up to the lateral part of the boundary, that is to say, 012,
and so we have

e C(’ext, C3).
The expansion can then be established as in 1, having in mind’that the regularity
properties of e ensure that the series has the requested convergence.

LEMMA 2.3. Let e solve (Pk) and set

J := {J :/IK+ KI -> k},

J := {J :/IK+ K)I < k}.

(12ext,Then ej(Z)=O for JJ-# and [Z[>po, hence, we have eHa,K C ), except the
case where there is a J in J- such that [K+ K21- k.

Proof. We apply Green formula in its usual form (see 1.3) to the functions e
and e in the set .o, ext for an arbitrarily chosen p > po"--/9

(2.1) 0= 1- (Ae. --Ae. e)dr: [ (Tie" yoe-y,e" Toe) dg.

xt O U E
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We treat separately the contributions from aw and Ep to the boundary integral
in (2.1).

On 0to, the first trace of div e, Yo div e vanishes. The use of (1.17) then yields

(2.2) 0- 2Hlel2 + ,e. oe.
Hence Tie" yoe is real and the contribution of Oto to (2.1) cancels.

We now consider the contribution from EP to the boundary integral in (2.1);
thanks to the expansion of Proposition 2.2, we have

o
Tie" Toe do= d,d2j ij(le+[2+ [e-I2) exp (i(/z---)p).

Now, we see that

J J i exp (i(m -gT)o) .
This, with (2.1), implies that

2did2 im(le+l2+ le-I) 0.

Thus we find that

le+] -le-I- 0 for all J in J{.

Hence e(Z)= 0 for all J in J{ and IZI > po.
If there is no index J Z2 such that IK+ Kj k, the fact that e is in Ha,:(lext)

follows easily from the exponential decrease of e(Z) for J in J. F1
Lemma 2.3 shows, in this last case, that a solution of (Pk) appears as an eigen-

function of the unbounded operator of LZ(lext, C3), A, defined by

D(A) := {e Ha,l(l)ext)/ne=OonOto; yodiv e= 0 on Ow},

Ae:=-Ae fore inD(A).

We will not study directly the spectrum of A. However, the main properties of A
are summarized in the following proposition which will be given without its proof.

PROPOSITION 2.4. A is a self-adjoint operator on LZ(’ext; C3), with dense domain.
Its spectrum E(A) is such that

where

E(A) c [0; +c[,

Eess(A) [m; +c[

m min {IK + K,I}.
jZ

Theorem 2.1 states that A has at most a sequence tending to +oo of eigenvalues
in its spectrum.

2.2. The truncated problem. We now turn to the study of a problem set in a
truncated domain fext for p >, Po. To this end, we introduce Hilbert spaces of "q.p.

o. ext which are given byfunctions defined on ..
C(.O.ext,,__p C3)= {el.;x," e C(.O.ext,,__
n; (O.ext,__p C3) {el;Xt. e G n:(extp
Hla,K(extp C3) {ela,xt" e HI,K("ext,
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These spaces are endowed with their natural norms. We begin by giving some trace
properties on Ep for functions in H((,ext C3) and H Oext C3), which will enable
us to set the appropriate truncation relations on E. The usual trace propeies are
slightly complicated by the decomposition of Oxt in three pas of different "nature":
8pext=O U E U F1, where F is the lateral pa of the boundary i.e., F1 := xt .
(See Fig. 3.)

We show that we can extend a "q.p." version of the first trace o, well defined
(.o.ext C3), to H(O.extfor functions in Cn,.., ,__ C3) with values in a fractionary order

Sobolev space of "q.p." functions over E. We then get similar results for second traces
of functions in H K(ext C3), which will be defined in a fractionary order Sobolev
space of "q.p." distributions on

Let e be in C(,o.ext C3) and be a C(E) function, with 1 near Z
vanishing for [Z[ < po. Consider the "q.p." expansion of e; we have

le(p)l==2 Re e(z) e(z)(z) dz + (z)le(z)l= dz.

Hence there exist two constants C and C’ such that

0
(po,p)"aZ L2(po,p)

So, multiplying this inequality by [K+ K[ and adding the corresponding terms, we have

JZ2 J L2(po,p)/

(po,)
J2

Thus we conclude that

IK+ KI le(p)l=< C"lel =1,xt
and the same estimate holds for Z =-p.

For e in L:(E", C3) we set

(2.3) lel =1/,o:: (l+lK+Kl=)l/=(lel+lel)
j2

where

(respectively, e): e(X) exp (-i(K+K). X) dxe
{z +p (respectively, --p)}

FIG. 3
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and we define H2(E, C3) as the space of functions e in L2(Ep, C3) for which

H]2(p, C3) can be given a Hilbert space structure, by means of formula (2.3).
It is then clear that we can define a continuous trace 3’0 on o for functions of
H(eft, C3), in the space H(E, C3), extending by density formula (2.3).

Now, for functions in Ha,rl ,(’o’ext--. C3) we carry out the same program and show
that we can define a second trace in the space H/(E, C3), defined similarly to
H(E", C3) by

where the summation over Z of the oscillating exponentials is to be understood in a
distributional sense ("q.p." distributions on the "torus" E"). HI/(E, C3) can be
identified with (H(E", C3)) ’, the dual space of H2(E", C3), when L(E, C3) is
identified with its own dual. The (anti-)duality pairing between these spaces is obviously
given by

(v’, v)_/,,/= Z vv.
JZ

t.O.xt C3) and take as above" we haveLet e be in Cr,_.,

e(p) =2Re --e(z).oz e(z)(z) dz + --(Z)oz --ej(Z)0z dz.

Hence

0 2 02 0 0 2

ea(p) N2C ea x --ea +C’ eaOz2
L2(oo,o) 02 t(oo,O) C2(Oo,O)

So, dividing this inequality by pa := (1 +]K+Kj[2) 1/2 and adding the corresponding
terms, we have

(2.4)

0

Oz

1
<=C ,z2P

02

a pa
L (Po,P)"

L2(po,p)/

As e is very regular, each one of the sums in the right member of (2.4) makes sense;
we now try to get estimates in nla,K(ext C3) as follows We have

1 O2 2

p Og2
L2(po,p)

z 2oo,) p o,)

and

(o2 )Ae(X, Z) a z2 e. -IK+ K,[2e, exp (i(K+ Kj)" X)

/.2(.O. extis in ,--o C ). Thus, we conclude that

,z (1 + [K + K,12) -’/2

for p >-IZI <- po,

0

zz e’(P __< C"([el ,a;,t + IAel =o,.;x
and the same estimate holds for Z =-p.
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This shows that the mapping e--> (0e/0n)= Tie can be continuously extended to
Ha,K1 ,-(O,ext_p C3) with values in H;:I/2(Ep,C3). Here we have used the fact, pointed out

ext C3) for the []a,nx, norm.in 1.3, that H(.Oext C3) is the closure of C(flo\--p

We now come to the definition of an operator, acting on the space H2(E, C3)
with values in (Ha(E, C3)) given by the following proposition ((.)+ (respectively,
(.)-), is the value on Z +p (respectively, Z =-p), of a function defined on

PROPOSITION 2.5. Let C(f, C3) be the set ofregular "q.p." functions of ,0. Then
T defined for e in C(E, C3) by

(Te)+-- E /x,(k)e exp (i(K+K). X),

(Tke)-= E izs(k)e-j exp (i(K+Ks) X)

can be extended to a continuous linear operator from H2(E,C3) to the set
(H=(E, C3))

Moreover, Tk satisfies the following relations. For all

e, e* e {H(E, C3)}=:

(i) Tke, e*) Tke*, e>,

(ii) Te, e>_-< 0.

(.,.) stands for the duality brackets between (H1/K=(EP, C3)) and H:(E, C3).
Proofi Take smooth e and e* and consider

Te. e* dcrx -d,d_ E Itz(k)[(e- e* +ey. ey*).
JJ’

We clearly have

and the same estimate holds for the terms with a minus sign. But

and so,

I(Te, e*>l -< clel 1/:,ole*l 1/2,,

This estimate ends the proof of the first part of Proposition 2.5. Properties (i) and (ii)
are immediate for regular functions and can be extended by density for functions in
H2(:", C3). []

The following proposition justifies the introduction of T.
PROPOSITION 2.6. Let e solve (Pk)" then the traces on , of the restriction to fextp

of e satisfy

(2.5) Tie T(yoe).

Proofi We just have to consider the expansion of e given by Proposition 2.2 and
take its normal derivative on EP. Using then Proposition 2.2, we see that there is no
component es(z), with J J. This enables us to write (2.5).
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We are now led to the study of an operator Ak, defined as a realization of -A on
ext satisfying (2.5) on Ep, the electric boundary value condition on 0to, and "q.p
conditions on the lateral boundary.

[.O. ext C3)/nxe=0 on 0w.D(Ak) := {e Ha,:,--p

To dive 0 on Oto: Tie T(T0e) on EP },

Ake:= --Ae for e in D(Ak).

Thanks to Proposition 1.1 and the above trace properties, we can state the following
characterization of the space Ha.K,--pl(.o.ext, C3), which will make easier the analysis of Ak.

{ (’o’ext C3)[" H1A(’ext C3)/Ha,/(,--ol(.o.ext, C3) :--" e n:,., o p

V e* e H(aext C3) Ae. e* dv

=- fa Ve’Vedv+yo 7e’Toe*d).xt U E

Here, the sum over E is to be understood in a duality sense.
We will prove the following theorem.
THEOREM 2.7. Ak is a self-adjoint, densely defined operator, with compact resolvent.

ext is denseProo The set of smooth functions vanishing in a neighbourhood ofOO
in La(Oext C3) and is embedded in D(A).P

Take e and e* in D(Ak); using Green formula we get

(.6) (e. e*-e*, e) dv (e. oe*-e*. oe) d.
xt U o

Using formulae (1.16), (1.17) on , we see that

,le yoe* ye* 3,oe -2HToe yoe* + 2HToe* 7oe 0 on Ow.

On E, boundary relations enable us to write

f, 3,,e Toe* /,e* yoe) dtr Tke, e*) Tee*, e) O.

Thus the left-hand side of (2.6) vanishes and Ak is symmetric.
We show that, for 6 sufficiently large, Ak + I is maximal positive, so that self-

adjointness will follow standard arguments. For this purpose, let us analyse the
following problem:

(2.7) For f in 1.2(.oext C3), find e in D(Ak) such that\--p

Age 4r /e f.

Problem (2.7) has one and only one solution, for y large enough, which is given by
the solution of a variational problem set as follows.

We define

V(-xt) :-" {ee H1K (,o,ext C,.., )/nxe=OonOw}

and

ae(e, e*):=
a--1

(V e IV e*a)0,12xt--(Tee, e*)-2 Io,o H(e. e-z) do-.
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Then, a variational formulation of (2.7) is:

(2.8) Find e in V(fxt) such that, for all e* in V(ext]
/9

ak(e, e*) + y(e e*)o,a (fl e*)o,a,xt.
Lemma 2.8, which will be proved later, gives the propeies of (2.8).
LEMMA 2.8. ere is a positive real * such that, for all *, we have that

ak(’,’)+ T(" I’)o, is a continuous coercive sesquilinear form on the Hilbert space
(V(ext)

Lemma 2.8 and the Lax-Milgram theorem enable us to state that problem (2.8)
has one and only one solution, for a given f in L2(.Oext)..o and y >= y*.

It remains to show that the solution of (2.6) belongs to D(Ak), and leads to (2.7).
This is a matter of classical tools in the analysis of variational problems, and we omit
the proof.

D(Ak) is compactly embedded in L2(ext C3)" thus, Ak has compact resolvent.
This ends the proof of Theorem 2.7.

Proof ofLemma 2.8. In view of Proposition 2.5 and trace results of 1, it is clear
that ak(", )is well defined and continuous on (Vk(ext)p II.ll,.zx0. We now prove
that ak(’,’)+ y(" I’)o,a is coercive, with respect to the norm II.ll,xt. Thanks to
Proposition 2.5(ii), we have

ak(e’ e) + T(e e)’agxt lel’agxt + Ylel0,; 2Hlel d.

But for every e > 0, we have the estimate (see [7])

lel = < ,,.xt+ c(e)lelo,.;x.
2Thus for y large enough, ak(e, e)+ (ele)o,,gxt llell,.;x for a positive real a.

Ak is the m-sectorial operator related to the sesquilinear form ak( ", in the sense
of Kato’s first representation theorem (see [6]).

Our next step is to get the spectral structure of Ak. We can apply to Ak standard
results on self-adjoint operators, bounded from below and with compact resolvent.
Thus we can state the following theorem (see [5]).

THEOREM 2.9. ere is a complete orthonormal basis ofZ2(.O ext C3), { }, in D(Ak)--p

such that

Akin AnOn with A A2 An +
and A A(Ak) is given by the Min-Max principle, which can be written in thefollowing

(2.9) A(Ak) Max Min ak(e, e))
el ,’",en e[el,’",en]

[lelo,a ; eV(xt)

Proof (see [5, Thm. XIII.64]). Here, we write the Min-Max principle in its "form"
version [5, Thm. XIII.2], having in mind that the form domain of a(.,.) is just
V(ext)

The Min-Max principle allows us to study the behaviour of A(Ak) as a function
of k as follows.

PROPOSITION 2.10. For each n, A(Ak) is a decreasing continuous function of k.
Proo Let e belong to V(xt); the dependence on k of ak(e, e) is given by the sum

(2.10) (k)(lel=+leZI=) ().
J
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But clearly each term in (2.10) is a decreasing function of k; moreover, the sets (J-)k
decrease when k increases so that the sum (2.10) has the same property. This behaviour
is conserved when we consider the Min-Max (2.9).

Take e in extV(fp ), with ]elo,f 1. Then

ak(e, e)-ak,(e, e)= (z(k)-z(k’))(leffl+lel).

We next consider the family/2j(k) of the extensions of/zj(k) by 0, when k >- IK/ KjI.
It is easily seen that the resulting family /2j(k) is equicontinuous. Hence for every
e > 0 there is an r/(e) such that

Ik-k’l<=(e) VJZ2,
Hence, if

a(e, e) a,(e, e) <-e (lel / le-lz).

Now choosing 3’ as in Lemma 2.8, we get

ak(e, e)<--_ ak,(e, e)+ ec(ak,(e, e)+ y)

where c is a constant independent of e. For e small enough, taking the Max-Min of
this inequality, we obtain

We can also write

Hence

A. (Ak) -< A. (Ak,)(1 + ce) + ec7.

A. (Ak,)(1 --ce) <--_ A. (Ak)+ ecy.

I,. (A,) A.(Ak)I <= eclX.(A,,)l + e,c,

which yields the continuity of A.(Ak) as a function of k.
In fact, it can be shown that A.(Ak) is a piecewise analytical function of k, by

using results of [6] on holomorphic families of operators for a suitable extension of
Ak for complex values of k.

LEMMA 2.11. The set Ksing of real numbers k for which there is an n such that

(2.12) A,(Ak)=k9-

is, at most, an increasing sequence kn)n tending to +.
Proof. The situation is now understood after the analysis of Fig. 4. We just look

after the crossings of the graphs of k--> k2 and k-> An(Ak), for the different values of

%2n(k)

FIG. 4. Different curves k A. (k) and k k2.
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n. The properties of k An(Ak) imply that, for each n, there exists a unique value of
k satisfying An(Ak)-- k2. We denote this value by kn. Suppose now that the sequence
(kn)ns has an accumulation point at k. We can then extract a subsequence (kp)npn
such that

lim ,Anp(Ak,,p lim k2 ktlp
p-->

Then

X. (Ao) kgl--< IA.p (Aknp)- A. (Ako)l + IX(A.) kl.
Due to the uniformity in n of continuity estimates for A(Ak), we obtain that if knp ko
is sufficiently small, i.e., 0to for p great enough, the value of IA,(Ako)-kl can be
made arbitrarily small. This contradicts the results of Theorem 2.9. [3

The proof of Theorem 2.1 now becomes natural.

Proofof Theorem 2.1. Let e solve (Pk); we have already seen that elX, is in D(Ak).
But the relation Ae+ k2e =0 holds on fextp SO that e is an eigenvector of Ak. Con-
sequently, k is one of the values satisfying (2.12), and Lemma 2.11 gives the required
result.

2.3. Concluding remarks. We now want to underline some facts about our method.
The construction of 2.2 enables us to identify a solution of (1.16) with an eigenvector
of Ak. The question now is, does an eigenvector of Ak give rise to a solution of (Pk)?
If this were the case, we could state that there are really values of k for which problem
(1.16) is not uniquely solvable. But eigenvectors of Ak cannot always be extended to
the whole ext, satisfying the conditions dictated by the partial differential equations.

The first critical point is that we do not know if ej(+_p)= 0 for J in J, so that
we can extend each ej(. ), J in J by zero, as is required by Lemma 2.2. Even if these
conditions are satisfied, we then have to prove that the divergence of the extended
eigenvector is zero, and this problem is related to that of the eigenvalues for the scalar
case, with Dirichlet boundary conditions. Uniqueness properties for an arbitrarily
smooth scatterer to in this case have already been analysed, and have led to the same
conclusions as Theorem 2.1" there is at most an increasing sequence of values k for
which uniqueness is not satisfied, for the scalar Dirichlet problem; moreover, an
eigenvector of this case gives, by considering its gradient field, an eigenvector for the
Maxwell’s equations problem (1.16). Besides, if to satisfies a geometrical condition
related to convexity properties we know that the scalar Dirichlet problem has no
eigenvalue (no such criterion is known for the Neumann case). Granted these results,
we can state that, if we are in the situation decribed above and if k2 is not an eigenvalue
of the scalar Dirichlet problem, then the extended eigenvector is actually a solution
of (Pk).

3. Green kernel and integral equation formulation. It is known [1], [2], [8] that
the determination of the diffracted field by a perfectly conducting body to can be
reduced to that of the surface currents p and charges A on 0to, which satisfy an integral
equation, involving a suitable kernel, dictated by conditions at infinity. In this section
we show that the same program can be carried out for the "quasi-periodic" diffraction
problem, deriving by the way the expression of the requested Green kernel.

3.1. The Green kernel. We look for a function GqP(X, Z) defined on f, which is
"quasi periodic" and satisfies radiation conditions in the sense of 1, and which is
also an elementary solution of the Helmholtz equation in f. To this end we consider
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the family

1
(3.1) (X) X := exp (il(k)[Z[)

ilzj k

where we assume that/zj(k) # 0 (IK+ KI # k) for all J in Z2.
XJ is an elementary solution of the Helmholtz equation (1.6) with the radiation

conditions (1.7).
We then consider formally the sum

1
(3.2) GqP(X, Z):= 2dld2J2xj(Z)exp (-i(K+Kj). X).

PROPOSITION 3.1. Assume that for every J 7/21K+ KjI k. Then (3.2) defines an
L2’Ic(R3) function, which satisfies:

(i) AGqp + k2Gqp =Yj2 6(Xj, 0) exp (iK. Xj) in (C(I3)) ’,
(ii) AGqp + k2Gqp 6K in (C(12))’,
(iii) Gqp is a C function in 1)\{(0, 0, 0)}, which satisfies "quasi-periodicity" con-

ditions and radiation conditions.
Here, 6K is the Dirac distribution of the dual space of C(12), defined by (6K, q):=
q(O, O, O) for all q C(D) where (.,.) standsfor the duality bracket between C(Y))’
and C(f).

Remark. We have to eliminate the case [K+KI- k, because a Green function
satisfying radiation conditions cannot be constructed in this way.

Proof Let J be in J, and consider

sj(p): I+f IXjI2 dZ forp>0.

Elementary calculus shows that

:j(p) 2/I/xj(k)13(1 -exp (-2plm(k)l)).

Hence the family (J(P))JJ+k is summable even if we take p +o. For J in J{, we
also define

j(p) :-" f+_ IXjI2 dZ for p > 0

P
[/z(k)l2"

But there is only a finite number of such terms, so that (: (p))j is a summable family.
Now it is clear that for every finite part F c Z2

2

Y, x2(Z) exp(-i(K+K2).X) =d, d2 2(p)=d, d2 2(p).
JF O,p JF JZ

We conclude that Gqp is in L’(), and so (3.1) is almost everywhere summable
in . Now (3.2) defines a "q.p." function almost everywhere on 3, which is clearly
in L’(3).

We now come to point (i); indeed we have in a distributional sense the following
expansion"

AGqP+kZGqp 1/dd exp(-i(K+Ks)’X)@6z=o in(C0()).
j2
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Hence for in C(R3), we get

(AGqp + k2Gqp, p)= 1/ala2jz Iu2 exp (-i(K+Kj) X)(X, O) dX

1/a,a E O)

=(X, 0) exp (-iK. X)

by using Poisson’s formula for the Fourier transform in the X variable. Thus, we
obtain (i).

In (ii), we consider Gqp as a distribution that is "q.p." in the X variable and acts
as a usual distribution on the Z variable. "q.p." distributions are defined similarly to
periodic distributions (see [10]), noting that, if F(X) is a "q.p." function,
F(X) exp (-iK. X) is a periodic function. To prove (ii), we just note that 6 has the
following expansion in (C(O))"

1/ddexp (-i(K+K)

and that is exactly what we get, applying (A + k
PROPOSITION 3.2. Let G be a usual elementary solution of the Helmholtz equation"

G((X, Z)):=
exp (ikl(X, Z)l)
4l(X, Z)l

en G := G-Gqp is a C function in every open set which does not contain a point
(X, 0), J , j (0, 0). Hence Gqp is a C function in fi{(0, 0, 0)} and satisfies
radiation conditions (1.7).

Proo In an open set O which does not contain a point (X, 0), G satisfies

AGr+k2G=0 in(C(O)) ’.

But G is in L2’lc(3) so that, applying classical results on elliptic regularity for
Laplace operator, we obtain that G is a C(O) function. The rest of Proposition 3.2
is easy, because we know explicitly the behaviour of G, and radiation conditions
follow from the definition of Gqp.

3.2. Integral formulations and existence results. Let e be defined almost everywhere
in by the following: e is a solution of (1.16) in ext, and e is a solution of the interior
problem related to (1.16) in .

Find e in Hk(o, C3) such that
Ae+k2e=0 in
dive 0 in
X e e on.

Regularity results yield e C(, C3)
We can then state the following proposition, giving a representation formula

for e.
PROPOSITION 3.3. e admits the representation

(3.3) e(X,Z)=-gradv(A)(X,Z)+A(p)(X,Z) for all (X, Z) in ext U ,
(3.4) v(A)(X, Z):= ( GqP(X’-X, Z’-Z)A(X’, Z’) d’,
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(3.5) A(p)(X,Z):= Ioo GqP(X’-X’Z’-Z)P(X" Z’) do-’, and

, := -[e hi,(3.6)

(3.7) p:= [curl e n].

Here [. stands for the jump across Oto of a function with exterior and interior traces
at

Proof We apply Green formula to the vector fields GqPe* and e, where e* is an
arbitrary constant vector of R in the sets to and oext respectively. This yields (after
some tedious but classical computations) the following. If IZI < p, then

e(X, Z). e* (-grad v(A)(X, Z)+ A(p)(X, Z)). e*

+ I, ((Vx" 6’(X’-X, Z’-Z)x e*)x e). e(X’, Z’) &r’

+ (Vx- Gq(x’-x, Z’-Z). e*)(e3" e*(X’, Z’)) dr’
5-.o

(GqP(X’-X,Z’-Z)e*) (curle(X’,Z’)xe3) do-’.

Thus, we only have to show that our radiation conditions imply that the contribu-
tion from ;o vanishes" again this is only a matter of computation and we omit the
proof.

We now give a more precise framework for the integral equation analysis, which
is to be related to the study done in [2]. We begin by recalling some results that can
be found in [2].

To this end, we set

H := TH-1/2(Oto),
X := {pc H; div0,o pc H-1/E(tgto)},

M := {A H-’/:(Oto); (A, 1) 0},

L:= {X e M; X e H/2(Oto)}
(these spaces are endowed with their natural norms), and we define the following
operators, for smooth p and A:

A(p)(X, Z):= f G(X’- X, Z’- Z)p(X’, Z’) do’,

v(,)(x,z):= f G(x’-x,z’-z),x(x’,z’) do-’,
do

1
,)c(o)(x,/):- 4rl(X’-X,Z’-Z)l(X"Z dr’.

From [9], we can state that C(.) defines an isomorphism from Hs(Oto) onto
H+(Oto), for every positive real s.

From [2], we can state the following theorem.
THEOREM (Bendali). The operator defined for smooth (p, A) in X x L by

A(p, A):= (A(p)- gradoo(v(A)), C(divoo p+ k2A))
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can be extended to a continuous linear operator from X xL onto TH1/2(Oto)xM’.
Moreover, A is an isomorphism from X x L onto TH1/2(Oto) x M’.

As a corollary of this result we state the following corollary.
COROLLARY. The operator defined for smooth p in X by

(p) := A(p) + 1/k2 grad0o(v(div0o p))

can be extended to an isomorphism from X+:={pX;divopH1/2(Oto)) onto
TH1/2(Oto). The norm on X+ is IlPl]x+ ]}Pl}-l/2,oo + Ildivo,o Oil /2,oo,.

Proof We want to solve

(p) c for c in TH1/(Oto).
Let (p, A) be the solution of

then

and hence

A(p, A) (c, 0);

divoo, p=-k2A H1/2(Oto)

pX+ and A(p)=c

Now, is clearly continuous and injective; this follows from the properties of A.
PROPOSITION 3.4. The operator Aqp, defined for smooth in X+ by

AqP(p) 1/k2 gradoo,(vqP(divoo p)) + AqP(p),(3.8)

where

f
(3.9) vqV(A)(X, Z):= | GqP(X’-X, Z’-Z)A(X’,Z’) dtr’,

(3.10) AqP(p)(X, Z):= f GqP(X’-X, Z’-Z)p(X’,Z’) dcr’

can be extended to a bounded linear operatorfrom X+ to TH1/2(Oto).
Let c be in TH/2(Oto), and let p in X+ satisfy the integral equation

(3.11) AqP (p) -c.

Then e defined by

(3.12) e(X, Z)=-grad (vqP(divoo p))(X, Z)+ AqP(p)(X, Z)

for all (X, Z) in extu to, is a solution of (1.16), and of the related interiorproblem, and
we have

(3.13) p [curl e x n].

Proof. We use the splitting of Gqp"

Gqp GO + Gr.
This decomposition leads us to define analogously to (3.9) and (3.10) for the kernel Gr:

vr(i)(X, Z):--- f Gr(Xt-X, Zt-Z)J(Xt, Zt) dtr’,

Ar(p)(X, Z):= [ Gr(X,- X, Z’- Z)p(X’, Z’)
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From the Bendali theorem and its corollary we know that the mapping defined
for smooth p in X, by

O(p) := 1/k2 grado v(divoo, p)+ A(p)

can be extended to a bounded linear operator from X+ to TH1/2(Oto).
Now it is easily seen that the regular kernel G defines a regularizing operator,

which maps X+ on TC(Oto) (smooth tangential fields on Oto), by

Ar(p) := 1/k2 grad0o vr(divo,o p) + Ar(p).

Thus Aop= A+A can be extended to a bounded linear operator from X/ to
TH1/(Oto).

Thanks to the splitting Gqp- G+G, it is already seen that e(X, Z), defined by
(3.12), satisfies

e is in ta,oct CA,K ),

Ae + k2e 0 in extLj to.

Classical potential relations can be applied to the kernel GO giving the continuity
of the tangential component of (3.12) across 0to, having in mind that the regular kernel
G introduces no discontinuity across

lie= n(1/k2 grad tqP(divoo p) + AqP(p))

1/k grado, vqP(divoo, p)+ AqP(p)=c.

Moreover, radiation conditions are satisfied: indeed, for z_-> po, for example, the
following expansion holds:

e(X, Z)- e+ exp (i(K+Kj) X) exp (iZtzj(k))
jEZ

where e/ is the constant vector of C given by

( 1 [I exp(-i(K+Kj).X’)e+:= -- itzj(k)

exp (iZ’lj(k)) divot, p(X’, z’) do-’[ (i(K+Kj) + itzj(k)e3)

+ Jo exp (-i(K+ Kj). X’)exp (iZ’lj(k))p(X’, z’) do-)ila,j(k)

and the series is absolutely convergent and termwise infinitely differentiable.
We just have now to check div e:

div e= 1/kAvqP(divo p) +div (AqP(p))
(3.14)

-vqP(divo, p) + div (AqP(p))

and div (AqP(p)) is given by

div (AqP(p))(X, Z):- VxGqP(X’-X, Z’-Z)p(X’, Z’) dr’

--( v,x t"(x’-x,z’-z)(x’,z’) do-’
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and using the Stokes formula:

Voo,:. 6"(X’-X, Z’-Z)(X’, Z’) d,’

Io,,, GqP(x’-x’ z’-Z) div" p(X’, Z’) do-’,

and so (3.14) vanishes.
To prove (3.13), we just recall that the regular kernel G induces no jump across

Ow, and then we apply results of [2]. [3

Equation (3.11) defines an integral equation for the unknown p; it gives rise to
solutions of (1.16) and of its related interior problem in w, so that we can use the
uniqueness results of 2 in our analysis.

THEOREM 3.5. Let N be defined by
N:= {r +; (re gsing)}

t_J {-r2 is an eigenvalue of A in oo with Dirichlet homogenous condition}
t_J {::lJ 7/2/r [K + K[)}.

Suppose that k N; then the integral equation (3.11) is uniquely solvable, and so gives
rise to a unique solution to problem (1.16).

Proof Our purpose is to show that (3.11) can be handled by a Fredholm alternative
technique. As TC(Ow) is compactly embedded in TH1/2(Ow), A is found to be a
compact perturbation of A. Hence we can now state the conclusions of the Fredholm
alternative if we show that first part of Fredholm alternative holds when k is not in N.

Let us suppose that

AqP (1) --0.

By uniqueness results of 2, applied to the vector field e given in -ext by (3.12), wep

have e=0 in .o, ext In w, the hypothesis that -k2 is not an eigenvalue of the Laplace
operator with homogenous Dirichlet boundary condition ensures that e =0 in w (see
[2], [9]). Thus p= [curl e xn]=0. Fredholm’s alternative then implies that (3.11) has
one and only one solution. [3
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Abstract. A system of quasilinear degenerate parabolic equations arising in the modeling of
diffusion in a fissured medium is studied. There is one such equation in the local cell coordinates at
each point of the medium, and these are coupled through a similar equation in the global coordinates.
It is shown that the initial boundary value problems are well posed in the appropriate spaces.

Key words, porous medium, double porosity, degenerate parabolic system
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1. Introduction. We shall study the Cauchy-Dirichlet problem for degenerate
parabolic systems of the form

(1.1b)

(1.1c)

Here is a domain in ]R’ and for each value of the macrovariable x E is specified
a domain with boundary Fx for the microvariable y E fl. Each of a, b, # is a
maximal monotone graph. These graphs are not necessarily strictly increasing; they
may be piecewise constant or multivalued. The elliptic operators in (1.1a) and (1.1b)
are of p-Laplacian type, i.e., they are nonlinear in the gradient of degree p- 1 > 0 and

i i>iq- 1 > 0, respectively, with + , so some specific degeneracy is also permitted
here. Certain first-order spatial derivatives can be added to (1.1a) and (1.1b) with no
difficulty, and corresponding problems with constraints, i.e., variational inequalities,
can be treated similarly. A particular example important for applications is the linear
constraint

(1.1c’), U(x,y,t) u(x,t), y e F, x E

which then replaces (1.1c). The system (1.1) with #(s) 71slq-2s is called a regu-
larized microstructure model, and (1.1a), (1.1b), (1.1c’) is the corresponding matched
microstructure model in which (formally) e --+ 0. An example of such a system as a
model for the flow of a fluid (liquid or gas) through a fractured medium will be given
below. In such a context, (1.1a) prescribes the flow on the global scale of the fissure
system and (1.1b) gives the flow on the microscale of the individual cell at a specific
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1991. This work was supported by grants from the National Science Foundation and the Office of
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fDepartment of Mathematics, University of Texas, Austin, Texas 78712.
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point x in the fissure system. The transfer of fluid between the cells and surrounding
medium is prescribed by (1.1c) or (1.1c’). A major objective is to accurately model
this fluid exchange between the cells and fissures.

Systems of the form (1.1) were developed in [21], [22], [10] in physical chemistry
as models for diffusion through a medium with a prescribed microstructure. Similar
systems arose in soil science [5], [14] and in reservoir models for fractured media [11],
[16]. An existence-uniqueness theory for linear problems which exploits the strong
parabolic structure of the system was given in [24]. Alternatively it is possible to
eliminate U and obtain a single functional differential equation for u in the simpler
space L2(), but the structure of the equation then obstructs the optimal parabolic
type results [18]. Also see [13] for a nonlinear system with reaction-diffusion local
effects.

These systems also arise from methods of homogenization. There an exact model
is assumed periodic and described by a parabolic equation with periodic coefficients
corresponding to the properties of the two components, the cells and fissures. The
limit of this highly singular problem as the period tends to zero is the system (1.1),
which is thereby justified as an approximation for the exact model. Homogenization
theory provides not only a justification of the linear case of (1.1) as a model but also
a means of calculating the coefficients in (1.1) in terms of those of the exact model,
and a deeper analysis may describe the convergence itself [25], [17], [2], [3]. Here we
study the nonlinear system directly. The task of determining the coefficients in (1.1)
directly from, e.g., boundary observations, is an intriguing open problem.

The plan of this paper is as follows. In 2 we shall give the precise description
and resolution of the stationary problem in a variational formulation by monotone
operators from Banach spaces to their duals. In order to achieve this we describe
first the relevant Sobolev spaces, the continuous direct sums of these spaces, and the
distributed trace and constant functionals which occur in the system. Theoperators
are monotone functions or multivalued subgradients and serve as models for nonlinear
elliptic equations in divergence form. We develop an abstract Green’s theorem to de-
scribe the resolution of the variational form as the sum of a partial differential equation
and a complementary boundary operator. Then sufficient conditions of coercivity type
are given to assert the existence of generalized solutions of the variational equations.
In 3 we describe the restriction of our system to appropriate products of Lr spaces.
The Hilbert space case, r 2, serves not only as a convenient starting point but also
leads to the generalized accretive estimates we shall need for the singular case of (1.1)
in which a or b is not only nonlinear but multivalued. The stationary operator for
(1.1) is shown to be m-accretive in the L space, so we obtain a generalized solution
in the sense of the nonlinear semigroup theory for general Banach spaces. As an inter-
mediate step we shall show the special case of a b identity is resolved as a strong
solution in every Lr space, 1 < r < c, and also in appropriate dual Sobolev spaces.

In order to motivate the system (1.1), let us consider the flow of a fluid through
a fissured medium. This is assumed to be a structure of porous and permeable blocks
or cells which are separated from each other by a highly developed system of fissures.
The majority of fluid transport will occur along flow paths through the fissure system,
and the relative volume of the cell structure is much larger than that of the fissure
system. There is assumed to be no direct flow between adjacent cells, since they are
individually isolated by the fissures, but the dynamics of the flux exchanged between
each cell and its surrounding fissures is a major aspect of the model. The distributed
microstructure models that we develop here contain explicitly the local geometry of
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the cell matrix at each point of the fissure system, and they thereby reflect more
accurately the flux exchange on the microscale of the individual cells across their
intricate interface.

Let the flow region be a bounded domain in ]Rn with boundary F 0. Let
p(x, t) and p(x, t) be the density and pressure, respectively, at x 6 and t > 0, each
being obtained by averaging over an appropriately small neighborhood of x. At each
such x let there be given a cell , a bounded domain in ]Rn with smooth boundary
F 0. The collection of these , x 6 , is the distribution of blocks or cells in
the structure. Within each there is fluid of density (x, y, t) and pressure iS(x, y, t),
respectively, for y , t > 0. The conservation of fluid mass in the fissure system
yields the global diffusion equation

(1.2a)

in which the total concentration p / ao(p) includes adsorption or capillary effects, the
function kj gives the permeability of the fissure system in the jth coordinate direction,
q(x, t) is the density of mass flow of fluid into the cell at x, and f is the density of
fluid sources. Similarly, we have within each cell

o
+ V o

j----1

where b0 denotes adsorption or capillary effects and the function j gives the local
cell permeability. Assume the flux across the cell boundary is driven by the pressure
difference and is also proportional to the average density on that pressure interval.
Thus, we have the interface condition

(1.2c) j Oy y / #(fi(15- p)) 9 0, y e F

where 7 is the unit outward normal on F and # is the relation between the flux across
the interface and the density-weighted pressure difference as indicated. The total mass
flow into the cell is given by

(1.2d) q(x, t) E -y ds.
j=l

In order to complete the dynamical system we need only to add a boundary condition
on F to (1.2a) and to postulate the state equation

(1.2e) p- s(p)

for the fluid in the fissure and cell systems. Here s(.) is a given monotone function (or
graph) determined by the fluid.
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In order to place (1.2) in a more convenient form, we introduce the monotone
function

S(w) =_ s(r) dr

and the corresponding flow potentials for the fluid in the fissures and cells

s(p), u

In these variables with a change of notation the system (1.2) can be written in the form
(1.1) together with boundary conditions on F for u or A(Vu). and initial conditions
at t 0 on a(u), b(U). Note that the average density on the pressure interval p,15 is
given by

1 Lps(r) dr- u-UP--p_ p_

As an alternative to (1.2c), we could require that 15 p on F and this leads to (1.1c’)
in place of (1.1c). Finally, we note that the classical Forchheimer-type corrections to

3the Darcy law for fluids lead to the case p q .
2. The variational formulation. We begin by stating and resolving the sta-

tionary forms of our systems. Let gt be a bounded domain in IR with smooth bound-
cry, F 0. Let 1 _< p < and denote by Lp(2) the space of pth power-integrable
functions on gt, by Lc(t) the essentially bounded measurable functions, and the
duality pairing by

(u, f)L() it U(X)f(x) dx, ueLP(t), f e LP’

1 1for any pair of conjugate powers, + 1. Let C(f) denote the space of infinitely
differentiable functions with compact support in f. Wm,p(") is the Banach space of
functions in Lp(f) for which each partial derivative up to order m belongs to Lp(f2),
and W’P(f) is the closure of C(t) in Wm,p(t). See [1] for information on these
Sobolev spaces. In addition, we shall be given for each x EFt a bounded domain gt
which lies locally on one side of its smooth boundary F. Let 1 < q < oc and denote
by - Wl,q(gt) ---, Lq(F) the trace map which assigns boundary values. Let T be
the range of ")’; this is a Banach space with the norm induced by "y from W,q(f).
Since Fx is smooth, there is a unit outward normal /(s) at each s E F. Finally,

T/171,q c}we define .o) to be that closed subspace consisting of those W,a(2) with
/ , i.e., each ,() is constant almost everywhere on F. We shall denote by

the gradient on W,a(2) and by the gradient on W,p(2).
The essential construction to be used below is an example of a continuous direct

sum of Banach spaces. The special case that is adequate for our purposes can be
described as follows. Let S be a measure space and consider the product (measure)
space Q gt x S, where f has Lebesgue measure. If U Lq(Q) then from the Fubini
theorem it follows that V(x)(z) =_ U(x,z), x e ft, z e S defines V(x) e Lq(S) at
almost everywhere x t, and for each Lq’ (Q)
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Thus Lq(Q) is naturally identified with Lq(, Lq(S)), the Bochner qth integrable
(equivalence classes of) functions from to Lq(S).

In order to prescribe a measurable family of cells (, x E , set S ]Rn, let Q c
]Rn be a given measurable set for which each section (y E ]Rn (x, y) Q}

is a bounded domain in ]Rn. By zero-extension we identify Lq(Q) Lq( ]l:tn) and
each Lq(x) Lq(]Rn). Thus we obtain from above

Lq(Q) - {U Lq(,Lq(]Rn)) U(x) Lq(t) a.e. x }.
We shall denote the duality on this Banach space by

(U, )L(Q) / If U(x, Y)(x, y) dyl dx

U Lq(Q), Lq’(Q).

The state space for our problems will be the product LI() LI(Q).
Note that WI,q(2) is continuously imbedded in Lq(2), uniformly for x . It

follows that the direct sum

)/Yq =_ Lq(, W,q()) =_ (U e Lq(Q) U(x) e W,q() a.e. x e ,
and ,q

is a Banach space. We shall use a variety of such spaces which can be constructed in
this manner. Moreover, we shall assume that each 2 lies locally on one side of its
boundary F, and F is a C2-manifold of dimension n- 1. We assume the trace maps
/ W,q() Lq(F) are uniformly bounded. Thus for each U Yq it follows
that the distributed trace /(U) defined by (U)(x,s) =_ "(U(x))(s), s
belongs to Lq(g, L(F)). The distributed trace maps Yq onto Tq Lq(,T)
Lq(,Lq(r)).

Next consider the collection {WI’q() :x } of Sobolev spaces given above
and denote by YY Lq(, T11’q x)) the corresponding direct sum. Thus for each
U E /Y it follows that the distributed trace "(U) belongs to Lq(). We define YY0’p
to be the subspace of those U VI; for which /(U) W3’P(2). Since " )4; Lq(2)
is continuous, Y]’P is complete with the norm

This Banach space W’p() YVq will be the energy space for the regularized problem
(1.1) and W’P will be the energy space for the constrained problem in which (1.1c) is
replaced by the Dirichlet condition (1.1c). Note that W’P is identified with the closed
subspace ([U, U]: U e Y0’p} of W’P(2) )4;q. Finally, we shall let 4;0 denote the
kernel of /, )/Yo (U /)q :/U 0 in

1,qWe have defined W (2) to be the set of w WI,q() for which /w is a
constant multiple of 1, the constant function equal to one on F. Thus w’q(x)
is the pre-image by "),x of the subspace IR.I of T. We specified the subspace
similarly as the subspace of /Yq obtained as the pre-image by " of the subspace Lq() of
Tq. To be precise, we denote by A the map of Lq() into Tq given by )v(x) v(x). 1,
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almost everywhere x E 2, v Lq(); A is an isomorphism of Lq(t) onto a closed
subspace of Tq. The dual map A taking T into Lq’ () is given by

’g(v) g(v) =/ g(lx)" v(x) dx, g e Tq’, v e iq(),

so we have ,h’g(x) gx(l), almost everywhere x
Moreover, when g Lq’ (F) it follows that

g(l) [ gx(y) dy,

the integral of the indicated boundary functional. Thus, for g Lq’ (, Lq’ (F)) C T,
,Vg Lq’ (2) is given by

(2.1) A’g(x) g(y) dy a.e. x

The imbedding A of Lq() into Tq and its dual map will play an essential role in
our system below.

We consider elliptic differential operators in divergence form as realizations of
monotone operators from Banach spaces to their duals. Assume we are given A

]Rn ]Rn such that for some 1 < p < , gl Lp’ (’/), go e Ll(g/), c and co > 0

(2.2a) A(x, is continuous in E IRn and measurable in x, and

I(, ()1 < 11- + (x),
(2.2b) (.(x, () .(x, if), (- ) _> 0,

(.c) (, (). (>_ 0l(l o()
for a.e. x fi and all - 6 ]R’.

Then the global diffusion operator ,A" W’P(2) W-,P (g/) is given by

,() f, (,())(), , e w,"().

Thus, each ,4u is equivalent to its restriction to C(g/), the distribution

au Au[c() -. .(., u),

which speeifies the value of this nonlinear elliptic divergence operator.
In order to specify a collection of local diffusion operators,

W,q(), assume we are given B Q ]R

h Lq’ (Q), hoe L(Q), c and c0 > 0

(2.3a) (x, y, () is continuous in (E ]Rn and measurable in (x, y) Q, and

I(, , ()1 <_ lgl- + (, ),
(Z.3b) (h(x, y, () -/(x, y, if), (- if) _> 0,

(2.3c) (x, y, (). (>_ col(la ho(x, y)
o a.e. (, u) e Q nd q e
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Then define for each x E 2

w, v e W,q(t).

The elliptic differential operator on is given by the formal part of B, the distri-
bution

Bw BWlc(a -V B(x,., Vw)

in w’q(x)t. Also, we shall denote by B" /)q "-- / the distributed operator con-
structed from the collection {B :x E f} by

u(x) (U(x)) a.e. x6gt, U6I/Yq,

and we note that this is equivalent to

BU(V) =_/ B(U(x))V(x)dx, U, V e Wq.

The coupling term in our system will be given as a monotone graph which is a
subgradient operator. Thus, assume rn :JR - ]R+ is convex and bounded by

(.4) .() < c(ll + ), e R,

hence, continuous. Then by

((x, )) x, g Lq(,Lq(r)),

1 >we obtain the convex continuous h" Lq(, Lq(F)) --+ ]P+. Assume + so

that W’P(’) Lq(t), and consider the linear continuous maps. W0’(t) Lq(gt, Lq(F,)), /" Vq Lq (, Lq(F,)).

Then the composite function

M[u, U] h(/U Au), e w]’(a), u e w,

is convex and continuous on W’P(t) ;q. The subgradients are directly computed
by standard results [12]. Specifically, we have Oh(g) if and only if

(x,s) EOm(g(x,s)) a.e. sFx, a.e. xegt,

and we have If, F] e OM[u,U] if and only if f -A’(#) in W-I,p’() and F- 7’(#)
in ]/Y for some # O(’U- Au).

The following result gives sufficient conditions for the stationary regularized prob-
lem to be well posed.

1>1PIOPOSITION 1. Assume 1 < p, q, +- , and define the spaces and operators, " as above. Specifically, the sets {t x } are uniformly bounded with smooth
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boundaries, and the trace maps {z} are uniformly bounded. Let the functions A, B,
and m satisfy (2.2)-(2.4), and assume in addition that

(2.5) re(a) aols{q, s e .
Then for each pair f e W-I,P (), F E W there exists a solution of

(2.6a) u e W’P() A(u)- ’(#) f in W-,p

(2.6b)

(2.6c)

U e Wq: B(U) + ’(#) F in W,

# Lq’ (, L’ (F,)) # q O(n(TU- Au).

For any such solution we have

(2.7) Jfr #(x, s)ds (F(x), lz) a.e. x e ,
where 1 denotes the constant unit function in Wl,q(x).

Proof. The system (2.6) is a "pseudo-monotone plus subgradient" operator equa-
tion of the form

(2.6’)
[u, U] e W’p() Vq" for all Iv, V]
Au(v) / BU(V) + OM[u, U] (Iv, V]) f(v) / F(V).

It remains only to verify a coercivity condition, namely,

(2.s) .au() + u(u) + (u- u) - +Ilullw,() + Ilvll
a IIllw.,(a) / IlVllv - /.

Choose k max{lyn] y e z, x e 2} and let z (,’" ,) be the unit normal
on Fz. For v e Wi,q(z) we have by Gauss’ theorem

f (Ivla + y,qlvlq-xO,v) =/ o= (y=lv(y)la) dy

()=1"() ds

HSlder’s inequality then shows

I(r) + qkllvll()ll&vll(),
and from this follows

IlvllE.() < 2kllwvll,(r) / (2k)q(q- 1)a-XllO=vll a

by Young’s inequality. From here we obtain

(2.9) ollVIl() < IIyVll a ILa(),Lq(,Lq(Fx)) / IIVVI q VeWq.
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Thus from the a priori estimate

4u(u) + BU(U) / M(’yU- Au)

the Poincar-type inequality (2.9) and the equivalence of IIVUIIL(a) with the norm on

W’P(), we can obtain the coercivity condition (2.8). Specifically, if (2.8) is bounded
by K, then (2.10) is bounded above by

and the last term is dominated by the first. This gives an explicit bound on each of
these terms and, hence, on IlUllw.(n + IIUIlvq.

Finally, we apply (2.6b) to the function Y e )/Yq given by Y(x, y) v(x) for some
v e Lq(), and this shows

(F,

since BU(V) 0, and thus

zV#(x)v(x) dx #(Av) #(/v) /a (F(x), l>v(x)dx.

The identity (2.7) now follows from (2.1).
For the more general case of the degenerate stationary problem corresponding to

(1.1), we obtain the following result.
COROLLARY 1. Let JR JR+ and p ]R ]R+ be convex and continuous,

with (0) (0) O, and assume

(2.11) (s) <_ C(Islq + 1), (I)(s) < C(l la + 1), s e JR.

For each pair f e W-1,p’ (), F E )zy, there exists a solution of

(2.12a)

(2.12b)

(2.12c)

(2.12d)

For any such solution we have

(2.13) b(x, y) dy + r #(x, s)ds (F(x), lz)
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Proof. This follows as above but with the continuous convex function

[u,U]=/a(u(x))dx+ fafa ((U(x,y))dydx

+ u] e

The subgradient can be computed termwise because the three terms are continuous
on Lq(2), Lq(Q), and Lq(, Lq(Fx)), respectively.

Remark. The lower bound (2.5) on m(.) may be deleted in Corollary 1 if such
a lower estimate is known to hold for (I). It is also unnecessary in the matched mi-
crostructure model; see below.

In order to prescribe the boundary condition (1.1c) explicitly, we develop an
appropriate Green’s formula for the operators Bx.

Note that we can identify Lq’(x) C W-l,q’(x) since W’q(2) is dense in
Lq(), so it is meaningful to define

Dx {w E Wl,q() Bw Lq’ (ft,)}.

This is the domain for the abstract Green’s theorem.
LEMMA 1. There is a unique operator O Dx T’ for which Bw Bw +

/’Ow for all w D,. That is, we have

(2.14) Bxw(v) (Bzw, V)L(a,) + (Ow, 7v>, v 6 WI,q(),

for every w 6 Dx.
Proof. The strict morphism 7 of W,q(z) onto T has a dual 7’ which is an

isomorphism of T’ onto w’q(2z)+/-, the annihilator in W,q(x) of the kernel of 7.
For each w 6 D, the difference Bzw- Bw is in W’q(2x)+/-, so it is equal to
for a unique element Ow 6 T’.

Remark. The identity (2.14) is a generalized decomposition of B into a partial
differential operator on and a boundary condition on Fx. If Fz is smooth,
denotes the unit outward normal on F, and if/(x,., uw) 6 [WI’q’(x)]n, then
w 6 Dx and from the classical Green’s theorem we obtain

B=w(v) (Bw, V)L(a,) B(x, s, Vuw)=(s)/v(s) ds,

v e W,(a).

Thus, Ow (x,., uw). v is the indicated normal derivative in Lq’(Fx) when
B(x,., Vuw) is as smooth as above, and so we can regard Ow in general as an extension
of this nonlinear differential operator on the boundary.

The formal part of B ]/Yq --, ]4; is the operator B ]4;q ]4; given by the
restriction B(U) =_ BUIwo. Since ]do is dense in Lq(Q) we can specify the domain

D {U e Vi;q’B(U) e Lq’ (Q)}

on which we obtain as before a distributed form of Green’s theorem.
LEMMA 2. There is a unique operator O: D --, T such that

B(U)(V) (B(U), V)L(Q) + (OU, 7V), U 6 D, V 614;q.
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PROPOSITION 2. Let the Sobolev spaces and trace operators be given as above.
We summarize them in the following diagrams"

Lq(f) Lq(r,) Lq(Q) Lq(f, Lq(r))

U U U U
W,q()

U
q ci ]R,’I Wi 1 Lq(fl)

U U T
(o} Wo {o}

in which "T1 i8 the restriction of’y to W1. W’q(x), Wo are dense in Lq(), Lq(Q),
respectively. Let operators Bx, x E , and B be given and define their formal parts
B, B as above. Then construct the domains D, D and boundary operators 0, 0 as
in Lemmas 1 and 2, respectively. It follows that .for any U Wq,
(a) BU(x) B(U(x)) in w’q(x) for a.e. x E [2, and U E D if and only if

V(x) e Dx for a.e. x e [2 and x BU(x) belongs to Lq’ (Q);
(b) for each U E D,

OU(x) Ox(U(x)) in T for a.e. x e

and
BU SV + "y (A’OU) in

and .for each V V1;1 we have

a
BU(x) (V(x)) dx =/QBU(x)V(x) dy dx

-I-/ (OU(x), l)(’lV)(x)dx.

Proof. (a) For V E Wo we obtain from the definitions of B, B, and B, respec-
tively,

/ BU(x)V(x) dx / BU(V) dx / BU(x) (V(x)) dx

] BU(x)V(x)dx,

and so the first equality holds since W Lq’ ([2, W’q(f)’). The characterization of
D is immediate now.

(b) For V Wq we obtain from the definitions of "y, 0, 0, respectively, and (a)

=/ o(u(x))v()
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Since the range of y is T Lq’ (t,Tx), the first equality follows. The second is
immediate from Lemma 2 since on 14;1, ’ A o yl and "),’ ’A’, and the third follows
from the preceding remarks.

COROLLARY 2. IYt the situation of Corollary 1, f E Lq’ () and F Lq’ (Q) if
and only if Au Lq’ () and B(U) Lq’ (Q), and in that case the solution satisfies
almost everywhere

a(x) + An(x) +/ b(x, y)dy f(x) + F(x, y)dy,

u(s) 0, s e r,

b(x, y) e OO(U(x, y)), b(x, y) + BU(x, y) F(x, y), y e ,
(, ) e O.(V(, ) (x)), O (V(x))() + (x, ) 0, e r.

Finally, we note that corresponding results for the stationary matched microstruc-
ture model are obtained directly by specializing the system (2.6p) to the space l/V] ’p.
This is identified with {[’U, U]" U e l/Y0’p} as a subspace of W’P(2) )ZYq, and we
need only to restrict the solution In, V] and the test functions Iv, Y], v "yV, to this
subspace to resolve the matched model. Then the coupling term M does not occur in
the system; see the proof of Proposition 1, especially for the coercivity. These obser-
vations yield the following analogous results for the matched microstructure model.

> 1 and define the spaces and operatorsPROPOSITION 1 p. Assume 1 < p,q, +-ff -,
)t, as before. Let the functions A,B, and m satisfy (2.2)-(2.4). Then for each pair
f W-I,p (), F ]/Y there exists a unique solution of

(2.15a) u e W’P() A(u) f / (F, 1) in W-I,P

U E 14;1 :B(U) F in

"yU Au in Lq() C Tq.

(2.15b)

(2.15c)

COROLLARY 1. Suppose , are given as before and assume (2.11). For f, F as
above there exists a unique solution of

(2.16a)

(2.16b)

(2.16c)

(2.16d)

u e W’P() a + (b, 1) + A(u) f + (F, 1) in W-l,p (),

U ]d;1 :b + B(U) F in

"IU .u in Lq() C Tq,

a O(u) in 54 (t), b O(U) in Lq’ (Q).
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In addition, f e Lq’ (f) and F E Lq’ (Q) i/and only if Au Lq’ (f) and B(U) e
Lq’ (Q), and in that case the solution satisfies almost everywhere

() e o(()),
() + A()+/ (,) S(x)+ [ (,), e ,
u(s) O, s r,

b(x,y) e O(V(x,y)), b(x,y) + SV(x,y) f(x,y), y e ,
v(, ) (x), e r

Remark. For the very special case of p q 2 and a(u) u, b(U) U in the
situation of Proposition 1 it follows from [7] or [20] that the Cauchy-Dirichlet problem
for (1.1) is well posed in the space Lp(0,T; W’P() x W) with appropriate initial
data u(x, 0), U(x, y, 0) and source functions f(x, t), F(x, y, t). A similar remark holds
in the case of Proposition 1 for the matched model with (1.1c). These restrictive
assumptions will be substantially relaxed in the next section.

rthermore, variational inequalities may be resolved for problems corresponding
to either the regularized or the matched microstructure model by adding the indicator
function of a convex constraint set to the convex function . Thus such problems can
be handled with constraints on the global variable u, the local variables U, or their
difference Au-U on the interface.

3. The Lr-operators. Assume we are in the situation of Proposition 1. We
define a relation or multi-valued operator C2 on the Hilbert space L2() x L2(Q) as
follows: C2[u, V] 9 If, F] if and only if

(.) u e L() W’(U) A() a,, e L(),

(3.1b) V L2(Q) Wq: B(U) +’ F L2(Q)

for some e O(U- Au) in Lq’ (,Lq’ (F)).
Thus, C2 is the restriction of (2.6) to L2() x LZ(Q). Note that ’ e L2() by (2.7).

LEMMA 3. If q iS monotone, Lipschitz, and a(O) O, then for each
pair

C2[uj, Uj] 9 [fj,Fj] j 1,2,
there follows

( , (u ))() + (F f, (V V))() 0.

Proof. Since a is Lipschitz and a(0) 0, we have a(u -u2) e W’() and
a(U U2) Wq. Also the chain rule applies to these functions, so we compute

( A, (u,))

f, (J(, x) (,w))V( ),( )d,

(nv v, (v v))

y(U Uz)a’(U U2) dy dx
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Both of these are nonnegative because of (2.1b), (2.2b), and a _> 0. The remaining
term to check is

(-,( ),( ))+ (,( ), (v v)

Since a is a monotone function and 0m is a monotone graph, this integrand is non-
negative and the result follows.

As a consequence of Lemma 3 with a(s) s, the operator E is monotone on the
Hilbert space L() L(Q). Moreover, we obtain the following.

PaOeOSTO 3. The operator is maximal monotone on L() L(Q). Let
j + be convex, lower-semicontinuous, and j(O) O. IOm is a nction, then

is also single valued and

(a.) (c[, u] c[, u], [,])()() 0

M ay stions o( ) i L(n) a Oi(U U) i L(Q).
Proof. To show E is maximal monotone it suces to show that for any pair,E L() L(Q) there is a solution of

(a.a) L() WJ’(n) + A() ,() I i W-,’ (n),
(.) U L(Q) U + (U) + ’() F i

(a.a) ’ (n,’()) O(u- ).

The existence of a (unique) solution of (3.3) follows as in Proposition 1, but by con-

iein te ueuomootoe oto [A, ] otout L(n)W’(n)
(Q) ,toe umio, ll() +U() +(U ), o, tat
space.

To establish the estimate (3.2), we consider the lower-semicontinuous convex func-
tion

[, ul L(n) x L(Q).

The subgradient of is given on this product space by

5 [al, a2] e O[u, U] if and only if

5[v, Vl (a(x)v(x) + a2(x,y)V(x,y)dy) dx,

[v, V] e n(a) L2(Q),

where
a (x) e Oj (u(x)), a.e. x e
a2(x, y) e Oj (U(x, y)), a.e. (x, y) e Q.

The Yoshida approximation of is given as in (3.4) but with j replaced by j.
Since the derivative of j is Lipschitz, monotone, and contains the origin, it follows by
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Lemma 3 that the special case of (3.2) with j is true. Thus, C2 is 0-monotone [8]
and the desired result follows, since the single-valued C2 equals its minimal section.

We define the realization of (2.6) in Lr() x Lr(Q), 1 <_ r < oc, as follows. For
r >_ 2, Cr is the restriction of C2 to Lr() x Lr(Q), and for 1 _< r < 2, Cr is the
closure in Lr(t) x Lr(Q) of C2.

COROLLARY 3. The operator Cr is m-accretive in Lr(t) x Lr(Q) for 1

Proof. Let (I + C2)([uj, Uj]) 9 [fj,Fj], j 1, 2, and assume [fj, Fj] e nr(f) x
nr(Q) if r k 2. Set j(s) [sl r, s e JR. From Proposition 4.7 of [8] it follows that

Taking [f2, F2] [0, 0], we see that L(gt) x Lr(Q) is invariant under (I + eC2) -1,
and then the estimate shows this operator is a contraction on that space. We have
Rg(I+eCr) Lr(gt) x Lr(Q) directly from the definition for r k 2, and for 1 _< r < 2,
Rg(I + eC) D L2(t) x L2(Q), which is dense, so the result follows easily.

Remarks. The Cauchy-Dirichlet problem for the regularized model (1.1) is well
posed in Lr(gt) x Lr(Q) when a(u) u, b(U) U, and r > 1. This follows from
Corollary 3 and the theory of evolution equations generated by m-accretive operators
in a uniformly convex Banach space. For example, from [19] we recall the following:

If E WI,(0, T; X) and wo e D(Cr), where Cr is m-accretive on the uniformly
convex Banach space X, then there exists a unique Lipschitz function
w’[0, T] X for which

w’(t) + Cr (w(t)) f(t), a.e. t e (0, T),

w(t) e D(Cr) for all t e [0, T], and

(0) 0.

See [4] for details (Theorem III.2.3) and references. By applying this result to the
operator Cr given in X _= Lr(t) x Lr(Q), 1 < r < oc, we obtain a generalized strong
solution w(t) -[u(t), V(t)] of the system

o(, ) [ OU(x, , )
Ot + Au(x, t)+ Ja -fit dy

f(x, t) +/a f(x, y, t)dy, x e gt, t e (0, T),

u(s, ) o, s r,

Ot + BU(x, y, t) F(x, y, t),

(, , ) e o.(u(x, , ) .(x, )), ou(x, , ) + (, , ) o,

(x, o) o(), U(x, , o) Vo(, ).

sFx,

The restrictions on the data [(t) -[f(t),F(t)] and w0 --[uo, U0] can be considerably
relaxed in the Hilbert space case r 2 [8].



DIFFUSION OF FLUID IN A FISSURED MEDIUM WITH MICROSTRUCTURE 1717

By applying Proposition 1’ similarly, it follows that corresponding results for
the matched model are obtained. Thus we obtain a generalized strong solution in
Lr(f) x Lr(Q), 1 < r < oc, of the system

o(, ) f ov(, , )
Ot + Au(x, t)+

j
dy

f(x, t)+ / F(x, y, t)dr, x e f, t e (0, T),

u(s, ) 0, s e r,

OU(x,y,t) + BV(x, y, t) F(x, y, t), y eot

v(, , ) u(x, ), e r,

u(x, o) o(), V(x, , o) Vo(x, ).

This follows as above from the analogue of Proposition 3 and Corollary 3.
We return to consider the fully nonlinear model (1.1). The generator of this

evolution system will be obtained by closing up the composition of C2 with the inverse
of [0qo, 0] in Ll(f) LI(Q). Thus, we begin with the following.

DEFINITION. C[a, b] If, F] if C2[u, V] If, F] and a e Oqo(u) in L2(), b e
O(V) in L2(Q) for some pair [u, V] as in (3.1).

LEMMA 4. The operatorC is accretive on L(f)L(Q) if either Om is a function
or if both 099 and 0 are functions.

Proof. Let e > 0 and suppose that (I + eC)[aj, bj] [fj, Fj] for j 1, 2. Thus
we have eC2[u, Uj] [f -a,Fj -b], a e Oqo(uj), bj e O(Uj) as above. First we
choose a(s) sgn-(s), the Yoshida approximation of the maximal monotone sgn+,
apply Lemma 3 and obtain

(a a2, sgn-(u u2))L:(a) + (bl b2, sgn-(U U2))L(Q)
_< J[(fx f2)+[[LI(G) W [[(El F2)+[ILX(Q).

If 0o and 0 are functions, then

(hi a2)sgno+(u u2) (a a2)+,
(b b2) sgno+(U1 V2) (b b2)+,

so letting 5 0 gives

(3.5)
II(a a2)/llL,(.) / II(bx b2)+llL(O)

--< II(f f2)+llLx(,) q-II(F F2)+IILI().
The same holds for negative parts, so it follows that (I + eC)- is an order-preserving
contraction with respect to L(fl) L(Q) for each > 0.

Next we suppose Om is a function. Choose j(s) s+, so that Oj sgn+, and
then set

a(x) sgno+(U u2 + a a2) e sgn+(u u2) n sgn+(a a2),
a2(x,y) sgno+(Vl U2 + b b2) e sgn+(U U2) n sgn+(b b2).
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Proposition 3 applies here to give (3.5). A similar estimate for negative parts yields
the result.

Although C is not accretive on Lr for 1 < r, we can obtain L estimates when
the graphs 0, 0(I) are not too dissimilar.

COItOLLAItY 4. If (I + eC)[a, b] 9 If, F] with e > O, then

(3.6)
IIb+IIL (Q) max(bo(k),

where k
_
max(aX(JJf/JlL ), b-X(JJF/[I)).

Remarks. Here a0 is the minimal section (0)o, a1 is the minimal section of
(0)-1, and b0, bl are defined similarly from 0. Specifically, we obtain an ex-
plicit a priori bound on I[a+[[L(a) and [[b+[[L(Q when [[f+[[L(a)inRg(Oqo) and
[[F+[[L(Q) E Rg(O). By similar estimates for negative parts, we obtain explicit esti-
mates on ][al[L( and I]bl]L,(Q) for any pair f e Lc(fl), F e Lc(gt) if Rg(Oo) lit
and Rg(O() ]R or (trivially) if both Rg(Op) and Rg(O) are bounded in ]R. Finally,
we note that in the special case , we obtain

Proof. By the choice of k > 0 we have

for some pair 11, 2. Subtract these from the operator equation, multiply by either

sgn-(u k), sgn2(U k)

or by
sgn0+ (a tl "" U k), sgn0+ (b- t2 -- U k),

depending on whether 0qa and 0(I) are functions or Om is a function, respectively.
Apply Lemma 3 and let i 0 or apply Proposition 3, respectively, to obtain

[l(a 1)+[IL1() + ]](b_
[l(f+ tl)+llLl() --[[(F/

The right side is zero, so the result follows.
PROPOSITION 4 (Moser). Let (u, U) 6 W’P(I2) x YYq be a solution to

B(U) + 7’# F in "W,
e Om(TU- u).

(a) If (f, F) e Lr’ (12) Lr’ (Q) with r’ > , and

(2.2c’)

where go e L’ (2), then u
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(b) If, additionally, F e L[2; Lt’ ()] with t’ > ,
(2.3c’)

where ho e Lc[; L (f)], and m satisfies the growth condition (2.5) and re(O) O,
then U e L(Q).

Proof. (a) Estimate (2.7) of Proposition 1 shows that A# E L’ (), so that

A(u) f- A’# ] E Lr’ ().

Lemma 3 of [23] can now be used to conclude u

(2) Define U U- ul. Since B(U) B(U), it follows that

B(U) / "’# F in PP, # Om(/U),

and for almost every x , and every V PPq

with #(x) E Om(’U(x)). We will now use Moser iteration with (,) to conclude

IIU(x)llLOo(f) C, where C is to be chosen independently of x

If U(x) Lr(f) (r q suffices for the first iterate), define s 1 + (r- t/tq)
( + , 1). Let H e CI(]R) satisfy H(s) Isl 8 if Isl _< so, H affine for Isl > so, and
define G(s) f IH’()lq d. Since H has linear growth, it follows that G() e PYq.
Substituting G(U) for V in (,) gives

The first term of the formula above is bounded below using (2.3c). To estimate the
second term, use

(i) #U >_ m(U) (as m(0)--0), and

(ii) sgn() sgn(G()) (so that G()/ >_ 0 when : 0)
to get

,v(u) ,u v(U)lU > v(U)lU
>  olVl  (V)lV colVl - l (V)l,

co IVyuIqa’(u) + co IU]q-]G(U)[ 5 FG(U) + hoG’(U).

The first term may be written as [VvH(U)q which, using the Sobolev embedding
theorem, is bounded below by

Ln-q
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where e > 0 can be chosen arbitrarily small (see (2.9)). The right-hand side is bounded
using Hblder’s inequality.

c(e)llH(U)llqL" + Jr IUla-la(U)l-q/(n--q) (v)_
1__ (IIFIILt,()llG(f)llLt(f) + iihOiiLt
CO

I 1.,
(r as minq<r< r/(r), it follows that;(1+ -t/qt))q. If is chosen

< max[l,
The result now follows by iteration of the above estimate.

THEOREM 1. Assume the hypotheses of Proposition 1, Corollary 1, Lemma 4,
and Proposition 4. Also, assume that Rg(Oo) and Rg(OO) are both bounded or that
both are equal to JR. Then C, the closure of C in LI() x LI(Q), is m-accretive.

Proof. Let f E L(ft) and F L(Q). Corollary 1 asserts there is a solution of
(2.12). If the graphs 0o and 00 have bounded range, then a L(), b Lc(Q),
and it follows from Proposition 4 that u E L2() and U E L2(Q). This shows
C2[u, V] ) [a f, b F], so (I + C)([a, b]) 9 [f, F]. Thus, Rg(I + -) is dense in and,
hence, equal to L(ft) L(Q).

If the ranges of 0o and 0(I) equal JR, then by Corollary 4 any solution satisfies

Ilalls_,<><,() < K, IlbllL() K,

where K depends on f and F. Replace 0o,00 by the appropriately truncated
0K, 0OK.

The solution with these truncated graphs, then, is a solution of the equation with
the original graphs, so we are done.

COROLLARY 5. Under the hypotheses of Theorem 1, problem (1.1) has a unique
generalized solution (a,b) e C[O,T;L(2) L(Q)], provided the data satisfy (f,f) e
LI[0,T; n(gt) L(Q)], and (a(0), b(0)) e D(C).

This follows from the Crandall-Liggett theorem [9], which is proved by showing
that the step functions (aN, bg), constructed from solutions to the differencing scheme

(3.7) (an,bn) -(an-,bn-) + TC(an, bn) T(fn, Fn)

(T --), converge uniformly when the operator C is m-accretive. Benilan [6] proves
that these generalized solutions are unique.

All of our results hold for the matched microstructure model problem. Specifically,
Lemma 4 and Corollary 4 are obtained from Proposition 3, and Proposition 4 is
actually simpler for the matched problem. The analogues of Theorem 1 and Corollary 5
show that the matched problem (1.1a), (1.1b), (1.1c’) has a unique generalized solution
(a, b) e C[0, T; Ll(a) L(Q)].

The next theorem shows that if the data is further restricted, the generalized
solutions will satisfy the partial differential equation (1.1). The following notation is
used:

nr(T) Lr [0, T; nr(gt) x Lr(Q)], 1 _< r <_ x,
v
])(T) LP [0, T; Wo’P(2)] Lq[0, T; Wq],

9(T) W, [0, T; W-,p (gt)] W,q [0, T; W].
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THEOREM 2. Assume the hypotheses of Theorem 1 hold and in addition that
(f,f) e LI(T) N V(T)’ and (a(0), b(0)) e D(C) Y’. Then the generalized solutions
of Corollary 5 satisfy

(3.8a) (a, b) e 9(T), (u, U) e ;(T),

(3.8b)
0
O--(a,b) / (Jr(u)- ’#, B(U) d-/’#) (f,F) in V(T)’,

(3.8c) (a, b) e (0(u), O(U)), # e OCn()u

Proof. The results of Grange and Mignot [15] show that the step functions (aN, bN)
and (uN, UN) generated from the differencing scheme (3.7) converge weakly in V(T)
and V(T), respectively. Moreover, equation (3.8) will be satisfied in the limit, pro-
vided the weak limits (a, b) and (u, U) satisfy (a, b) e (0(u), O(U)). To establish
this inclusion, let (v, V) E V(T) and (5,5) E~(O(v),O(Y)). The growth conditions
on and (I) guarantee that (aN, bN) and (, b) V(T)’ are functions, so it is possible
to define (aN 5, bg b)s to be the pair of functions truncated above and below by
:t=s (s > 0): This pair of functions is bounded in L(T) and converges in LI(T) to
(a- 5, b- b)8, and so converges in Lr(T) for 1 _< r < c. If r >_ max(p’, q’), it follows
that Lr(T) C ))(T)’, so the sequence (aN -5, bN -)s converges strongly in V(T)’.
The monotonicity of 0 and 0(I) imply

0(_ I (aN 5, bN )s, (uN-v, Un V) l.
Passing to the limit as N c and then letting s - c yields

0<_ ((a-5, b-), (u-v, U- V)/, (a, e

Since (0(.), 0(I)(.)) is maximally monotone, it follows that (a,b) e (0(u), O(U)).
Finally, we note that the corresponding solution of the matched problem satisfies

(3.8a’) (a, b) e 9(T), (-U, U)e V(T),

(3.8b’) O---(a b)4- (Jt(’U) B(U)) (f,F) in Vo(T)’tot

(3.8c’) (a,b) e (O(’U),O(U)), U e Wo,

where the space ];o(T) is given by

with the appropriate norm for which (’(U), U) V(T) for each U )o(T).
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ON PARABOLIC VOLTERRA EQUATIONS IN SEVERAL SPACE
DIMENSIONS*

HONG-MING YINt
Abstract. In this paper some parabolic integrodifferential equations in n-space dimensions are

studied. For the solution of such a linear equation, the classical Schauder and Lp(Q,T) estimates
are derived. As a direct corollary, the continuous dependence and the uniqueness of the solution for
the full nonlinear integrodifferential equation are obtained. Then the global solvability for a class
of quasilinear integrodifferential equations is considered. Using the method of energy estimates and
the integral iteration technique along with the results of linear equations, an a priori estimate in the
classical space C2+a’1+ (T) is deduced and the global solution of our problem is established by
the continuation argument similar to the case of a parabolic equation.

Key words, nonlinearity, a priori estimates, global existence
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1. Introduction. Let T > 0 and {T (0, TI, T > 0, where f is an open
bounded region in Rn with a smooth boundary 0f. In this paper we first study the
line equation:

(1.1) ut u udr + I(,t), in r
where 1 i8 a linear ellipgic operaor:

(,tl, + (,t), + (,
and is an arbigrary differential opera,or of he second order:

(, t, + (, t, + (, t,.
Pot he solugion of his linear equagion, we shall derive a priori Schauder and W,1 (Qr)
esgimaes which are well known for solutions of parabolic partial differengial equagions.
Using hese results, we ghen consider a cls of nonline equations:

u= O [a (x,t,u,udT) ]Ou
(.)

+ bi(x,t,T,U)+C(X,t,r,U) dT inQT

and establish the global solvability. Here and throughout the paper we shall use the
n U U Rnstandard notation: u (u,, ..., u) e R (,) e and the repeated

subscript implies summation from 1 to n.
The equation (1.1) or its more general form

(1.a) ut A(, t, u, u, u) + B(, t, r, u, u,)ar in r,
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where the ellipticity condition

(1.4)
OA(x,t,u,p,r)

Or >- All (Ao > O)

holds, is often called a Volterra integrodifferential equation of parabolic type. This
kind of equation represents many mathematical models in physical and engineering
fields such as heat transfer in a material with memory, the propagation of disturbances
in viscous media, and so on (cf. [19]). The nonlinear equation (1.2) can be regarded
as the generalization of some practical models in physics and biology. As an example,
we consider the nonlinear version of the nuclear reactor model (cf. [21, p. 172]

0
(1.5) ut -x [aij(x, t, u, v)ux] u(A bv),

(1.6) vt -cv / as,

where u represents the fast neutron density and v the fuel temperature. It is easy to
see by (1.6) that

t) + fo e-c(t-’) u(x, T)dT.

Hence, the system (1.5)-(1.6) can be written as the form which is similar to the
equation (1.2). Similar models can be found in [21] such as the Fitzhugh-Nagumo
system and the degenerate Volterra-Lotka model in which only one species diffuses
is included. Recently, much attention has been received in the study of the well-
posedness of the problem as well as its numerical solution. A large group of people
write the equation (1.3) as a Volterra type integrodifferential equation in an abstract
Banach space:

du(t) A(t, u(t)) + B(s, u(s))ds.dt

They employ the analytic semigroup theory to study the solvability of the problem
and other properties (cf., e.g., [4], [7], [9], [12], [13], [16], [18]). There are also a
number of authors who take the derivative with respect to t in the equation (1.3) and
obtain a third-order partial differential equation which is of mixed type (cf. [3], [5],
[6], [8], [20], [22], etc.). For such an equation, they use the Galerkin approach and
some special treatments to investigate the local and global solvability of the problem
when the principal part A(x, t, u, ux, uxx) is a linear elliptic operator. These methods
are powerful and many good results have been carried out previously under certain
conditions. For a nonlinear elliptic operator A, the global solvability of the problem
becomes much more difficult. Some effort has been devoted to this investigation (cf.,
e.g., [4], [16], [18], etc.). More recently, Yin [24] and [25] considers the problem from
a rather different viewpoint. He regards the equation (1.1) as a parabolic one with
a perturbation (the integral term). Hence, the theory of parabolic equations can be
applied to the study of the problem. Indeed, as will be seen in 2 of this paper,
the solution of the linear equation possesses many features such as Schauder and
Wp2’I(QT) estimates which play important roles when studying nonlinear equations.
In [24] and [25], the author establishes the global existence of the solutions for two
classes of nonlinear integrodifferential equations in one space dimension. In the present
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paper we will show global solvability for the nonlinear equation (1.2). We first derive
a uniform bound by applying the integral iteration technique. Then we employ an
analogous approach as in [2] to derive the Wp2,1-estimate. Finally, the results for the
solutions of linear problems are used to deduce an a priori estimate in C2+,1+ (T)
and then the global solution is obtained by the method of continuity.

Remark. The argument presented in this paper can be used to deal with a more
general equation than (1.2). However, these generalizations are left to the reader.

In 2 the Schauder and Lp(QT) estimates are proved, and then as a direct corol-
lary the continuous dependence and uniqueness of the solution for the full nonlinear
equation (1.3) are obtained. In 3 we establish the global existence of the solution for
the equation (1.3) associated with the suitable initial and boundary conditions.

For the reader’s convenience, we list the following notation: Let Q ft (0, t]
for t e (0, T], S--Of, ST- S [0, T], PT- QT [0, T].

IlUllc(O,T) max ]u(x, t)l
COT

lu(, )- (x’, ’)1[U]c,/2(Q) sup
(,)(,,,),0_<,,<_ I x,l- + ,-/:’

J T

for p > 1 arbitrary. Moreover, on PT QT x (0, T],

(1.7)

sup
(,t,)(’,t’,’),O<_t,t’,,’<_T IX X’I + it- t’l"/ + Is s’l/"

The norms II" IIb.,.:,..(),’", II 113+.,+./.,+./:(p) can be defined similarly.

2. Schauder and Lp(QT) estimates. It is well known that the theory of
Schauder and Lp(QT) estimates are important in the study of parabolic equations.
In this section we shall derive such a priori estimates for the solutions of linear inte-
grodifferentia equations. We begin with the following Gronwall’s inequality without
its proof (cf. [14, Lemma 7.1.1].

LEMMA 2.1. Assume that the function g(t) is a nonnegative, nondecreasing, and
integrable function on [0, T]. The function f(t) satisfies

f(T)(2.1) 0 <__ f(t) <__ g(t) + (t T)dT’ 0 <__ t <__ T,

where 0 < c < 1. Then

f(t) <_ C(a, T)g(t), t e [0, T],
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where C(a, T) depends only on a and the upper bound of T.
The following lemma is elementary.
LEMMA 2.2. Let g(x, t) be a function in Ca’ (T)(0 _< a < 1) and G(x, t) be a

function defined as f h(x, t, T)g(x, T)dT, where h(x, t, s) is defined on QT [0, T] and
H61der continuous with respect to x, t and s with the eonent a, y y, respectively.
Then

(2.2)

where C depends on the HSlder no of h(x, t, s) and T.
Pro@ By the definition, we have

For any two points (x, s) and (x’, s’) in Qt, we sume s’ > s without loss of generality

] ’1 + I ’1
8 8

< f0 [h(, , z) h(z’, ’, z)](, )dz + fo Ihllg(x, z) g(x’, z)ldz + L Ihllg(x’, )ldz

We split the above fraction into three terms denoted by K1, K2, and K3. It is clear
by the HSlder continuity of h(x, t, s) that

K1 <_ C IIg(x, s)l]c(o.)dr

and

g < C f0 I(x, z) (’,
ix x,l

dz

< C Ilg(x,

To estimate K3, noting that s _< z _< s, we have

1 1

I’- 1 -< I’- zl
Therefore,

s’ ig(x,,z)ldzga < C
Is’-zl

’ I(x’, )1 dz<_ C
Is’ zl

<_ C
is,_ zl
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By combining the estimates for K1, K2, and K3 and then taking the supremum
over Qt on both sides of the above inequality in conjunction with the maximum norm
of G(x, t), we obtain

8’[I[G[[c,!I(O) _< C sup f_ 2 /
0_<s’_<t J0

, ](s’ )- Ila(x,

Since IIg(x,s)llc<,,<,/.(cO) is a monotone increasing function of T, by the integration
by parts, we see that the function

1 ](, .,_),
IIg(, s)llc<,,,<./,cO.)d’,

is monotone increasing. Thus, we end our proof.
Now we consider the following linear initial boundary value problem:

(2.3)

(2.a)
(2.)

ut Lu L2udx + f(x, t),

(, t) (, t), (, t) e s,
u(, 0) 0(x), e ,

where the operators L and L2 are the same as in (1.1).
To obtain a Schauder type estimate, we assume the following conditions hold.
H(2.1). The coefficients of the operators L and L2 are in the Banach spaces

Ca’ (OT) and Ca,, (/T), respectively. Moreover, there exists a constant A0 which
may depend on QT such that

n n

[llasllc<,, (o) + 11113o,<,/,<,/-()] + --[llbllc<,,
i,j=l i=1

The function f(x, t) E Ca’ (O.T). Moreover, the ellipticity condition

as(x, t)s >_ aoll (a0 > 0),

for E Rn holds.
H(2.2). There exists a function O(x,t) e C2+’1+ (T) such that O(x,t)

g(x, t) on ST and (I)(x, 0)= uo(x) on fl.
Now we state the Schauder estimate.
THEOREM 2.1. Under the conditions H(2.1), (2.2), the solution u(x,t) of the

problem (2.3)-(2.5) satisfies

(2.6) IIllc:+o,,+s () <- C[ll’I>llc.+<,,,+,s () + Ilfllc<,, ()].

Proof. Let u(x, t) be an arbitrary classical solution of the problem (2.3)-(2.5).
Regarding the right side of the equation (2.3) as an inhomogeneous term F(x, t), we
apply the Schauder estimate (cf. [10], Thm. 6, Chap. 3) for a parabolic equation to
obtain

IIllc.+<,,,+ (o<) < C[llFIIc<,, (o<) + II<I’IIc+<’,*+
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where the constant C depends only on a0, A0, and QT.
Since the coefficients of L2 are Hblder continuous over PT, by a direct calculation

and using Lemma 2.2, we find that

IIFIIc, () c 2 + (t-r) Ilullc+’+(o.)dT + [[fllc"’(ot)

where the constant C depends only on the Hblder norms of the coefficients of L2.
Thus, the desired result follows from Gronwall’s inequality (Lemma 2.1).

From the above result, we immediately have the following corollaries.
COROLLARY 2.1. Under conditions H(2.1), (2.2), the problem (2.3)-(2.5) has a

unique classical solution.
COROLLARY 2.2. Assume that the functions A and B in (1.3) are smooth with

respect to all of their arguments and the ellipticity condition (1.4) is satisfied. Let
Ul(X, t) and u2(x, t) be two classical solutions of the (1.3) corresponding to the initial-
boundary data (Uol (x), gl (x, t)) and (u02(x), g2(x, t)), respectively. Then

]IUl 2llC+’’+ (T) <- Cll]]C+’+g ((T)’

where O(x, t) e C2-ba’l+ ((T) coincides with gl (X, t) g2(X, t) on ST and t01 (X)
uo(x) on {(x,t) e a,t 0}.

In fact, the existence of the solution for (2.3)-(2.5) can be obtained by the method
of continuity or the bootstrap argument (see the proof of Theorem 3.1). To prove the
result of Corollary 2.2, let w(x, t) Ul(X, t) u2(x, t). Then w(x, t) satisfies the
linear equation (2.3) with the Hblder coefficients of L1 and L2. Hence, the Schauder
estimate (2.6) implies the desired result.

To study nonlinear parabolic integrodifferential equations, we often need the fol-
lowing W2,1-estimate.p

THEOREM 2.2. Assume that aij(x,t) is continuous on (T and

(a0 > 0).

Moreover, the coefficients ofL1 and L2 are in L(QT) and L(PT) f(x, t) e LP(QT).
There exists a function b(x, t) e W2p’I(QT) with O(x, O) no(x) on ( and O(x, t)
g(x, t) on ST. Then

(.7) IlUllW,(QT) <_ C[ll(x, t)IIW,(QT) -t- IIf(x,

where C depends only on the continuity modulus of aij(x, t) and the bounds of the
coefficients of L1 and L2.

Proof. We regard the right side of (2.3) as F(x, t) again and apply W2p,I(QT)-
estimate for parabolic equations (cf. [17, Thm. 9.1, p. 341]) to obtain

IlUlIw’T) C[IIIIw’T) + IIFIIL,(T)]

<_ C[I]ehl]wX,(Qr) + IlUllwX,(Q)dt].

Since T can be arbitrary, an application of Gronwall’s inequality implies our result.
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3. Global solvability. In this section we are concerned with the global existence
of the solution for the equation

(a.1) + b(, t, r,

subject to the initial and boundary conditions

(a.) (, t)
(a.a) (, 0) o(), e ,.

hroughout this section, the following conditions are sumed.
H(g.1). The function (, t,

o11 (o > 0) for any e Rn. he functions bi(, t, s, ) and c(, t, s, ) are in
C,,l,(r x [0, T] x R). Moreover, there exists a constant Ao such that

i=1

where ao and Ao may depend on
he initial data o() e C+() and the consistency conditions

0
o( 0, o[(, 0,

hold. To obtain ghe global existence, we shall derive an a priori estimate in the Banach
space C+,I+(). Since the clsical mimum principle is no longer valid, we
will employ energy estimates to deduce such a bound step-by-step.
La a.1. the solution (,t)

(3.4) u2dx + udx N C,

where C depends only on the known data and the upper bound of T.
Proof. If the equation (3.1) is multiplied by u(x, t) and integrated over Qt, we

have

1 I
<1 " 0

bi(. .) + c(. .) d(} ddr
We perform the integration by parts to the second term of the right side of the above
inequality and apply condition H(3.1). It follows by Cauchy’s inequality that

C(T) +, u
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By taking ao/2 and applying Gronwall’s inequality, we have the desired result.
LEMMA 3.2. There exists a constant C2 which depends only on the known data

and the upper bound of T such that

(3.5) sup Ilu(., t)llLO( < C2.
O<t<T

Proof. The proof is based on the integral iteration technique similar to Alikakos
[1]. We do the following calculation for any p-- 2k with k > 1"

It is clear that the elliptic condition implies

I1 < -ao p(p- 1)up-2u2dxdt.

By Cauchy’s inequality and condition H(3.1), we have

Here at the final step we have used Young’s inequality:

for 7+;1 =1 (a,b>_O, r,s>l).
Similarly,

We may assume that

ab < rl-- + 1-’
8

1131<_ C(T)p/ /qt []ulP-1 + uP]dxdT"

sup Ilu(’, t)llL() > 1.
O<t<T
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Otherwise, we have the result. We also assume that there exists an integer Po such
that

J l
sup f updx(3.6) udx <_

0<t<T

holds for p > Po. Otherwise, there exists a sequence p which approaches
such that

u’dx
0<t<T

Ifpith root is taken on both sides of the above inequality, the desired result is obtained.
Let Po be the smallest integer such that the inequality (3.6) holds for p > Po. Hence
we combine the above estimates to obtain for p > P0

/ u(x, t)Pdx + p(p l)1 / up-2u:dxdt

(3.7) Cp(p- ) sup [ u,d,
0<t<T

where C depends only on the known data and the upper bound of T. Note that
GagliardNirenberg’s inequality (cf. [17, p. 62]) for v(x) e W() with v(x) 0 on
0 implies:

I()l](.) l()l:(,) + -cl()l().
Observe that

We apply the above interpolation inequality for v() (, t) and take e [(p(p-
1))/]- in (a.7)o obtain

uPdx Cpn+2 sup u
If we define

A= su [[ ’d]
0<t<T J

for p 2k, k 1, we have

Ak [C2] () Ak-1.

Letting k , we have

su lu(.,)l(,) CA,o

since

( +)
2k

k=l
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is convergent.
If P0 2, then the estimate (3.4) indicates that A0 is bounded, and so is A. If

P0 > 2, since p0 is the smallest integer such that the inequality (3.6) holds, then

which is bounded. Therefore, we conclude the result.
By Lemma 3.2, we can obtain the Hhlder estimate for the solution of the problem

(.1)-(.).
COROLLARY 3.1. For the solution u(x, t) of (3.1)-(3.3), there exist two constants

a(0 < a < 1) and C3 which depends only on the known data and T such that

(3.8) [[[[c, (Ow) _< C3.

Proof. To show the estimate, we rewrite (3.1) in the following form:

+-x o
bi(x,t,T,U) + C(x,t,T,U)dT

Since u(x, t) is uniformly bounded by the estimate (3.5), it follows that the functions

f bi(x, t, T, u)dT and f c(x, t, T, u)dT are uniformly bounded. We apply the results of
[17, Thm. 10.1, Chap. 3, p. 204] to conclude the result.

Next we shall modify the idea in [2] to derive a W2’l(QT)-estimate for p > 1. Forp
a E [0, 1], consider the following problem (P) with the equation

(3.9)
0 [ ( fot ) Ox] for{ 0

[bi(xt, T,U)]+C(X, tT, u)}dTut aij x, t, an, udT x
subject to the initial-boundary conditions (3.2), (3.3).

It is easy to see by Lemmas 3.1 and 3.2 that any solution u(x, t) of the problem
(P) satisfies the estimates (3.4), (3.5), and (3.8), which we will use frequently in the
sequel without explanation.

We first need a W2p,(QT)-estimate for the case of a 0.
LEMMA 3.3. Assume that u(x, t) is a classical solution of (Po). Then

(3.10) IlUlIw , (QT) C,

where C depends only on the known data and the upper bound of T.
Proof. To apply the W2p’l(QT)-estimate, we need to rewrite (3.9) in the form:

( /0 )Ut aj x, t, O, udT Uxx

00 t { 0
[b(x, t, T, U)] + C(X, t, T, u) } dT"aijxux + aijs uxdTux +
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We denote the right-hand side of the above equation by G(x, t, u) J1 + J2 / J3.
Since we have obtained an a priori bound of the Hblder norm for u(x, t) by Corollary
3.1, the continuity moduli of the coefficients aj(x, t, 0, f udT") are known. Therefore,
for any solution u(x,t) of (P0), the W2p,I(QT) estimate for parabolic equations (cf.
[17 p. 341]) can be applied to obtain

p>l,

where C depends only on C2 and C3.
It is easy to see that

which can be dominated by means of the interpolation inequality (cf. [11, Thm.
1.10.1]) by

To estimate J2, we use Cauchy’s inequality to get

/0 /o [iIIJ211p(Qr) _< luxldT, luxl dx

<_ + C( )T

=- Jl + J.
Now for any fixed t E [0, T] we use Gagliardo-Nirenberg’s inequality (cf. [11, Thm.
1.10.1])"

It follows that

u2Pdx <_ C + C fa uPxdx"

Consequently,

and

Finally, we first take e to be small enough such that Ce < 1/2 and then employ Gron-
wall’s inequality to conclude the desired estimate.

We now intend to estimate u(x,t) in the norm of W2p,I(QT). Let Ul and u2 be
two classical solutions of (P) corresponding to the parameters al and a2.
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Define w(x, t) ul (x, t) u2(x, t), (x, t) e QT. It is easy to see that w(x, t)
satisfies the following equations:

(3.12) w(x, t) O, (x, t) e ST,
(3.13) w(x, O)= O, x e ,
where

which are uniformly bounded (i,j 1,..., n).
We claim that

(3.14) sup I[w(., t)llL(a <_ C(a a2),
O<t<T

where the constant C depends only on the known data and the upper bound of T.
Indeed, if we multiply the equation (3.11) by w(x, t) and integrate it over QT, by

a similar calculation to that of Lemma 3.1 we find

sup faw2dxO<t<T
+ w2dxdt <_ 6[(71- (72] 2.

By an analogous computation to that in the proof of Lemma 3.2 and noting the
uniform boundedness of w(x, t), we can deduce our assertion (3.14).

With the above auxiliary estimates in hand we are ready to show the following
result.

LEMMA 3.4. Let u(x, t) be a solution of the problem (3.1)-(3.3). There exists a
constant C4 which depends only on the known data and the upper bound of T such
that

(3.15) ]lUllw,(Qr) <_ C4.
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Proof. We assert that the following estimate holds:

I1 ol IP2 <_ C + C w2Pdxdt.

In fact, we write (3.11) into a nondivergence form and note that

LP(QT)

Then we perform the same calculation for the solution w(x, t) of the problem (3.11)-
(3.13) as for u(x,t) of (P0) in Lemma 3.2 and then employ Wp2,1-estimate as well as
Cauchy’s inequality to get

Hence, the relationship u2 w- u yields

[ ]2p w2xP<_ C 1 + uldxdt + dxdt.

Again, we apply Gagliardo-Nirenberg’s inequality

and the estimate (3.14) to arrive at

Now we take al 0 and u (x, t) is the corresponding solution of (P0). Moreover,
we restrict that a2 e [0, ], where g is large enough such that _< 1/2. Thus, we
obtain the estimate (3.15) for u with a2 e [0, ] since u satisfies (3.10). We can
repeat the above procedure and derive the estimate (3.15) for the solution u with
a e [,-]. After N steps, we finally reach the estimate (3.15) for a 1.

By Lemma 3.3, we immediately have the following corollary.
COROLLARY 3.2. For any solution u(x,t) of (3.1)-(3.3), we have

Proof. This follows from Lemma 3.4 and the interpolation inequality (cf. [17,
Cor., p. 342]) if p > n+2

2
LEMMA 3.5. There exists a constant C7 which depends only on the known data

and T such that

(3.17)
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Proof. We rewrite (3.1) in the following form:

From Corollary 3.2, the right side of the above equality is uniformly bounded in the
norm of Ca’ g ((T). Moreover, the coefficient aij (...) is Hhlder continuous on (T. By
the Schauder estimate (2.6), we conclude the result.

THEOREM 3.1. The problem (3.1)-(3.3) has a unique global solution.

Proof. The result can be demonstrated by the continuation argument which is
similar to that of parabolic equations (cf. [10, Chap. 3]). For A e [0, 1], we consider
the system (P),)

ut--x aij(x, t, u, udT)
Ou

) -xibi(x, t, T, U) - (X, t, T, U) dT in QT

subject to the initial-boundary conditions (3.2), (3.3), where the initial data uo(x)is
replaced by Auo(x). Clearly, the estimate in Lemma 3.5 is also true for any solution
u of (P). Let E (A: the problem (Px) is solvable on [0, T]}. It is easy to see (cf.,
e.g., [17, Whm. 6, p. 452]) that 0 E E. By applying the a priori estimate (3.17) we can
show that the set E is open as well as closed. It follows that E [0, 1]. When/ 1,
it follows that the problem (3.1)-(3.3) is solvable on [0, T] for any T > 0.

Remark. With the a priori estimate (3.17), Theorem 3.1 can alternatively be
shown by the bootstrap argument (cf. [21]).

Acknowledgments. The author thanks the referees for their many valuable
comments.
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ANALYTICITY OF SOLUTIONS OF THE KORTEWEG-DE VRIES
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Abstract. It is proven that if the initial function of the Korteweg-de Vries equation is analytic and has
an analytic continuation to a strip containing the real axis, then the local in time solution has the same
property, although the width of the strip might decrease with time. The result contains the case of the
complex-valued initial function.
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1. Introduction. We consider the following equation:

Otu+O3xU+a(U)Oxu=O (t, x) E [+ R,
(KaV)

u(O,x)=(x), xe,
where a(h) is a polynomial. We show that if is analytic and has an analytic
continuation to a strip containing the real axis, then the local in time solution of (KdV)
has the same property for space variable, although the width of the strip might decrease
with time.

We shall establish existence and analyticity simultaneously. This is in contrast to
the work of Kato and Masuda [5]. They proved analyticity of the solution whose
existence is guaranteed by WS’2-theory (see [2]-[6]). Existence theorems in Ws’2-

theory are based essentially on the following estimate: If u is real valued, then

I(a(u)Oxu, U)w".2l <--  (llull w ,=)ll u =
Ws’,2

where < s =< s’=< s + 1 and d(A) is a certain polynomial depending only on a and s

(see [4]). Therefore the arguments in [5] seem to work only for the case where is
real valued. Our method in this paper is different from [5] and is a modification of
the methods in [1]. Of course, our arguments work for complex valued . It should
be noted that in [5] the function a(A) is only assumed to be real analytic, while we
assume that a() is a polynomial.

We state notation and introduce function spaces. We let Lp {f(x) is measurable
on R, [If lip <}, where Ilfllp- ( If(x)lpdX) 1/p if l_-<p<oo and [If lion=
sup{If(x)l; xa}. We denote by (.,.) the inner product in L2. We let W"’P()

p{fL’;llfllm,.<}, where Ilfll.,.--=ollOfll, if l_<-p<o and Ilfll,-
Y=o Ilofll-We denote by [f](:) (or f(:)) the Fourier transform J e-iXf(x) dx and
by [;-lg](x) the inverse Fourier transform of g(sC). For r>0 we define

Lr {fE L2: Ilfll 2
tr (f f)/r (cosh (2r:)f, f) < },

x {f L; llf -xr (f, f)xr (V(cosh (2r:) + : sinh (2rsC))f, f) < m
j=0

(f,f)y (:J+ cosh (2r:)f,f)<o
j=O

* Received bythe editors January 17,1990; accepted for publication (in revised form) December 14,1990.

" Department of Mathematics, Faculty of Engineering, Gunma University, Kiryu 376, Japan.
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Obviously, Xrc Lr; if 0f Xr, thenf Yr. We let z=x+iy (x, y) and let S(r) be
the strip {z x + iy; [Yl < r}. Note that the above function spaces are closely related to
the analytic Hardy space HP(r)={F:F is analytic on S(r), [[FIIHp(r)
suPlyl<rllF(.+iy)l[p<O} on the strip S(r) in the sense of Stein-Weiss [7]. For a
nonnegative integer rn we let

Hm’p(r) F HP(r) IIFI[ <Hm’P(r) E HP(r)
j=0

Obviously, H’P(r) HP(r); [[F[[,( sup< [IF(. + )[[,. We have observed the
following 1].

THEOREM 1 1]. We assume that F HE(r) and let f be the trace ofF on the real
axis. enf L and

Ill ll F[[
Conversely, we assume that fa L. enf has an analytic extension F HE(r) and

For the convenience of the reader we shall give a proof of Theorem 1 in 2. For
an inteal I or R and a aanach space B with norm . , we let C(I; B) (f(t)" f(t)
is continuous from I to B, sup {Hf(t)ll;t }.

Our main result is the following theorem.
THEOREM 2. If Xo for o0, then there exist a positive constant T=

T([ xo, ) and a positive monotone decreasingfunction g(t) satisfying (0)= o such
that (KdV) has a unique solution u(t, x) C([0, T]; X()X(o for Ot Z

From Theorems 1 and 2, we have Corolla 1.
COROLLARY 1. Let u(t, x) be the solution constructed in eorem 2. en u(t, x)

has an analytic continuation to S(g(t)) for 0 Z

2. Preliminary estimates. In this section we collect some preliminary estimates.
We first prove Theorem 1.

Proof of Theorem 1. For F HE(r) and ]Yl < r we let fy(X) F(x + iy). We note
that the trace f of F on the real axis is equal to fo. It is well known that

(2.1) ]y(S) e-Y]() (see [7, p. 99]).
The Plancherel theorem says

for [y[ < r. This yields the second inequality of the theorem. Conversely, observe from
the monotone convergence theorem that

IIfy IIN --> e-=’el]()l2 dse e2relf(:)12 d

as y--r. Hence

IIFII(, = cosh (2r#)lf(#)l2

and similarly

IIFII. r)= cosh (2r)lf()l d.

Thus we have the first inequality of the theorem.
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As a result we have the following lemma.
LEMMA 2.1. Let r > O.
(a) Iff Xr, then f has an analytic continuation F on S(r) and

(b) Iff Yr, then f has an analytic continuation F on S(r) and

Proo Let fe X. By Theorem 1 f has an analytic continuation F H(r). Let
F( .+ &) for lyJ < n Then by (2.1) -l(cosh (y)j) + -l(sinh (-y)). Hence

the Sehwarz inequality yields

[][J+ ]lOx]]2 L (]]0-1 cosh (y)f][+ [[O-1 sinh (-y)fJ]).
j=0

By a direct calculation we see that the right-hand side of the above inequality is equal
to

2 Y. ((2j cosh (y)f, cosh (y)f)+(2J sinh (ys)f, sinh (y)f))
j=0

=2 Y (:2j cosh (2y:)f,f)=<2 Y (: cosh

This is less than or equal to 211f]l 2
xr. Thus we obtain (a). The assertion (b) is proved

in the same way as in the proof of (a) and so we omit it.
Conversely, the inner product (.,.)xr is controlled by the Hardy norm in the

following way.
LEMMA 2.2. Let r > O. Suppose F H’2(r) and V H2"2(r). Iffand v are the traces

of F and V on the real axis, then

Proof Let 0 < p < r. By a simple calculation

2(f V)x 2 Y. (sJ(cosh (2ps:) + : sinh (2p:)),
j=0

E ((:eOf, :(1 + sC)eq3) + (sCe-ef, :J(1- sC)e-e)}
j=O

y {(o{f-o,O{(1-iO,,)v-o)+(ofo, o(1 + iO,,)vo)},
j=0

where f+o F(.+ip) and v+o= V(.+ip). Therefore we have from the Schwarz
inequality

--< 2C21[Fll n’,()II vii H2’2(r)

The monotone convergence theorem completes the proof.
Using Sobolev’s inequality for F(.+ iy), we obtain a multiplicative property of

LEMMA 2.3. Let r > O. Suppose F, G Hl’:(r). Then FG Hl’-(r) and

FGII Hl’2(r) GII FII H"(r)ll GI[ HI’2(r)
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Proof. Sobolev’s inequality shows

IIFIl.(,) -<

Hence

The lemma follows.
We are now in a position to prove the main estimate.
LZMMA 2.4. ere exists a polynomial of which coecients are all nonnegative

with the following property" If r > 0 and g, v X Y, then

[(a(f)o- a(g)Og, V)x]
N ([[fl[x, [[g[[Xr){[[f[[Y[[f--g[[x+ []f--g]]y}([[V[[x+ [[V[[ y).

COROLLARY. ere exists a polynomial 1 with nonnegative coecient such that if
VeXr Yr, then

[(a(f)Ox V)x[ l([[f[[x)l]f[[y([[V[[x+ [[v[I y).

Proof of Lemma 2.4. We have

a(f)Of a(g)Og b( g)(f g)Of+ a(g)Ox(f g),

where b( g) is a polynomial. Let us estimate (b( g)(f-g)Ox V)x and (a(g)O(f-
g), V)x separately. By Lemma 2.1 we see that g, and v gave analytic continuations
F, G, and V on S(r). Obviously, b(F, G) is the analytic continuation of b( g). It
follows from Lemmas 2.2 and 2.3 that

[(b( g)(f-g)O V)x]N CI[[b(F,

where a is a polynomial with nonnegative coecients. Hence Lemma 2.1 yields

](b( g)(f-g)O V)x[ C6al(][fllx, l]gl[Xr)[[f --gllxllf[Y(l[Vl]x + [[V]] V).

In the same way,

[(a(g)O(f- g), v)x[ a(l]gllx)l[f- gll Y([[ vllx + []vl[ y),

where a2 is a polynomial with nonnegative coecients. The lemma follows.

3. Proof of Theorem 2. For any fixed g0 > 0, we let g(t) oe-A/o with a positive
constant A to be determined later. For T> 0 we define

B(r)= v(t,x); Ilvll<>= sup IIv(t)ll = +A II(t)ll = d<X(O
ONtNT 0

and

Bo (T) {v B T); v (> < o},
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We shall show that there exist > 0 and A > 0 depending only on I[b Ilxo such that
(KdV) has a unique solution u(t,x) B(T). Let p 2[[b[[Xo. For v B,(T) we define
the mapping M by u My, where u is the solution ofthe following linearized equation:

Otu+O3u=-a(v)Oxv, (t, x) E R+ R,

u(O, x) k(x), x .
It is sufficient to show that M is a contraction mapping from Bp (T) to itself for suitable
chosen T and A. Hereafter we let

(3.1) e-Ar/>1/2.
Take v Bp (T). By the Fourier transform

(3.2) 0,a- i3a -[a(v)O,v].
We multiply both sides of (3.2) by sc2J(cosh (20"(
and take the real part to obtain

d
d-S (llu(t) ,,,,) 20-’(t)(2J( sinh (20"(t)) + 2 cosh (20-(t)s))a(t), a(t))

(3.3) =-2 Re (a(v)O,v,
For the sake of brevity we suppress the subscript 0"(t) of X(,) and Y,(,). From (3.3)
and the corollary to Lemma 2.4 it follows that

d
d- (llu(t)I[ x)+ 2ae-a’/%llu(t)ll

<- 2&(llv(t)llx)l[v(t)ll(llu(t)llx + Ilu(t)ll )
<-2(p)llv(t)ll(llu(t)llx + u(t)l[ ).

Integrating in and using the Schwarz inequality, we obtain from (3.1)

sup Ilu(t)llx/e Ilu(t)llvdt

Xo/2l(p) IIv(t)ll dt Ilu(t)l[ dt

+ Ilu(t)lldt

Hence we have

This implies

Therefore, if

2 I(P) (Ilull = <+/-/ 4pn(T 4

p2 1 (al(p)--<--+- 4p +-42 4-

{__ 81(p)2 (_____)2}Ilull = <2 / 4/B(T) A

(3.4)

then M is a mapping from Bo (T) into itself.
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Take vl, v2 Bo(T). Let w Mvl- My2. In the same way as in the proof of (3.3)
we have

d

d- [[w( t)l[x + 2Ae-At/llw( t)llY<---- --2 Re (a(vl)OxVl( t) a(v2)OxV2( t), w( t))x.

From Lemma 2.4 the right-hand side is estimated by

Integrating in and using the Schwarz inequality, we obtain from (3.1)

IWI(T)Ra(P,P) IVl--V[IB(T) Ilvl(t)lldt + IlVl(t)-v(t)lldt

x Iw(t)ll dt + w(t)l] dt

1

Hence

Therefore, if

(3.5) a(p,p)(p+l) x/-+ 1

then M is a contraction mapping. We can, in fact, choose T>0, A>0 satisfying (3.1),
(3.4), and (3.5) altogether. For these T and A, M is a contraction mapping from Bo(T)
to itself and has a unique fixed point. This fixed point is the solution of (KdV). The
property that u(t,x)C([O T];X(T)) follows from suP0= __<T[lU(t)[[ 2 <[[UlI(TX(T)
immediately.

Acknowledgments. The author is grateful to Professor H. Aikawa for his careful
reading of the first manuscript and many valuable comments. The author also thanks
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GEOMETRY OF RATIONAL FUNCTIONS AND NONLINEAR
INTEGRABLE SYSTEMS*

YOSHIMASA NAKAMURAt

Abstract. A complete parametrization of the space Ratp (n) of rational functions of degree n and fixed
denominator p(z) in terms of a nonlinear integrable system is established. The space Ratp(n) can be viewed
as the moduli space of certain controllable and observable linear dynamical systems. It is proved that
Ratp(n) is diffeomorphic to the moduli (or parameter) space of solutions of a natural generalization of the
celebrated finite Toda equation called the cyclic-Toda hierarchy. The original Toda flow is identified with
one of the connected components of Ratp(n), where p(z) is the characteristic polynomial of a Jacobi matrix.
To prove the correspondence we use an exponential of cyclic matrix polynomials and its QR factorization
which induces isospectral deformations.

Key words, space of rational functions, nonlinear integrable systems, scaling theory for linear systems,
cyclic-Toda equation hierarchy

AMS(MOS) subject classifications. 93B27, 58F07, 34A05

1. Introduction. There have been some systematic efforts toward a theory of
dynamical systems with parameters. Brockett and Krishnaprasad [3] presented an
analysis of the action of certain one-parameter groups on the space rat (n) of strictly
proper rational functions of (McMillan) degree n with real coefficients and discussed
its application to the identification problem for linear dynamical systems. We denote
each function of rat (n) by the form

q.-1 z"-l + + qo q(z-)(la) f(Z)=z"+P.-1 +’’’+Po p(z)
rat (n)gn--1

where p(z) and q(z) do not have any common factor. They considered five types of
one-parameter groups due to (1) frequency scaling, (2) shift of imaginary axis, (3)
amplitude scaling, (4) output feedback, and (5) shift of time axis, and showed that
these group actions leave invariant connected components rat (n- m, m), 0<_-m <_-n,
of rat (n). Here the connected components rat (n-m, m) are distinguished by the
Cauchy index 2m-n viewed as a continuous map from rat (n) into the set {-n, -n +
2,. , n- 2, n} [2]. In the geometry of rational functions it is natural to introduce the
equivalence relation f(z)---ef(z), 0, under the third one-parameter group action.
We set

1b) Rat (n) rat (n)/ ---.

Let us restrict ourselves to the fifth one-parameter group taking the form

(2) f(z)= Cr(zI-A)-lB Cr(zI-A)-1 eAB,
for tr , where I is the n x n unit matrix and C r denotes the transpose of C. The
function f(z)rat (n) is regarded as the transfer function of the controllable and
observable linear dynamical system

d
(3) d’- x(t)-- Ax(t)+ Bu(t), y(t) Crx(t),

* Received bythe editors August 16, 1989; accepted for publication (in revised form) November 14, 1990.
t Department of Mathematics, Gifu University, Yanagido, Gifu 501-11, Japan.
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where AEnn, BeEnl, Cnl, and x(t) 1, u(t), y(t)E, and t. The
flow (2) on the space rat (n) is given as the Laplace transform of time shift C r etaB
CTe(t+)aB for the weight function of (3). Byrnes [4] discussed the action of time
shift on the space of symmetric matrix-valued rational functions and its relationship
to a network synthesis problem for RC and RLC networks with parameters. Fuhrmann
and Krishnaprasad [6] pointed out that only the fifth action (2) does not leave invariant
the continued fraction cell decomposition of the space rat (n). It is to be noted that
the differential equation (d/ds)log F(s)=f(s) defines a generalization of Pearson’s
family of probability distributions [18], where F(s) denotes the density function and
s E. It seems that in these results we see increasing significance of group actions,
especially of the time shift, in the geometry of rational functions and its applications.

The importance of nonlinear integrable systems (or equations) in control theory
lies in the fact that they have rich information about the moduli (or parameter) space
of a special class of solutions and they describe isospectral deformations of some linear
operator or matrix. Because of this importance, various applications of nonlinear
integrable systems have been proposed. We recall the early work by Hermann [9].
Helmke [8] and Sontag [22] studied moduli spaces of multimode and bilinear systems,
respectively, in terms of the moduli space of instanton .solutions of the self-dual
Yang-Mills equations ofgauge theory. Nakamura 14] introduced a fractional transfor-
mation group acting on the space of linear predictors (solutions of linear prediction
problems for stochastic processes). It was shown in 14] and 15] that a special member
of such a transformation group gives solutions of certain nonlinearintegrable systems
and describes a discrete isospectral deformation of a given matrix. Recently, Nakamura
and Duncan [17] observed an equivalence between the moduli space of n-monopole
solutions of the SU(2) Yang-Mills-Higgs equations and the space ratc (n) of rational
functions of degree n over C.

Krishnaprasad, in his remarkable paper [11], considered the action of time shift
(2) on the connected component rat (n, 0) of rat (n) and showed that the action is
equivalent to the flow of nonlinear integrable equation of Lax type called the finite
nonperiodic Toda lattice [13]

(4)
d
A [Ar AL, A],

do-

where AL denotes the strictly lower triangular part of A, A=(AL) r, [M, N]=
MN-NM and aj 0. Note that A A(o-) is a Jacobi (or real tridiagonal) matrix
having n real distinct eigenvalues. In Moser’s coordinates {aj, }1_-<_-< [13] defined by

(5) eT.(zI--A) -1 e. exp (a) rat (n, 0),

where aidE, ’jE, ’k’l for kl and e,=(0... 0 1) , the Toda equation (4)
becomes the system (1 _-<j =< n) of linear equations

d d
(6)

do" aj ’g
do-

sg O.

Hence ce and are regarded as generalized coordinates and momentums, respectively,
2for the dynamical system with Hamiltonian H =1/2 Tr (A2) =5=o ’. Krishnaprasad
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[11] proved that for f(z)= e(zI-A)-1 e, the action (2) takes the form

1 1
(7) f(z)e(zI-a)-leae,

j=l exp (cj + o.srj) =1 z
exp (cj + o-rj)

by using the Laurent expansion f(z)=Yo hkz-k- and observed that the expression
(7) is precisely the linearlized Toda flow (6). Thus it is concluded that the Toda equation
(4) can be reduced to a linear flow on the connected component rat (n, 0) induced by
the time shift. We remark here that the Toda flow leaves invariant the poles of f(z)
and rat (n, 0) is diffeomorphic to the phase space " x" of (4) via Moser’s coordinates
{aj, }j,. Inspired by this pioneer work, Byrnes [4] considered a periodic Toda
flow on a space of matrix-valued rational functions. Let us note that the Toda flow
also arises in closely related problems, for example, the topology of the space of
symmetric matrices with fixed eigenvalues [24] and the existence of Morse-Smale
diffeomorphism on some quotient space induced by linear maps with fixed eigenvalues
[21].

It will be well worth stating how the invariant tori/cylinder theorem in classical
mechanics 1, p. 395] can be used in the geometry of rational functions. Krishnaprasad
and Martin 12] made clear the importance of the concept of families of linear systems
and their parameter variations. They considered the family of controllable and observ-
able linear systems and the corresponding space of rational functions

(8a) ratp (n)= {f(z)lf(z q(z) }=p-- rat (n), p(z)"fixed

where p {Po,""", P,-1} ". It was known (cf. [12. Thm. 2]) that the upper bound
of the number of connected components of ratp (n) is 2 r, where r is the number of
real distinct roots of p(z). Krishnaprasad [11] also observed that each connected
component of ratp (n) is diffeomorphic to Tx [n-l, where T denotes the/-torus and

{0, , n 1}. The integer is constant on an open subset of rat (n m, rn). This
implies that rat (n m, rn) has an n-dimensional foliation whose leaves are diffeomor-
phic to T xn-l. For example, on the connected component rat (n, 0), is equal to
zero. Let us fix denominators as some p(z). Then the connected component ratp (n, 0)
of ratp (n) is diffeomorphic to n and the foliation is a trivial fibration " x n. Recall
that " x" is the phase space of the Toda equation (4) via {a, sr}l, where srj are
real distinct roots of p(z)= det (zI-A) and A is Jacobi. Since sr are conserved, we
see that the Toda flow gives a parametrization (of an open dense subset) of ratp (n, 0)
(Moser and Krishnaprasad’s theorem [11], [13]). However, it is not known what
nonlinear integrable system completely parametrizes the whole space of rational func-
tions with any fixed denominator.

What we shall do in this paper is to solve this open problem and to show that
the same sort of analysis used in various problems [3], [4], [6], [11]-[13] can be
performed in more general situations. We consider the space of equivalence classes

(8b) Ratp (n) ratp (n)/--,

where f(z) ef(z) for 0. The space Ratp (n) is characterized by n real parameters
and the first one can be limited to + 1. The number of connected components of Ratp (n)
is equal to that of ratp (n). It will be proved that the moduli space of solutions of a
nonlinear integrable system is diffeomorphie to the space Ratp (n) of rational functions.
The nonlinear system we use is regarded as a natural generalization of the original
Toda equation (4) and will be called the eycli-Toda hierarchy.
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2. The cyclic-Toda hierarchy. Let f(z) be an element of ratp (n) with fixed
denominator p(z). According to the state space realization theory, f(z) admits the
unique factorization

f(z)= C[(zI-Ao)-’Bo,

(9)

0 0 -Po

Ao
0 --Pn-2

0 1 --P.-1]

qo O!Co
qn-2

\q,-

where the characteristic polynomial of Ao is equal to the given p(z),

(10) p(z)- det (zI-Ao).
The expression (9) off(z) is the observable canonical form, namely,

(1 la) rank (Co Ao Co (Aor) "-1 Co) n.

Since the numerator q(z) and the denominator p(z) off(z) have no common factor,
it follows that

(llb) rank (Bo Ao Bo A-IBo) n.

The proof can be found in [10, p. 127]. The vectors Bo and Co are called cyclic vectors
of Ao. In this paper, we call {Ao, Bo, Co} a cyclic triplet if it satisfies (lla) and (llb).
In linear systems theory {Ao, Bo, Co} is called a minimal realization of f(z). We can
associate each f(z)= C(zI-Ao)-Boratp (n) with the controllable and observable
linear dynamical system

d
(12) d- x(t) Aox( t) + Bou( t), y( t) Cx( t).

A nonlinear (completely) integrable system is always related to some kind of
group factorization. For example, the Toda equation (4) can be solved by the Bruhat
decomposition [5], and the self-dual Yang-Mills equations are solved by the Riemann-
Hilbert factorization [25]. The hierarchy point of view has also played quite an
important role in the study of nonlinear integrable systems (see [19], [20] on soliton
equations and [16] on gauge field equations). Here the terminology "hierarchy"
indicates a system of differential equations that describes infinite (or finite) sets, of
commutative flows on the solution space of original equation. Let us show that if we
go further in this direction toward a characterization of the space Ratp (n) in terms
of a nonlinear intgrable system, then we shall encounter a finite hierarchy of cyclic-Toda
equations in a very natural way.

Every real nonsingular matrix M has a unique QR factorization M Q-1R, where
Q is orthogonal and R is upper triangular with positive diagonal entries. Proof is given
by the Gramm-Schmid orthogonalization (see [26, pp. 233-244]). Let r be a set of n
real parameters,

(13) r={Zo,’’
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Let us consider the QR factorization with parameters

(14) exp rAo Q-l(r)R(z), 0(0)= I, R(0)= I,
k=0

where 0= {0,..., 0}eN. The parameter ro appears only in R() as a diagonal factor
exp (roI). Taking derivatives on both sides, we have

0
(15) QAQ-1=- Q. Q-’+R. R-’

ark ark

for Ok n-1. Since the first and the second terms of the right-hand side are
skew-symmetric and upper triangular, it follows that

0
Q. Q-1 QAko 0-1) t

r (QAko Q-’)L,
O’rk

(16)
O--R.R-1 (QAkoQ-1)t+(QAkoQ-1)T

OTk

where My- M-M. We have proved Lemma 2.1.
-o zkAko) has the QR factorizationLEMMA 2.1 If the nonsingular matrix exp (k_

(14), then the resulting C-factors Q(z) and R(z) solve the initial value problem (16)
with Q(O)= I and R(O)- I.

It is to be noted that QAkoQ-1 in the right-hand side of (16) is the kth power of
the similarity transform QAoQ- of Ao by the factor Q. The next lemma shows that
Q(z) induces a flow on characterized by a system of nonlinear equations.

LEMMA 2.2. Let A(z) be a C-matrix defined by

(17) A(z) Q(z)AoQ-I(z);

then A( z) solves the initial value problem for the system (0 <-_ k <-_ n 1)

0

(18) OZk
A(z) [Ak(z) [-- Ak(’), A(’)]

[Ak(’r)u + Ak(’r)[, A(z)], A(O) Ao,
Twhere AkT (Ak) t.

Taking derivatives of (17), we have (O/Ozk)A=[(O/O’k)Q" Q-l, A]. By (16) with
(15) and (17), the assertion of Lemma 2.2 is proved. The solution A(-) clearly does
not depend on the parameter Zo; however, Zo is useful in our parametrization of
Ratp (n). Lemmata 2.1 and 2.2 imply that the maximal interval of existence for initial
value problem (18) is (-c,) for each Zk. Furthermore, since A(z) is always
orthogonally similar to Ao for z ", the flow A(z) is isospectral, namely, Spec A(z)
Spec Ao. Indeed, the trace of Ak(z) is an integral of motion of (18) expressed by the
eigenvalues of Ao. Since Ao commutes with Q-I(’)R(z), we obtain A(z)=
R(’)AoR-I(z). This implies that A(z) is upper-Hessenberg. Set ]={1,..., 1}n.
From (14), exp (,-__ Aok) Q-I()R(). On the other hand, since

exp zkAk(’r) Q(’r) exp zkAko Q- "r)
k=O k=O

=R(r)Q-l(r),
we derive exp (Y’.,5- Ak()) R()Q-I(). Thus the time evolution (17) from r=0 to

’= performs the QR iteration [26, pp. 515-521] for the exponential of matrix
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exp (Y"-’k=0 Ao). If the eigenvalues of Ao satisfy Ihll < I :1 <- < I .1 and Ao can be
diagonalized, MAoM-l=diag(hl,h2, .,h,), by a nonsingular matrix M which
admits an LU factorization, then A(r) approaches an upper triangular matrix as Irl-, .

Next, we introduce a time evolution of the vectors Bo and Co.
LEMMA 2.3. Let B(z) and C(r) be vectors defined by

(19) B(r) R(r)Bo, C(r) Q(r)Co;

then they satisfy the system of linear equations (0 <: k <= n- l)

(20)

O--B(7")=(A(’r)+A(’r)-A(’)L)B(7"), B(O) Bo,
0 7"k

o C(7")=(A’(T)[-A’(’r))C(7"), C(O)= Co.
0’

The proof is given by (16) with (15) and (17). Thus we obtain the nontrivial flow

Q(exp (H.)Bo Ao exp (H)Bo A-’ exp (H.)Bo)

Q exp (H)(Bo AoBo Ag-’Bo),

(CATc (AT)"-’ C) O(Co ACo (A)"--’ Co),

where H "-k=O rkAko This implies that rank (BAB A"-IB) n and
rank (CATC (AT)n-Ic)= n. Vl

Since Spec A(-)--Spec Ao, it is easy to prove Proposition 2.5.
PROPOSITION 2.5. If the controllable and observable linear system (12) is stable

(respectively, unstable), then the parametric linear systems

(21)

d
d-- x(t; r)= A(r)x(t; ’)+ B(r)u(t;

y( t; r) C (r) TX(t; r)

are stable (respectively, unstable) as well as controllable and observable.
The hierarchy (18) for 0 =< k _-< n- 1 is a generalization of the system of nonlinear

equations discussed by Moser [13], (d/dt)L=[Bp, L] for 1 _-<p=< n-1 in his notation,
where L is Jacobi and (d/dt)L=[B1, L] is the original Toda equation (4). Indeed,
whenf(z) is in rat (n, 0), we can always transform A(r) into a Jacobi matrix via Cauer’s
canonical form (5). Moreover, the hierarchy is clearly different from the known
hierarchy of finite Toda equations [23] which is a finite truncated form of the infinite
Toda hierarchy. The system (20) describing the time evolution of cyclic vectors is
essentially new.

Finally in this section, we discuss the compatibility of (18) and (20) in the sense
in which A(-), B(-), and C(’) satisfy the integrability condition with respect to ’. Set

(22) Fk(A) A’(r) 7[_ Ak(r)L,

B AB A"-IB) RBo QAoQ-’RBo QA)-’ Q-’RBo)

{Ao, Bo, Co} - {A( r), B( ’), C(r)} on R ""+2". The following proposition is the key
connection between the system (18) with (20) and the space ratp (n) of rational
functions.

PROPOSITION 2.4. If {Ao, Bo, Co} is a cyclic triplet, then {A(r), B(r), C(’)} is also
a cyclic triplet for every

Proof It is known from (14), (17), and (19) that
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for simplicity. By a standard theory of Toda equation, we see that each equation of
(18) is equivalent to the Lax pair AY=Y and (O/Ork)Y=Fk(A)Y, where Y=
Y(z; ) CTM. The integrability for Y leads to the system of zero curvature equations

0
FI(A)+[Fk(A), FI(A)]=O(23)

O TI
Fk A O’-k

for 0--< k, l-< n-1. Thus if Fk(A) solve (23), then the system (18) is clearly integrable.
It is to be noted that the skew symmetric matrices Fk(A) given by Fk(A) (O/Ozk)Q" Q-1
obviously satisfy (23). See (16), (17), and (22). Conversely, let A(r) solve (18). We have

O=O Ak-[Fi, Ak]
O ,r

,-[,, a] + -0 +["]

where Gk A + F. Noting that A(r) is upper-Hessenberg and G is upper triangular,
we can prove that F Fk(A) solves (23). Thus (18) is equivalent to (23)..Equations
(20) are expressed as (O/Or)B= (A + F(A))B and (O/Or)C F(A)C. Since

( 0 00) (01 O-- FI(A)+[Fk(A)’ F(A)]) H0’ Ork i H-- Fk(A)-ork
for H B and C, the system (23) guarantees the integrability of linear system (20).
We conclude that the hierarchy (18) with (20) is compatible. Since (18) satisfies the
Cauchy-Kovalevskaya condition, the solution given by (17) is unique. In the next
section, we shall show that the triplet {A(r), B(r), C(r)} is quite important in the
parametrization of Ratp (n).

DEFINITION 2.6. The hierarchy of nonlinear integrable equations (18) with the
supplementary system (20), where 0 _-< k-<_ n 1, is called the cyclic-Toda hierarchy. The
space of C-solutions A(r) of (18) for any equivalence class [{Ao, Bo, Co}] of initial
cyclic triplets satisfying (9)-(lib) under the relation f(z).-- ef(z), 0 , is called the
moduli (or parameter) space of the cyclic-Toda hierarchy. We denote the moduli space
as /p.

3. Parametrization of the space of rational functions: main result. First we show
that the cyclic-Toda hierarchy induces a set of n flows parametrized by Rn on the
space rat, (n) of rational functions of degree n and the fixed denominator p(z). In
the previous section, we obtained the nontrivial flow {Ao, Bo, Co}-> {A(r), B(r), C(r)}
on R/ This flow can be projected onto the space rat, (n). For any f(z)=
C(zI-Aoi-IBo rat, (n), let us define

(24) f(z; r)= C(’)r(zI-A(r))-lB(r).
From Proposition 2.4 and det (zI-A(r)) =p(z), it is not hard to see f(z; r) ratp (n)
for every r e ". Furthermore, we prove Proposition 3.1.

PROPOSITION 3.1. The parameter ro and rl of r describe the amplitude scaling and
the shift on time axis, respectively, for the controllable and observable linear system (12).

Proof From the definition of the flow and QTQ I, we have

f(z; r) (QCo) w ZI QAoQ-1 -,RBo
=C(zI-Ao)-IQ-1RBo
C(zI-Ao)-’ exp (H.)Bo,



RATIONAL FUNCTIONS AND INTEGRABLE SYSTEMS 1751

where H, =Y,2- "ikAko. Thus f(z; "i) is the Laplace transform of the weight function
W(t; "i)= C" exp (tAo + H,)Bo. The parameter "io clearly describes the amplitude scal-
ing f(z) exp (’io)f(z). Setting "i= {0, "i1,0,. ., 0}, we obtain the expression

f(z)f(z; "i)= C(zI-ao)- exp (’i1Ao)Bo

of the action of time shift for the linear system (12).
This proposition is a straightforward generalization of the result in [3] and [11]

(see (2)-(6)). But the proof has been carried out without using the Laurent expansion
of f(z) and without supposing that Ao is Jacobi and Bo Co e,. The remaining
parameters {’i2, "In_l} give actions of one-parameter groups being outside the
known ones.

Now we shall discuss the correspondence between Ratp (n) and the moduli space
Mp of the cyclic-Toda hierarchy. First we shall construct a one-to-one mapping from
Ratp (n) to Mp. Let A(’I) be an arbitrary C-solution of the cyclic-Toda hierarchy for
an initial value {Ao, Bo, Co} satisfying (9)-(lib). Recall that A(’I) is an isospectral
deformation of Ao. By a theorem [7, p. 219] there are nonsingular upper triangular
matrices R(’i) such that

(25) A(’I)R(’I) R(’I)Ao, R(O) L

We note that each R(’I) with Bo gives a cyclic vector B(’I) via (19) which solves the
supplementary system (20). Thus (O/O’ik)R" R-l= Ak+ Fk(A). Let us consider

Q(’I)= Fk(A)Q(’I), Q(0) L(26)

There is a unique C-solution of (26). This follows from the compatibility proved in
2. The resulting Q(r) and Co give C(r), which solves (20). Since Fk(A) is skew-

symmetric, Q(’I) is an orthogonal matrix. Multiplying A(’I) to (26) from the left and
using (O/O’Ik)A=[Fk(A),A] derived from (18) and (22), we obtain (O/O’Ik)(AQ)=
Fk(A)AQ, where A(0)Q(0)= Ao. On the other hand, (O/O’I)QAo= Fk(A)QAo and
Q(0)Ao=Ao. Because of the uniqueness of solution, A(’I)Q(’I)= Q(’I)Ao. Thus we
obtain Q(’I)AoQ-a(’I)= A(’I). Set U(’I)= Q-(’I)R(’I). By differentiating this, we have

Q(’I) U(’I). R-I(’I)=
0 O

O’ik --O--k Q(’I)" Q-I(’I) +O’ik R(’I)" R-I(’I)

A(’I)

and consequently, we see that U(’I) satisfies (O/O’ik) U AkoU, U(O)= L Thus

(27) U(’I) exp "iAo
k=0

Let f(z; "i) be a rational function defined by f(z; "i)= C(’I)r(zI-A(’I))-IB(’I). Since
f(z; "I)=C(I-Ao)-U(’I)Bo, we conclude from (27) and Proposition 2.4 that
f(z; "i)e rat (n) for any "i e N’. Note that the solution of (25) is not unique even if we
suppose that the diagonal entries of R(’I) are positive. Indeed, if R(’I) satisfies (25),
then R(’I’) does also, where "i’= {’io+ 0, "i1,..., "i,_} for 0 e N. By identifying
with R(’I’), we can obtain a unique rational function of Rat (n). Note that this
identification amounts to the equivalence class [{Ao, Bo, Co}] of initial values. Namely,
each point on the cyclic-Toda flow A(’I) for [{Ao, Bo, Co}] corresponds to a unqiue
rational function of Ratp (n). Thus we have obtained a one-to-one mapping

" Ratp (n) - p.
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Conversely, let f(z) be an arbitrary rational function of ratp (n). Recall that f(z)
admits a unique factorization (9). As was shown in the previous section, there always
exists a flow of the cyclic-Toda hierarchy {A(z), B(z), C(z)} for zeRn. We see from
(24) that this flow induces a flow f(z’, -) on ratp (n) which passes f(z) at z=0.
Furthermore, by introducing the equivalence relation f(z) ef(z), 0 , we obtain a
unique cyclic-Toda flow for the equivalence class [{Ao, Bo, Co}] of initial triplets. Thus
a is an onto mapping from Ratp (n) to p. We have established the following theorem.

THEOREM 3.2. There is a one-to-one correspondence between (a) the space Ratp (n)
of rational functions of degree n and fixed denominator p(z) and (b) the moduli space
lp of the cyclic-Toda hierarchy for any equivalence class [{Ao, Bo, Co}] of initial cyclic
triplets.

Furthermore, the mapping a: Ratp (n)-> p clearly depends differentiably on each
parameter ofzn. Recall that solutions Q() and R(z) of (25) and (26) are of class
C. This guarantees the differentiability of a -1. Combining this with Theorem 3.2, we
have proved a stronger result.

THEOREM 3.3. The bijection a: Ratp (n)->p is a diffeomorphism with the natural
topologies on Ratp n and /tp induced by

To compute the number of connected components of Ratp (n), it is important to
recall that only real zeros off(z) create obstructions to deformations on ratp (n) [12].
This fact was first noted by Brockett [2]. The position of zeros of (9) depends on Ao
and Bo. The cyclic-Toda hierarchy for the initial value {Ao, Bo, Co} induces a set of
flows parametrized by z e " on one of the connected components of ratp (n). Since

Co is fixed, the choice of the connected components is determined by that of Ao and
Bo. Letf(z) q (z)/p (z) e ratp n and srj be roots ofp z det zI Ao). By the spectral

-_1o qkAko is nonsingular if andmapping theorem we see a cyclic matrix polynomial .k-
only if q(’j) 0 for any . Thus any rational function of Ratp (n) uniquely determines
a nonsingular matrix Hq of the space Ao defined by

-1
o qkAko nonsingular, q R},(28) Ao Ao/" Ao {HqlHq

where Hq---eHq for 0 ca and vice versa. The mapping /3: Ratp (n)- Ao and its
inverse are clearly ditterentiable with respect to q {qo,"" ", q,_l}eN". Thus Ao is
ditteomorphic to Ratp (n). Define the spaces of cyclic vectors

(29) 7VAo Ao/", Ao { W[ We a", rank WAoW... Ag- W) n},

where W.--eW for 0 e N. We see that Ao acts freely on //VAo, Ao X kVAo- 7VAo by
(H,, W)- Ho W. Thus /g’A is diffeomorphic to Ao and the number of connected
components of /A is equal to that of Ratp (n).

Suppose that p(z) admits r real distinct zeros ’, where r>_-1 and 1 <-_j<= r. We
write ’ in order, ’1 < "2 <’’" < r- Set s {So, SI,"" ", St-l}, where s =0 or 1. If an
odd number of zeros of f(z) are on the interval (, +1), then we assign 1 to s for
l<=j -< r-1. Otherwise, we assign zero to sj. Set So 1 (respectively, zero) if the
coefficient of the highest power of z in q(z) is positive (respectively, negative). Thus
the multi-index s labels the connected components of ratp (n). The maximum number
of such components is 2. We express each component as rat; (n). If there is no real
root of p(z), ratp (n) itself is connected and denoted by rat (n). Note that Rat (n)
rat (n)/.- is exactly one of the connected components of Ratp (n). From this result
and Theorem 3.3, we prove Corollary 3.4.

COROLLARY 3.4. Let {Ao, Bo, Co} be a cyclic triplet such that Cg(zI-Ao)-lBo
rat (n). Then the cyclic-Toda flow A(z), ’, for the initial value {Ao, Bo, Co} is

identified with the connected component Rat (n).
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This corollary hints that the space Ratp (n) is the primary object, rather than
ratp (n) that was used to prove Theorem 3.2.

Finally, we shall give simple but conspicuous examples. Let

be a cyclic triplet. We obtain f(z)=(+)/2(z-1)+(-z)/2(z+ 1) and

( ) (cosh (rl)sinh (rl)exp k=O 7"kAk =exp (ro)’\sinh (7.1) cosh (T1)]

If Il > Iz], then the zero off(z) is on the interval (-1, 1), and then the flow is identified
with Rat (n), where p {0, 1 } and s { 1, 1} for > 0 or s {0, 1 } for < 0. Let us
note that the Cauchy index off(z; z) is equal to +2, namely, f(z; z) ratp (2, 0)-R2

or ratp (0, 2) R2. Setting 0, we derive a hierarchy of the usual 2 x 2 Toda equation.
If Il> then f(z) admits a zero on (-,-1) or (1, oo). Therefore, the resulting
flow is identified with Rat’ (n), where s’= {1, 0} for > 0 or s’= {0, 0} for < 0. Here
the Cauchy index off(z; z) is always zero, namely, f(z; z)ratp (1, 1)lxs1. If
=0, then f(z) has no zero. The flow is identified with Rat" (n), where s"= {1, 0} for
a > 0 or s"= {0, 0} for a < 0, and then f(z; ) ratp (1, 1).

Let/(z) z +/n_lZ"-1+. "+/o have n real distinct roots. Any f(z) of rat (n)
can be factored into f(z)= C(zI-Ao)-lBo, where Bo Co, Ao is Jacobi, and Bo is
cyclic. In this case, we obtain a subhierarchy of (18) called the Jacobi-Toda hierarchy
whose moduli space is homeomorphic to Rat (n). By setting Bo=(0 01), we
obtain the Jacobi-Toda flow being identified with Rat (n), where s= {So, 1,..., 1}.
This is exactly the case analyzed by Moser [13]. The original Toda equation (4) is a
special member ofthis flow parametrized by 1. Thus we can conclude that the extension
to general cyclic triplet {Ao, Bo, Co} is not a trivial formal generalization. As we have
observed, the cyclic-Toda hierarchy gives a complete parametrization of the space
Ratp (n) of controllable and observable linear systems for the fixed polynomial p(z)
det (zI- Ao). Let us recall that by taking the union with respect to p {Po, ",P,-},
we recover the whole space Rat (n) of rational functions of degree n,

Rat(n)= U Ratp(n).
p,n

It would be interesting to study the topology of the flows of nonlinear integrable
systems on Rat (n) and its applications, for example, to various cellular decompositions
of Rat (n) and to the problem of limiting linear systems.
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THE INTERIOR TRANSMISSION PROBLEM AND INVERSE SCATTERING
FROM INHOMOGENEOUS MEDIA*

B. P. RYNNE’ AND B. D. SLEEMAN:

Abstract. This paper is concerned with the class of far field patterns corresponding to the scattering of
time harmonic acoustic plane waves by an inhomogeneous medium in a bounded domain B, with refractive
index n(x). It has previously been shown that the class of far field patterns is complete in La(S2) except at
wavenumbers k, which are so-called transmission eigenvalues of the homogeneous interior transmission
problem. In this paper the interior transmission problem is studied and, under milder conditions on n than
previously used, the set of transmission eigenvalues is shown to be discrete. Also, at points other than
transmission eigenvalues, it is shown that the inhomogeneous interior transmission problem is uniquely
solvable. This result is of importance in certain methods for solving the inverse scattering problem of
determining the function n from the scattered far fields.

Key words, far field patterns, acoustic waves, inverse scattering

AMS(MOS) subject classifications. 35P25, 76Q05

1. Introduction. This paper is concerned with the class of far field patterns corre-
sponding to the scattering of time harmonic acoustic plane waves by an inhomogeneous
medium in a bounded domain B, with refractive index n(x). In [4] it was shown that
the class of far field patterns is complete in the Hilbert space L2(S2) (where S2 is the
unit sphere in E3) for all positive wavenumbers k, except possibly on a discrete set of
points, provided that the medium is nonabsorbing and the function m(x)= 1- n(x)
is smooth, is strictly positive (or strictly negative) in B, and satisfies a certain integral
bound (which restricts the behavior of m near the boundary of B). Here we allow rn
to be nonsmooth and to change sign. In addition, the medium may be absorbent in
B. However, we assume that m is bounded away from zero in B; thus if m changes
sign it must do so discontinuously. Also, rn must be discontinuous at the boundary
OB of B (since by definition, m =0 outside B). This is in contrast with the condition
imposed in [4], which requires that rn be smooth and approach zero near OB at a
certain rate. In our analysis we will employ, essentially, ideas drawn from the theory
of partial differential operators, in contrast to the integral operator methods of [4];
thus this paper complements the results of [4].

Of particular interest is the study of the so-called interior transmission problem,
which plays a fundamental role in solving the inverse scattering problem in [3]. This
is treated in 3 and 4 and offers an alternative to the treatment in [4]. Also in 4,
we consider the question of approximating the solutions of the interior transmission
problem by Herglotz wave functions. This is required in the discussion of inverse
scattering in [3]. In 2-4 we consider the case of a nonabsorbing medium. The
modifications required to deal with the case of an absorbing medium are described
in5.

2. Wave propagation and far field patterns. Consider acoustic scattering of a plane
harmonic incident wave

(2.1) u’(x, t) exp ikx. itot),

* Received by the editors January 31, 1990; accepted for publication (in revised form) December 7, 1990.
Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland.

t Department of Mathematics and Computer Science, University of Dundee, Dundee DD1 4HN,
Scotland.
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where w > 0 is the frequency, k w/Co is the wavenumber, Co > 0 is the speed of sound
outside the medium, and the unit vector c is the direction of propagation of the wave.
Let c(x) be the local sound speed at any point x3, and let n(x)=(Co/C(X))2,
m(x) 1 n(x). Letting

B ={xE3: n(x) # 1},

we assume that the set B is an open, bounded, simply connected set with C4 boundary
OB and suppose that the function n is measurable and satisfies

(2.2) ess. sup { n(x) :x c B} < c, ess. inf {Im(x)[ x B} > 0

(note that we are allowing m to change sign in B, but (2.2) implies that it must do so
discontinuously). Without loss of generality, we will assume that the origin x =0
belongs to B. If we factor out the time dependence exp (-iwt), then the velocity
potential u of the total field belongs to H2(B) (the Sobolev space of order 2 on B;
see [1]) and is a solution of the problem

(2.3) Au+ k2nu =O in3,

(2.4) u(x) =- exp ikx. ) + u(x),

(aus_ ikuS)=O,(2.5) !ina \ Or

where uS(x) denotes the scattered field, Ix[ r, and the Sommerfeld radiation condition
(2.5) is assumed to hold uniformly in 2 x/Ix S2.

As in [4] it is easy to show that as r 0o the scattered field uS(x) has the asymptotic
behavior

uS(x =exp(ikr) F(; k, c)+ O(r-),

where the function F(; k, c) is the far field pattern corresponding to the incident
plane wave (2.1). The following result is similar to Lemma 2 of [4].

Let {, "n 1,. ., } be a countable dense set of vectors on the unit sphere S2,
and for each fixed k define the class F of far field patterns by

F span {F(; k, c): n 1, 2,. .}.

LEMMA 2.1 [4]. The orthogonal complement off in L(S) consists ofthosefunctions
g L2(S-) for which there exists w H2(B) and v defined by

(2.6) v(x) Is g(33) exp (ikx. ) ds(y)

such that the pair {v, w} is a solution to

(2.7) Av+k2v=O,

(2.8) Aw+knw=O,

2-(v-w)}o.=o,(2.9) v-w[o.=Ov
where (2.7) and (2.8) are to be regarded as homing in L2(B); O/Ou denotes differentiation
along the exterior normal to OB; the notation b]o denotes the trace of a function b on
the boundary OB in the t2 sense (see [1]); equation (2.9) holds on OB in the L2 sense.
Similar interpretations apply to the equations below except where stated otherwise.
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The functions v defined by (2.6) are called Herglotz wave functions with Herglotz
kernel g. The boundary value problem (2.7)-(2.9) is the homogeneous interior trans-
mission problem, studied in [3 ], [4], and others, which, together with the inhomogeneous
interior transmission problem considered later, plays a fundamental role in solving
the inverse scattering problem of determining the speed of sound in an inhomogeneous
medium (see [3]). For this purpose it is important to prove that the set F is complete
in L2($2). It follows from Lemma 2.1 and the theory of Herglotz wave functions (see
[5]) that this is so, except for those values of k for which (2.7)-(2.9) possesses a
nontrivial solution {v, w}. In the next section we will show that such values form a
discrete set in C, and hence, for almost all k, F is complete.

3. The homogeneous interior transmission problem. The space HC(B) is defined
to be the set of measurable functions b on B that have the property that b H:(D)
for all open subsets D such that D c B. We will say that the pair of functions { u, w}
is a strong solution of the homogeneous interior transmission problem if ,, w
H2C(B) L2(B), v- w H:(B), and equations (2.7)-(2.9) are satisfied for some k C.
If a nontrivial strong solution of the homogeneous interior transmission problem exists
for some k C, then k is said to be a transmission eigenvalue.

Suppose that k is a transmission eigenvalue and let

(3.1) z= w- v6 Hz(B).

It follows from (2.9) that z H2(B), where H(B)c H2(B) is the set of functions
rb H:(B) whose derivatives up to order 1 vanish on 0B. Also, from (2.7) and (2.8)
we have

(3.2) (A + k2)z k:mw,
where m(x) 1 n(x), x B. It follows from (2.2) that the function x 1/m(x), which
we denote by m-1, is essentially bounded on B, so from (3.2) we have

m-l(A + k:)z
Now, by definition w H12C(B), and so we may apply (A + k2n) to both side of this
equation to yield, by (2.8),

(3.3) (A+ k:n)m-l(A+ k2)z 0.

Thus, in order for k to be a transmission eigenvalue there must be a nontrivial function
z HE(B) that satisfies (3.3).

Since we have only required that z HE(B) and (3.3) is a fourth-order equation,
we will introduce a weak formulation of this equation. For any complex number k we
define the sesquilinear form Fk on H2(B) by

Fk(qb, q) f m-’(A + k2)(A q- ]2n) dx
B

(3.4) (m-’(a + k2)4, (A + ]2rt)qt), q, qt G H(B)
(we let (.,.) and I1" denote the standard L2(B) inner product and norm). Clearly,
the form Fk is bounded on the space H(B).

LEMMA 3.1. A nonzero point k C is a transmission eigenvalue if and only if there
exists a nonzero function z H(B) such that

(3.5) Fk(Z, qt)=0, all qt H2(B).
Proof It follows immediately from (3.3), using integration by parts, that if k is a

transmission eigenvalue then the function z defined in (3.1) satisfies (3.5).
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Now suppose that z H(B) is nonzero and satisfies (3.5). Since z H(B), we
can define the functions t,, w L2(B) by

(3.6) w--k-2m-l(A+kE)z
and

(3.7) u=w-z.

By definition we have

(w, (A+En)q,)=k-E(m-l(A+k2)z, (A+En)qt)=k-EFk(Z, q,)=0, all q, H(B),
and by standard interior regularity results for elliptic operators (see [1, Thm. 6.3]) this
shows that w HIEC(B) and satisfies (2.8). Since z HE(B), we also have u HC(B).
Now,

A + k2) , (A + k2) w (A + k2)z k2mw k2mw O,

using (3.6) and (2.8). Thus , satisfies (2.7). These results show that the nontrivial pair
of functions {,, w} is a strong solution of the homogeneous interior transmission
problem, and hence k is a transmission eigenvalue. This completes the proof of the
lemma.

We now define another form (.,.) on H(B) by

(b, ,)= (Ab, AO), b, d/ H(B).
Also, we let (., .)j and JJ. JJj denote the inner product and norm in Hj(B) for any
integer j ->_ 0.

LEMMA 3.2. There exists c 0 such that for any b H2(B),
(3.8) c, ll ll@.

Proof. The inequality follows immediately from Lemma 7.7 in 1].
For any k C, we can decompose the form F into a sum of forms F +F+ F,

where

F(b, ) (m-’Ab, A), F(b, 6) (m-l(A + k2)b, 2r/),

where q, 6 H(B). Lemma 3.2 and the Lax-Milgram theorem (see [7, p. 344]) allow
us to define bounded linear operators Sk, S, Sk, S2k, on H(B) by means of the
following identities, which are supposed to hold for all b, 4’ H2(B):

q,)= q,), F(b, 6)= (Sth, ,),

F(b, ,)= (S:b, ,).

Clearly,

(3.9) Sk S+ Slk + S2k.

F(b, b)=(Slk, >,

LEMMA 3.3. For any k C, the operators Slk, S2k are compact.
Proof Let b H(B). Then by the definition of (., .), F and S,,

(ASlkch, A6)= 2(nm-l(A+ k2)dp, ,)=/2(0, qt), all d/ H2(B),
where 0 nm-l(A + k2)( G L2(B). By a standard regularity result for elliptic operators
(see [1, Thm. 9.8]), this implies that Sb H4(B) f-) H(B) and

IIsZ 114--< c=(llch IIo/ lisZ IIo)-< 112.
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Since this holds for all b H2(B) and the injection operator from Ha(B) to HE(B) is
compact, this shows that the operator S is compact. To show that S is compact we
first choose a sequence of functions m, j 1, 2,..., such that m7 C(B), and

mff --> m -1 in LE(B) (this is possible by Theorem 1.7 of 1 ]), and we define the sequence
of operators S2k,j H(B --> H2(B by the relations

2(Sk.jqb, ,)= (k2mqb, Aft),

As before, for any b H(B), we have

and so

(AS,jb, A) (kEmdp, A,),

, H(B).

all c H(B),

(3.10) AS,jth k2mdp
in L2(B). Now, the right-hand side of (3.10) belongs to H(B), so by the regularity
properties ofthe Dirichlet problem for the Laplace operator S,jb H4(B) fq H(B) and

=S, 114--< c4llm’ II= -< c,ll I1=,

since m C(/). Hence the operators S,j are compact. Also, since m-l L_(B),
we have, by a similar argument,

II(s <s,) I1=- cll(m--m) -< cll m-- mll I1 -< c6ll m - mll I1 I1=,

by Sobolev’s inequality (where I1 is the sup norm of b on B). Hence

IIs-s,ll=--< c6[[m-- mll
(where the norm on the left of this inequality is the uniform operator norm on H2(B)),
and so S is the uniform limit of a sequence of compact operators and so is compact.
This completes the proof of the lemma.

We will now impose the following assumption which is, essentially, a condition
on the function m.

Assumption. The operator S is nonsingular.
This assumption does not seem to be unduly restrictive. We conjecture that it

holds for "generic" functions rn on B. If m(x)>= C7>0 (or m(x)<-c7<0), then the
assumption is certainly true (this follows from (3.8) and [7, p. 344]).

LEMMA 3.4. A nonzero point k C is a transmission eigenvalue if and only if the
operator Sk is singular.

Proof. It follows from Lemma 3.1 that any nonzero k C is a transmission eigen-
value if and only if

(3.11) N(Sk)#O.

However, by Lemma 3.3 and the Fredholm alternative for compact operators it can
easily be shown that this holds if and only if Sk is singular.

We can now prove the main result of this section.
THEOREM 3.5. The set of transmission eigenvalues is discrete.
Proof. It is clear from the definitions of the forms F, F, k C that these are

bounded-holomorphic families of forms (see [6, VII-4.1, p. 395]). Consequently, the
families of operators S, S, are bounded holomorphic (with respect to the uniform
operator norm on H(B)). Hence it follows easily from [6, Thm. VII-1.9, p. 370] that
(3.11) holds for either a discrete set of points k C, or for all k C. However, SO is
nonsingular, so the latter alternative cannnot hold, which proves the theorem.
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4. The inverse scattering problem and Herglotz wave functions. The inverse scatter-
ing problem is to determine the index of refraction n(x) from the far field patterns
F(; k, t) for a range of k, S2. This problem has been discussed by Colton and
Monk [3] using the following approach. First of all, for a fixed k, we seek a function
g L2(S2) such that

(4.1) fs F(); k, )g() ds()= 1

for all t S2. If we define the Herglotz wave function , by (2.6) then it can be shown
that (4.1) holds if and only if there is a function w such that the pair { ,, w} is a solution
of the following inhomogeneous interior transmission problem (the proof is similar to
the proof of Lemma 2 in [4]; see also [3, 3]). The pair of functions {,, w} is said to
be a strong solution of the inhomogeneous interior transmission problem if ,, w
H(B) VI L2(B), ,- w H2(B), and

(4.2) A, + k2/ 0,

(4.3) Aw+ knw =0,

(4.4) ’ w[on
1 -ik"e

(4.5)
0u 0u

for some k C. The method of Colton and Monk is to determine n from (4.1) and the
interior transmission problem (see [3]). To apply their methods it is necessary to show
that the homogeneous interior transmission problem has a unique solution and, in
addition, it is necessary to show that the function , thus found can be approximated
by Herglotz wave functions. The proofs of these results as given in [3] are not valid
here, so we now proceed to prove them for the present situation.

THEOREM 4.1. If k # 0 is not a transmission eigenvalue, then there exists a unique
strong solution to the inhomogeneous interior transmission problem.

Proof. First, note that if there were two distinct solutions to the.inhomogeneous
problem then their difference would satisfy the homogeneous problem, and hence k
would be a transmission eigenvalue. Thus we have uniqueness whenever k is not a
transmission eigenvalue. It remains to prove existence.

Choose a function g C(R3) such that

g(x)=- -ikr

in some open neighbourhood of OB, which does not contain the origin, and g(x)-0
elsewhere. We now define a function fg" H(B)- C by

(4.6) fg()=(m-l(A+k)g,(A+k)O), g/H(B).

Clearly, fg is bounded and antilinear, so that by the Lax-Milgram theorem there exists
an element Og H(B) such that

f(0) <0g, >, 6e H2(B).
Now, by Lemma .4, S’ exists and is bounded since k is not a transmission eigenvalue.
Therefore, we may define : S-’O H2(B) and we have, by the above definitions,

F(s, q)= <0g, 6>= F g, q, tp H B
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(where Fk(g, O) is defined by (4.6), even though g : H2(B)). Thus, if we put z g- Cg
we can obtain a strong solution of the inhomogeneous interior transmission problem
from z in the same way that we obtained a strong solution of the homogeneous problem
in the proof of Lemma 3.1.

Now let H c L2(B) be the linear span in L2(B) of the set of functions

x-j,(k[xl)Y,(x/lxl), xB, /=0,1,...,-l<-_m<-_l,

where jl is a spherical Bessel function and Y/ is a spherical harmonic. Let H be the
closure of H in L2(B) and let +/- denote the orthogonal complement of in L2(B).

THEOREM 4.2. Suppose that v eHC(B)f’IL2(B) satisfies equation (2.7). Then
vH.

Proof. If h H then

(4.7) (h, (A+ k2)th) 0, all cheCk(B),

and, by continuity, (4.7) holds for all h e H. Putting

then Vl must satisfy (4.7) and, from our hypothesis that v satisfies (2.7), v also satisfies
(4.7), and so v must satisfy (4.7). Thus, by continuity, we have

, (zx + k)6 0, a 6 no(n).(4.8)

Now, let

and define

(x, y)
exp (iklx-yl)

4rlx yl x, y e R3,

z(x) I v2(Y)dP(x’ y) dy,
B

XR3.

Then z e n2(3) and, since v2 e ’, it follows from the addition formula for Bessel
functions (see, [2, eqn. (3.60), p. 94]) that z(x) 0 when x B. Thus the restriction of
z to B, which we denote by zB, belongs to H(B) and

(4.9) (A + k2)zB v.
Now, by (4.8),

II(A+ k2)z 2-- ((A+ k2)za, (A+ k2)ZB)= (/2, (A--I- k2)zn)=0,
and hence z satisfies the Helmholtz equation

(4.10) (A+k2)z=0
It now follows from [1] that z e C2([t3) and by [2] z is analytic. Hence, since z is
identically zero outside B, it must be zero everywhere, and so by (4.9), v/=0. This
proves the theorem.

5. Absorbent media. In this section we will briefly describe the modifications
required in the preceding analysis to deal with the case where the medium in B is
absorbing. Let a(x)>= 0 denote the absorption coefficient at the point x E3 (a(x)=0
for x outside B), and let K2(x) k2+ ika(x)/co. Then in the fundamental equation
(2.3) describing the wave propagation, the term k should be replaced by K2. Similarly,
in the interior transmission problem the term k2 in (2.8) should be replaced by n2.
Now, we again define the function z on B by (3.1), but (3.2) now becomes

(5.1) (A + k2) Z k2mw + ikanw.



Putting M(x)= km(x)+ ia(x)n(x), we obtain the following analogue of the basic
equation (3.3)"

(A + K2n)M-I(A + k2)z O.

From this point onwards the analysis follows the above lines, with K2 replacing k2 at
appropriate points and M replacing m. One slight difference is that S now depends
on k (via the function M) and it is necessary to assume that SO is nonsingular for all
k. A sufficient condition for this to be true is that a(x)->_ c8 > 0 for all x B (to see
this we observe that if this condition holds then, for each k, the numerical range of
SO is bounded away from zero, and so the result follows from Theorem VI.3.1 of [7]).
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Abstract. The initial value problem for the linear nonhomogeneous wave equation in two space
dimensions is discretized in the usual way via centered second-order differences, with the timestep size
chosen on the CFL "boundary:" Ax Ay h, At h/x/. The solution of this discrete problem is explicitly
given as a functional of the data.

Key words, finite differences, fundamental solution, CFL, Courant-Friedrichs-Levy
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1. Introduction. In the analysis of convergence of difference schemes for hyper-
bolic partial differential equations, energy estimates naturally arise. For nonlinear
problems in more than one space dimension, these often do not suffice and must be
supplemented with additional inequalities. Even in the continuous case, higher-order
estimates usually cannot be obtained directly; a uniform (L) estimate is needed first.
The problem studied in this paper arose from an attempt to prove convergence of a
particle-finite difference method for the two-dimensional Vlasov-Maxwell equations
from plasma physics. There we desire an L estimate on a solution to a discetized
inhomogeneous wave equation, as is suggested by the continuous theory [3]. Of course,
the standard energy estimate for the wave equation does not provide an L bound in
two dimensions. Thus a representation for the discrete solution as an explicit functional
of the data is an important first step.

Our results concern discretization ofthe initial value problem for the wave equation

2-f(t,x,y) (O<t<c,x,yR),
Ot2 OX2 Oy

(1) u(O, x, y)= dp(x, y), ut(O, x, y)= p(x, y),

where we will assume that the data b, , and f are smooth and have compact support
in x, y. We choose a stepsize

Ax Ay h > 0

and then choose the maximum timestep At allowed by the classical Courant-Friedrichs-
Levy (CFL) condition

h
(2) At

Approximating (1) by standard second-order differences and writing

Xk=kh, yj=jh, tn=nAt (k,j7/,nN),

Uk-- u(t Xk, y)
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we get

(3) Ukj --2Ukj+Ukj tlk+l,j--2j-JrU,-1,j Uk,j+l--2j’3t-Uk,j-1At fkj

or, in view of (2),

(4) Ukj ----Ukj +1/2[l,tk+l,j+Uk-l,j+Uk,j+l+Uk,j-1]+Al
As is standard for this second-order scheme, we specify as initial conditions

u 6 =- 6 x, y),
(5)

u j bk + A ttPk.
For the purpose ofthis introduction, we will describe our result for the case b 0, O 0.

THZORZM 1. Let d O O. Then the solution of (4) is given by
n--1 [1/2]

n+l 2 2-1(6) uk A E L E Sp,k_f-’,
1=0 p =0

la-kl+l-jl=l-2p

where the kernel S arises in the form
p (l-mm)(l-2m( l-2m )(7) Sp,k E (-4)"

,=o p-m/ Ikl+p-m
We know that the fundamental solution of the wave equation is positive inside

the light cone t= ]xl, yet (7) does not "look" positive. Moreover, the discretization
need not a priori preserve positivity. However, the kernel Slp,k is nonnegative, as we see
in Theorem 2.

THEOREM 2. Denote by P’3(x) the Jacobi polynomial of degree n in x, with
parameters a,/3 (cf. [5]). Then for k >= O,

4p" pk,,-:p-k)(O)](8) Sp’k
( k +

The relations (6) and (8) then resolve the Cauchy problem for (4) with zero data.
In order to "recognize" the representation (6), we use the classical Duhamel

formula to write the solution to (1) with b @ 0 (x e R):

27ru(t, x)= dr
f(7", y) dy

(9)

Io’Iot-’drl f(’y) dsy"dr
x/(t- r)2- r2 y-xl=r

Replacing r by : through r t- r-2:, we obtain

2-u(t, x)= a f(, y)
o Ct-r-

d f(t-, y) ds,

which is the continuous analogue of (6).
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2. Construction of the representation. The representation (6) will follow from the
discrete Fourier transformation applied to (4). Since (4) is an explicit scheme, unique-
ness of a solution follows immediately.

Consider (4) with zero initial values and h At/h 1/,f.
Given a sequence { Ukj} k,j=- that is summable, we define its Fourier transform by

(11) a(O1, 02)-- Z e-i(kl+J2)Ukj-- ,./,/(0) (0--(01, 02) ).
k,j

Given a translation (j (jl,j2)) defined by

(12)

it is well known that

(13)

(’U)k Uk+; (k-- (kl, k2)),

(u)^(O) ei()(0)"

The scheme (4) can be written as

(14) u"+1= -u "-1 +1/2[zl,O+ z-l,o + ’o,1 + Zo,-1]u" + At:.f"
and, after Fourier transformation, it becomes

(15) /n+l __/,--1 +1/2[2 COS 01 -- 2 COS 02]t/" + At2 .n
or

(16)

where

(17)

n+l--__an-lq_n+At2.fn

COS 01 -- COS 02

Since I]31 =< 2, we can define an angle 6 by

(18) cos =-.
When f"= O, (16) is the Chebyshev difference equation that possesses the linearly
independent solutions

sin (n+ 1)q
(19) T,(cos )=cos n, U(cos )--

sin

Here T,(x) denotes the standard Chebyshev polynomial, and, with x=cos q=/3/2,

[./2] (n-m)(20) U.(x)= E (--1) (2X)n-2m

(of. [5, p. 257]). To represent the solution of (16), we use the classical Duhamel formula
([4, p. 409])

.-1 sin (n l)O
(21) a"+l(0) E At2"1+1"

=o sin q

In view of (21) and the convolution theorem, it will suffice to find the Fourier inverse
of sin nd//sin q. For this purpose we recall that

2x =/3 cos 01 + cos 02,
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so that (20) is

sin (n + 1) , [./2] (nsin , .=o
(-1)" -rnm) (cos 01 + cos 02) "-2m.

Now consider the sequence

1 iflkl/lJl= 1,
(22) Xkj 61kl+lJl,1

otherwise,

defined for k, j ’. Then by an elementary computation,

k,j

(23) (k,j) (:t: 1,0)
(k,j) (0,+/-1)

It follows that

e-, + e,+ e-+ e= 2(cos 0 +cos 02).

(24) sin(n+l)q,t./21sinq, .,=o
y (-1)" (n-m)22"-"((O))"-2"m

Now define

(25) X*(v)-= X * X * * X (X*(1)-= X),
N times

so that

(26) (X*(v))(0) ((0))v.
Applying -1 to (24) we then have

(27) ._l(sin (n+ 1),) (-l[n/21)m(n_m)22 (x*(n-2ml)kj"
sin k =o m

Thus our representation will follow once we have computed the N-fold convolu-
tion X*(s.

LEMMA 1. For k, j Z and n 2,

Proof By definition,
*(n-)(X*(n))kj=(X*X*(n-1))kj E amlak-m,j-I

m,l
(m,0=(l,0)
(m,/)=(0,ml)

(n-l) *(n-l) *(n-l)_..(.-1) + Xk+,j +k-l,j k,j-1 k,j+l

(From this it follows that X
*") is symmetric in each quadrant.) Thus for n 2,

(28) (x*(E))kj lk-ll+lJl,1 + lk+ll+ljl,1 + lkl+lJ-l, + lkl+lj+ll,1
NOW consider, for N e , the expression

+ IkI+IJI,N-1 if[kl 1,
Ik-XI+IJI,N + Ik+II+IjI,N

2IkI+IjI,N_ if k 0,
(29)

28k0alkl+01,-I + (1- 8k0)(alkl+ll,s-1 + 81kl+ll,s+)
1 + ak0) alkl+ll,-I + (1 ak0) alkl+ll,+l

for Ngl.
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Using (29) with N 1 in (28) twice, we obtain

(X*(2))kj (1 + tkO) 81kl+lJl.0 + (1 8k0) 81kl+ljl,2

+(1 + t0) tlkl+ll,0 + (1 0) tlkl+ll,2

4tlkl/lJl,0 + (2 k0- 81kl,2)lkl+lJl,2"
The claim of Lemma 1 is that, when n 2,

2(ikl) 81kl+lJl,2 + 4lkl+ljl,o

Thus the initial stage n 2 is verified if

kl
2- o-

holds for k 0, 1, 2, and this is obvious.
Proceeding by induction, we assume that the lemma is valid at some index n 2.

Then by the first lines of the proof,

(*(+) _,++,+,_+x,+

Using the symmetry cited above, we first assume that k 1, j 1. Then

(x*("+’) Z
,=o lkl+p-I Ikl+lJl,--p+,4- Ikl+p+ 1

Ikl+lJl’n-2p-I

+ [tlkl+ljl,n-2p/l +
p=o Ikl+p

+ lkl+lJl,n-2p+l
v=o Ikl+p-1

+ + lkl+ljl,n-2p-1.
=o Ikl+p+l Ikl+p

Using the identity (r)+ (7)= (), we get

=o Ik[+p ,=o Ikl+p+ 1
lkl+l:l,--2p-1

t21 ()( n+l t./l+l

p=l

n n+l
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Now we can extend the first sum to p [n/2] + 1 since the Kronecker delta factor
then vanishes at this p:n +l-2p <=0, while ]k[+ Ijl> 0 by assumption. Similarly, we
can extend the second sum to p 0 since the factor (p_l) then vanishes by convention.
Therefore,

(x*(n+l))kj E -It- t[kl+lJl,n+l-2pIkl/p: p- 1

and this proves the result. (The remaining cases, k, j) (0, 0), (+1,0), (0, +1), are
easily treated as above.)

Now, using Lemma 1, we have from (27)

_1 sin(n+l) /1 n-m 2_ n

sin E (-1) E
=0 m p=o p

and, according to (21), we have

+1 f+ -1
sin (n-l)q

(30) Uk At2
*

=o sin @
The indicated convolution equals

1+1
[(n-l-I)/2]

)m ( n l_ l m) 22m_n+l+
a, =0

p=o p [k o[ +p tlk-l+lJ-t31""-l-l-2m-2p

[(n--l--1)/2]

m-----O
(--1)m ( rt- l-- l- m)

E
Is-kl+l/3 -jl ---1-- --2 --2p

/ Ik_al+p

Summing this over l, 0 -< _-< n- 1 and multiplying the result by At:, as (30) dictates,
n+lwe find a representation for Uk When we replace by n- l-1 there, we get

n+ t2
rn 22m_us A E (-1

/=0 m=O

Io,-kl+l-Jl=l-2m-2p

and then by replacing p by p + m we have

,+ =A,
1/1 (/nm) 2m-Ukj E (--1)

1=0 m=o

E E f! Ik-l+p mp=m p- m/ ,
I-kl+l-Sl=l-p

This sum is taken over those grid points as shown in Fig. 1.
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FIG. 1.

Inverting the order of the p, m summations, we can write the result above as

n+l 2
Ukj E A "2- E f E (--4)"

1=o p=O , m=0 p m /
I-kl+ljl=l-2p

[k-al+p-m
From (7) we recognize the sum over m to be Sp,_. Thus (31) is the same as (6), and
this proves Theorem 1.

Remark. As is seen in (31), the parameters n and p, k, in S, satisfy n 1, 2,
1=0, 1,..., n-l; p=0, 1,... ,[1/2]; [k[ =0, 1,.... Under ceain additional condi-
tions on the parameters, it is known that

S.,= (-4)P(I-P)!
4Fp!k!(l-2p-k)!

1+1 1+2
-p, l+ l-p,---p,---p
l+l-2p, k+l,l+l-2p-k

l

We thank R. Asley for this observation. We refer to [1], [5] for the definition of the
generalized hypergeometric function 4F3.

COROLLARY. Consider the homogeneous wave equation

Ut A U 0

and its discretization as in (3)"

(32)
(LU)kj=

n+l n--1
bl kj 2U kj + U kj 1

At2 h2 [Uk+l, --2Ukj + Uk-l,j]

1--- [Uk,+l 2Uk + Uk,j_l] O,

where Ax Ay h, At/h 1/x/.
(a) The solution of

(Lv); O,

is represented by
[(n -2)/2]

__22--n X
p=0

n-2Sp,k-b for n >-- 3.
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(b) The solution of

is represented by

(Lw)q=0, w=0, Wlk=gk

[(n--1)/21

21-nw 2 2
p=0 a,/3

I-kl+lt3-jl=n-l-2p

Proof To prove (a) we make the special choice

n--1Sp,k-a gal3

n+l. tWkj ) kj kj gkj.

Again, a direct check of the initial values concludes the proof.

3. Positivity of the kernel S,k. We will sketch several proofs of Theorem 2 (which
sums Sp,k and establishes its positivity). The first argument cites early work of Watson
[6]. Using it has two drawbacks:

(i) It renders the present work non-self-contained;
(ii) The required identification of SIp,k with a multiple of a particular hyper-

geometric function of seven parameters holds only under additional restrictions on p,
k,.

For these reasons we also sketch two other proofs. One of these is based on the
derivation of a linear recursion for S and on an unusual factorization. The proof of
this factorization can be based on generating functions, and this is the content of the
second proof.

3.1. Watson’s proof. As is standard we denote by 2El(a, b, c; z) the hypergeometric
F, ra’b’c’d" Z] that of seven (cf. [1], [2], [5]). Further-function of three parameters, and 4 3t e,f,g

more, F4(’’’ denotes the Appell hypergeometric function ([1, Chap. 9]). Then Wat-
son’s result [6] can be written as

2Fl(-n, n + a, b; x). 2Fl(-n, n + a, b; 1-x)

(33) =(-1)
(a+l-b)n

(b),

(-1)"(a + 1- b).

F4(-n, n+ a, b, a+ l-b; x(1-x),x(1-x))

4F3

a a+l

-n’n+a’2’ 2
"4x(1-x)

a+l-b, b, a,

where (a),-= a(a+ 1)(a+2). (a+ n- 1).
We make the following choices"

b=k+l, a=l-2p+l, n=p, x=.
Then the 4F3("’’ appearing here is proportional to Sip,k, as is seen from the remark
following (31). On the left side of (33) we then have the square of

F-p,l-p+l,k+l;- p+k

in (31). Then (a) follows" the expression (a) is clearly a solution of (32), and it is
easily checked that it generates the correct initial values for n 2, 3.

(b) is established by taking the result of (a) and making the identifications
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using [5, p. 212]. Theorem 2 now follows. We thank G. Gasper for bringing Watson’s
result to our attention.

3.2. A reeursion and faetorization for S. First we symmetrize S by defining

~1 (1-mm)(l-2m(l-2m(34) Sp,q= E (-4)"
,,=o p-m/ q-m/

~lfor 0, 1, 2,...; p, q, 0, 1,..., I. Furthermore, we define Sp.q 0 for integers
~lp, q, l=>0 not in the above range. Thus in our previous notation, Sp,k Sp,k+p for

k => 0, and m =< max {p, q} in the above sum.
LEMMA 2. For O, 1 set

P q
Sp,q---

P q

Then for all integers p, q, >= O, the following recursion holds:

Sp,q -4r- Sp_l,q t_ Sp,q_l _. Sp_l,q_l 4Sp_l,q_l.
We omit the straightforward but lengthy proof, which uses the recursion for the

binomial coefficients. This recursion can be used as follows for integers p, 0, 1, 2,
and q =0, 1,...,/. Define

(35) (-2)
v=0 q

and define Rp,q--0 for integers p, q, l-->_ 0 not in the range above. Then we liave the
following identity.

~lLEMMA 3. Sp,q admits the factorization
lp,q--Rlp,q. Rlq,p

The proof is carried out by showing that both sides satisfy the recursion of
Lemma 2. In order to use this result, we recall that p -< q k + p, k => 0. Since

_->0,
P q

and we obtain Theorem 2 as follows: by Lemma 3,

where we have used the definition of the Jacobi polynomial (cf. [5]). For the second
factor, we have from [5, p. 210]

q-p

When we evaluate the product Sp,q with q k +p, Theorem 2 results.
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Having recognized the existence of the factorization in Lemma 3, we can give a
different proof of its validity using generating functions.

The first step is to determine explicitly the generating functions

(x, y, z)= Y lp,qXPyqzl,
p,q,l

R(x, y, z)= E Rp,qxPyqz.
p,q,

Here x, y, z are independent complex variables, restricted to a suitably small neighbor-
hood of the origin in C to make the series absolutely convergent. We find

’(x, y, z)=
1 z(1 + x)(1 + y) + 4z2xy

R(x,y,z)=
(1-z(l+y))(1-zx(1-y))"

To verify the first of these formulae, for instance, we may expand first the geometrical
series in powers of z(1 + x)(1 +y)-4z2xy, then use the binomial theorem several times,
and finally collect terms with equal powers of x, y, z. It is similar for the second formula.
The absolute convergence condition for the series S(x, y, z) is

[z(1 + x)(1 + y)-4z2xy[ < 1;

for R(x, y, z) the two conditions

Iz(1 + y)] < 1, ]zx(1 y)[ < 1.

Before proceeding further, it is useful to make a general remark. Suppose a. and
bn are two sequences with respective generating functions f(x)=Y a,x n, g(x)=. bnx n, converging absolutely and uniformly in the closed complex disk Ix]-< r. Suppose
that x is some complex value for which the strict inequality Ix] < r2 holds and we look
at the productf(x)g(1/) as a function of . Formally, it is given by the double series

n ,, anbmxn’n-m, which is a Laurent series in :. But by our assumption about f and
g it converges uniformly and absolutely in the closed circular annulus

1 r

-ll.r
If C is a positively oriented circle around the origin lying inside this annulus we may
integrate term by term and obtain

x)g Z anb,,x".
2 "n’i c

This is the basic formula for the generating function of a product sequence anbn in
terms of the generating functions of the component sequences an and bn. We propose
to apply the three-variable version of this formula to find the generating function of
the triple sequence Rp.qRq,p.

Accordingly, this generating function will be

1 I d,f drllc d, (1 1 )(27ri)3 CI-- C2 ’ -- R(X, yrl, z)R

provided x, y, z are small enough and the radii of the circles C1, C2, C3 are suitably
fixed. It proves convenient to take a small positive e (whose actual size is regulated
by some detail of the calculations below) and require

Ixl, lyl, Izl
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furthermore, we take a positive p such that

1
2<p<.

2e

It is then seen that all three integration circles may be taken with radius p, and the
conditions of validity for the above integral formula are met. We may now do the
repeated integrals in any order most convenient for abbreviating the calculations. It
turns out that we should first integrate over 7, then over ’, and last over . The integrand
is a rational function of r/whose polynomial denominator has three factors depending
on r/; but, fortunately, only one vanishes, and that one at a simple zero, inside the
contour 171 P- Thus the r/- integral is easily calculated by the Residue theorem, yielding
a rational function of " and : with three factors in the denominator. The story repeats
itself, and only one of the three vanishes inside the next integration contour Isrl p. In
the last step we are left with two factors in the denominator depending on :, but again
only one vanishes inside I1 =/9. After the last residue calculation we are left with

1

(1 zx zxy)(1 z zy) + (z zy)(-zx + zxy)

and a little algebra shows that this is S(x, y, z) as required.
COROLLARY 1. The kernel Sip,k vanishes when the parameters satisfy any of the

following conditions:
(i) t= 2(k +p), p odd;
(ii) l=2p, k=p-l,p-3,...,p+l-2[p/2];
(iii) /=Sj+l(j ->l),p=2j, k=p+2, i.e., /=4p+l, peven, k=p+2;
(iv) l=j2, j=2,4,6,...; p=2, k=1/2(j2+j-4).
Proof. (i) In this case the parameters in Pp"’)(0) satisfy a k, fl =-l-2p-k--

k a. By the Rodrigues formula [5],

P(’)(O) (-1) dp

p!2 dxp
[(1-x2)"+"]l=o

c._;x . k+p )x:
j=o j

(-1 Ix=o.
This is an odd-order derivative of an even polynomial, evaluated at x--0, and hence
vanishes, as claimed.

(ii) Here we have a k, fl l-2p-k =-k=-a.
By [5, p. 210],

pT,-k)(o) (-1)PPp-,)(O)=
(-1)P(p+k)k k

Applying the Rodrigues formula again, we get

(-1)e-k de-k
p-k, (p_k)V2P-k dxP-k [(l--x2)p]

(-1) x
p k) 2p-k dxp-k

Since p-k is odd, this vanishes as in case (i), and (ii) is proved.
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(iii) Here the parameters a,/3 satisfy

a k, fl= l-Ep-k=Sj+ l-4j-(2j+2),

so/3=2j-l=p-land a=k=p+2=2j+2.
Thus we will show that

P(pP+2"P-1)(O) O (p-->2).

Using Rodrigues again, we see that this vanishes if and only if

dp

Rp =- dx----7 [(1 x)2p+2(1 + x)2p-1] [x=o 0.

Now

dp

Rp xp [(1 x2)2P-l(1 x)3] Ix=o

k=O dxk (1 x I,=o dxP-k (1 I=o-

Defining I= (d/dx)(1 -x2)2p-llx=o, we obtain

Rp =IP-3plP-+6()Ip-2-6()Ip-3.
Since p is even in case (iii), the terms Ip- and Ip-3 vanish as in the arguments above.
Next we expand (1- x2)2p-1 and differentiate; after a brief calculation we obtain

I=(-1)/
/2 P

and

2p

Ip-2--(-1)(p-2)/21P-22 )(p-2),,
from which it follows that Rp O.

(iv) Since p 2, we have by [5]

P(p"’)(0) P("’)(0)
(c + 1)(a + 2)+(/3 + 1)(/3 + 2) 2(a + 2)(/3 + 2).

Substituting a=k, =l-2p-k=l-4-k, and setting P("’)(0)=0, we obtain the
quadratic

4k2 +4(4- l)k + 12-91+ 16=0.

The zeros are then written as a function of =j2, and (iv) follows.
COROLLARY 2. Define cr -p,q>=o lp,q for l-O, 1,... and let Sp,q have the initial

values given in Lemma 2. Then tr1= (1 + l). 2. Thus, since >-0 by Theorem 2, the
Ll-norm of Slp,k is known.

Proof. Summing the recursion of Lemma 2 over p, q, we obtain trI= 4tr-1- 40"1-2

whence tr= (A / BI)21. Use of the initial values

tr= 1, trl=4

then gives the result immediately.
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Abstract. A function is called an exponential if it is a linear combination of products of

polynomials with pure exponentials. In this paper lower and upper bounds for families of spaces of
piecewise exponentials are established. In particular, the exact Lp-approximation order (1 _< p _< )
is found for a family {Sh}h>O of function spaces when each Sh is generated by an exponential box
spline and its multi-integer translates.

Key words, multivariate approximation, order of approximation, exponentials, exponential box
splines
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1. Introduction. Spaces spanned by multi-integer translates of compactly sup-
ported functions have recently attracted much attention. The general setup can be
described as follows: Let {Sh}h be a family of function spaces each of which is spanned
by the hTZn-translates of one or several compactly supported functions on IRn. We
want to investigate the approximation order of {Sh}h and the ways to realize this
approximation order. Here the approximation order of {Sh}h is defined to be the
largest real number k for which

dist(f, Sh) O(hk)

for all sufficiently smooth complex-valued functions on a domain G c_ IRn, where dist
is measured by some norm (usually an Lp-norm).

A case of particular interest is the scaling case that occurs when the refined spaces
Sh are dilations of S1, i.e.,

with ffh being the scaling operator

h (Thl

O’h" f -- f(./h).

As early as 1946, Schoenberg [19] considered the scaling case where $1 is spanned by
the integer translates of a single compactly supported function on IR. In the late
sixties and early seventies Schoenberg’s work was extended to the case where $1 is
spanned by several compactly supported functions on IRn. In particular, in the set-
ting of the finite element method, Strang and Fix [20] successfully characterized the
so-called controlled approximation order of (O’hS1)h when S is spanned by a single
compactly supported function. However, when S is spanned by several compactly
supported functions, their attempt at characterizing the controlled approximation
order of {O’hS1}h failed, as was demonstrated by Jia’s counterexample [13]. Neverthe-
less, the conditions formulated by them to ensure a certain approximation power of
(ahS}h have been widely used, and these conditions are now called the Strang-Fix
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1990.
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conditions. In [4] de Boor and Jia gave a characterization of the local approximation
order of ah’l }h in terms of the Strang-Fix conditions.

Both the work of Strang and Fix [20] and that of de Boor and Jia [4] put some
restriction on the approximation from {ahS1}h (either "controlled" or "local"), and
hence do not give a characterization for the (unconditional) approximation order.
However, when $1 is spanned by the multi-integer translates of a box spline, the
approximation order of ((rh’l }h was already established by de Boor and Hhllig in

[3]. Their work was extended by aon [18] to the case where S is spanned by the
multi-integer translates of a compactly supported function on IR" under an additional
condition. Earlier, Jia [14] characterized the approximation order of {ahS}h when
S is spanned by the integer translates of several compactly supported functions on
IR.

Examples of the nonscaling case were given by Dyn and Ron in [12]. In particular,
they emphasized that the Strang-Fix conditions are not applicable to approximation
by translates of exponential box splines, which were first introduced by Ron [17].
Using quasi-interpolant schemes based on the Neumann series approach (see [7]), Dyn
and Ron [12] established a lower bound for the L-approximation order, but they did
not show that this lower bound is, in fact, the exact approximation order. This is in
sharp contrast to the case where Sh ahS1 and S is spanned by the multi-integer
translates of a box spline. In such a case, the approximation order is relatively easy to
determine (see [3]). Even though a characterization of the approximation order was
given by Ron [18], it is not clear how his characterization can be applied to actually
find the exact order of approximation from {Sh}h, where Sh are spaces spanned by
the translates of exponential box splines.

The primary goal of this paper is to fill this gap. For this purpose we need to
introduce some terminology and notation first. We shall use the standard multi-index
notation. Let IN be the set of nonnegative integers. An element ( (1,-.-,) E

nINn is called a multi-index, and the length of a is defined to be lal := j=l aJ" The
factorial of a is a! :- a!.., an!. Let be the set of integers. An element of is
called a multi-integer. A mapping from to (] is called a sequence on n.

Let ]Rn be the n-dimensional real space equipped with the uniform norm, i.e.,

Ilxll max Ixl, x (Xl,’’" ,Xn) e ]an.
l_j_n

If gt C_ lR’ and r >_ 0, we denote by Br() the closed ball of radius r around gt, that
is

with

Br(t) := { x e IRn" dist(x, ) _<: r }

dist(x, gt):= inf IIx-

When gt {x}, we write B(x) for B(t), and simply write B for B(0). Evidently,
if gt is a closed set, then

Br(t t + B "= { x + y x e t, y e B }.
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If f is a measurable function on a measurable subset of IRn, we denote by
Ilfllp(t) the quantity (fa Illp dx) 1/p. Similarly,

Ifl,v() := llDfllv(K) and Ilfll,r,(s) :-- IIDflIp()

When is omitted, the norm is understood to be taken over IRn. For a subspace H
of Lp() and an element f e Lp(), let

distp(y,H)(f) inf
gH

Let Wpk Wpk (IRn) be the usual Sobolev space equipped with the norm
We denote by H H(IR’) the linear space of all polynomials on ]Rn. For a non-

negative integer k, we denote by IIk (respectively, II<k) its subspace of all polynomials
of (total) degree at most k (respectively, less than k). In particular, the monomials
given by

x EIRn,
are elements of II. If p(x) ax is a polynomial, then p(D) denotes the differ-
ential operator induced by p, i.e., p(D) a,D‘. In particular, D D1... Dn"
with Dj being the jth partial derivative operator, j 1,..., n.

Following de Boor and Ron [6], we call a function on IRn an exponential if it is a
linear combination of products of polynomials with the pure exponentials

eo x H eO’x, O E .,n,
where 0. x denotes the inner product of 0 and x. Note that any finite-dimensional
D-invariant (i.e., invariant under differentiation) space of distributions is a space of
exponentials (see [1]).

Let A0 be the linear space of all functions analytic at the origin. An element
f A0 can be expanded into a power series in a neighborhood of the origin:

f(x)- Df(O)x/o!.

For j IN, let fj be the jth homogeneous part of f, i.e.,

h D’f(O)( )a/

The least term of f, denoted by f, is defined as fj with j being the smallest integer
for which fj : 0 (see [5]). For a subspace U of A0 we denote by H the space spanned
by all f for f U.

Now let H be a finite-dimensional space of exponentials. In 3, we will prove our
main result, which states that if each Sh consists of piecewise H-functions only, then
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the approximation order of {Sh}h does not exceed any integer k for which Hk H.
This result was already obtained by de Boor and Hhllig [3] for the case where H itself
is a space of polynomials.

Lower bounds for the approximation order of {Sh}h are usually established by a
concrete approximation scheme using quasi-interpolant methods. In the scaling case,
the Strang-Fix conditions and their various equivalent forms are the core of such a
quasi-interpolant scheme. As pointed out by Dyn and Ron in [12], the original form
of the Strang-Fix conditions is not applicable to the nonscaling case. However, a
modified version of the Strang-Fix conditions is still available if we are content with
spaces of exponentials, as demonstrated by Jia in [15]. In 2, based on de Boor’s
survey paper [2], and on our recent work [16], we shall give a construction of Lp-
approximation (1 _< p _< oc) from {Sh}h when each Sh is spanned by hn-translates
of a compactly supported function on lRn.

In [6], [12], and [18], only Lo-approximation was considered. In this paper we
deal not only with Lo-approximation, but also Lp-approximation (1 _< p < oc). We
contend that Lp-approximation is important. Indeed, Strang and Fix concentrated
on L2-approximation, since their main concern was the finite element method. In the
work of DeVore and Popov [11] on approximation by multivariate splines with free
knots, Lp-approximation (0 < p < oc) played an essential role. Furthermore, Lp-
approximation (1 _< p < oc) has a nature different from that of Lo-approximation.
We can say that Lo-approximation is essentially local, while Lp-approximation (1 _<
p < c) is global. This point will be made clear in the following sections.

2. Lower bounds for the approximation order. In this section, using a
quasi-interpolation scheme, we provide lower bounds for the Lp-approximation order
(1 _< p < oc) of a family {Sh}h of approximating spaces, each of which is spanned by
the hn-translates of a single compactly supported function.

Let be a complex-valued Lebesgue-measurable function on IR’. We say that
is a normal function (see [15]), if for any x e IRn

(x) lim
1 fB (y) dy,

where m denotes the Lebesgue measure.
Let be a compactly supported normal function. For a sequence b on n, the

semidiscrete convolution product ,’b is the function given by

vE

More generally, for a sequence b on hTZn, the h-scaled semidiscrete convolution prod-
uct ,b is given by

:= (._

In this section, we asume that () is collection of normal functions on IR
satisfying the ollowing three conditions:

(i) supp c
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(ii) [[hllo _< C, and

(iii) h-n [h (0)[ _> b,
where r, b and c are positive constants independent of h. In the third condition above,

denotes the Fourier transform of :

() "-/ (x)e-ie’ dx.

These conditions were first formulated in [6].
Let H be a finite-dimensional D-invariant space of exponentials. From [1] we

know that H has the form EOET e0P0, where T is a finite subset of Cn and each P0
is a D-invariant polynomial space.

THEOREM 2.1. Let H -OET eoPo be a finite-dimensional D-invariant expo-
nential space such that Ht D_ II<k for some positive integer k. Assume that {h}h>0
is a collection of normal functions on IR’ satisfying the above conditions (i), (ii), and
(iii). If, in addition, each qh satisfies the Strang-Fix conditions for H, i.e., for each
06T,

(2.1) q(-iD)$h(2r/h- iO) 0 for all q e Po and e \{0},

then with Sh :-- range(h,), {Sh}h>O provides Lp-approximation of order at least k
(1 <_p<_

Proof. This theorem is a consequence of Lemma 2.2 and Theorem 2.4, which will
be proved later.

Remark. The Strang-Fix conditions as given in (2.1) are equivalent to the state-
ment that Ch* maps eoPo to itself for each 0 E T (see [15]). Obviously, the latter
implies that (/)h$ maps H to itself, while the converse is true if h(T-T)N2ri {0}
(see [6]). Since T is fixed (independent of h), this condition is satisfied for sufficiently
small h. Also see [8] for some related results.

LEMMA 2.2. Let {h}h>0 be a collection of compactly supported normal functions
on :n satisfying the Strang-Fix conditions for H -;oeTeoPo as given in (2.1).
Then for each 0 T,

(2.2) Ch,h(eOp) h-eo(p( iD)h)(--iO) for all p e Po.

If, in addition, {h}h>0 satisfies the condition (i), (ii), and (iii), then for each h > 0
there exists a linear combination Ch of Ch and its hn-translates such that Ch,h is
an identity on H, and the family {h}h>0 satisfies the same conditions (i) and (ii)
with possibly different constants r and c.

Proof. The proof of Theorem 3.2 in [15] can be carried over verbatim to prove the
first statement of this lemma. The second statement was proved by de Boor and Ron
in [6]. Here we sketch a proof, taking the Neumann series approach as introduced by
Chui and Diamond in [7], and developed by Dyn and aon in [12]. In the following we
denote by 1 the identity mapping.

Conditions (i) and (ii) imply that for (n,
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h-n /ShCh(X)(e-i’x--1)dx_
h-ncf le-iS’x- 11 dx <_ h-’c(2rh)n max le-’

JB

hence h-nlh()- h(0)] -- 0 as h - 0. Thus, if we set bo,h := h-nh(--iO) for e T
and h > 0, then by condition (iii), Ibo,hl >_ b/2 for all E T and sufficiently small
h > 0. It follows from (2.2) that for any E T, p P0, and sufficiently small h > 0,

(1 Ch,h/bO,h)(eop) eoq

for some polynomial q Po of degree less than deg p. Let do := max{degp p Po}
for each 0 T. We see that the operator (1 -Ch,h/bO,h)d+l annihilates eoPo. For
each h > 0 let Vh be the polynomial in one variable given by

and set .
Then Ch* is an identity on H, since 1--h* rloeT(1--h*h/bO,h)de+l annihilates
H. Furthermore, we see from the construction of Ch that the family {-)h}h>0 satisfies
conditions (i) and (ii) with possibly different constants r and c. [:]

Now let {h}h>0 be a collection of normal functions satisfying the conditions (i)
and (ii). Suppose that H is a finite-dimensional D-invariant space of exponentials such
that H

_
H<k and (h$ is the identity on H for every h > 0. Let Sh :"= range(h,).

Given f e Wpk(]Rn) (1 _< p _< c), we want to construct an np-approximation scheme
from {Sh}h>O. In the case p oc, this was done by de Boor and aon in [6]. For
fWk andh>0,1et

(2.3) Sh(X) E Ch(X- h)f(h), x e ]an.

Then there exists a positive constant C1 independent of f and h such that

If(x)- ,(x)l _< Cdist(y,H)(Brh(X)) for all x

where r is the constant appearing in the condition (i). Since H$

_
[I<k, for given

f E wk there exists a constant C2 independent of h and f such that

dist(f,H)(Brh(X)) <_

(see [12, Thm. 3.1]). Thus with C CC2 we have
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If(x)- Sh(X)] Chkllfllk,(B,h(X)) for x e IR’.

To deal with Lp-approximation (1 <_ p < ec) we shall apply a smoothing technique
as employed in [16]. Choose a function X E C(IRn) such that supp X C_ B1 (0), X >- 0

andfx=l. Set

Xh "= X(’/h)/hn, h > O.

For a given function f E Wpk and h > 0, consider the following function:

(2.5) fh(X) := J,(f Vkuf)(X)Xh(U) du,

where Vu denotes the difference operator given by

x IRn,

Vuf :-- f- f("- u).

In the univariate case, such a smoothing technique was first introduced by DeVore [10].
The following lemma was proved in [16].
LEMMA 2.3. The functions fh are C-smooth. Moreover, there exists a constant

C depending only on k such that for any measurable set f c_ IRn

(a) Ilfhllp(a) <_ Cllfllp(Bkh(a));
(b) Ilfhll(a) <_ Ch-’qPllfllp(Bkh(a));
(c) IIf fh]lp(f) <-- Chklflk,p(Bkh(f))
We are now in a position to construct an Lp-approximation scheme for I _< p < oo.

THEOREM 2.4. Let {(h}h>0 be a collection of normal functions satisfying the
conditions (i) and (ii). Suppose that H is a finite-dimensional D-invariant space of
exponentials such that H D H<k and Ch* is the identity on H for every h > O. For
a given function f Wkp (1 <_ p <_ oc) and any h > O, set

:=
vE

x IRn,

where fh are given by (2.5). Then for sufficiently small h > O,

Ilf Shllp <_ Cllfllk,phk,

where C is a constant independent of f, h, and p.

Proof. By Lemma 2.3(c),

Hence it remains to show that

IIf- AII _< Chklflk,p
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When p oo, this follows from (2.4), if we replace f by fh in (2.3). In what follows
we assume that 1 _< p < oo. Our argument is motivated by the work of Dahmen and
Micchelli [9]. For c E n and h > 0, let

G,h "= (a + [0, 1]n)h.

By (2.4), there exists a constant C1 such that

Ifh(X) Sh(X)I <_ Clllfhllk,(Brh(X))

Since the volume of each Ga,h is hn, it follows that

for all x E lRn.

(2.6)
Ifh(X)- (x)lpdx<_hn Ifh(X)-- (x)lp8h sup 8h

c,h xCzGc,h

<_ Cfhnllfhl P G Bh).I,( , +

By Lemma 2.3(b), there exists a constant C2 such that

(2.7) IIfhlla,(G,h + Bn) <_ Ch-/’llflla,,(a, + B(+a)).
Now, (2.6)and (2.7)together imply

Let INn, I/l _< k. Then

(2.9) llD:J’ll",(C,h / B(+)h) L’ [Df(x)IP p,(x)dx,
oE oE

where pa is the characteristic function of the set (c,h+B(r+k)h. For any fixed x E ]Rn,
the number of a 7Zn such that p(x) 0 does not exceed (2r + 2k + 2); hence

(2.10)

Since

Df(x)l p(x)dx < (2r + 2k + 2)"IIDSII"

I#l<k



1784 JUNJIANG LEI AND RONG-QING JIA

it follows from (2.8)-(2.10) that there is a constant C independent of f, h, and p such
that

as desired. [3

3. Upper bounds for the approximation order. In this section we provide
upper bounds for the Lp-approximation order (1 < p < cx) of a family (Sh}h>O
of approximating spaces, each of which is hn-translation invariant and consists of
piecewise exponentials.

THEOREM 3.1. Let H be a finite-dimensional D-invariant space of exponentials,
and let f be a nonempty open subset of the open unit cube (0, 1)n c ]Rn. Assume
that (Sh}h>O is a family of linear spaces of functions such that

Shlh+h

_
HIh+h for all t E Zn.

Then for I < p < cx the Lp-approximation order of {Sh}h>0 on any domain G c_ IRn
does not exceed k, where k is the largest integer such that II<k C_ H.

Proof. Let {ql,"" ,qN} be a basis of homogeneous polynomials for H. There
exists a basis {fl,.-., fN} for H such that qj fj, j 1,..., N (see [5]). Moreover,
since H<k C_ n, we can choose fj (j 1,..., N) so that

Let

L(x) q (x) O(x as x -* O.

dj := max{k 1, deg qj }.

Since f,..., fN are exponentials, there exists a positive constant M such that for all

Ilxll <_ 1,

(3.2) Ifj(x) qj(x)l <_ MIIxlld/x, j-- 1,...,N.

Since Hk Ht, there exists fl E INn, Ifll- k, such that q ) Hr. Let G be
a bounded domain in ]Rn. Our goal is to estimate distp(q, Sh)(G) from below, i.e., to
prove that for some positive constant C independent of h,

(3.3) distp(q, Sh)(G) >_ Chk.

Without loss of generality, we may assume that G has Lebesgue measure less than 1.
Then by HSlder’s inequality,

distp (q, Sh)(G)

_
dist (q, Sh)(G)

Hence it suffices to prove (3.3) for p- 1.

for all p _> 1.
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Note that q, ql,’", qr are linearly independent, hence the function given by

(ao, al,..., aN) aoq + ajqj
j=l

()
1

for (a0, al,’", aN) E l:J N+I

induces a norm on N+I. Since any two norms on N+I are equivalent, there exists
a positive constant C1 such that

N

aoq + E ajqj
j--1

N

j=0

for all a0, al,.", aN l,.

For any w IRn, q(. + w) q H<k C_ H$; hence it is a linear combination of
ql ", qN

N

q(. + w) q E bj (w)qj,
j--1

where bj are continuous functions on IRn with bj(O) 0 (j 1,..., N).
In what follows we assume that 0 < h < 1. For any al,..., aN , we have

(3.5)

q(. + h,) E ajfj (hft) q + E bj(h,)qj E ajfj
j=l j=l j=l

> q +(() a)
j=l

(hft)

N

EaJ(fJ-qJ) (hft).
j=l

To estimate the first term of the far right side of (3.5) we note that

Ilglll(ha) hnllg(h.)lll

This together with (3.4) implies that

(3.6)

N

Jl-- q + ((-) )q
j=l

N

hn hkq + E(bj(hb’) aj)hdegqqj
j=l

( )>-- Clhn hk + E Ib (hu) a Ihd
j=l
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To estimate the second term of the far right side of (3.5) we note that for any
g e Ll(h)

(3.7) [[g[[(M2) <_ hn sup
xEhft

since ht C h(0, 1)n. It follows from (3.2) and (3.7) that

(3.8) J2 :=
N

Eaj(fj -qj)
j--1

N N

(h) _< lalllf- qlll(h)_< Mhn lalh+.
j=l j=l

For sufficiently small h, say h <_ C1/M, we have

Cllbj(hv) ajl >_ Mh (lal Ib(h)l)

This together with (3.6) and (3.8)yields

( )JI J2 >_ hn Clhk ME Ibj(hv)lhd+l
j=l

Since dj + 1 >_ k, while by(hu) can be made small if hu is small, we conclude that
there exists 5 > 0 such that

N

q( + )- D
j=l

(h) > J- J2 > (C/2)hk+n

The above estimate holds for any a,..., aN E (]; hence

for I1,,11 <_ 51h.

distl (q(. + hv), H)(ha) > (Cll2)hk+n

Since H is translation invariant, it follows that

for I1’11 < 5/h.

(3.9)
distl(q, H)(hfl + hu) distl(q(. + hi,,), H)(hfl)

>_ (Cil2)hk+n for I111-< 5lh.
We are now ready to estimate distl (q, Sh)(B,) (h). Observe that

It follows that

(3.10) () _> distl(q, Sh)(h + hu).
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But by (3.1), Shlh+h, C_ Hlha+h,; hence by (3.9) we have

distl (q, Sh)(ht + h,) >_ distl (q, H)(ht + h,)
>_ (C1/2)ht+n for I111 _< 5/h.

For sufficiently small h > 0, the set { E n i111 _< 5/h- 1} has cardinality >_
(5/h)n; therefore (3.10) and (3.11) yield

s(h) >_ (5/h)’(C/2)hn+k= (C/2)hnhk.

This shows that for sufficiently small h > 0,

distl (q, Sh)(B) >_ Chk,

where C--- (C/2)5. This proves (3.3) for p-- 1, as desired. D
Finally, we apply the previous results to the problem of approximation by expo-

nential box splines. Following Dyn and Ron [12], we introduce the h-scaled EB-splines
as follows. Let F be a finite set of pairs (not necessarily distinct) of the form

Hereafter we always assume that X {x 7 E F} c_ 7]n and that X spans ]R.
The h-scaled EB-spline Bh (F [.) is defined by the equation

where is taken from a suitable space of test functions. It is known from [12] that
the collection {B(F ")}g>0 satisfies conditions (i), (ii), and (iii).

Let :D(IRn) denote the space of all n-dimensional complex-valued distributions.
For K C_ F, let pK(D) be the differential operator induced by the polynomial

Let

:= l-[ (x

and

K(F) := {K c_ F. span{x}Er\g lRn},

Define

k(X) "= min{#K K e K(r)}.



1788 JUNJIANG LEI AND RONG-QING JIA

H := {f e :D’(IRn) pg(D)f 0 for all K e K(F)}.
Then H is a finite-dimensional D-invariant space of exponentials (see, e.g., [1]). Let
Sh be the range of Bh(F ")*. Then Sh is h%translation invariant, Sh D H,
and Shl(O,h)n consists of piecewise H-functions. It is also known from [12] that with
k k(X), H$ D_ H<k but H$ Hk. Dyn and Ron [12] proved that k is a lower bound
for the Lo-approximation order of {Sh}h>O. Now that {Sh}h>O and H satisfy the
conditions of Theorems 2.1 and 3.1, we have the following concluding result.

THEOREM 3.2. Let Sh be the range ofBh (F ")*. Then the exact Lp-approxima-
tion order of {Sh}h>O is k(X) (1

Acknowledgment. The authors thank Professor Carl de Boor for his valuable
suggestions and comments on this paper.
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Abstract. The monodromy group of a second-order linear differential equation with rational coefficients
is called Ziglin if it preserves a nonconstant rational function. The determination of which monodromy
groups are Ziglin is essential in integrability questions for complex analytic Hamiltonian systems. In this
paper the problem is solved completely for the Fuchsian case by using the Kovacic algorithm to determine
the differential Galois group of that second-order equation and then relating this to the monodromy group.
Applications are given to Hamiltonian systems.
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Introduction. Consider a linear differential equation y"+p(x)y’/q(x)y=O, ’=
(d/dx), with rational coefficients on the Riemann sphere p1 or, more generally, a
holomorphic (flat) connection on a rank 2 complex vector bundle over a Riemann
surface (see [1]). The monodromy group can be viewed as an automorphism group
of some distinguished fiber, and is called Ziglin if it preserves a nonconstant rational
function on this vector space (see [20]). The determination of which monodromy
groups are Ziglin is crucial in integrability questions for complex analytic Hamiltonian
systems. Here we solve the problem completely for the Fuchsian case on p1, and in
more general bundle contexts where symmetries allow reduction to this first case. The
key elements are a classification of Ziglin subgroups of GL (2, C) and an algorithm of
Kovacic 10] that determines the nature of the differential Galois group of a second-
order equation (as above) on 1.

The necessary background in differential Galois theory appears in 2, and its
application to determining the Ziglin subgroups of GL (2, C) in 3. The Kovacic
algorithm is outlined for the Fuchsian case in 4, with applications to Hamiltonian
systems in 5. We note that, although the Kovacic algorithm works for any second-order
linear differential equation, we consider the Fuchsian case because it is only in that
case the Zariski closure of the monodromy group is equal to the differential Galois
group. (In the irregular case it is necessary to add the Stokes multipliers.) For back-
ground in these group theoretical properties of differential equations we refer to [7],
[9], and [11], and especially the surveys [16] and [17]. After this paper was completed
the authors became aware of the recent thesis of Morales [21], which also considers
Ziglin analysis in terms of differential Galois theory, but with a different emphasis and
without Kovacic’s algorithm. We refer the reader to this work and [22] for their many
nice examples and as complementary reading.

1. Motivation. Let X be a Riemann surface and V a connection on a rank 2
complex vector bundle 7re" E- X. To each loop , in X based at Xo X assign the
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automorphism ofthe fiber Eo 7]’1((Xo)) which results on sending v Eo to the endpoint
of the horizontal lift of y-1 issuing from v. Since V is flat, this lift depends only on
the homotopy class of y in 7rl(X, Xo), and defines the monodromy representation
p: rl(X, Xo)- Aut (Eo). The image Go=p(rl(X, Xo)) is the monodromy group of V at

Xo. Different choices of basepoint give isomorphic monodromy groups, and given a
basis of Eo we can identify Go with a subgroup of GL (2, C). In the classical ease
X C\{finite set) and V can be viewed as a linear ordinary differential equation on
the complex plane with possible singularities on this finite set as well as at o (see [4,
p. 93]). Then Eo is identified with the initial values (and hence germs at Xo) of solutions,
and p, and hence Go, are defined by analytic continuation of these solutions along 7-1.

Throughout this paper any function said to be an "integral" will be assumed
noneonstant. Thus Go has an integral f, or is a Ziglin group, if there is a nonconstant
rational function f on E0 that is preserved by the action; that is, g*f f for all g Go.
An equivalent condition is the existence of an integral F for V, that is, a meromorphie
function F on E that is rational on fibers and constant along horizontal lifts of curves
in X. Indeed, f=F[Eo will be preserved by Go, hence Go will be Ziglin, and any such
f can be uniquely extended to a corresponding integral F of V through "parallel
transport."

Example 1.1 (Ziglin theory for two degree-of-freedom Hamiltonian systems). Let
M be a complex symplectie 4-manifold and F a nonequilibrium phase curve, within
an energy surface E, of a holomorphic Hamiltonian vector field XH on M. Linearization
along F induces a holomorphic (hence flat) connection V on the normal bundle
N (TEIF)/ TF of F in E, called the normal variational equation (NVE). By a result
of Ziglin [20] any meromorphic integral of XH independent on a neighborhood (in
M) of F (but not necessarily on F itself) will induce an integral for V; hence Go will
be a Ziglin group. Therefore, if Go is not a Ziglin group, XH cannot be integrable by
such meromorphic functions on a neighborhood of the phase curve (although XH
could still be integrable, say, by differentiable functions).

When reasonable symmetries are present a connection can be reduced. Specifically,
suppose a finite group G acts zr-equivariantly on E - X, freely and properly discon-
tinuously on X, and linearly on fibers. Then XG is again a Riemann surface and the
connection (7 (1/[G[)yg g*V is preserved by G, thus inducing.a connection V
on EG XG. We say V is symmetric (with respect to G) if V V.

THEOREM 1.2. Let V be symmetric with respect to the finite group G which acts on
E X as above. Then V admits an integral if and only if this is the case for Vo. In
particular, the monodromy group of V is Ziglin if and only if the monodromy group of
V is Ziglin.

Proof. (a) Assume that V admits an integral. It suffices to show that the existence
of an integral F for V implies the existence of a G-invariant integral. We do this by
adapting an argument from [20, p. 186], which deals with a related situation.

Let G= {gj}jm= with g =id, and set fj g*.F.j Assume {fl fk} are the distinct

fj, and let mj be the number of occurrences of fj in {fl,""" ,f,}. Now consider the
G-invariant integrals 0i =Yj: (fj) of V. Since

o(f f)
(k!) mj I-[ (fj -f) # 0

(the last term is a standard Vandermonde determinant), we can solve locally for the

f as analytic functions of the {q,j}. In particular, we can write F =f locally as an
analytic function ofthe {j}, and when restricted to a fiber we then have 0
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for appropriate aj. We conclude that some qj must be nonconstant and hence a
symmetric integral for V.

(b) The converse of (a) follows from the fact that the monodromy group of
can be identified with a subgroup of the monodromy group of V (see [4, Prop. 1.1,
p. 94]) and the comments preceding Example 1.1 on the relation between integrals of
the monodromy group and integrals of the connection.

COROILARY 1.3. Assume the connection on N- F of Example 1.1 is symmetric
with respect to a finite group G acting as in Theorem 1.2. If the monodromy group of the
reduced connection is not Ziglin, then XH has no meromorphic integral independent
of H.

We will see an example of Corollary 1.3 in 5. We refer to [3] and [4] for examples
of symmetric connections. In particular, [3, 4] presents a general theory concerning
the case when a given connection is symmetric. In examples the group G is often given
as an action on the base space X; [4, Prop. 2.3] shows when this can be lifted to a
r-equivariant action on E- X under which V is symmetric (see also [3, 4]).

In the next few sections we will assume that reduction has transformed V to a
connection V that can be viewed as a linear ordinary differential equation on .
When V is Fuchsian we show that the monodromy group ofV is Ziglin if and only
if the differential Galois group of V is Ziglin. We then adapt an algorithm of Kovacic
[10] (see also [5]) in 4 to determine whether the differential Galois group has this
property.

2. Preliminaries on differential Galois theory. In this section we collect some
standard results on differential Galois theory and algebraic subgroups of SL (2, C)
needed in later sections. Let C(x) denote the field of rational functions in x with
coefficients in C and consider the (normalized) linear ordinary differential equation

(2.1) y"= r(x)y, ’--(d/dx)
on the Riemann sphere 1, where r(x) C(x). Let A denote the set of poles of r(x),
set X \(A U {o}), and fix Xo X.

M will denote the field of germs of meromorphic functions at Xo, which we view
as an extension of C(x) by identifying the latter with the germs of such functions at

Xo. V M will denote the linear space of germs of solutions of (2.1) at x0, V’ J/the
associated derivatives, and E M the extension of C(x) generated by Vw V’. E is the
Picard- Vessiot extension of C (x) associated to (2.1), and the differential Galois group
Go G(E/C(x)) of that equation is the group of automorphisms of E that fix C(x)
and commute with differentiation. Elements of Go are determined by their action on
V; hence Go may be viewed as a subgroup of Aut (V).

A subgroup of Aut(V)GL(2, C) is (1) reducible (or triangulizable) if it is
conjugate to a (lower) triangular subgroup of GL (2, C) and (2) a DP-group if it is
conjugate to a subgroup of {( )}U{(o ’)}GL(2, C). (This terminology for
"diagonal permutation" (DP) is from [2].) Note that a diagonalizable group is both
reducible and a DP-group.

PROPOSIWION 2.2. Let Gu be the monodromy group of (2.1) and Go its differential
Galois group. Then

(a) Go is an algebraic unimodular subgroup of Aut (V). In particular, it is Zariski
closed in this space.

(b) Any element of E fixed by all elements of Go must be in C(x).
(c) Gn GD.

Moreover, if (2.1) is Fuchsian we have
(d) Gn GD, i.e., GN is Zariski dense in GD;
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(e) GN is reducible, diagonalizable, or a DP-group if and only if Go is such; and
(f) Gs is finite if and only if Go is such, in which case GN--GD.
Proof (a) and (b) are standard (e.g., see [9, pp. 36, 38, and 41]). (c) is adapted

from 18]: analytic continuation along the inverse of any loop in X based at Xo defines
an element of GN and one of Go, and these are identical when viewed in Aut (V).
(d) is Proposition III of [18]. (e) and (f) are immediate from (c) and (d).

PROPOSITION 2.3. An algebraic subgroup of SL (2, C) is either
Case I" reducible;
Case II: a DP-group;
Case III" a finite group which, if not of Case I or II, must be projectively (i.e.,

mod +id) the tetrahedral, octahedral, or icosahedral group; or
Case IV: SL (2, C).
In particular, the differential Galois group Go of (2.1) must have one of these

forms.
Proof See [9, pp. 31, 32] or [10, pp. 7, 27].
PROPOSITION 2.4. If every element ofan algebraic subgroup of GL (n, C) has finite

order, then that group must be finite.
Proof This is a lemma in [18, p. 1328].

3. Ziglin subgroups of GL (2, C). Application of Corollary 1.3 when the action of
the group G is not symplectic may yield a reduced connection V that is Fuchsian
on pl but not of the form (2.1). The monodromy of Va will then be a subgroup of
GL (2, C) rather than SL (2, C). The purpose of this section is to develop relationships
(see Theorem 3.5 and Corollary 3.6 below) that allow us to exploit the classification
of algebraic subgroups of SL (2, C) given in Proposition 2.3 (which should be compared
with Corollary 3.4 below).

Recall from 1 that a subgroup Z c GL (2, C) is Ziglin, or a Ziglin group, if there
is a nonconstant rational function f" C2- C preserved by Z; i.e., such that g*f=f for
all g Z.

PROPOSITION 3.1. (a) Any conjugate of a Ziglin group Z is again Ziglin.
(b) Any subgroup of a Ziglin groupis again Ziglin.
(c) The Zariski closure Z of any Ziglin subgroup Z preserves any rational function

fpreserved by Z. In particular, Z must be Ziglin.
(d) A subgroup Z c GL (2, C) is Ziglin if and only if the Zariski closure Z is Ziglin.
Proof For (a), g*f=f implies (h-lgh)*h*f h*f for any h GL (2, C). (b) is

obvious. For (c), write f= (p/q) where p and q are polynomials and fix w e C2. Then
Pw(g)=(g*p)(w). q(w)-p(w). (g*q)(w) is a polynomial vanishing on Z; hence Z
is contained in the zero set of Pw. Since w was arbitrary the result follows. We obtain
(d) by (b) and (c).

Now let Z cGL(2, C) be Ziglin and let f=(p/q) be a nonconstant rational
function preserved by Z. Since g*f=f for gZ if and only if (g*p).q--p. (g’q),
by comparing lowest- (or highest-) order terms in this last expression, we see that p
and q may be assumed homogeneous. Then by factoring and, if necessary, conjugating
by some suitable rotation h, we can assume

(3.2) f(x, y) (] (x Ajy)%,
j=l

where the {Aj} are distinct and rn 7\{0}. Note that such a factorization does not
generally hold for homogeneous polynomials in three or more variables (e.g., see [6,
pp. 50, 51]).
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THEOREM 3.3. The Ziglin subgroups of GL (2, C) are precisely those that can be
conjugated to a subgroup of one of the following groups"

(1) T(n)=
fl la ’=1

(2) T(m,n)-
0 fl

la "=1

(3) D(n)=
0 fl

](aft =1 t_J
6

[(6y)"=l

(4) The projectively finite groups.

Proof Let Z be a Ziglin subgroup of GL (2, C) that fixes the rational function
(3.2). We have three cases.

Case I (r 1). Z then fixes the line x hly, and hence there is a conjugacy h so
that (h*f)(x, y)=x" (on setting ml= n) and (h-lZh)c T(n). Conversely, (h-lZoh)c
T(n) implies that the subgroup Zo preserves (h-1)*(x").

Case II (r= 2). Each g Z will preserve or permute the two lines x hjy, j- 1,
2. There is then a conjugacy h so that (h’f)(x, y)= x"y (on setting ml--m, m2--n)
and (h-lZh)c{( )}U{(o )}. If there are no elements of the form g_(O ) in
(h-aZh), then amfl 1 implies (h-Zh)c T(m, n). If there is such an element g then
(g*f)(x,y)=y""x"y"=x"y implies m=n and (h-Zh)cD(n). Conversely, if
(h-Zoh) is a subgroup of (2) or (3) above, then Zo preserves (h-)*(xmy"), with m n
for case (3).

Case III (r -> 3). Let K {c. id[ c C\{0}}. We must show that the projectivization
PZ Z/(Z f K) is finite. There is a positive integer n so that for all g Z the element
g" fixes each of the lines x hjy (j 1,..., r). Since r_-> 3, this forces g= c(g). id,
where c(g) is a constant dependent on g.

(a) If in (3.2) we have Y=I m 0, then (g")*f=f implies each c(g) is a root of
unity. By Proposition 3.1(c) we may replace Z by the algebraic group Z; hence Z
itself must be finite by Proposition 2.4.

(b) Now assume Yj= m =0 in (3.2). Then PZ preserves (3.2), and applying the
last part of the argument in (a) above to the Zariski closure of [PZU (-1)PZ] (which
we can think of as a subgroup of SL (2, C) and which also preserves f), we see that
PZ is finite.

Conversely, any subgroup Zo C GL (2, C), for which the projectivization PZo is
finite, preserves the rational function f(x, y) where f (I] g*x)/(I] g*(x-hy)) and
the products are taken over g PZo. We then choose the parameter h C\{0} so that
f is nontrivial (we must be careful on this point since, for example, (I-I g’x) (I-I g’y) 1
for g in the two-element group {( 1), (o )}).

COROLLARY 3.4 (Baider). The Ziglin subgroups of SL (2, C) are precisely those that
can be conjugated to a subgroup of one of the following groups"

(1) T(n) SL (2, C),

(2) D(n) SL (2, C),

(3) The finite groups.
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Proof T(m,n)f’lSL(2, C)c T(m-n)fqSL(2, C) since afl=l. [3

The format of the next theorem follows that in the algorithm due to Kovacic 10]
that we explain in 4. Moreover, the groups GM and G will be the respective
monodromy groups of the differential equations (4.1) and (4.2) in that section.

THEOREM 3.5. For Oj C\{0} let N {N}-I c GL (2, C) and M {M 0jN}=I
generate the respective groupsGand GM. Then GN and Glvt are simultaneously reducible,
diagonalizable, or DP-groups. Moreover, they are simultaneously finite if and only if all
Oj are roots of unity. Now assume that G SL (2, C). Then

(a) IfG is reducible but not diagonalizable, under a conjugacy hfor which h-1Nh
A. 0(*J ;7 )’ then GM is Ziglin if and only if all Oj& are roots of unity.

(b) If Gu is diagonalizable with h-iNch (J 07)x then Glvt is Ziglin if and only if
all OAj are roots of unity or there are integers m and n such that (0)m+n" (A)"-n= 1
for all j.

0 0(c) If Grq is a DP-group but is not reducible, with h-iNch =(J x7 or (_p ),
then GM is Ziglin if and only if all O are roots of unity.

(d) If Grq is finite then Glvt is Ziglin.
(e) If none of the cases above hold for Grq, then GI is not Ziglin.
Proof The initial statements concerning reducibility, diagonalizability, the DP-

structure, and finiteness are clear. Statements (a)-(d) follow from the statement and
0proof of Theorem 3.3 (in (c) we must use the presence of an element (_p; )).

For (e) assume that G is Ziglin. Then the assumptions on Gu imply by Proposi-
tion 2.3 that the Zariski closure Gu SL (2, C) and by Theorem 3.3 that the projectiviz-
ation PGM is finite. We can then readily construct a homogeneous polynomial that
vanishes on PGa4 and hence on GM and Gu but not on SL (2, C), contradicting the
fact that G SL (2, C). [3

0 kPROPOSITION 3.6. If all { 3}j=1 are roots of unity, then G is Ziglin if and only if
GM is Ziglin.

Proof There is an integer d so that (0)a= 1 for all j. Now raise the respective
polynomials in the proof of Theorem 3.3 to the d-th power. [3

For many applications the assumption on the {0} in Proposition 3.6 is natural.

4. The algorithm. Here we show how to determine whether the monodromy group
G GL (2, C) of a second-order Fuchsian equation

d
(4.1) z" + p(x)z’ + q(x)z O,

dx’

on P is a Ziglin group. This is done with the aid of an algorithm due to Kovacic [10]
that decides which ofthe cases (a)-(e) ofTheorem 3.5 holds for (4.1) in its normal form,

(4.2) y"= r(x)y, r(x) =-[q(x)-()p2(x)-(1/2)p’(x)], ’= (d/dx),

which, we note, is also Fuchsian. We need to establish some notation.
In (4.1) we have

j=, (x-a)’
q(x)= C 2 C=0.

=, (x-a) (x-a)’ =,

This implies that in (4.2) we have

(4.4) r(x)=
j=l (x aj)2--jl.= (x-aj)’ j=12 lj 0,
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where, on setting A jk___l Aj, B
j= ()[(1-Aj)2-4Bj-1],

(4.5) j -Q +()Aj [
ij (aj ai)

()[(1 A)2-4B- 1].
Note that the characteristic exponents of (4.2) are

rf =[l {l +4j}/2]=[l {(1-Aj)-4Bj}/2] at aj,
(4.6) 1/2=[-{+} ]=[{(-A)-}/] ate.

Let A={a,..., ak} be the finite poles of p(x) and q(x) as in (4.3), set X=
(A {}), and fix Xo X. For each point a; A let be a positively oriented loop
in X based at xo that encircles only a;; then (X, Xo) is freely generated by {7;};=.
Also, let be a corresponding loop around satisfying (; ;)= L Then the
monodromy representation p: (X, Xo) GL(2, C) of (4.1) with p(7;), M=

k Mp(7), satisfies (;= )M I, and {};= generates the monodromy group G
of (4.).

The poles of r(x) in (4.4) are a subset of A {}. The monodromy representation
p of (4.2) has range G c SL(2,C) and is generated by {= p(;)}_. Moreover
(see [3, 6]),

(4.7) 0N, where 0=exp - p =exp(iA).

The algorithm below consists of three successive cases. Each case is examined in
turn, and lack of success in determining a solution in all three cases will correspond
to (e) in Theorem 3.5 (with the first case covering both (a) and (b) of that theorem).
Throughout we let G denote the differential Galois group of (4.2).

Case I (The reducible-diagonalizable case). The algorithm is phrased in terms of
the modified" characteristic exponents

= if0; .=1 if=0,0; f=0 if=0=,
(4.a a=+l if0, a=0 and aL =1 if=0.

T.EORE 4.9. efollowing two statements are equivalent"
(a) G, Gu, and G are simultaneously reducible.
(b) ere is a solution of (4.2) of the form y =exp( 0), with 0 C(x), which is

necessarily a common eigenvector for Gu.
Moreover, there is a solution as in (b) if and only if
(1) ere is a choice s(j) and s() of a plus or minus sign so that

d [- (]isanonnegativeinteger;
j=l

(2) ere is a unique monic, degree d polynomial P (which can be found by the
method of undetermined coecients) satisfying

P"+2P’+(w’+w2-r)P=O, wherew=w(x)=
:1 (x- a)’

and
(3) O=w+(P’/P).
The algorithm above will generate two distinct O’s if and only if the three groups

in (a) above are simultaneously diagonalizable. If there are no such solutions these
groups are irreducible.
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Proof The statement in (a) is just a combination of Proposition 2.2(e) and the
first part of Theorem 3.5, and similarly for simultaneous diagonalizability of these
groups. For the equivalence of (a) and (b) see [10, pp. 7, 8]. The algorithm given in
steps 1 )-(3) for finding solutions ofthe form y exp ( 0) with 0 C (x) is a restatement
of [10, pp. 11, 12] for the Fuchsian case. The remainder of the theorem can be found
in the proof in Kovacic [10, pp. 15-17], with the uniqueness of P in (2) being shown
by calculating the Wronskian of the two solutions.

Such reducibility criteria have a long history; for example, see [15, pp. 176-178],
which was published in 1895. For the Fuchsian case with three regular singular points
(e.g., the hypergeometric equation), simpler formulations are available (see [2, Thm.
2.24]). It should be noted that Kovacic’s algorithm is not restricted to. the Fuchsian
case of (4.2).

COROLLARY 4.10. Assume the reducibility algorithm implicit in steps (1)-(3) of
Theorem 4.9 has yielded (1) only one solution, or (2) two independent solutions of (4.2)
with the form y exp ( 0), where

O=
,] s.__

=, (x-aj)
+(P’/P)"

Then:
(1) In case (1) the monodromy group GM of (4.1) is a Ziglin group if and only if

each of the numbers [A + 2a]J)], j 1, 2,. ., k, is rational.
(b) In case (2) GM is a Ziglin group if and only if there are integers m and n so

that [(m + n)A + 2(m n)a]] is an even integerforj 1, 2,. , k. In particular, GM
is Ziglin if each of the numbers A + 2a]], j 1, 2, , k, is rational.

Proof. In terms of a basis {,, y} of germs of solutions of (4.2) at Xo we have

N=[exp(2zria](J) 0

exp (-2zria]())

The result then follows from (4.7) and Theorem 3.5(a) and (b), respectively.
Case II (The DP-case). The algorithm is stated in terms of the following sets:

Ej={2+e(l+4flj)l/ale=O,+2}f"17/ ifflj O,

(4.11) Ej={4} iffl;=0, 6;#0,

Eg {0} ifflg 0 6j,

and

(4.12)
E {2 + e(1 + 4/3oo)’/2le O, +2} I’q 77

E {0, 2, 4} iffl 0.

iffl O,

THEOREM 4.13. The following two statements are equivalent:
(a) GM, GN, and GD are irreducible (i.e., Case I does not hold) but are simul-

taneously DP.groups.
(b) There is a solution of (4.2) of the form y=exp ( to), where to is algebraic over

C (x) of degree 2, and Case I does not hold.
Moreover, there is a solution as in (b) if and only if
(1) There is a choice of ej E; and eo E which are not all even integers so that

d 1/2[e "jL ej is a nonnegative integer; and
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(2) There is a monic, degree d polynomial P (which can be found by the method of
undetermined coefficients) satisfying

P’" + 30P"+ (302 + 30’-4r)P’ + (0"+ 300’ + 03 -4tO 2r’)P O,

where O=1/2Ek= (e/(x-a)).
Specifically, for P as in (2) let ch=O+(P’/P) and choose a solution to of

to + bto + [1/2b’ + r] 0; then y exp (5 to) will be a solution of (4.2) as in (b) above.
Proof. For the equivalence of (a) and (b) see [10, pp. 7, 8]. The remainder is a

restatement of 10, p. 18] for the Fuchsian case.
COROLLARY 4.14. Assume that Go is irreducible but that the DP-algorithm implicit

in (1) and (2) and thefinal statement of Theorem 4.13 results in a solution ofthe required
form. Then the monodromy group G of (4.1) is Ziglin if and only if all A are rational

Proof This follows from (4.7) and Theorem 3.5(c).
Remark 4.15. A necessary condition for the algorithm of Theorem 4.13 to give a

solution of the required form is that in (4.4) some fl 0 (see [10, p. 8]). Thus, if all

fl 0 we need to examine only Cases I and III.
Case III (The finite case). The algorithm is stated in terms of the following sets,

where n =4, 6, or 12:

{ 12e
F(n)= 6+(l+4flj)l/21e=O,+l,...,+ fqT ifflj0,

(4.16) F(n)={12} iffl=0, 80,
F(n) ={0} iffl=0= 8,

and

(4.17) F(n)={6+12e(l+4fl)l/[e=O’+l’’’’n ’+} 07/,

regardless of whether or not/3o 0.
THEOREM 4.18. Assume that Go is not reducible and not a DP-group (i.e., Cases

I and II do not hold). Then the following procedure will determine if Go is finite with
all solutions of (4.2) being algebraic over C (x).

(1) Let n 4 and write down all choices off F(n) and fo F(n) for which
d (n/12)[f--jk=l f] is a nonnegative integer;

(2) For each such choice set 0 n/ 12) k= (f/(X a)), and with S II(x a)
(where the product is taken over only those a which are poles of r(x)) determine (e.g.,
by the method of undetermined coefficients) if there is a monic, degree d polynomial P
such that if we set Pn =-P and recursively define

Pi_l -SP +[(n- i)S’- SO]Pi-(n- i)(i+ 1)SErpi+l

for n, n- 1, , 0, then P-1 =- 0;
(3) Repeat, if necessary, steps (1) and (2) with n =6 and then with n- 12; and
(4) If such a P is found in (2) for n 4, 6, or 12, then Go is finite. Moreover, a

solution to to the equation i=0 ((SiPi)/(n-i)!)toi=O will give a solution y-exp ( to)
to (4.2).

Proof See [10, pp. 7, 8 and pp. 22, 23] and recall that (4.2) is Fuchsian.
COROLLARY 4.19. Assume Go is irreducible and not a DP-group, but is finite. Then

Glvt is Ziglin.
Proof The proof is obtained by Theorem 3.5(d).
Remarks 4.20. A success in the algorithm (1)-(4) of Theorem 4.19 implies Go is

finite and projectively the tetrahedral (n =4), octahedral (n =6), or iscosahedral
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(n 12) group (see [10, p. 27]). A failure implies that Go SL (2, C) (see [10, p. 7]).
Necessary conditions for a success in the algorithm of Theorem 4.19 are that all the
characteristic exponents ’f and z of (4.6) be rational; that is, all (1 +4flj) 1/2 and
(1 +4/3)1/z are rational (see [10, p. 8]). If this does not hold, only Cases I and II need
to be examined.

5. Applications.
Example (a). Let a(x), b(x), and c(x, y) be arbitrary meromorphic functions on

Cz= {(x, y)}, let h C, and consider the analytic set

(5.1) y {(x, y) Czl b(x)c(x, y) h}.

As an example, if b(x) is a separable polynomial of positive degree (2g / 1) or (2g / 2),
h-- 1, and c(x, y)- y-Z, then y is a punctured algebraic curve of genus g. Returning
to generalities, suppose F y is a Riemann surface on which a(x)/b(x) is finite, and
having the property that the projection 7r(x, y) x of F into C is unbounded. Via the
embedding (x, y) - (x, 0, y, 0) we may view E {(x, :z, Y, r/) (x, Y) F} C4 with pro-
jection (x, 2, Y, r/E) (X, y) as a rank 2 complex vector bundle over F. A holomorphic
connection V can then be defined on E through the local coordinate representation

2 b(x)

V is designed so as to be the pullback of

a(x) d
(5.3) "+b(x) =0, := :2,

under the projection 7r:F C (see [2, 4]). As a consequence, the monodromy group
Go of V embeds into the monodromy group GN of (5.3) (see [4, Prop. 1.1]). If GN is
Ziglin, then Proposition 3.1(b) implies that Go is Ziglin.

There are simple instances in which we can view the projection 7r" F C as a
reduction with respect to a finite symmetry group G. For example, if F is invariant
under each mapping

(exp (27rij/n), (x, y)) (x, exp (27rij/n).. y), j 1, 2,..., n,

as would be the case if c(x, y)=y+", then Theorem 1.2 can be applied (the group
action on the fibers of E F being the identity map in the (sc2, r/z)-coordinates of (5.2)).

The algorithm of 4 applies directly to (5.3) when r(x) =-[a(x)/b(x)] is of the
form given in (4.4). For example, suppose

(5.4) r(x)=
1 1 1 1t_

zli+(x-1)z +(x_2)2 x (x

Then (I) there is no choice of the a: 1/2[ 1 + x/] and c 1/2[ 1 + x/] that makes the d
of Theorem 4.9(1) a nonnegative integer; (II) all Ej {2} E so that there are no
choices of the e and e, not all even, with which to construct a nonnegative d as in
Theorem 4.13(1); and (III) fll 1 implies (1 +4fl)1/2 V/- is not rational so that Case
III does not apply (see the necessary conditions in Remark 4.20). The differential
Galois group Go of (5.3)-(5.4) is then SL (2, C). Recalling Proposition 2.2(d), we see
that by Proposition 3.1(d) and Corollary 3.4 the monodromy group GM GN of
(5.3)-(5.4) cannot be Ziglin. If (5.3)-(5.4) is achieved from the V of (5.2) by reduction
using a finite group (see the previous paragraph for an example), then by Theorem
1.2 the monodromy group Go of V is also not Ziglin.
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To fit this into a Hamiltonian context, give C4-’- {(x x2, y, Y2)} the standard
symplectic structure to dx ^ dy + dx2 ^ dy2, let p(x, y) a(x)(Oc/Oy)(x, y) and
q(x, y)= b(x)c(x, y), and consider the Hamiltonian

(5.5) H(x, x2, y, Y2) q(x, y) +1/2p(x, y)x +1/2(Oq/Oy)(x, y)y2 + 3(x2, Y2).
The associated vector field X/_/ is tangent to the (x, y)-plane, a phase curve F in that
plane of energy h is contained in the set y of (5.1), and the normal variational equation
(NVE) along F may be identified with (5.2) where (sc2, 72) are the (global) linearized
variables associated to (x2, y) (see [2, 4]). In the context of the previous paragraphs,
conclusions about the nonintegrability of X/ can be drawn from Corollary 1.3.

Example (b). For our second example we illustrate how reduction can be combined
with Kovacic’s algorithm to explicitly compute the monodromy of a holomorphic
connection that arises in a Hamiltonian system.

First consider the Fuchsian equation

d
(5.6) y"+p(x)y’+q(x)y=O, ’- dx’

on C with

(5.7)

p(x)= +(x- l)
1 (1/2)

q(x) --+--x (1/2) ](x-l)

and the associated normal form

(5.8) y"=r(x)y, r(x)=[(3/4) (3/16) (3/4) ]x2 (x-1)+x(x -1
Applying Case I of 4, we find only two choices of the a for which the d in
Theorem 4.9(1) is a nonnegative integer:

+, c,, c} {], , -} with d O,

a,al,a ,-, withd=2.

Both cases lead to the single solution

(5.9) y(x)- X3/2(X 1) 1/4

of (5.8).
From the proof of Corollary 4.10 we see that the monodromy group GN of (5.8)

is generated by N1 (2 -1) and N= ( _i). Note that a 0 in N1, since otherwise
the distinct eigenvalues of N2 would imply that Grq was diagonalizable, contrary to
the algorithm giving us only the one solution (5.9) in Case I. Now recall from (4.7)
that the monodromy group GM of (5.6) is generated by M 0jN, where 0j exp (’rriAj),
j= 1, 2, with the A defined as in (4.3). From p(x) in (5.7) we see that A1 1 and
A 1/2, and so M N1 (la ) and M2 iN ( 1).

Equation (5.6) with (5.7) occurs in a Hamiltonian context somewhat as in Example
(a). Using the standard symplectic structure on C4 and

2 2(5.10) H(xl, x2, Yl, Y2) 1/2(Yl2 + Y) -(Xl " X22) "-"Xl "q- XlX22,
the associated vector field XH is tangent to the (xl, yl)-plane, and there is a phase
curve F within this plane at energy h 0 contained in the algebraic curve defined by

(5.11) y2= x{_Xl_ 1].
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The 7/2-action (Xl, Yl) -’> (Xl, --Yl) preserves (5.11) and lifts to a symmetry of the NVE V
along F, where V is the pullback of (5.6)-(5.7) under the reduction mapping (Xl, YI) ->

-(4/3)x1=x. (Analogous computations are done in [4, Ex. C, pp. 110-112].) This
mapping is unbranched over x- 0 and branched with order 2 over x- 1. Since a 0
and M22 id, we see that the monodromy group of V is isomorphic to the infinite cyclic
group generated by M1.

The Hamiltonian (5.10) is but one member of a family that has been extensively
studied using Ziglin analysis (see [8, Thm. 4, p. 472] and [13, Cor. 1, p. 266]), which
in this case fails to detect the nonexistence of a second independent integral. We might
have anticipated some degeneracy in the monodromy of V from the fact that the above
Hamiltonian (5.10) and one which is known to be completely integrable have the same
linearized equations about solutions in the (Xl, yl)-plane (see [12, 5]). However, the
integrability status of (5.10) is unknown. For another example of a Hamiltonian system
that is completely integrable with infinite cyclic monodromy group for its NVE, see
[3, 5]. For other examples in Ziglin analysis we refer to [3] and [4] and the surveys
[14] and [19].
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ADDENDUM: HYPERGEOMETRIC EXPANSIONS OF HEUN
POLYNOMIALS*

E. G. KALNINS AND W. MILLER, JR.$

We should have pointed out the earlier papers on Heun functions by Sleeman [3]
and Schmidt and Wolf [2]. These authors take a somewhat similar point of view to
ours and use the simultaneous separability of a generalized SchrSdinger equation in
several cooordinate systems to derive integral relations for Heun functions. In [4] and
in the present paper we are making clear the geometrical setting of their results and
ours: polynomial orthogonal bases on the n-sphere characterized as eigenfunctions of
commuting sets of self-adjoint symmetry operators.
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